
Simple Verifiable Delay Functions

Krzysztof Pietrzak*

IST Austria
pietrzak@ist.ac.at

July 1, 2018

Abstract

We construct a verifable delay function (or unique publicly verifiable proof
of sequential work) by showing how the Rivest-Shamir-Wagner time-lock
puzzle can be made publicly verifiable.

Concretely, we give a statistically sound public-coin protocol to prove that
a tuple (N, x,T, y) satisfies y = x2T

(mod N) where the prover doesn’t know
the factorization of N and its running time is dominated by solving the puz-
zle, that is, compute x2T

, which is conjectured to require T sequential squar-
ings.

The motivation for this work comes from the Chia blockchain design,
which uses a VDF as a key ingredient. For typical parameters, our proofs
are of size around 10KB and verification cost around three RSA exponentia-
tions.

1 introduction
The RSW time-lock puzzle [RSW96] is defined as follows

The puzzle is a tuple (N, x,T) where N = p · q is an RSA modulus, x ∈ Z∗
N is a

random generator and T ∈N is a time parameter.

The solution to the puzzle is y = x2T
mod N. It can be computed making two

exponentiations by the party who generates the puzzle (and thus knows
the group order φ(N)= (p−1)(q−1)) as

e = 2T mod φ(N) , y= xe mod N (1)

but is conjectured to require T sequential squarings if the group order (or
equivalently, the factorization of N) is not known

x → x2 → x22 → x23 → . . .→ x2T
mod N (2)

To be more precise, the conjecture here is that T sequential steps are necessary
to compute x2T

(mod N) even if one can use large parallelism.

*This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 682815/TOCNeT).

1

As an application, [RSW96] show how to “encrypt to the future": sample a
puzzle (N, x,T) together with its solution y, then derive key ky from y and encrypt
a message m into a ciphertext c = ENC(ky,m). Given (N, x,T), c one can recover
the message m in time required to compute T squarings sequentially, but (under
the above conjecture) not faster.

Proofs of sequential work (PoSW) are objects closely related to time-lock
puzzles. PoSW were introduced in [MMV13], and informally are proof systems
where on input a random challenge x and time parameter T one can generate a
publicly verifable proof making T sequential computations, but it’s hard to come
up with an accepting proof in less than T sequential steps.

The PoSW constructed in [MMV13] is not very practical (at least for large T)
as the prover needs not only T time, but also linear in T space to compute a proof.
Recently [CP18] constructed a very simple and practical PoSW in the random
oracle model. They were interested in PoSW as they serve as a key ingredient in
the Chia blockchain design (chia.net).

The main open problem left open in [CP18] was to construct PoSW that is
unique, in the sense that one cannot compute two accepting proofs on the same
challenge. The existing PoSW all allow to generate many accepting proofs at
basically the same cost as honestly computing the proof. Unfortunately such
PoSW cannot be used for blockchains as they would allow for so called grinding
attacks.

Verifable delay functions (VDF) were recently introduced by Boneh, Bon-
neau, Bünz and Fisch [BBBF18]. A VDF can be seen as a relaxation of unique
PoSW which still suffice for blockchain applications (see [BBBF18] for other ap-
plications). In a VDF the proof on challenge (x,T) has two parts (y,π), where y
is a deterministic function of x that needs T sequential time to compute, and π

is a proof that y was correctly computed. It must be possible to compute π with
low parallelism and such that π can be output almost at the same time as y.
In [BBBF18] this is achieved using incrementally verifiable computation [Val08].
The (very high level) idea is to compute a hash chain y = h(h(. . .h(x) . . .))︸ ︷︷ ︸

T times

and at

the same time use incrementally verifiable computation to compute the proof π,
so the proof will be ready shortly after y is computed. To make this generic ap-
proach actually practical [BBBF18] use very particular algebraic functions (per-
mutation polynomials) for h and proof systems that can exploit that algebraic
structure.

A VDF from RSW. The RSW time-lock puzzle looks like a promising starting
point for constructing a VDF. The main difficulty one needs to solve is achieving
public verifiability: to efficiently verify y ?= x2T

(mod N) one needs the group or-
der of Z∗

N (or equivalently, the factorization of N). But the factorization cannot
be public as otherwise also computing y becomes easy.

