
Partially specified channels:
The TLS 1.3 record layer without elision

Christopher Patton and Thomas Shrimpton

University of Florida

Abstract. This work advances the study of secure stream-based channels (Fischlin et al., CRYPTO ’15)
by considering the multiplexing of many data streams over a single channel. This is an essential feature
of real-world protocols such as TLS. Our treatment adopts the definitional perspective of Rogaway
and Stegers (CSF ’09), which offers an elegant way to reason about what standardizing documents
actually provide: a partial specification of a protocol that admits a collection of compliant, fully realized
implementations. We formalize partially specified channels as the component algorithms of two parties
communicating over a channel. Each algorithm has an oracle that services specification detail queries;
intuitively, the algorithms abstract the things that are explicitly specified, while the oracle abstracts the
things that are not. Our security notions, which capture a variety of privacy and integrity goals, allow
the adversary to respond to these oracle queries; security relative to our notions implies that the channel
withstands attacks in the presence of worst-case (i.e., adversarial) realizations of the specification details.
Our formalization is flexible enough to provide the first provable security treatment of the TLS 1.3
record layer that does not elide optional behaviors and unspecified details.

Keywords: cryptographic standards, TLS 1.3, stream-based channels, partially specified protocols

1 Introduction

The utility of the provable security methodology is ultimately limited by how faithfully its formal models
reflect reality. This is true of all theoretical pursuits, but what sets security apart are the consequences
of these models being wrong: at best, proofs of security are rendered useless, even as heuristics; at worst,
real systems are left vulnerable to attacks. In their 2011 article entitled “Provable security in the real
world” [14], Degabriele, Paterson, and Watson highlight how this tension has played out in the deployment
of cryptographic protocols:

– Academic research heavily influences the process by which cryptographic standards, like TLS [28],
DTLS [27], SSH [33], and IPSec [20], are developed; but the final specification has to satisfy a number
of design criteria unrelated to theory, including providing backwards compatibility and interoperability
with other protocols, and accounting for competing (and often conflicting) interests of stakeholders. As
a result, standards are routinely comprised of design details, parameters, and optional features that
academic formalisms elide and proofs of security say nothing about.

– Standards provide guidance for implementations, but do not fully specify every aspect of the protocol.
This is by design: protocols need to be flexible enough to admit many implementations with different
operational constraints and security goals. But this degree of separation between theory and implemen-
tation means the way cryptographic primitives are used may not coincide with the intended model.

In short, it is the standards that are left with the unenviable task of linking the clean abstractions of theory
with the complicated realities of implementation. As a result, even though we all recognize that there is a
gap between theory and standard-compliant implementation, its size is hard to estimate from either side.
This work considers how we might address the gap from the middle, by formalizing what the standard itself
actually provides.

Specifically, we propose a formal framework for reasoning about secure channel protocols such as TLS,
DTLS, IPSec, and SSH. We focus on the mechanisms by which data are protected, written to the channel, and
processed by the receiver. Many such mechanisms have been scrutinized from a provable-security perspec-
tive [25,26], but the subject of these analyses is invariably (and often implicitly) a particular, fully realized
implementation of the scheme. In contrast, the subject of our study is the protocol specification itself: our



goal is to formalize the collection of fully realized implementations that the standardizing document admits.
To do so, we adopt the partially specified protocol framework of Rogaway and Stegers [29] (hereafter RS),
an unconventional viewpoint that has the potential to transform the way researchers approach real-world
cryptography. One goal of this paper is to demonstrate this potential; to this end we initiate the study of
partially specified channels (PSCs).

We begin by devising a syntax general enough to capture all of the previously mentioned protocols
(Section 2). We extend the stream-based channel abstraction of Fischlin et al. [17] (hereafter FGMP), so
named because it treats the plaintext and ciphertext as streams of fragments. This accurately models the
interfaces exposed by secure channel implementations. Our syntax permits multiplexing of many distinct
plaintext streams over the same channel, an important feature of TLS and DTLS (and, arguably, an implicit
feature of SSH and IPSec). Its component algorithms formalize the aspects of the channel that must be
realized properly; the rest of the specification details are modeled via an oracle to which the algorithms have
access. This abstraction provides sufficient flexibility to give a provable security treatment of all compliant
realizations of the TLS 1.3 record layer (Section 3). The standard [28] stipulates how to encrypt, how long
records may be, and rules for transforming the input data into a sequence of records. But the lengths
of records, whether to pad them, how to order them, and numerous other details are left unspecified. A
traditional treatment would necessarily elide these details, either by fixing or ignoring them; the result is
that the analysis says nothing about the security of the vast majority of compliant implementations.

We extend the notions of privacy and integrity of FGMP to multiplexed, stream-based channels (Sec-
tions 2.2 and 2.3). Going a step further, we consider different “levels” of privacy corresponding to various
security goals considered in prior works [25,17,16]. Our analysis uncovers two subtle, yet security-critical
matters that would be far harder to reason about in a more traditional treatment. First, the level of pri-
vacy the record layer can provably provide depends intrinsically on the unspecified details (Theorem 2).
The record layer is used to multiplex distinct plaintext streams over the same channel; thus, each record
has a content type that associates the content to its stream. The type is encrypted along with the content,
permitting implementations that, at least in principle, hide both the content and its type. This is laudable,
but the specification admits implementations that leak the content type entirely. Roughly speaking, this is
because the boundaries between records depend on the types of each record. All we can say in general is that
the record layer ensures privacy of the contents of each record. (We make this point precise in Section 3.)

Second, following FGMP, our syntax regards the ciphertext as a stream, and our notion of ciphertext-
stream integrity (INT-CS) implies, informally, that the receiver only consumes the stream produced by
the sender. Records written to the channel are delimited by strings called record headers, whose values are
specified by the standard. These bits are not authenticated, and the standard does not require the receiver
to check that their values are correct; thus, the record layer cannot achieve our strong notion of ciphertext-
stream integrity. But intuitively, the value of these bits should not impact security. Our framework provides a
clean way to reconcile this intuition with our model: we show that the value of these bits are indeed irrelevant
if and only if they are authenticated (Theorem 3).

Our analysis applies to draft 23 of the standard [28], which was current at the time of writing. We shared
the above finding with the IETF working group responsible for drafting TLS 1.3, and the specification
was updated so that the record header is authenticated. This change will appear in the final version of the
standard, and because this is the only revision to the record layer since draft 23, our results apply to TLS 1.3.

Background. Our framework weds two existing approaches to analyzing real-world cryptography. First,
we extend secure stream-based channels to consider multiplexing of plaintext streams over the same channel.
This addresses a problem left open by FGMP [18] and permits, for the first time, the analysis of TLS in this
setting. The second approach is the partially specified protocol framework of RS, which we use to reason about
protocol standards without eliding the myriad optional, under-specified, or otherwise unspecified details in
these standards.

Stream-based channels. The deployment of these protocol standards has out-paced the development of
supporting theory. In 2000, Bellare and Namprempre [8] provided foundations for the study of probabilistic
authenticated encryption (AE) schemes used in SSL/TLS, IPSec and SSH. Shortly thereafter, Rogaway [30]
embellished authenticated encryption to take associated data (AEAD), moving the primitive closer to prac-
tice. Yet it was already understood that an AEAD scheme and its attendant notions of privacy and integrity

2



do not suffice for building secure channels. In 2002, Bellare, Kohno, and Namprempre [7] formalized stateful
AE in order to account for replay and out-of-order delivery attacks, as well as more accurately model and
analyze SSH. Their model regards ciphertexts as atomic, but ciphertexts written to the channel may be
(and routinely are) fragmented as they traverse the network, which leaves these protocols susceptible to
attacks [2]. Likewise, the APIs for real secure channels regard the input plaintext as a stream, meaning that
a single logical plaintext may be presented as a sequence of fragments, too. It took another ten years for the
model to be significantly extended, by Boldyreva et al. [12], to address ciphertext fragmentation and attacks
that exploit it. Finally, in 2015 by FGMP formalized stream-based secure channels that address plaintext
fragmentation, with updates provided in 2016 by Albrecht et al. [1]. As FGMP point out [18], these works
help shed formal light on truncation [31] and cookie-cutter [11] attacks.

Although theory has advanced significantly, it still falls short of capturing an important feature that real
protocols provide: a means of multiplexing a number of data streams over the same channel. The TLS 1.3
record layer, for example, handles streams for three distinct sub-protocols: handshake, alert, and application-
data. Explicitly modeling the multiplexing of these streams is crucial to a rigorous analysis of TLS, since
each of these sub-protocols has side-effects on the sender and receiver state and, hence, implications for the
security provided by the channel.

Whereas FGMP regard the plaintext stream as a sequence of message fragments M1,M2, . . . , we will
consider streams of the form (M1, sc1), (M2, sc2), . . . where sci denotes the stream context of its associated
message fragment. Intuitively, the stream context is metadata that allows for differentiation of fragments into
logical streams, each associated to a higher-level application, protocol, etc. Following prior work, our syntax
models a unidirectional channel between a sender and receiver. We decompose the sender into two random-
ized, stateful algorithms: the stream multiplexer (Mux ), and the channel writer (Write ). Correspondingly,
we decompose the receiver into the channel reader (Read ), and the stream demultiplexer (Demux ). One
might think it cleaner to regard the sender and receiver as atomic processes, rather than decompose them as
we have done. Indeed, this abstraction is adopted in the aforementioned works. We break with this syntax
in order in order to precisely capture multiplexing of streams, and to separate this functionality from the
cryptographic operations that turn plaintext strings into ciphertexts. (More on this in Section 2.2.)

Partially specified protocols. The conventional approach to formalizing a cryptographic primitive yields
security theorems that hold only when the constituent algorithms have been realized properly, according
to some implicit reference or standard that fully specifies what is a proper realization. RS observed that
real standards provide only partial specifications of compliant schemes: they routinely allow for optional
behaviors and leave many implementation details unspecified. The RS thesis is that one does not need to
elide these details in order to foster clean abstractions and clear mathematical reasoning. Their approach,
which we adopt here, is simply to formalize what a standard is: a partial specification (the things that
are mandated and explicitly described) plus additional specification details (everything else). RS apply this
approach to authentication protocols, in particular the Needham-Schroeder-Lowe protocol. We apply it to
secure channels.

Thus, we initiate the study of partially specified channels. The component algorithms Mux , Write , Read ,
and Demux formalize the core functionalities of the sender and receiver that must be fully specified; the rest
of the specification details (SD) are formalized via an oracle given to each of the algorithms. The functionality
of this SD oracle is left unspecified, and in our security games, queries made to the oracle are serviced by the
adversary. This is clearly a very strong attack model: in addition to influencing the behavior of the algorithms
via their inputs, the adversary is allowed to participate in portions of their computation. The actual strength
of the model depends on what quantities are exposed to the SD, and how the SD return values are used
within the algorithms. At one extreme, an empty (or otherwise trivial) SD yields a traditional kind of attack
model; at the other, if secret state (e.g., the key) is passed to the SD, then no security is possible. In this
way, our model can provide principled guidance to the standard-writing process by surfacing choices that
may be security critical.

