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Abstract. Recently, the Boomerang Connection Table was introduced
by Cid et al. as a tool to better evaluate the probability of a boomerang
distinguisher. To compute the BCT of an n-bit to n-bit S-box, the in-
ventors of the BCT proposed an algorithm that takes O(23n) time. We
show that one can construct the same table in only O(22n) time.

1 Introduction

The boomerang attack [6], introduced by Wagner, has become an important
tool in cryptanalysis of symmetric-key primitives. Over the years many exten-
sions and small improvements of the boomerang attack were presented, but an
essential element in the analysis of the boomerang distinguisher relies on some
small technicality — namely, what is the true probability that the boomerang
“returns”. Examples where the independence assumptions offered too high esti-
mate are presented in [5] whereas methods to increase this “connection” proba-
bility are suggested in [1, 2, 4].

Recently, Cid et al. offered a new tool that explains some of the previous
results and allows computing the connection probability in a more accurate
manner [3]. The Boomerang Connection Table suggests the probability that a
boomerang of input difference ∆IN “connects” with output difference ∆OUT .
Specifically, the entry (∆IN , ∆OUT ) of the BCT counts the number of inputs x
such that:

S−1(S(x) ⊕∆OUT ) ⊕ S−1(S(x⊕∆IN ) ⊕∆OUT ) = ∆IN . (1)

Along the introduction of the BCT, Cid et al. also present an algorithm that
takes time O(23n) for an n-bit to n-bit S-box. The algorithm takes any ∆IN and
∆OUT and checks how many values of x satisfy the above relation.

In this short paper we propose a new algorithm that computes the same BCT
in time complexity of O(22n).

2 New Algorithm

The new algorithm is based on trying all possible ∆IN values for a given ∆OUT

in one “go” of trying all possible values for x. This is based on the following
observation — the BCT at entry (∆IN , ∆OUT ) is determined by the number of
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pairs x, y satisfying x⊕y = ∆IN and S−1(S(x)⊕∆OUT )⊕S−1(S(y)⊕∆OUT ) =
∆IN . Re-arranging these two equations yields that a pair of values x, y contribute
a BCT entry if

x⊕ y = S−1(S(x) ⊕∆OUT ) ⊕ S−1(S(y) ⊕∆OUT )

which can be re-written to

x⊕ S−1(S(x) ⊕∆OUT ) = y ⊕ S−1(S(y) ⊕∆OUT ). (2)

This last equation is the key element of the improved computation. It is
easy to see that the above equation allows computing for every value x the value
x⊕S−1(S(x)⊕∆OUT ), looking for a collision in these values, where each collision
suggests a pair of (x, y) that satisfies Equation (2) (and should increase the value
in the BCT entry corresponding to (x⊕ y,∆OUT ).

The resulting algorithm is depicted in Algorithm 1.

Algorithm 1 Our New Algorithm for constructing a BCT

1: for all values of ∆OUT do
2: Initialize an empty table T of 2n lists
3: for all values of x do
4: Compute y = x⊕ S−1(S(x) ⊕∆OUT )
5: Concatenate x to T [y]
6: end for
7: Initialize an array Column of 2n entries
8: for all entries in T do
9: if the entry is not empty then

10: for all pairs of values (xi, xj) in the entry do
11: Increment Column[xi ⊕ xj ] by 1
12: end for
13: end if
14: end for
15: Print the entries of Column (which correspond to ∆OUT ’s column in the

BCT)
16: end for

It is worth noting that one can easily transform the algorithm to print the
rows of the BCT by changing Step 4 to computing x⊕ S(S−1(x) ⊕∆IN ).

The analysis is quite straightforward, as Step 1 tries 2n possible ∆OUT , and
the internal loops, Steps 3–6 and Steps 8–14, take O(2n) time each. The result
is an algorithm that takes O(22n) in total for an n-bit S-box.
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