One idea to solve this issue is to somehow obfuscate the group order so it can
only be used to efficiently verify if a given solution is correct, but not to speed up
its computation. There currently is no known instantiation to this approach.

In this work we give a different solution. We construct a protocol where
a prover P can convince a verifier V it computed the correct solution y = x2T

2

(mod N) without either party knowing the factorization (or any other hard to
compute function) of N. Our protocol is public-coin, and thus can be made non-
interactive – and thus give a VDF – via the Fiat-Shamir transformation.

Our protocol is inspired by the IP=PSPACE proof [LFKN90, Sha90]. The key
idea of the proof is very simple. Assume P wants to convince V that a tuple (x, y)
satisfies y = x2T

(mod N). For this, P first sends µ = x2T/2
to V . Now µ = x2T/2

together with y = µ2T/2
imply y = x2T

. The only thing we have achieved at this
point is to reduce the time parameter from T to T/2 at the cost of having two
instead just one statement to verify. We then show that the verifier can merge
those two statements in a randomized way into a single statement (x′, y′) = (xr ·
µ,µr · y) that satisfies y′ = x′2

T/2
if the original statement y = x2T

was true, but is
almost certainly wrong (over the choice of the random exponent r) if the original
statement was wrong, no matter what µ the malicious prover did send. This
subprotocol is repeated log(T) times – each time halving the time parameter –
until V can trivially verify correctness of the claim.

The VDF we get has short proofs and is efficiently verifiable. For typical pa-
rameters (2048 bit modulus and T ≤ 40) a proof is about 10KB large and the cost
for verification is around three full exponentiations (for comparison, a standard
RSA decryption or RSA signature computation requires one full exponentiation).

Wesolowski’s VDF. The most closely related result to our VDF is a concurrent
paper by Benjamin Wesolowski [Wes18]. Like in this work, he constructs a VDF
by making the RSW time-lock puzzle publicly verifiable. The core of his VDF is
a protocol to prove that a tuple (x, y1, y2) is of the form (x, xz, xz2

) in a group of
unknown order. With log(T) such proofs one can then show that a tuple (x, y)
satisfies y = x2T

. The statement he proves in each of the log(T) rounds seems
much stronger than the reduction we do (where on input (x, y) we construct a
(x′, y′) s.t. y′ = x′z iff y= xz2

), and as a consequence also his proof is more complex
and somewhat less efficient. The prove soundness he relies on the computational
hardness assumption that extracting roots in the underlying group is infeasible.
More on the group underlying his construction is in §5.1.

Outline. We present the protocol in §2 and the security proof in §3. In §4 we
define VDFs, and in §5 we discuss how the protocol is turned into a VDF and
discuss several efficiency and security issues.

Notation. For a set X , x $← X means x is assigned a random value from X .

For a randomized algorithm alg we denote with x $← alg that x is assigned the
output of alg on fresh random coins, if alg is deterministic we just write x ← alg.

2 the protocol
Our protocol, where P convinces V it solved an RSW puzzle, goes as follows:

• The verifier V and prover P have common input an RSW puzzle (N, x,T)
and a statistical security parameter λ.

3

• P solves the puzzle by computing y = x2T
mod N (making T sequential

squarings), and sends y to V .

• Now P and V iterate the “halving protocol" below. In this subprotocol, on
common input (N, x,T, y) the output is either of the form (N, x′,dT/2e, y′), in
which case it is used as input to the next iteration of the halving subproto-
col, or the protocol has stopped with verifier output in {reject,accept}.

2.1 the halving subprotocol
On common input (N, x,T, y)

1. If T = 2 then V outputs accept if y= x2T = x4 (mod N) and reject otherwise.
If T > 2 go to the next step.

2. The prover P sends µ′ = x2T/2−1
(mod N) to V .

3. If µ′ 6∈Z∗
N V outputs reject and stops, otherwise V computes µ :=µ′2 mod N

(note that µ ∈QRN).

4. V samples a random r $← Z2λ and sends it to P (in the non-interactive
version of the protocol r is the hash of the prover’s message µ′).