This definitional framework admits another interpretation, one that is likely of interest in other settings:
it lets us reason about security in the presence of implementation errors. One can view each algorithm as
being partitioned into operations whose implementation is assumed to be correct, and those that are not.
From this perspective, our attack model captures a kind of worst-case (i.e., adversarial) implementation of
those operations. This is interesting because if one proves that a particular PSC construction is secure, it

3



makes clear which things must be implemented correctly and deserve the extra scrutiny of formal verification
(a la [16]), and which things do not need such hard guarantees.

Related work. We have already mentioned the line of papers that our work extends [8,7,13,17,1]; this
section points out important related efforts.

The miTLS project. From the standpoint of scope, the work most closely related to ours is the recent
paper by Delignat-Lavaud et al. [16] (DLFK+). It provides a formal analysis of the TLS 1.3 record layer
(draft 18) “as is”, but their approach is fundamentally different from our own. The paper is the latest from
miTLS (mitls.org), a project whose goal is to formally verify the security of TLS as is, without omitting
any details. The strategy is to implement the record layer in a programming language that is amenable to
formal analysis (F∗), express their security goals as games in the same language, and find a formal proof that
the scheme’s security (in a sense they define) reduces to standard computational assumptions (also expressed
in F∗). This methodology amounts to a formalization of code-based game-playing techniques now common
in cryptography [9]. Our work is technically different from theirs on a couple fronts. First, our analysis
applies to a set of compliant implementations (corresponding to different realizations of the specification
details), whereas their work applies only to their implementation. This flexibility extends to our security
notions: we capture the goal of hiding the message length as one of many possible privacy goals, whereas
this property is mandatory in their security notion. Second, our adversarial model is stronger in that it
permits fragmentation of the plaintext and ciphertext streams; neither capability is considered by DLFK+.
We elaborate on this and other points about their setting in Appendix B.

We do not mean to diminish the work of DLFK+ in pointing out these short comings. On the contrary,
the value of their contribution (and of the miTLS project overall) is hard to overstate. They provide a
reference implementation of the record layer in which we have a high degree of confidence, both in terms
of security and, crucially, correctness. Practitioners are paying attention [28, Section 12.2], and using this
reference will ultimately facilitate the development of secure production code. As such, we view our work
as complimentary to DLFK+. An interesting direction would be to extend their framework to permit some
degree of partial specification.

Other analyses of the record layer. In an analysis of TLS 1.2, a paper by Patterson, Ristenpart, and
Shrimpton [25] put forward a notion of stateful, length-hiding AE that admits schemes with associated
padding (to hide the plaintext length) and variable-length MACs, both features of TLS 1.2. We would call
this a “traditional” analysis since their formalism necessarily elides a number of details of the protocol.
Badertscher et al. [5] characterized the TLS 1.3 record layer (draft 08) as an augmented secure channel
(ASC), which allows for sending a message with two parts: the first being private, and both parts being
authenticated. It too is a more traditional analysis. Bellare and Tackmann analyze the multi-user security
of the TLS 1.3 record layer [10]. They shed light on the following problem: if the same message is encrypted
in a number of sessions, then what information does this leak about the sessions? A popular TLS endpoint,
such as google.com, might serve billions of client a day. Many of these flows are identical (such as the
initial GET); thus, an adversary who observes these identical flows can try to guess the key used for one
of the clients. Its odds are improved by the sheer number of clients encrypting an identical message. This
attack vector lead the designers of TLS 1.3 to “randomize” the IV used for generating the nonce; Bellare
and Tackmann analyze the exact security of this approach in the multi-user setting.

2 Partially specified channels

In this section we formalize PSCs and their attendant security notions. We begin with some notation and
conventions.

Notation. Let |X| denote the length of a string X ∈ {0, 1}∗ and let |X| denote the length of vector X.
We denote the i-th bit of string X by Xi or X[i], and the i-th element of vector X by Xi or X[i]. Let
{0, 1}∗∗ = ({0, 1}∗)∗. We define X ‖Y to be the concatenation of strings X and Y ; let cat : {0, 1}∗∗ → {0, 1}∗
denote the map X 7→X1 ‖ · · · ‖Xm, where |X| = m. Let X[i:j] denote the substring Xi ‖ · · · ‖Xj of X. If
i 6∈ [1..j] or j 6∈ [i..|X|], then define X[i:j]] = ε. Let X[i:] = X[i:|X|] and X[:j] = X[1:j]. We write X � Y if
X is a prefix of Y (i.e., (∃T ∈ {0, 1}∗)X ‖T = Y ). Let X %Y denote “remainder” of X after removing the

4

mitls.org
google.com


Sender

M

sc

Mux X

H

α

Write

Receiver

Read Y

H

α

Demux

C

γ

M

sc

γ Send

Mux

Write

A

Recv

Read

Demux

Fig. 1: left: illustration of our syntax. Right: illustration of the execution model. The game may only traverse non-cyclic
paths in this call graph.

prefix Y , e.g., 1011 % 10 = 11. (If Y 6� X, then define X %Y = ε.) Let 〈i〉n denote the invertible encoding
of integer i ≥ 0 as an n-bit string.

Algorithms may have access to one or more oracles, written as superscripts (e.g., AO). The runtime of an
algorithm includes the time required to evaluate its oracle queries. If an algorithm A is deterministic, then
we write y ← A(x) to denote executing A on input of x and assigning its output to y; if A is randomized or
stateful, then we write y ←← A(x). Algorithms are stateless and randomized, unless specified otherwise. An
adversary is a stateful and randomized algorithm. If X is a set, then we write x←← X to denote sampling x
randomly from X according to some implicitly-defined distribution. If X is finite, then the distribution is
uniform. If n ∈ N \ {0}, then let [n] = {x ∈ N : 1 ≤ x ≤ n}.

Pseudocode. Our pseudocode follows the conventions of RS with a few minor differences. (Refer to [29,
Section 2].) our pseudocode is statically typed. Available types are bool (called boolean in RS, an element of
{0, 1}), int (integer in RS, an element of Z), str (string in RS, an element of {0, 1}∗), and struct (record in
RS). New types may be defined recursively from these: for example, type struct {str name, int age} person
declares a data structure with two fields, the first a str and the second an int. Variables may be declared with
the word declare, e.g. declare person Alice. Variables need not be explicitly declared, in which case their
type must be inferable from their initialization (i.e., the first use of the variable in an assignment statement).
There are also associative arrays that map arbitrary quantities to values of a specific type. For example,
declare strX[ ] declares an associative array X. We let X[k] and Xk denote the value in X associated
with k. We will find it useful to explicitly define the “type” of a procedure (i.e., algorithm) by their interface.
For instance, the type A(strX, str Y ) 7→ (int i, int j) indicates that A takes as input a pair of strings and
outputs a pair of integers. Multiple variables of the same type may be compactly declared, e.g., as declare
strX,Y, int z rather than declare strX, str Y , int z. We also use this convention when defining procedure
interfaces, e.g., A(strX,Y ) 7→ (int i, j).

If a variable of one type is set to a value of another type, then the variable takes the value �, read
“undefined”. Uninitialized variables implicitly have the value �. The symbol � is interpreted as 0 (i.e., false)
in a boolean expression, as 0 in an expression involving integers, and as ε in an expression involving strings.
We introduce the distinguished symbol ⊥, read “invalid”, which can be assigned to any variable regardless of
type. Unlike �, its interpretation in an expression is undefined, except that (X = ⊥) should evaluate to true
just in case variable X was previously set to ⊥. We remark that ⊥ has the usual semantics in crytpographic
pseudocode; the symbol � is useful for specifying protocols compactly.

Variables passed to procedures may be embellished with the key word var, which means the variable has
copy-in-copy-out semantics. For example, A(var x) means that A is invoked on input x, and after A halts, x
may have a different value. This will be useful for explicitly defining a procedure’s state. A value of any type
may be assigned to an anonymous variable ∗, e.g., ∗ ← x. We let 〈x1, . . . , xm〉 denote an invertible encoding
of arbitrary values x1, . . . , xm as a bit string. Decoding is written as 〈x1, . . . , xm〉 ← X and works like this
(slightly deviating from [29, Section 2]): if there exist x′1, . . . x

′
m′ such that X = 〈x′1, . . . , x′m′ 〉, m′ = m, and

each x′i has the same type as xi, then set xi ← x′i for each i ∈ [m]. Otherwise, set xi ← � for each i ∈ [m].

5



2.1 Syntax

Formally, a PSC is a 5-tuple of randomized algorithms CH = (Init ,Mux ,Write ,Read ,Demux ). All but the
first are stateful and expect access to an oracle, which we generically write as O in the following definitions:

– Init ( ) 7→ (str Mu,Wr ,Re,De). The initialization algorithm models key agreement and initialization of
the sender state (Mu,Wr) and receiver state (Re,De).

– MuxO(strM, sc,var str Mu) 7→ (strX,H,α). The multiplexing algorithm takes as input a plaintext
fragment M , stream context sc, and state Mu, and returns a channel fragment X, its context H, and
some auxiliary output α.

– WriteO(strX,H,α,var str Wr) 7→ (str C, γ). On input of a channel fragment X, context H, and aux-
iliary information α, and state Wr , the channel writing algorithm produces a ciphertext fragment C and
a status message γ.

– ReadO(str C,var str Re) 7→ (str Y,H, α). On input of a ciphertext fragment C and state Re, the channel
reading algorithm returns a ciphertext fragment Y , its context H, and auxiliary output α.

– DemuxO(str Y,H, α,var str De) 7→ (strM, sc, γ). The demultiplexing algorithm takes a ciphertext frag-
ment Y with channel context H, auxiliary information α, and state De, and returns a plaintext frag-
ment M with stream context sc, along with a status message γ.

The oracle O provides the specification details (SD) and may be invoked any number of times by the caller
during its execution. The SD-oracle may have its own state and coins; to be clear, the oracle and its caller
do not have joint state, and their coins are independent. We require that each of these procedures halts,
regardless of coin tosses or SD responses, in a bounded number of steps that depends only on the length of
its inputs.

Specification details. The SD is formalized by an oracle, so we need some way to talk about the queries
that the oracles accept. Our convention will be that SD queries are of the form 〈caller, instruction, x1, . . . , xm〉,
where caller and instruction may be thought of as strings. When it is necessary to specify an SD-oracle query,
we will endeavor to make them suggestive of the intended semantics under correct operation. (See Figure 7
for examples.) SD responses are also always strings, but we do not provide conventions for them.

Status messages and auxiliary outputs. All algorithms may produce some auxiliary information along
with its outputs. This allows Mux and Read to convey state (denoted α) to Write and Demux (resp.),
and allows Write and Demux to surface status information (denoted γ) to applications. (See Figure 1 for
an illustration.) Among other things, this models distinguishable decryption errors [13], an attack vector
that has heavily influenced the development of secure channels [32,15,24,3]. (FGMP model distinguishable
errors, too.) Our consideration of information leakage via auxiliary output is inspired by a recent work by
Barwell, Page, and Stam [6]. Their subtle AE setting models decryption leakage in a manner general enough
to capture error indistinguishibility [13,17], as well as other settings for authenticated encryption [4,19].

Correctness. At this juncture, a traditional treatment would define correctness of the primitive. However,
following RS, we will not explicitly define correctness of PSCs. Indeed, our aim is to define and achieve
security even for channels that are not correct: in particular, when the SD is realized by an adversary. Quite
to the contrary, one normally assumes correctness in proofs of security. We elaborate on the consequences of
this choice in Appendix A.

2.2 Privacy

We recast the privacy notions of FGMP to address the multiplexing of plaintext streams and expose the
specification details. Our PRIV-SR notion gives the adversary access to a pair of oracles. The Send oracle
allows the adversary to provide the sender with arbitrary message fragments and stream contexts, where
streams are distinguished by their context sc. Analogously, the Recv oracle allows the adversary to deliver
arbitrary ciphertext fragments to the receiver. We define a PRIV-S notion from this game by removing the
Recv oracle. In both notions, whenever a query to Send or Recv induces an SD-oracle call, that call is
serviced by the adversary.

6



Exppriv-sr
CH,`,b(A)

1 declare str S, bool sync
2 (Mu,Wr ,Re,De)←← Init ( )
3 sync ← 1
4 b′ ←← ASend,Recv

5 return b′

Send(M0, sc0,M1, sc1)

6 L0 ← leak (`,M0, sc0)
7 L1 ← leak (`,M1, sc1)
8 if L0 6= L1 then return (⊥,⊥)
9 (X,H,α)←← MuxA(Mb, scb,var Mu)

10 (C, γ)←←WriteA(X,H,α,var Wr)
11 S ← S ‖C ; return (C, γ)

Recv(C)

12 (Y,H, α)←← ReadA(C,var Re)
13 (M, sc, γ)←← DemuxA(Y,H, α,var De)
14 if sync and Y � S then
15 S ← S%Y ; M, sc ← ⊥
16 else sync ← 0
17 return (M, sc, γ)

leak (`,M, sc)
18 switch (`)
19 case lensc: return 〈|M |, sc〉
20 case len: return 〈|M |, |sc|〉
21 case none: return ε

Fig. 2: The PRIV-SR notion of security for a partially-specified channel CH. The PRIV-SR notion is parameterized
by the permitted leakage ` ∈ {lensc, len, none}.

Following prior work [7,12,17] we keep track of whether the channel is in-sync at any given moment during
the adversary’s attack. Loosely, the channel is said to be in-sync if the stream of ciphertext “consumed” by
the receiver “so far” is a prefix of the stream of ciphertext output by the sender. In order to avoid trivial
distinguishing attacks in the PRIV-SR game, it is necessary to suppress the message fragments output by
the receiver while the channel is in-sync.

Channel synchronization. We say the channel is in-sync as long as the ciphertext fragments Y output
by Read —which models receiver-side buffering and defragmentation—remains a prefix of the ciphertext
stream transmitted by the sender. In this way, the sequence of Y ’s output by the reader constitute the
ciphertext stream “consumed” by the receiver (i.e., Demux ) so far. This restricts the behavior of the sender-
side code in a way not seen in FGMP, but the restriction appears to be minor; a natural division of labor
is to have Read buffer the ciphertext stream and output ciphertexts that are ready to decrypt; the job of
Demux , then, is to decrypt and process the message stream. This cleanly separates the tasks of “buffering”
and “consuming” the ciphertext. The alternative would be to leave the receiver operations atomic, as FGMP
have done; but this choice leads to complex security notions, as it requires handling synchronicity for a
number of different cases (e.g., [18, Definition 4.1]). Decomposing the syntax in this way leads to simpler
and more intuitive definitions.

The execution model. Our execution model for security games is adopted from the RS framework. It is
illustrated in Figure 1. The adversary queries oracles provided by the security experiment, which in turn may
invoke the adversary for fulfilling SD queries. To ensure that each oracle query completes before the next
query is issued, the adversary may not issue a query while another query is pending. In effect, the adversary
may not use its oracles for computing its responses to SD queries. We require that the adversary halts,
regardless of coin tosses, oracle responses, or SD requests, in a bounded number of steps. By convention,
the adversary’s runtime includes the time needed to evaluate its queries. We silently extend this execution
model and conventions to all subsequent security experiments in this paper.

The PRIV-SR and PRIV-S notions. Refer to the PRIV-SR experiment defined in Figure 2. For a given
PSC CH and challenge bit b, the experiment compactly encapsulates three different notions of privacy, each
associated to a permitted leakage parameter ` ∈ {lensc, len, none}. When ` = lensc, only message-stream
privacy is captured; when ` = len the notion captures privacy of both the message streams and their context;
finally, ` = none adds length-hiding to the list.1

The game begins by initializing the sender state (Mu,Wr) and receiver state (Re,De). The adversary A
is given access to two oracles. The first, Send, takes as input a 4-tuple of strings (M0, sc0,M1, sc1). It first

1 There are other parameters that may be of practical interest. For example, DLFK+ deal with whether the fragment
encodes the end-of-stream [16, Definition 8].

7



Expint-cs
CH (A)

1 declare str S,bool sync,win
2 (Mu,Wr ,Re,De)←← Init ( )
3 sync ← 1; ASend,Recv

4 return win

Send(M, sc)

5 (X,H,α)←← MuxA(M, sc,var Mu)
6 (C, γ)←←WriteA(X,H,α,var Wr)
7 S ← S ‖C
8 return (C, γ)

Recv(C)

9 (Y,H, α)←← ReadA(C,var Re)
10 (M, sc, γ)←← DemuxA(Y,H, α,var De)
11 if sync and Y � S then S ← S%Y
12 else sync ← 0
13 win ← win ∨ (M 6= ⊥ ∧ sc 6= ⊥)
14 return (M, sc, γ)

Expint-ps
CH (A)

15 declare str S[ ], strR[ ],bool win
16 (Mu,Wr ,Re,De)←← Init ( )
17 ASend,Recv

18 return win

Send(M, sc)

19 (X,H,α)←← MuxA(M, sc,var Mu)
20 (C, γ)←←WriteA(X,H,α,var Wr)
21 Ssc ← Ssc ‖M
22 return (C, γ)

Recv(C)

23 (Y,H, α)←← ReadA(C,var Re)
24 (M, sc, γ)←← DemuxA(Y,H, α,var De)
25 if M 6= ⊥ and sc 6= ⊥ then
26 Rsc ← Rsc ‖M
27 if Rsc 6� Ssc then win ← 1
28 return (M, sc, γ)

Fig. 3: left: game for defining ciphertext-stream integirty (INT-CS) for partially specified channel CH. Right: game
for defining plaintext-stream integrity (INT-PS) of CH.

checks that the values of leak (`,M0, sc0) and leak (`,M1, sc1) are equal; if not, it returns an indication of
invalidity of the query. It then executes Mux and Write , with A as the SD-oracle, and returns the output
(C, γ) to A. String C is appended to S, which keeps track of the sender ciphertext stream. The second oracle,
called Recv, takes as input a ciphertext fragment C. It first invokes (Y,H, α) ←← ReadA(C,var Re), then
(M, sc, γ) ←← DemuxA(Y,H, α,var De). If the channel is in-sync and Y is a prefix of the sender stream S,
then the oracle “consumes” Y from the stream and suppresses the output of M and sc by setting M, sc ← ⊥.
(This is necessary because (M, sc) corresponds to an input to Send and might trivially leak b, depending on
the permitted leakage `.) Otherwise, the oracle declares the channel to be out-of-sync and outputs (M, sc, γ)
without suppressing M and sc. After the adversary interacts with its oracles, it outputs a bit b′, the outcome
of the game. We define the advantage A in attacking CH in the PRIV-SR(`) sense as

Advpriv-sr
CH,` (A) = 2 Pr

b

[
Exppriv-sr

CH,`,b(A) = b
]
− 1 ,

where the probability is over the coins of the game, the adversary, and the choice of b (implicitly sampled
as b ←← {0, 1}). In this experiment, we track the following adversarial resources: the time-complexity t, the
number of Send-queries q1 and the total length in bits of the inputs of each query µ1, and the number of
Recv-queries q2 and their total bitlength µ2. We define the maximum advantage of any adversary with these
resources as Advpriv-sr

CH,` (t, q1, q2, µ1, µ2).
A chosen-plaintext (fragment) attack version of PRIV-SR is obtained simply by removing the Recv from

the experiment; we refer to this game as PRIV-S and define the PRIV-S advantage of A in the same way;
as there is no Recv oracle, we drop q2, µ2 from the adversarial resources.

2.3 Integrity

Following FGMP, we consider integrity of both the ciphertext stream (INT-CS) and the plaintext streams
(INT-PS). The first formalizes the conservative goal that the channel (i.e., the ciphertext stream) should
remain in-sync, just as discussed in Section 2.2. The second formalizes a weaker property, namely that the
plaintext streams carried by the channel should remain in-sync.

The INT-CS notion. Refer to the INT-CS experiment defined in Figure 3. It begins just as in the PRIV-
SR game. The Send oracle is similar to the PRIV-SR game, except A’s query consists of a pair (M, sc)
instead of a 4-tuple. We keep track of whether the channel is in-sync in the exact same manner. If ever the

8



out-of-sync Recv oracle outputs a valid message fragment and context, then the game sets a flag win ← 1;
the outcome of the game is the value of win after A halts. Define the advantage of A in attacking CH
in the INT-CS sense as Advint-cs

CH (A) = Pr
[
Expint-cs

CH (A) = 1
]
, where the probability is over the coins

of the experiment and of the adversary. We define the function Advint-cs
CH (t, q1, q2, µ1, µ2) as the maximum

advantage of any adversary running in time t, making at most q1 queries to Send and q2 queries to Recv,
and the total bit-length of its queries to Send (resp. Recv) does not exceed µ1 (resp. µ2) bits.

The INT-PS notion. Integrity of the plaintext streams is defined via the INT-PS game in Figure 3. This
game is a bit different than the others in that we do not keep track of whether the ciphertext stream is in-sync;
rather, we are concerned with the input and output plaintext streams. For each stream context sc ∈ {0, 1}∗
queried by the adversary, we keep track of the corresponding input stream Ssc . (That is, Ssc = cat(M),
where M is the sequence of message fragments pertaining to sc asked of Send.) For each sc 6= ⊥ output
by Recv, we keep track of the corresponding output stream Rsc . (That is, Rsc = cat(M), where M is the
sequence of valid message fragments pertaining to sc output by Recv.) The adversary wins if at any point
in the game, it holds that Rsc 6� Ssc for some sc ∈ {0, 1}∗. Define the advantage of A in attacking CH in

the INT-PS sense as Advint-ps
CH (A) = Pr

[
Expint-ps

CH (A) = 1
]
, where the probability is over the coins of the

experiment and of the adversary.