5. If T/2 is even, P and V output

(N, x′,T/2, y′)

where

x′ := xr ·µ mod N
(
= xr+2T/2

)
y′ := µr · y mod N

(
= xr·2T/2+2T

)
(note that if y= x2T

then y′ = x′2
T/2 = (mod N)). If T/2 is odd, output

(N, x′,T/2+1, y′2) .

2.2 security statement
Theorem 1. If the input (N, x,T) to the protocol satisfies

1. N = pq is the product of safe primes, i.e., p = 2p′+1, q = 2q′+1 for primes
p′, q′.

2. 〈x〉 =QRN .1

Then for any malicious prover P̃ who sends as first message y anything else than
the solution to the RSW time-lock puzzle, i.e.,

y 6= x2T
mod N

V will finally output accept with probability at most

3log(T)
2λ

.
1That is, x generates QRN , the quadratic residues modulo N. For our choice of N we have |QRN | =

p′q′, so

〈x〉 def= {x, x2, . . . , xp′q′ mod N}=QRN
def= {z2 mod N : z ∈Z∗N } .

.

4

3 security proof
It will be convenient to define the language

L = {(N, x,T, y) : y 6= x2T
mod N and 〈x〉 =QRN }

We’ll establish the following lemma.

Lemma 1. For N as in Thm. 1, and any malicious prover P̃ the following holds.
If the input to the halving protocol in §2.1 satisfies

(N, x,T, y) ∈L

then with probability ≥ 1−3/2λ V ’s outputs is either reject or satisfies

(N, x′,dT/2e, y′) ∈L

Before we prove the lemma, let’s see how it implies Theorem 1.

Proof of Theorem 1. In every iteration of the halving protocol the time parameter
decreases from T to dT/2e and it stops once T = 2, this means we iterate for at
most dlog(T)e−2 rounds. By assumption, the input (N, x,T, y) to the first iteration
is in L , and by construction, the only case where V outputs accept is on an input
(N, x,2, y) where y= x2T = x4 mod N, in particular, this input is not in L .

So, if V outputs accept, there must be one iteration of the halving protocol
where the input is in L but the output is not. By Lemma 1, for any particular
iteration this happens with probability ≤ 3/2λ. By the union bound, the probabil-
ity of this happening in any of the dlog(T)e−2 rounds can be upper bounded by
3log(T)/2λ as claimed.

Proof of Lemma 1. We just consider the case where T is even, the T odd case is
almost identical.

Assuming the input to the halving protocol satisfies (N, x,T, y) ∈L , we must
bound the probability that V outputs reject or the output (N, x′,T/2, y′) 6∈L .

If T = 2 then V outputs reject and we’re done. Otherwise, if P̃ sends a µ′ 6∈Z∗
N

in step 3. then V outputs reject and we’re done. So from now we assume µ′ ∈Z∗
N ,

and thus µ=µ′2 ∈QRN . We must bound

Pr
r

[(y′ = x′2
T/2

mod N) ∨ (〈x′〉 6=QRN)]≤ 3/2λ

by the union bound we can upper bound the two events separately, i.e.,

Pr
r

[y′ = x′2
T/2

mod N]+Pr
r

[〈x′〉 6=QRN]≤ 3/2λ (3)

Eq.(3) follows by the two claims below.

Claim 1. Prr[〈x′〉 6=QRN]≤ 2/2λ .

Proof of Claim. We’ll denote with eµ the unique values in Zp′q′ satisfying xeµ =µ

(it’s unique as µ ∈ 〈x〉 = QRN and |QRN | = p′q′). As x,µ ∈ QRN , also x′ = xr ·µ =
xr+eµ is in QRN , and 〈x′〉 = QRN holds if ord(x′) = p′q′, which is the case except
if

(r+ eµ)= 0 mod p′ or (r+ eµ)= 0 mod q′

either which happens for at most one choice of r ∈ Z2λ (as 2λ < min(p′, q′)). The
claim follows.

5

Claim 2. Prr[y′ = x′2
T/2

mod N]≤ 1/2λ .