INT-CS 6⇒ INT-PS for PSCs. Traditional results for AE schemes establish an intuitive relationship
between integrity of ciphertexts and plaintexts: that the former is strictly stronger than the latter. See Bellare
and Namprempre [8, Theorem 3.1] in the case of stateless and randomized AE, and FGMP [18, Appendix C]
for stream-based channels. It is perhaps counter-intuitive, then, that INT-CS does not imply INT-PS in our
setting. The reason for this is that we do not require that PSCs be operationally correct in the security
games; indeed, the correctness of the scheme is used in a crucial way in those proofs. However, we cannot
formalize correctness for PSCs without restricting the SD oracle in some way, and doing so would reduce
the generality of our results. Nevertheless, in Appendix A, we give a natural definition of correctness for
fully specified channels—like PSCs, but with fully realized SD—that extends FGMP’s correctness condition
to the multiplexed setting. With this definition we show something a bit stronger than usual: that INT-CS
implies INT-PS if and only if the SD is realized correctly.

2.4 Receiver-status simulatability and a generic composition

If a PSC is INT-CS secure, then an efficient attacker can do nothing but deliver the honestly produced
ciphertext stream in the correct order. Thus it is intuitive that any PSC that is both PRIV-S secure and
INT-CS secure will also be PRIV-SR secure, because, in effect, the Recv in the PRIV-SR game is useless.
This is almost true; the wrinkle is that the Recv oracle returns a status message in addition to the message
fragment and stream context. As in the FGMP setting, our syntax does not restrict the receiver (in particular,
the demultiplexer) to return just one status message. Moreover, the status message may depend on the
receiver state (of which a PRIV-S adversary would be ignorant), or be influenced by the adversarially
controlled SD. In this section, we give a notion of security we call receiver-status simulatablity and show that
it, PRIV-S, and INT-CS imply PRIV-SR.

The SIM-STAT notion. The notion naturally captures what the adversary learns from the receiver’s
state by observing the status messages it outputs. It is inspired by the ideas put forward in the subtle AE
setting [6] and naturally generalizes a notion of FGMP. The SIM-STAT game (defined in Figure 4) is a
simulation-based game in which the adversary is asked to distinguish the status messages output by the real
receiver from those output by a simulator S. The simulator is given the ciphertext stream S produced by
the sender, as well as the input fragment C, and so it can tell if the channel is in-sync, but it is not given the
receiver state. Informally, security demands that for every efficient adversary, there is an efficient simulator
such that the adversary cannot distinguish real status messages from fake ones.

The game is associated to adversary A, challenge bit b, and a receiver-status simulator S. On input of C,
if b = 1, then oracle Recv executes the usual receiver code and outputs γ; otherwise, the oracle executes
S on input of (C, S), where S is the sender stream (recorded by Send), and with oracle access to A for
servicing SD requests. When S halts and outputs a string γ, the oracle outputs γ. We define the advantage

9



Expsim-stat
CH,S,b (A)

1 declare str S
2 (Mu,Wr ,Re,De)←← Init ( )
3 b′ ←← ASend,Recv

4 return b′

Send(M, sc)

5 (X,H,α)←← MuxA(M, sc,var Mu)
6 (C, γ)←←WriteA(X,H,α,var Wr)
7 S ← S ‖C
8 return (C, γ)

Recv(C)

9 if b = 1 then
10 (Y,H, α)←← ReadA(C,var Re)
11 (∗, ∗, γ)←← DemuxA(Y,H, α,var De)
12 else γ ←← SA(C, S)
13 return γ

Fig. 4: the SIM-STAT game for partially-specified channel CH.

of A in attacking CH with simulator S in the SIM-STAT sense as

Advsim-stat
CH,S (A) = 2 Pr

b

[
Expsim-stat

CH,S,b (A) = 1
]
− 1 .

Define the maximum advantage of any t-time adversary with resources (q1, q2, µ1, µ2) in winning the game
instantiated with simulator S as Advsim-stat

CH,S (t, q1, q2, µ1, µ2). We require that S halts, regardless of its current
state, internal coin tosses, and the result of its SD requests, in a bounded number of time steps. Its runtime
also accounts for the time needed to evaluate its oracle queries; thus, its runtime depends on the time A
takes to compute its SD responses.

PRIV-S ∧ INT-CS ∧ SIM-STAT⇒ PRIV-SR. We prove that for any `, security in the sense of PRIV-S(`),
INT-CS, and SIM-STAT suffice for PRIV-SR(`).

Theorem 1. Let ` ∈ {lensc, len, none} and let CH be a PSC. For every t, s, q1, q2, µ1, µ2 ∈ N and s-time
simulator S it holds that

Advpriv-sr
CH,` (t, r) ≤Advpriv-s

CH,` (t+O(q1 + sq2), q1, µ1)

2Advint-cs
CH (t̃, r) + 2Advsim-stat

CH,S (t̃, r) ,

where t̃ = t+O(q1 + q2) and r = (q1, q2, µ2, µ2).

This is analogous to, but much more general than [18, Theorem 4.5]. It also confirms a conjecture of FGMP;
see [18, Remark 4.6]. The idea of the proof is to construct a PRIV-S adversary B from a given PRIV-SR
adversary A and simulator S that simulates A’s Recv queries using S. What we show is that INT-CS and
SIM-STAT (with respect to S) security suffice for this reduction to work and to obtain the bound.

Proof (Theorem 1). Fix t, s, q1, q2, µ1, µ2 ∈ N and let r = (q1, q2, µ1, µ2). Let A be a t-time PRIV-SR
adversary with resources r and let S be an s-time simulator. We exhibit an INT-CS adversary B, a SIM-STAT
adversary C, and a PRIV-S adversary D such that

Advpriv-sr
CH,` (A) ≤ 2Advint-cs

CH (B) + 2Advsim-stat
CH,S (C) + Advpriv-s

CH,` (D) ,

where B and C run in time t+O(q1 + q2) and each uses query resources r, and D runs in time t+O(q1 +sq2)
and uses resources (q1, µ1).

The proof is by a game-playing argument; refer to games G1,G2, and G3 defined in Figure 5. Game G1

is the PRIV-SR notion embellished with a book-keeping flag win, whose value is set on line 5:17. However,
the value of win does not affect the distribution of oracle outputs (or the game) in any way. So for any A
and a uniform random b ∈ {0, 1}, the random variables G1(A) = 1 and Exppriv-sr

CH,`,b(A) = b are identically
and independently distributed.

Game G2, which includes the boxed instruction at line 5:18, is identical to game G1 until the flag win
gets set. By the Fundamental Lemma of Game Playing [9], we have

Pr
b

[
Exppriv-sr

CH,`,b(A) = b
]
≤Pr

[
G2(A) = 1

]
+

Pr
[
G2(A) sets win

]
.

(1)

10



G1(A) G2(A)

1 declare str S, bool sync, win, b
2 (Mu,Wr ,Re,De)←← Init ( )
3 b←← {0, 1}; sync ← 1
4 b′ ←← ASend,Recv

5 return (b = b′)

Send(M0, sc0,M1, sc1)

6 L0 ← leak (`,M0, sc0)
7 L1 ← leak (`,M1, sc1)
8 if L0 6= L1 then return (⊥,⊥)
9 (X,H,α)←← MuxA(Mb, scb,var Mu)

10 (C, γ)←←WriteA(X,H,α,var Wr)
11 S ← S ‖C ; return (C, γ)

Recv(C)

12 (Y,H, α)←← ReadA(C,var Re)
13 (M, sc, γ)←← DemuxA(Y,H, α,var De)
14 if sync and Y � S then
15 S ← S%Y ; M, sc ← ⊥
16 else sync ← 0
17 win ← win ∨ (M 6= ⊥ ∧ sc 6= ⊥)

18 if win then M, sc ← ⊥
19 return (M, sc, γ)

G3(A)

20 declare str S, bool b
21 (Mu,Wr ,Re,De)←← Init ( )
22 b←← {0, 1}
23 b′ ←← ASend,Recv

24 return (b = b′)

Send(M0, sc0,M1, sc1)

25 L0 ← leak (`,M0, sc0)
26 L1 ← leak (`,M1, sc1)
27 if L0 6= L1 then return (⊥,⊥)
28 (X,H,α)←← MuxA(Mb, scb,var Mu)
29 (C, γ)←←WriteA(X,H,α,var Wr)
30 S ← S ‖C ; return (C, γ)

Recv(C)

31 M, sc ← ⊥; γ ←← SA(S,C)
32 return (M, sc, γ)

Fig. 5: games G1, G2, and G3 for proof of Theorem 1.

Next, we define an INT-CS adversary B Send,Recv as follows. It samples a bit b←← {0, 1}, then executes b′ ←←
ASend′,Recv′

. On input of (M0, sc0,M1, sc1), oracle Send′ checks that leak (`,M0, sc0) = leak (`,M1, sc1).
If not, it outputs (⊥,⊥); otherwise, it asks (C, γ) ←← Send(Mb, scb) and outputs (C, γ). SD requests are
simply forwarded toA: for every SD request req ∈ {0, 1}∗, adversary B computes resp ←← A(req) and responds
with resp. On input of C, oracle Recv′ asks (M, sc, γ) ←← Recv(C) and outputs (M, sc, γ). (Again, SD
requests are forwarded to A.) Finally, when A halts, adversary B halts. It is clear by the definition of the
INT-CS game that if A sets win in its game, then B also sets win in its game. Hence, for any A,

Pr
[
G2(A) sets win

]
≤ Pr

[
Expint-cs

CH (B) sets win
]

= Advint-cs
CH (B) .

(2)

Observe that in game G2 the Recv oracle always returns (⊥,⊥, γ), i.e., M and sc are always set to
⊥. Thus, if the status message γ were predictable without knowing the reader or demultiplexer states (Re
and De resp.), then game G2 could be simulated by a PRIV-CPA adversary, because the Recv oracle in G2

would be simulatable.
With this observation, we create game G3 from G2 by replacing the entire Recv code with the statement

“M, sc ← ⊥; γ ←← SA(S,C)”, where S is the given simulator for the SIM-STAT security experiment. We also
remove the win and sync flags, as they are no longer relevant. The definition of game G3 leads us to define
a SIM-STAT adversary C Send,Recv as follows. It samples a bit b←← {0, 1} and executes b′ ←← ASend′,Recv′

.
Queries to Send′ are answered just as they were in the definition of adversary B above. On input of C,
oracle Recv′ asks γ ←← Recv(C) and outputs (⊥,⊥, γ). Finally, when adversary A halts and outputs b′,
adversary C halts and outputs (b = b′). Then for any A, S, and d ∈ {0, 1},

Pr
[
G3−d(A) = 1

]
= Pr

[
Expsim-stat

CH,S,d (C) = 1
]

(3)

and so
Pr

[
G2(A) = 1

]
=

(
Pr

[
G2(A) = 1

]
− Pr

[
G3(A) = 1

])
+ Pr

[
G3(A) = 1

]
= Advsim-stat

CH,S (C) + Pr
[
G3(A) = 1

]
.