Proof of Claim. If y 6∈ QRN , then also y′ = µr · y 6∈ QRN = 〈x′〉 (as a ∈ QRN ,b 6∈
QRN implies a · b 6∈ QRN). In this case y′ 6∈ 〈x′〉 so the probability in the claim is
0.

From now on we assume y ∈QRN = 〈x〉 and let e y ∈Zp′q′ be the unique value
such that xe y = y mod N. Using 〈x〉 =QRN in the last step below we can rewirte

y′ = x′2
T/2

mod N ⇐⇒
µr y= (xrµ)2

T/2
mod N ⇐⇒

xr·eµ+e y = x(r+eµ)·2T/2
mod N ⇐⇒

r · eµ+ e y = (r+ eµ) ·2T/2 mod p′q′

rearranging terms

r(eµ−2T/2)+ e y − eµ2T/2 = 0 mod p′q′ . (4)

If eµ = 2T/2 this becomes
e y −2T = 0 mod p′q′

which does not hold as by assumption we have y 6= x2T
mod N. So from now

on we assume eµ 6= 2T/2 mod p′q′. Then for a = eµ −2T/2 6= 0 mod p′q′ (and b =
e y − eµ2T/2) eq.(4) becomes

r ·a = b mod p′q′

which holds for at most one choice of r and the claim follows.

4 verifiable delay functions
In this section we define verifiable delay functions (VDF), we mostly follow the
definition from [BBBF18]. A VDF is defined by a four-tuple of algorithms:

PoSW.Setup(1λ)→pp on input a statistical security parameter 1λ outputs pub-
lic parameters pp.

PoSW.Gen(pp,T)→ (x,T) on input a time parameter T ∈N, samples an input x.

PoSW.Sol(pp, (x,T))→ (y,π) on input (x,T) outputs (y,π), where π is a proof that
the output y has been correctly computed.

PoSW.Ver(pp, (x,T), (y,π))→ {accept/reject} given an input/output tuple (x,T), (y,π)
outputs either accept or reject.

The statistical security parameter λ measures the bit-security we expect
from our protocol, i.e., an adversary running in total time τ should have advan-
tage no more than τ/2λ in breaking the scheme. It only makes sense to consider
time parameters T that are much smaller than 2λ (say we require T ≤ 2λ/2) so
the sequential running time of the honest prover is much smaller than what is
required to break the underlying hardness assumptions.

6

Efficiency of setup, sampling and verification. The PoSW.Setup and PoSW.Gen
algorithms are probabilistic, PoSW.Ver is deterministic. They all run in time
poly(log(T),λ).

Efficiency of solving. The PoSW.Sol algorithm can compute the output y in T
sequential steps (in this work a “sequential step" is a squaring or multiplication
in Z∗

N). In [BBBF18] it is required that the proof π is computable with bounded
poly(log(T),λ) parallelism so it’s available shortly after y is computed. We will
achieve a stronger guarantee, where π can be computed in o(T) sequential steps
(but if parallelism is available, the time required can be further reduced from
O(

p
T) to O(log(T)).

Completeness. The completeness property simply requires that correctly gen-
erated proofs will always accept, that is, for any λ,T

Pr

PoSW.Ver(pp, (x,T), (y,π))= accept
where

pp $←PoSW.Setup(1λ)

(x,T) $←PoSW.Gen(pp,T)
(y,π)←PoSW.Sol(pp, (x,T))

= 1

Security (sequentiality). The first security property is sequentiality. For
this we consider a two part adversary A = (A1,A2), where A1 can run a pre-
computation and choose T. Then A2 gets a random challenge for time T together
with the output state of the precomputation, we require that whenever

Pr

PoSW.Ver(pp, (x,T), (ỹ,Π̃))= accept
where

pp $←PoSW.Setup(1λ)

(T,state) $←A1(pp, (x,T))

(x,T) $←PoSW.Gen(pp,T)

(ỹ,Π̃) $←A2(pp, (x,T),state)

6= negl(λ)

the A2 adversary must use almost the same sequential time T as required by an
honest execution of PoSW.Sol(pp, (π,T)), and this even holds if A is allowed mas-
sive parallel computation (say we just bound the total computation to 2λ/2). This
means there’s no possible speedup to compute the VDF output by using paral-
lelism. Let us stress that by this we mean any parallelism that goes beyond what
can be used to speed up a single sequential step, which here is a multiplication
in Z∗

N , and we assume the honest prover can use such bounded parallelism.