(4)

11



Lastly, we define a PRIV-S adversary D Send as follows. Initialize a variable str S and execute b′ ←←
ASend′,Recv′

. On input of (M0, sc0,M1, sc1), Send′ asks (C, γ)←← Send(M0, sc0,M1, sc1) (forwarding SD
requests toA), computes S ← S ‖C, and outputs (C, γ). On input of C, oracle Recv′ executes γ ←← SA(C, S)
and outputs (⊥,⊥, γ). Finally, when A outputs b′, halt and output b′. From the definition of G3, it is clear
that for any A,

Pr
[
G3(A) = 1

]
= Pr

b

[
Exppriv-s

CH,`,b(D) = b
]
. (5)

Summarizing, we have that for every adversary A and simulator S, there exist adversaries B, C, and D such
that

Advpriv-sr
CH,` (A) = 2

(
Pr
b

[
Exppriv-sr

CH,`,b(A) = b
])
− 1

≤ 2
(

Pr
[
G2(A) = 1

]
+ Advint-cs

CH (B)
)
− 1

≤ 2
(
Advsim-stat

CH,S (C) + Pr
[
G3(A) = 1

]
+ Advint-cs

CH (B)
)
− 1

= 2Advsim-stat
CH,S (C) + Advpriv-s

CH,` (D) + 2Advint-cs
CH (B) .

(6)

The claimed bound follows. To complete the proof, we note that B and C use query resources r and D
uses query resource (q1, µ1). Since simulating each query requires O(1) time, adversaries B and C run in
time t+O(q1 + q2), and D runs in time t+O(q1 + sq2). �

Remark. We emphasize that, although we have used SIM-STAT to prove a generic composition result, the
notion is not merely a technical one. The intuition it captures is critical, since the most exploitable weaknesses
in authenticated encryption schemes used in secure channels has been distinguishable error messages being
surfaced in the protocol [32,15,24,3]. As a result, there has been a considerable push in the cryptographic
community to make addressing these subtleties a first class consideration [13,19,6].

3 The TLS 1.3 record layer

Our study of partially specified channels streams owes much to a desire to analyze the TLS 1.3 record layer,
in particular without eliding its optional features and unspecified details. So, we begin this section with an
overview of some of its salient features, and a discussion of certain design choices that may have implications
when the record layer is viewed through the lens of our security notions. This is followed (in Section 3.2)
by a decomposition of the record layer into its component building blocks. Then we show how to securely
compose these into a PSC that nearly formalizes the specification; we propose a small change to the standard
that significantly improves flexibility of the scheme.

Note about the draft. This analysis pertains to draft 23 [28], current at the time of writing. Note that the
change to the record layer we suggest here will be adopted in the final version of the protocol.2

3.1 Overview

TLS can be viewed as three client-server protocols executing concurrently: the handshake protocol handles
(re-)initialization of the channel; the record protocol is used to exchange application data between the
client and the server; and the alert protocol is used to close the channel. The record layer refers to the
mechanism used to protect flows between client and server in each sub-protocol. Each of these flows is
authenticated and encrypted as soon as the client and server have exchanged key material. (Usually the only
unprotected messages are the initial client hello and part of the server hello.) Intuitively, each of these flows
constitutes a logical data stream, and the record layer is a means of multiplexing these streams over a single
communications channel (e.g., a TCP connection). Among the record layer’s many design criteria is the need
to maximize flexibility for implementations. This means, somewhat paradoxically, that the specification does

2 Our change was implemented in draft 25; since our analysis, no other changes have been made to the record layer.

12



not fully specify every aspect of the construction. Rather, the record-layer specification [28, Section 5] defines
some core functionalities that must be implemented and provides a set of parameters for compliant, fully
realized schemes.

Content types. Each stream has an associated content type. Available types are handshake, application
data, alert, and change ciphersuite spec (CCS); additional content types may be added subject to certain
guidelines [28, Section 11]. If the client or server receives a message of unknown content type, it must send
an unexpected message alert to its peer and terminate the connection. The CCS type is only available for
compatibility with systems accustomed to processing records for TLS 1.2 and earlier. Usually a CCS message
must be treated as an unexpected message, but under specific conditions, it must simply be dropped.

Records. Plaintext records encode the content type, the stream fragment, the length of the fragment
(which may not exceed 214 bytes), and an additional field called legacy record version, whose value is fixed
by the specification. (It is only present for backwards compatibility.) All flows, including unprotected ones
(the initial handshake message and CCS messages) are formatted in this manner. The streams of data are
transformed into a sequence of records; stream fragments of the same content type may be coalesced into a
single record, but the record boundaries are subject to the following rules [28, Section 5.1]:

– Handshake, no interleaving: if two records correspond to a single handshake message, then they must be
adjacent in the sequence of records.

– Handshake, no spanning a key change: if two records correspond to a single handshake message, then
they both must precede the next key change (defined in Section 3.1). If this condition is violated, then
the second record must be treated as an unexpected message.

– Handshake and alert, no zero-length messages: only application data records may have zero length.

– One alert per record: alert messages must not be fragmented across records, and a record containing an
alert message must contain only that message.

Additional content types must stipulate appropriate rules for record boundaries.
Records are optionally padded and then protected using an AEAD scheme [28, Sections 5.2–5.4]. First,

the record R is encoded as a string X = R. fragment ‖ 〈R.type 〉8 ‖ (〈0〉8)
p

for some p ∈ N such that the
length of the ciphertext is less than 214 + 256 bytes. The padded record X is encrypted with associated
data ε (the empty string) and with a nonce N that we will define in a moment. The protected record is
defined as

type struct { int opaque type, legacy record version, length,
str encrypted record } TLSCiphertext

where opaque type has a fixed value (23), legacy record version has a fixed value (771, or 0x0303 in hex-
adecimal), and length is the length of encrypted record in bytes. The nonce N is computed from a sequence
number seqn and an initialization vector IV [28, Section 5.3]; both the key K and IV are derived from a
shared secret [28, Sections 7.1–7.2] using an extract-and-expand key-derivation scheme [21]. The length of
the IV is determined from the permitted nonce lengths of the AEAD scheme.3 The nonce N is computed
as IV ⊕ 〈seqn 〉|IV |, where 0 ≤ seqn ≤ 264 − 1. Note that the client and server each uses a different key and
IV for sending messages to the other; thus, each constitutes a unidirectional channel.

Usage limits, key changes, and protocol-level side-effects. The spec mandates that the key be changed
prior to the sequence number reaching its limit of 264−1 in order to prevent nonce reuse. It also recommends
that implementations keep track of how many bytes of plaintext have been encrypted and decrypted with a
single key and to change the key before the “safety limit” of the underlying AEAD scheme has been reached.

As mentioned above, upon receipt of a message of unknown type, the receiver should send its peer an
unexpected message alert message. The alert stream is generally used to notify the recipient that the peer
is tearing down its connection and will no longer write to the channel. There are closure alerts and error
alerts [28, Section 6]. Both signal the tear down of the writer state, but they provide different feedback.
The unexpected message alert is an example of the latter. Error alerts are also used to indicate things like
the ciphertext is inauthentic, or the record is malformed. An example of the former is close notify, which
indicates that the receiver should not expect any more data from the peer, but that no error occurred.

3 The scheme must specify limits for valid nonce lengths per RFC 5116 [22]. The maximum must be at least 8 bytes.

13



The key and IV change during the normal course of the protocol. An update is always a side effect of the
handshake protocol. During transmission of application data, an update is signaled by a particular handshake
message described in [28, Section 4.6.3], which informs the receiver that the sender has reinitialized its state
and so must do so as well. The key change re-initializes the state of the sender and receiver with a fresh key
and IV (derived from the shared secret), and the sequence number is set to 0 [28, Section 5.3]. Therefore, no
sender or receiver state (that is, no state that pertains to the record layer) is held over after re-initialization
of the channel.

Observations about the standard. The standard defines some core functionalities, but leaves many
design choices up to the implementer; our analysis aims to establish what security the record layer provides
given this level of flexibility. Our approach is shaped by two questions. First, which fully specified components
can be altered without impacting security? Second, which unspecified or partially specified components are
security critical? We begin with a couple of observations.

Record boundaries may leak the content type. The content type of each record is encrypted along with
the fragment. The intent, presumably, is to hide both the content and its type, but the record boundary
rules stipulated by the standard make hiding the type unachievable in general. Consider the one alert per
record rule, for example. The implementation is allowed to coalesce fragments of the same type, but a record
containing an alert must contain only that alert. Thus, the length of each record output by the sender may
(depending on the implementation) leak whether the record pertains to an alert or to application data. Of
course, the standard does permit implementations that hide the content type of each record, but this is quite
different from mandating this property. The take away is that encrypting the content type does not imply
indistinguishibility of the content type, since the record boundaries depend on it.

Associated data is unauthenticated. One aspect of the scheme that is precisely defined is the format of the
ciphertext transmitted on the wire. Each begins with a header composed of opaque type, legacy record version,
and length. The values of the first two fields are fixed by the spec, and the last field is crucial for correct oper-
ation, since it informs the receiver of how many bytes to read next. What should the receiver do if the header
is different than specified? Changing the length field bits should result in the next ciphertext either being
too short or too long, and so would be deemed inauthentic with overwhelming probability. If opaque type or
legacy record version is mangled, then it should be safe to proceed since this does not affect the inputs to
decryption. However, doing so would be deemed an attack in our ciphertext-integrity setting; changing these
bits means the stream is out-of-sync, but since they are not authenticated (encryption uses ε for associated
data), the receiver would successfully decrypt. In fact, checking the opaque type and legacy record version
fields is left optional by the spec: implementations MAY check these fields are correct and abort the connec-
tion if not [28, Section 5.2]. This presents us with a dilemma: if we leave this choice up to the specification
details, then there is a trivial INT-CS attack, and so in order to salvage security, we need to lift this “MAY”
to a “MUST”.

This dilemma points to something rather strange about the record layer’s design: something that ought not
be security critical—in particular, the value of the delimiter bits—is security critical. Indeed, this observation
motivates our partially specified viewpoint. To formalize the idea that the value of the delimeter bits should
not impact security, we simply let the specification details choose these bits itself this is safe as long as the
bits are authenticated and do not depend on sensitive values. We will formalize this idea in our PSC in
Section 3.3.

Remark. An alternative conclusion is that this vulnerability is only an artifact of our strong adversarial
model; mangling the delimiter bits should not affect the inputs to decryption, and so does not constitute a
“real attack” on privacy or integrity in an intuitive sense. To this point we offer a warning: this intuition
is correct only if down-stream handling of the plaintext is independent of the contents of these fields. Since
such behavior is beyond the scope of the TLS standard (and even our security model), these legacy fields
constitute an attack surface for implementations. The risk is not inconsiderable, as it is difficult to predict
how systems will evolve to make use of TLS, and of these bits in particular. Indeed, they owe their very
existence to the need to maintain compatibility with older systems.