Security (soundness). The second security property is soundness, which means
that one cannot come up with an accepting proof where the y part was wrongly
computed. Formally, for an adversary A = (A1,A2) we have (unlike in the previ-
ous definition, here we don’t make any assumption about A2’s sequential running

7

time, just the total running time of A must be bounded to, say 2λ/2)

Pr

PoSW.Ver(pp, (x,T), (ỹ,Π̃))= accept
and ỹ 6= y
where

pp $←PoSW.Setup(1λ)

(T,state) $←A1(pp, (x,T))

(x,T) $←PoSW.Gen(pp,T)
(y,π)←PoSW.Sol(pp, (x,T))

(ỹ,Π̃) $←A2(pp, (x,T),state)

= negl(λ)

5 a VDF from RSW
In this section we explain the simple transformation of the protocol from §2 into
a VDF and then discuss the efficiency, security and some other issues of this
construction.

To keep things simple we’ll assume that the time parameter T = 2t is a power
of two. The four algorithms from §4 are instantiated as

PoSW.Setup(1λ) The statistical security parameter λ defines another security
parameter λRSA specifying the bitlength of an RSA modulus, where λRSA
should be at least as large so that an RSA modulus λRSA offers λ bits of
security (e.g. λ= 100 and λRSA = 2048). In the security proof we’ll use that
λ≥λRSA/2, which holds for any reasonable choice of λRSA.

The setup algorithm samples two random λRSA/2 bit safe primes p, q and
output as public parameters the single λRSA bit RSA modulus N := p · q.

PoSW.Gen(N,T) samples a random x ∈QRN and outputs (x,T).

PoSW.Sol(N, (x,T)) outputs (y,π) where y = x2T
mod N is the solution of the

RSW time-lock puzzle and π= {µ′
i}i∈[t−2] is a proof that y has been correctly

computed. It is derived by applying the Fiat-Shamir heuristic to the pro-
tocol in §2. Recall that in this heuristic the public-coin challenges r i ∈ Z2λ

of the verifier are replaced with a hash of the last prover message. Con-
cretely, we fix a hash function hash : Z2

N → Z2λ ,2 let (x1,T1, y1) = (x,T, y)

2 Instead of just hashing the previous prover message µ′i , we’ll also hash the instance x and the
claimed solution y. Hashing x is not important for the security proof (showing that the Fiat-Shamir
heuristic is sound in the random oracle model), but it’s a cheap way of deterring precomputation
attacks, which in practice means we can use a smaller λ and thus get better efficiency. Hashing y is
actually important because in our setting the statement y to be proven is chosen by the prover. There
exists an attack (communicated to us by Benjamin Wesolowski) on soundness of the VDF is y is not
hashed: on challenge (x,T), pick µ′1 at random, this then defines µ1 = µ′1

2, r1 = hash(x,µ′1), and only

now compute y as the wrong value y := (x2T/2
/µ1)r1µ2T/2

1 . The inputs x2 = xr1
1 µ1, y2 = µ

r1
1 y to the

next round satisfy y2 = x2T/2
2 , so we can just honestly continue to get an accepting proof.

8

and for i = 1 . . . t−3 let

Ti+1 := Ti/2 (= T/2i)

µ′
i := xTi /2−1

i mod N

µi := µ′
i
2 = xTi /2

i mod N
r i := hash((x, y),µ′

i)

xi+1 := xr i
i ·µi mod N

yi+1 := µ
r i
i · yi mod N

PoSW.Ver(N, (x,T), (y,π)) parse π = {µ′
i}i∈[t−2] and check if any µ′

i 6∈ Z∗
N , if this

is the case output reject. Otherwise set (x1,T1, y1) = (x,T, y) and then for
i = 1 . . . t−3 compute

Ti+1 := Ti/2 (= T/2i)

µi := µ′
i
2 mod N

r i := hash((x, y),µ′
i)

xi+1 := xr i
i ·µi mod N (5)

yi+1 := µ
r i
i · yi mod N (6)

Finally check whether
yt−2

?= x4
t−2 mod N (7)

and output accept if this holds, otherwise output reject.

5.1 public parameters for the VDF
For the security of the VDF it’s crucial that a prover does not know the factor-
ization of the public parameter N, as otherwise he could compute x2T

(mod N)
in just two exponentiations as in eq.(1). Thus one either has to rely on a trusted
party, or use multiparty-computation to sample N. In particular, it’s possible to
sample N securely as long as not all the participants in the multiparty computa-
tion are malicious. Such an "MPC ceremony" has been done before, e.g. to set up
the common random string for Zcash.3 This is in contrast to the random-oracle
based PoSW [MMV13, CP18] which don’t require a setup procedure at all.

Dan Boneh and Benjamin Wesolowski suggested to use class groups of an
imaginary quadratic field [BBHM02] instead an RSA group for our VDF in order
to avoid a trusted setup. Weselowski already discusses how to instantiate his
VDF [Wes18] in such groups. Using class groups will require to use computa-
tional assumptions for the soundness property.

5.2 efficiency of the VDF
Cost of verification. The cost of running the verification PoSW.Ver(N, (x,T =
2t), (y,π)) is dominated by the 2(t−3) exponentiations (with λ bit long exponents)
in eq.(5,6). As exponentiation with a random λ bit exponent cost about 1.5λ

3https://z.cash/technology/paramgen.html

9

multiplications,4 the cost of verification is around 3 ·λ · (t−3) multiplications in
Z∗

N . For concreteness, consider an implementation where λ = 100,λRSA = 2048
and assume t = 40, this gives a cost of about 3 ·λ · (t−3) = 11100 multiplications,
which corresponds to 11100/(2048 ·1.5)≈ 3.6 full exponentiations in Z∗

N .

A minor improvement. There’s a simple way to save on verification time and
proof size. Currently, for ∆ = 2 we run the halving protocol for t−∆−1 = t−3
rounds and then in eq.(7) check if yt−∆ = x2∆

t−∆. We can run the protocol for fewer
rounds, say set ∆= 8, which saves 6 rounds and thus reduces proof size from 37
to 31 elements (or about 16%). We also save 2 ·6 exponentiations as in eq.(5,6),
but as the final check eq.(7) for general ∆ becomes yt−∆

?= x2∆
t−2 mod N (if T is not

a power of 2 then this check is yt−∆
?= xTt−∆+1

t−2 mod N). This gets more expensive
as ∆ grows. With ∆ = 8 the overall computation still drops by about 14% for a
total cost of slightly above 3 full exponentiations.

Cost of computing the proof. Computing the proof (y,π)←PoSW.Sol(N, (x,T))
requires one to solve the underlying RSW puzzle y= x2T

(mod N), which is done
by squaring x sequentially T times (the security of the RSW puzzle and thus also
our VDF relies on the assumption that there’s no shortcut to this computation).

On top of that, for the VDF we also must compute the proof π = {µ′
i}i∈[t−2].

Recall that µ′
i = xTi /2−1

i and µi = µ′
i
2 = xTi /2

i . Below we discuss how to compute
the µi instead of the µ′

i, this doesn’t really affect the argument but the “−1" in
the exponent of the µ′

i ’s makes the statements a bit more messy, we also assume
T = 2t is a power of 2.

If naïvely implemented, computing the µi will require T/2 squarings for µ1,
T/4 for µ2 etc., for a total of T ≈ T/2+T/4+T/8 . . .+8. Fortunately we don’t have
to compute µ1 = x2T/2

as we already did so while computing y = x2T
by repeated

squaring (cf. eq.2). This observation already saves us half the overhead. We can
also compute the remaining µ2,µ3, . . . using stored values, but it becomes increas-
ingly costly. As we discuss below, in practice one could compute, say µ1, . . . ,µ10

using stored values, and then fully recompute the remaining µ11 = xT/211

11 ,µ12, . . .
which will only require T/210 squarings.