14



Exppriv
AE,b(A) Expint

AE(A)

1 X ,Q ← ∅; K ←← K
2 res ←← AEnc res ← 0; AEnc,Dec

3 return res

Enc(N,A,M)

4 if N ∈ X return ⊥
5 C ← EncN,AK (M)

6 if b = 0 then C ←← {0, 1}λ(|M|)

7 Q ← Q∪ {N,A,C}; X ← X ∪ {N}
8 return C

Dec(N,A,C)

9 M ← DecN,AK (C)
10 if M 6= ⊥ and (N,A,C) 6∈ Q then res ← 1
11 return M

Expmpriv-s
M,`,b (A) Expsim-mstat

M,S,b (A)

12 (mx , dx )←← Init ( )

13 b′ ←← AMux b′ ←← ADemux

14 return b′

Mux(M0, sc0,M1, sc1)

15 L0 ← leak (`,M0, sc0)
16 L1 ← leak (`,M1, sc1)
17 if L0 6= L1 then return (⊥,⊥)
18 (X, γ)←← MuxA(Mb, scb,var mx )
19 return (|X|, γ)

Demux(X)

20 if b = 1 then (∗, ∗, γ)←← DemuxA(X,var dx )
21 else γ ←← SA(|X|)
22 return γ

Fig. 6: left: security games PRIV and INT for AEAD scheme AE = (Enc ,Dec , λ) with key space K. Right: security
games mPRIV-S and SIM-mSTAT for partially specified stream multiplexer M = (Init ,Mux ,Demux ). The former
has an associated permitted leakage parameter ` ∈ {lensc, len, none}; procedure leak is as defined in Figure 2.

3.2 The building blocks

In this section we formalize the core components of the record layer; our aim is to sweep all but these
building blocks into the specification details. The first primitive, called a stream multiplexer, captures the
non-cryptographic functionality of the underlying channel. It transforms the data streams into a sequence
of channel fragments (i.e. records) such that for each stream context (i.e. content type), the output on
the receiver end is a prefix of the input on the sender side. TLS offers a great deal of flexibility with
respect to the stream multiplexer’s operation; the flip side is that design choices here impact security of
the overall construction. (Recall the discussion of record boundaries in Section 3.1.) Thus, it will be useful
to consider stream multiplexers that are only partially specified. The remaining primitives are a scheme
for authenticated encryption with associated data and a method of generating nonces. These are the core
cryptographic functionalities and must be implemented correctly; as such, we will require these to be fully
specified.

Stream multiplexers. First, a partially specified stream-multiplexer is a triple M = (Init ,Mux ,Demux )
defined as follows.

– Init ( ) 7→ (str mx , dx ). Generates the initial state of the stream multiplexer (used by the sender) and
demultiplexer (used by the receiver).

– MuxO(strM, sc,var str mx ) 7→ (strX, γ). Takes as input a plaintext fragment M , its stream context sc,
and the current state mx , and returns a channel fragment X and a status message γ.

– DemuxO(strX,var str dx ) 7→ (strM, sc, γ). Takes a channel fragment X and the current state dx and
returns a plaintext fragment M , its stream context sc, and the status γ.

The specification details are provided by the oracle O. Our intention is to capture only non-cryptographic
functionalities with stream multiplexers. (Of course, M may, in principal, use some sort of cryptographic
primitive, or even output encrypted records.) In order to facilitate a rigorous analysis of how design choices
here impact security of the channel overall, we formulate two security properties for partially specified
multiplexers. Both are defined in Figure 6.

The mPRIV-S notion. The first captures an adversary’s ability to discern information about the inputs
to Mux given (information about) its outputs. Like the PRIV-S game (Section 2.2), the mPRIV-S game

15



is parameterized by the permitted leakage `, one of lensc, len, or none (see Figure 2), and a challenge
bit b. It is given an oracle Mux with the same interface as Send in the PRIV-S game. The oracle invokes
procedure Mux on inputs (Mb, scb) (and with oracle access to A for handling SD requests), and the adversary
is asked to guess b based on the outcome of its queries. Where the games differ, however, is in the information
available to the adversary. Rather than return (X, γ) directly, the oracle returns γ and only the length of X.
This captures a much weaker property than usual indistinguishibility: rather than insisting (X, γ) not leak
anything beyond L = leak (`,M, sc), we insist only that (|X|, γ) not leak anything beyond L. Define the
advantage of A in attacking M in the mPRIV-S(`) sense as

Advmpriv-s
M,` (A) = 2 Pr

b

[
Expmpriv-s

M,`,b (A) = b
]
− 1 .

Let Advmpriv-s
M,` (t, q, µ) denote the maximum advantage of any t-time adversary making at most q queries

to Mux with total bit-length at most µ.

The SIM-mSTAT notion. The second notion captures simulatability of the status message output by Demux .
It is associated with a simulator S and a bit b. After initialization, the adversary is given access to an or-
acle Demux. On input of X, if b = 1, then the oracle executes procedure Demux on input X and returns
the status message; otherwise it executes the simulator S on input |X| and with access to A for servicing
SD requests. Define the advantage of A in attacking M in the SIM-mSTAT sense with simulator S as

Advsim-mstat
M,S (A) = 2 Pr

b

[
Expsim-mstat

M,S,b (A) = b
]
− 1 .

Let Advsim-mstat
M,S (t, q, µ) denote the maximum advantage of any t-time adversary making q queries to Demux

with total bit-length at most µ.

AEAD schemes. We describe the syntax for authenticated encryption with associated data as prescribed
by the spec [22]. An AEAD scheme is a triple AE = (Enc ,Dec , λ). The last element is a function λ : Z→ Z
which describes the ciphertext length as a function of the plaintext length; we insist that λ is a bijection.
Algorithms Enc and Dec are both deterministic and have the following interfaces:

– Enc(strK,N,A,M) 7→ str C. Maps a key K, nonce N , associated data A, and plaintext M to a
ciphertext C such that if C 6= ⊥, then |C| = λ(|M |) ≥ |M |.

– Dec(strK,N,A,C) 7→ strM . Maps K, N , A, and C to M such that if M 6= ⊥, then λ−1(|C|) = |M |.

We may denote the execution of Enc on (K,N,A,M) by EncN,A
K (M). (Similarly for Dec .) We respec-

tively define the key, nonce, associated-data, and message space as the sets K,N ,A,M ⊆ {0, 1}∗ for
which Enc(K,N,A,M) 6= ⊥ if and only if (K,N,A,M) ∈ K × N × A × M; correctness requires that
Dec(K,K,N,A,Enc(K,N,A,M)) = M for every such (K,N,A,M). (This condition implies that AE is
both correct and tidy in the sense of Namprempre, Rogaway, and Shrimpton [23].)

We will use standard notions of indistinguishibility under chosen-plaintext attack (PRIV) and integrity of
ciphertexts (INT) as defined in Figure 6. As usual, the indistinguishibility game requires that the adversary
not repeat a nonce. Define the PRIV advantage of adversary A in attacking AE as

Advpriv
AE (A) = 2 Pr

b

[
Exppriv

AE,b(A) = b
]
− 1

and let Advpriv
AE (t, q, µ) denote the maximum advantage of any t-time adversary making at most q queries

with total bit-length µ. Define the INT advantage of adversary A in attacking AE as

Advint
AE(A) = Pr

[
Expint

AE(A) = 1
]

and let Advint
AE(t, q1, q2, µ1, µ2) be the maximum advantage of any t-time adversary making at most q1

(resp. q2) queries to Enc (resp. Dec) with total bit-length at most µ1 (resp. µ2).

16



//The sender state.
1 type struct { str ng ,mx }Muxer
2 type struct { strK }Writer

//The receiver state.
3 type struct { str ng , buf }Reader
4 type struct {
5 strK, dx , bool sync
6 }Demuxer

Init ( )

7 declare Muxer Mu, Writer Wr
8 declare Reader Re, Demuxer De
9 (Mu.mx ,De.dx )←←M.Init ( )

10 Mu.ng ←← N .Init ( ); Re.ng ← Mu.ng
11 Wr .K ←← K; De.K ←Wr .K
12 De.sync ← 1
13 return

(
Mu,Wr ,Re,De

)
MuxO(M, sc,varMuxer Mu)

14 (X,α)←←M.MuxO(M, sc,var Mu.mx )
15 if X = � then return (�, �, α)
16 N ← N .Next (var Mu.ng)
17 return (X,N,α)

WriteO(X,N,α,varWriter Wr)

18 declare strA, γ
19 〈A, γ〉 ←← O(〈write, create ad, |X|, α〉)
20 if X = � then return (�, γ)
21 Y ′ ← AE .Enc(Wr .K,N,A,X)
22 if Y ′ = ⊥ then
23 γ ←← O(〈write, invalid ptxt〉)
24 return (�, γ)
25 return (A ‖Y ′, γ)

ReadO(C,var Reader Re)

26 declare str α, int c, bool drop
27 Re.buf ← Re.buf ‖C
28 〈c, drop, α〉 ←← O(〈read, len,Re.buf 〉)
29 Y ← Re.buf [:c]; Re.buf ← Re.buf %Y
30 if Y = � or drop then return (�, �, α)
31 N ← N .Next (var Re.ng)
32 return (Y,N, α)

DemuxO(Y,N, α,var Demuxer De)

33 declare strX, γ, int a
34 〈a, γ〉 ←← O(〈demux, ad len, Y, α〉)
35 if (Y = � and γ 6= �) or ¬De.sync
36 then return (⊥,⊥, γ)
37 else if Y 6= � then
38 A← Y [:a]; Y ′ ← Y %A
39 X ← AE .Dec(De.K,N,A, Y ′)
40 if X = ⊥ then
41 De.sync ← 0
42 γ ←← O(〈demux, invalid ctxt〉)
43 return (⊥,⊥, γ)
44 (M, sc, γ)←←M.DemuxO(X,var De.dx )
45 return (M, sc, γ)

Fig. 7: partially specified channel TLS[M,AE ,N ] = (Init ,Mux ,Write ,Read ,Demux ) composed of a partially spec-
ified stream multiplexer M, an AEAD scheme AE with key space K, and a nonce generator N .

Nonce generators. Finally, a nonce generator is a pair of algorithmsN = (Init ,Next ), the first randomized
and the second deterministic.

– Init ( ) 7→ str ng . Initializes the state of the generator.

– Next (var str ng) 7→ strN . Computes the next nonce N given the current state ng and updates the
state.

We associate to N and an integer t ∈ N a procedure Coll , which first executes ng ←← Init ( ), then computes
Ni ← Next (var ng) for each i ∈ [t]. Finally, if for every 1 ≤ i < j ≤ t it holds that Ni 6= Nj , then the
procedure outputs 0; otherwise it outputs 1. Define collN (t) = Pr

[
CollN (t) = 1

]
.

3.3 The partially specified record layer

We are now ready to formalize TLS 1.3 record layer specification. Refer to the PSC TLS[M,AE ,N ] =
(Init ,Mux ,Write ,Read ,Demux ) defined in Figure 7. It differs from the standard (draft 23) in one small,
but security-critical way: the standard mandates that the AEAD be invoked with ε as the AD, whereas
in our scheme, the string A—the record header—is used as AD. To fully comply with the spec, one would
replace A with ε on lines 7:21 and 7:39. However, this leads to a trivial ciphertext stream integrity attack:

17



suppose the sender outputs Y = A ‖Y ′. Then the adversary can deliver A∗ ‖Y ′ to the receiver for some
A∗ 6= A where |A∗| = |A|. If Y is consumed by the receiver, then the channel will be deemed out of sync,
but the output of the receiver will be unaffected. We remind the reader that this change was adopted in the
final version of the TLS 1.3 standard; what follows is a formal, partial specification of the record layer.