To see how the µi ’s can be efficiently computed for small i, let z ∈ QRN let z
denote z’s log to basis x, i.e., xz = z mod N. We have x1 = 1, y1 = 2T and

µi := xi ·2T/2i

xi+1 := r i · xi +µi

yi+1 := r i ·µi + yi

How those exponents concretely develop for i = 1 to 3 is illustrated in Figure 1.
For example, we can compute µ3 assuming we stored the xT/8, xT3/8, xT5/8, xT7/8

values as
µ3 = (x2T/8

)r1·r2 + (x2T5/8
)r2 + (x2T3/8

)r1 + x2T7/8

4Exponentiation is typically done via “square and multiply", which for a z bit exponent with ham-
ming weight h(z) requires z+h(z) multiplications, or about 1.5·z multiplication for a random exponent
(where h(z)≈ z/2).

10

i x′i µi yi
1 1 2T/2 2T

2 r1 +2T/2 r1 ·2T/4 +23T/4 r1 ·2T/2 +2T

3 r1 · r2 + r2 ·2T/2 +2T/4 · r1 +23T/4 r1 · r2 ·2T/8 + r2 ·2T5/8 + r1 ·2T3/8 +2T7/8 r1 · r2 ·2T/4 + r2 ·23T/4 + r1 ·2T/2 +2T

...
...

...
...

Figure 1: Exponents of the the values in the protocol, here z = xz.

In general, computing µi will require to store 2i−1 values, and then compute 2i−1

exponentiations with exponents of bitlength λ·(i−1) (let us mention that we can’t
speed this up by first taking the exponents module the group order p′q′ as it’s not
know).

Asymptotically, computing the first half µ1, . . . ,µt/2 using stored values, and
recompute µt/2+1, . . . ,µt−2 from scratch, will requrie 2t/2 ·λ·t/2+2t/2 ≈p

T ·log(T)·λ
multiplications and we need to store

p
T values in Z∗

N during the computation of
y. In general, the optimal strategy will depend on the parallelism and storage
available to the prover.

5.3 security of the VDF
Soundness. If we model hash as a random oracle, then by Theorem 1 and the
Fiat-Shamir heuristic we are guaranteed that a prover will not find an accepting
proof (ỹ, π̃) where ỹ 6= x2T

.
Concretely, the probability that a prover that makes up to q queries to hash

finds such an accepting proof where y 6= x2T
is at most 3 · q/2λ.

As outlined in Footnote 2, by using the challenge instance x as an additional
input to the random oracle, we get soundness 3 · q/2λ even against an adversary
who makes q queries after receiving the challenge x, but can make a huge number
of oracle queries before that.

Sequentiality. To break sequentiality means computing y faster than in T se-
quential computations. We rely on the same assumption as [RSW96], which sim-
ply states that such a shortcut does not exist (the only difference to [RSW96] is
that our N is the product of safe primes, not a general RSA modulus).

References
[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifi-

able delay functions. In CRYPTO 2018, 2018.

[BBHM02] Ingrid Biehl, Johannes A. Buchmann, Safuat Hamdy, and Andreas
Meyer. A signature scheme based on the intractability of computing
roots. Des. Codes Cryptography, 25(3):223–236, 2002.

[CP18] Bram Cohen and Krzysztof Pietrzak. Simple proofs of sequential
work. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-

11

ROCRYPT 2018, Part II, volume 10821 of LNCS, pages 451–467.
Springer, Heidelberg, April / May 2018.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan.
Algebraic methods for interactive proof systems. In 31st FOCS, pages
2–10. IEEE Computer Society Press, October 1990.

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly
verifiable proofs of sequential work. In Robert D. Kleinberg, editor,
ITCS 2013, pages 373–388. ACM, January 2013.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and
timed-release crypto. Technical report, Cambridge, MA, USA, 1996.

[Sha90] Adi Shamir. IP=PSPACE. In 31st FOCS, pages 11–15. IEEE Com-
puter Society Press, October 1990.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of
knowledge imply time/space efficiency. In Ran Canetti, editor,
TCC 2008, volume 4948 of LNCS, pages 1–18. Springer, Heidelberg,
March 2008.

[Wes18] Benjamin Wesolowski. Slow-timed hash functions. Cryptology ePrint
Archive, Report 2018/623, 2018. https://eprint.iacr.org/2018/
623.

12