The procedure Mux invokes M (7:14) in order to compute the next channel fragment (i.e. record). It is
designed to never operate on 0-length channel fragments (7:15); if the first input X to Write is undefined
(i.e., X = ε), then it outputs a 0-length ciphertext fragment (7:20). The data on the wire is A ‖Y ′, where Y ′

is the ciphertext and A is a string chosen by the SD (7:19).
Defragmentation of the ciphertext is performed by Read and is also left largely up to the SD: first, the

ciphertext fragment is appended to a buffer buf , then the SD is invoked to decide how much of the buffer to
dequeue next. The oracle is given the contents of the buffer and outputs an integer c. It also sets a flag drop.
If Y = buf [:c] 6= � ∧ ¬drop holds, then the next nonce is computed and output along with Y . Otherwise the
reader outputs Y = � and N = �. (Note that the drop flag permits the rules for handling CCS messages; such
a message will never be produced by the sender, but it may be transmitted to the receiver.) Presumably, Y
is equal to A ‖Y ′, where Y ′ is a ciphertext and A is a string chosen by the SD. On input of Y , the SD is
invoked to determine the length of A (7:34). If Y 6= �, then string Y ′ is decrypted (using A as associated
data) and the resulting channel fragment X (i.e. record) is input to the stream demultiplexer.

If Demux ever encounters an invalid ciphertext, then thereafter it never outputs a valid fragment (7:34
and 7:40–42). It uses a flag sync to track this. If the receiver is in-sync and Y is 0-length, then Demux may
poll the stream demultiplexer to see if a message fragment is available for outputting. (That is, line 7:43 may
be invoked on X = ε.) Usage limits are enforced by the SD (7:19 and 7:33).

Our construction captures all protocol-level side effects in the record layer specification [28] with the
exception of any sender or receiver state carried over after re-initialization of the channel. Indeed, our security
model does not encompass re-initialization, since the game is defined for an already initialized channel. We
made this choice because the record layer was designed so that no state is carried across key changes. (See
the discussion Section 3.1.) As a result, there is no need to model key changes; security in the stronger model
where the adversary controls (re-)initialization of the channel will follow from the independence of the state
between changes.

Security. Let CH = TLS[M,AE ,N ] be as defined in Figure 7. Our first step is to show that PRIV of AE
and mPRIV-S of M imply PRIV-S for CH:

Theorem 2. Let ` ∈ {lensc, len, none}. For every t, q, µ ∈ N and t̃ = t+O(q) it holds that

Advpriv-s
CH,` (t, q, µ) ≤ Advmpriv-s

M,` (t̃, q, µ) + 2Advpriv
AE (t̃, q, µ) + 2 collN (q) .

Proof. Fix t, q, µ ∈ N and let A be a t-time, PRIV-S adversary with query resources (q, µ). We exhibit an

mPRIV-S adversary B and a PRIV adversary C such that Advpriv-s
CH,` (A) ≤ Advmpriv-s

M,` (B) + 2Advpriv
AE (C) +

2 collN (q), where each runs in time t+O(q) and and uses the same query resources.
Let λ denote the ciphertext-length function associated with AE . Refer to game G1 defined in Figure 8.

One can easily check that for any A and a uniformly chosen b, the events G1(A) = 1 and Exppriv-s
CH,`,b(A) = b

are identically distributed. In game G2, the implementation of procedure Write is modified so that its output
differs from game G1 if the flag coll gets set (8:15). By the Fundamental Lemma of Game Playing [9],

Pr
[
G1(A) = 1

]
≤ Pr

[
G2(A) = 1

]
+ Pr

[
CollN (q) = 1

]
. (7)

In G2, if a nonce N input to procedure Write is ever repeated, then the output Y ′ of the invocation of
AE .Enc gets set to ⊥ (8:15). Hence, the semantics of Y ′ is the same as the output of Enc(N,A,X) in the
PRIV game for b = 1. In game G3, the invocation of AE .Enc is replaced with uniformly-chosen, λ(|X|)-bit
string.

Adversary CEnc simulates A in game G2 as follows. It first initializes the multiplexer state by running
(Mu, ∗, ∗, ∗)←← Init ( ), then samples a bit b. It then executes b′ ←← ASend′

, where Send′ is defined like Send,
except the invocation of AE .Enc(Wr .K,N,A,X) (8:14) is replaced with Enc(N,A,X). When A halts,
adversary C halts and outputs (b = b′). By construction, we have that

Pr
[
Exppriv

AE,d(C) = d
]

= Pr
[
G3−d(A) = 1

]
(8)

18



G1(A)

1 declare bool coll
2 (Mu,Wr ,Re,De)←← Init ( )
3 X ← ∅; coll ← 0
4 b←← {0, 1}; b′ ←← ASend

5 return (b = b′)

Send(M0, sc0,M1, sc1)

6 L0 ← leak (`,M0, sc0); L1 ← leak (`,M1, sc1)
7 if L0 6= L1 then return (⊥,⊥)
8 (X,N, γ)←← MuxA(Mb, scb,var Mu)
9 (C, γ)←←WriteA(X,N,α,var Wr)

10 return (C, γ)

WriteA(X,N,α,var Wr) G1 G2

11 declare strA, γ
12 〈A, γ〉 ←← A(〈write, create ad, |X|, α〉)
13 if X = � then return (�, γ)
14 Y ′ ← AE .Enc(Wr .K,N,A,X)

15 if N ∈ X then coll ← 1 ; Y ′ ← ⊥
16 X ← X ∪ {N}
17 if Y ′ = ⊥ then
18 γ ←← O(〈write, invalid ptxt〉)
19 return (�, γ)
20 return (A ‖Y ′, γ)

WriteA(X,N,α,var Wr) G2 G3

21 declare strA, γ
22 〈A, γ〉 ←← A(〈write, create ad, |X|, α〉)
23 if X = � then return (�, γ)

24 Y ′ ← AE .Enc(Wr .K,N,A,X)

25 Y ′ ←← {0, 1}λ(|X|)

26 if N ∈ X then coll ← 1; Y ′ ← ⊥
27 X ← X ∪ {N}
28 if Y ′ = ⊥ then
29 γ ←← O(〈write, invalid ptxt〉)
30 return (�, γ)
31 return (A ‖Y ′, γ)

Fig. 8: Bottom: games G1, G2, and G3 for the proof of Theorem 2.

for each d ∈ {0, 1}, which implies, by a standard conditioning argument, that

Pr
[
G2(A) = 1

]
≤ Pr

[
G3(A) = 1

]
+ Advpriv

AE (C) . (9)

Finally, adversary B is defined in Figure 9. It simulates A in a game G6, which we define in a moment.
In the remainder, we will show that

Pr
b

[
Expmpriv-s

M,`,b (B) = b
]

= Pr
[
G3(A) = 1

]
. (10)

The remaining transitions do not alter the semantics of the game; they serve only to clarify the reduction.
Refer to game G4 (Figure 9). The difference between it and G3 is that invocation of procedure Mux has
been replaced with its definition. In game G5, returning (⊥,⊥) in case M = ⊥ or sc = ⊥ (9:10) is deferred
until after invoking M.Mux (9:14). In game G6, the string 1|X| is passed to Write instead of X (9:25).
But the output of Write does not depend on X; it only depends on |X|, N , α, and its current state Wr .
(This is due to our revision in game G3.) Hence, these games are identically distributed. Now, the definition
of B’s simulated Send′ oracle is obtained by first replacing lines 9:19–21 with an invocation of its own
oracle Mux. Then each instance of string X is replaced with integer x, the first of the outputs of Mux. As
usual, adversary B handles any SD requests by forwarding them to A. It is easy to check that A’s view is
the same in the simulation as it is in game G6, which yields equation (14).

Putting together equations (7)–(10) and our observation about game G1 yields the final bound. To
complete the proof, we observe that B and C each runs in time t + O(q) (performing a constant amount
amount of computation for each of A’s queries) and makes at most q queries to its oracle, and the total
length of the inputs does not exceed µ. �

Next, integrity of the ciphertext stream follows easily from the ciphertext integrity of AE :

Theorem 3. For every t, q1, q2, µ1, µ2 ∈ N it holds that Advint-cs
CH (t, r) ≤ Advint

AE(t+ O(q1 + q2), r), where
r = (q1, q2, µ1, µ2),

Proof. Fix t, q1, q2, µ1, µ2 ∈ N. Let A be a t-time INT-CS adversary using query resources (q1, q2, µ1, µ2).
We exhibit an INT adversary B such that Advint-cs

CH (A) ≤ Advint
AE(B) and B runs in time t+O(q1 + q2) and

uses the same query resources as A.

19



Send(M0, sc0,M1, sc1) G3 G4

1 L0 ← leak (`,M0, sc0); L1 ← leak (`,M1, sc1)
2 if L0 6= L1 then return (⊥,⊥)

3 (X,N,α)←← MuxA(Mb, scb,var Mu)

4 (X,α)←←M.MuxA(Mb, scb,var Mu.st)
5 if X = � then N ← �
6 else N ← N .Next (var Mu.ng)

7 (C, γ)←←WriteA(X,N,α,var Wr)
8 return (C, γ)

Send(M0, sc0,M1, sc1) G4 G5

9 L0 ← leak (`,M0, sc0); L1 ← leak (`,M1, sc1)

10 if L0 6= L1 then return (⊥,⊥)
11 (X,α)←←M.MuxA(Mb, scb,var Mu.st)

12 if L0 6= L1 then (X,α)← (⊥,⊥)
13 else (X,α)←←M.MuxA(M, sc,var mu)
14 if X = ⊥ and α = ⊥ then return (⊥,⊥)

15 if X = � then N ← �
16 else N ← N .Next (var Mu.ng)
17 (C, γ)←←WriteA(X,N,α,var Wr)
18 return (C, γ)

Send(M0, sc0,M1, sc1) G5 G6

19 L0 ← leak (`,M0, sc0); L1 ← leak (`,M1, sc1)
20 if L0 6= L1 then (X,α)← (⊥,⊥)
21 else (X,α)←←M.MuxA(M, sc,var mu)
22 if X = ⊥ and α = ⊥ then return (⊥,⊥)
23 if X = � then N ← �
24 else N ← N .Next (var Mu.ng)

25 (C, γ)←←WriteA( X 1|X| , N, α,var Wr)
26 return (C, γ)

BMux :

27 (∗,Wr , ∗, ∗)←← Init ( )

28 b′ ←← ASend′
; return b′

B on input req ∈ {0, 1}∗: //Handle SD request.

29 resp ←← A(req); return resp

Send′(M0, sc0,M1, sc1)

30 (x, α)←←Mux(M0, sc0,M1, sc1)
31 if x = ⊥ and α = ⊥ then return (⊥,⊥)
32 if x = 0 then N ← �
33 else N ← N .Next (var Mu.ng)
34 (C, γ)←←WriteA(1x, N, α,var Wr)
35 return (C, γ)

G1(A) G2(A)

1 declare str S, S∗, Y ∗, T [ ],bool sync[ ],win[ ]
2 (Mu,Wr ,Re,De)←← Init ( )
3 sync1, sync2 ← 1
4 ASend,Recv

5 return win1

Send(M, sc)

6 (X,N,α)←← MuxA(M, sc,var Mu)
7 (C, γ)←←WriteA(X,N,α,var Wr)
8 S ← S ‖C; S∗ ← S∗ ‖C
9 return (C, γ)

Recv(C)

10 (Y,N, α)←← ReadA(C,var Re)
11 if sync1 and Y � S then
12 Y ∗ ← Y ∗ ‖Y ; S ← S%Y
13 else sync1 ← 0
14 (M, sc, γ)←← DemuxA(Y,N, α,var De)
15 if ¬sync1 then win1 ← win1 ∨ (M 6= ⊥ ∧ sc 6= ⊥)
16 return (M, sc, γ)

WriteA(X,N,α,var Wr)
17 declare strA, γ
18 〈A, γ〉 ←← A(〈write, create ad, |X|, α〉)
19 if X = � then return (�, γ)
20 Y ′ ← AE .Enc(Wr .K,N,A,X)
21 T [N,A, Y ′]← X
22 if Y ′ = ⊥ then
23 γ ←← O(〈write, invalid ptxt〉)
24 return (�, γ)
25 return (A ‖Y ′, γ)

DemuxA(Y,N, α,var De)
26 declare strX, γ, int a
27 〈a, γ〉 ←← A(〈demux, ad len, Y, α〉)
28 if (Y = � and γ 6= �) or ¬sync2 then
29 return (⊥,⊥, γ)
30 else if Y 6= � then
31 A← Y [:a]; Y ′ ← Y %A
32 if T [N,A, Y ′] 6= � then X ← T [N,A, Y ′]
33 else
34 X ← AE .Dec(De.K,N,A, Y ′)

35 if X 6= ⊥ then win2 ← 1 ; X ← ⊥
36 if X = ⊥ then
37 sync2 ← 0; γ ←← A(〈demux, invalid ctxt〉)
38 return (⊥,⊥, γ)
39 (M, sc, γ)←←M.DemuxA(X,var De.dx )
40 return (M, sc, γ)

Fig. 9: top: games G4, G5, and G6 and adversary B for proof of Theorem 2. Note that procedure Write ( ) in the
definition of B is as defined in games G3–G6. Bottom: games for proof of Theorem 3.

20



Refer to games G1 and G2 defined in Figure 9. The first is a modified version of the INT-CS game with
adversary A and the partially-specified channel CH. The changes preserve the semantics of the game and
are only meant to clarify our argument. First, we have renamed some variables: in particular, sync has been
renamed to sync1, win to win1, and De.sync to sync2. Second, we rearranged the logic used to check if the
channel is in sync so that sync1 gets set before invoking procedure Demux (9:13). Third, the game declares
an array str T [ ] used by procedure Write to associate a given plaintext X to its ciphertext Y ′, as well as the
nonce N and associated data A used to encrypt it (9:21). Before invoking AE .Dec , the Demux procedure
checks if the inputs are stored in T (9:31). Fourth, we added a flag win2 (9:34). Finally, we declare two
strings: S∗, used to track the whole sender-ciphertext stream (and not just the undelivered part); and Y ∗,
used to track the ciphertext stream consumed by the Recv oracle, i.e. Y ∗ = cat(Y ) where Y i is the fragment
output by Read in the i-th Recv query. One can easily check that the random variables G1(A) = 1 and
Expint-cs

CH (A) = 1 are identically distributed.
Game G2 is identical to G1 until the flag win2 gets set, at which point the revised game sets X to ⊥.

This ensures that the next branch (9:35) is taken if T [N,A, Y ′] 6= � (9:32). There exists an INT adversary B
such that

Pr
[
G1(A) = 1

]
≤ Pr

[
G2(A) = 1

]
+ Advint

AE(B) . (11)

Adversary BEnc,Dec simulates A in game G1. Its definition is precisely the pseudocode in Figure 9, except
line (9:20) is replaced by “Y ′ ← Enc(N,A,X)”, and lines (9:33–34) are replaced with “X ← Dec(N,A, Y ′)”.
(Note that B runs in time t + O(q1 + q2), makes as many queries to its oracles as A does, and the
queries have the same bit length.) By definition of the INT game, we have that Pr

[
Expint

AE(B) sets win
]

=

Pr
[
G1(A) sets win2

]
. Applying the Fundamental Lemma of Game Playing [9] yields equation (11).

Consider the probability that G2(A) sets win1 ← 1. We begin with a few definitions. Let Win(f) denote
the event that when ASend,Recv halts, the variable win1 has the value f ∈ {0, 1}. (Note that Win(1) and
G2(A) = 1 are the same event.) We write Unsync1(i) to denote the event that sync1 ← 0 is set during A’s
i-th query to Recv, and this is the first such query. (Note that if Unsync1(i) holds, then sync1 = 0 for every
subsequent query.) We define Unsync2(i) in kind.

A couple of observations. First, if Win(1) holds, then Unsync1(i) holds for some 1 ≤ i ≤ r. (Flag win1 can
only be set on line 9:15; reaching this point implies that sync1 = 0.) Second, if Unsync2(j) holds for some
1 ≤ j ≤ r, then for every j ≤ q ≤ r, the output of the q-th Recv query is (M, sc, γ), where M = ⊥ and
sc = ⊥. (This is made clear by lines 9:27 and 9:36.) Hence, no query following (and including) the q-th sets
win1 ← 1.

We now show that if Unsync1(i) holds, then so does Unsync2(i). Suppose that the i-th query to Recv
is the first to set sync1 ← 0, and let C denote the input to the oracle. The i-th query setting sync1 ← 0
implies that ReadA(C,var Re) output a triple of strings (Y,N, α) such that Y 6� S (9:10–11). We examine
the possible values of sync2 after the next execution of Demux (9:14). If sync2 = 0 prior to execution of
line 9:14, then we are done; so suppose that sync2 = 1. Y 6� S implies that Y 6= ε, so the branch at line
9:30 is taken. If T [N,Y [:a], Y [a + 1:]] = � holds for every a ∈ N, then the branch on line 9:33 will get
taken and sync2 will get set to 0. Suppose to the contrary that T [N,Y [:a], Y [a + 1:]] 6= � for some a ∈ N.
By definition of Write , this means that Y is a substring of S∗, i.e. there exists some string P such that
P ‖Y � S∗. Because the i-th is the first query to set sync1 ← 0, it must be the case that P = Y ∗. But
S = S∗%Y ∗ (9:12), so Y � S, a contradiction. Therefore, Unsync1(i) implies Unsync2(i).

Suppose that Win(1) holds. This implies Unsync1(i) holds for some 1 ≤ i ≤ r, which in turn implies
Unsync2(i) holds (as we just saw). But this means that no query following (and including) the i-th sets
win1 ← 1, so Win(1) cannot hold. We conclude that Pr

[
G2(A) = 1

]
= 0. �

In Appendix A, we show how to achieve plaintext-stream integrity (INT-PS) for this scheme. Loosely, what
we show is that if we restrict the adversary such that its SD-query responses ensure correct operation of the
channel, then security in the INT-CS sense implies INT-PS since; thus, in this setting, security for CH follows
from the INT security of AE via Theorem 3. Next, a similar argument allows us to reduce the SIM-STAT
security of CH to the SIM-mSTAT security of M:

Theorem 4. For every t, s, q1, q2, µ1, µ2 ∈ N and every s-time simulator T , there exists an (t+O(s+ µ2))-
time simulator S such that that Advsim-stat

CH,S (t, r) ≤ Advsim-mstat
M,T (t̃, q2, µ2) + Advint

AE(t̃, r), where t̃ = t +
O(q1 + q2), and r = (q1, q2, µ1, µ2).

21



Initialization of S:

1 declare str buf , bool sync[ ]
2 sync1 ← 1

SA on input (C, S):

3 (Y,N, α)←← ReadA(C)
4 if sync1 and Y � S then S ← S%Y
5 else sync1 ← 0
6 (M, sc, γ)←← DemuxA(Y,N, α)
7 return γ

ReadA(C)

8 declare str α, int c, bool drop
9 buf ← buf ‖C

10 〈c, drop, α〉 ←← A(〈read, len, buf 〉)
11 Y ← buf [:c]; buf ← buf %Y
12 if Y = � or drop then return (�,⊥, α)
13 return (Y,⊥, α)

DemuxA(Y,N, α)

14 declare str γ, int x, a
15 〈a, γ〉 ←← A(〈demux, ad len, Y, α〉)
16 if (Y = � and γ 6= �) or ¬sync1 then
17 return (⊥,⊥, γ)
18 else if Y 6= � then
19 x← λ−1(|Y | − a)
20 if x ≤ 0 or ¬sync1 then
21 sync1 ← 0
22 γ ←← A(〈demux, invalid ctxt〉)
23 return (⊥,⊥, γ)
24 M, sc ← ⊥; γ ←← T A(x)
25 return (M, sc, γ)

Fig. 10: SIM-STAT simulator S for proof of Theorem 4.

The proof begins with the same argument used in Theorem 3, which lets us transition into a setting in
which Recv queries are evaluated without invoking AE .Dec . This allows us to construct a SIM-mSTAT
adversary B and a SIM-STAT simulator S, such that for every SIM-mSTAT simulator T , we simulate
SIM-STAT adversary A in its game with S.

Proof (Theorem 4). Fix t, s, q1, q2, µ1, µ2 ∈ N. Let A be a t-time SIM-STAT adversary with query re-
sources r = (q1, q2, µ1, µ2) and let T be an s-time SIM-mSTAT simulator. To prove the claim, we exhibit a
SIM-mSTAT adversary B, SIM-STAT simulator S, and INT adversary C such that

Advsim-stat
CH,S (A) ≤ Advsim-mstat

M,T (B) + Advint
AE(C) ,

where both B and C have runtime t+O(q1+q2), B uses query resources (q2, µ2), and C uses query resources r.
Let λ denote the ciphertext-length function associated withAE . (Recall that λ is a bijection by definition.)

let S be the simulator in Figure 10. Just as in the proof of Theorem 3, we begin with a game Gb
1 (Figure 11)

instrumented to clarify the reduction. By the same argument yielding equation (11), there exists an INT
adversary C such that

Pr
[
Expsim-stat

CH,S,1 (A) = 1
]
≤ Pr

[
G1

1(A,S) = 1
]

+ Advint
AE(C) . (12)

Moreover, adversary C runs in time t+O(q1 + q2) and makes as many queries to its oracles as A does.
Now consider game Gb

2 (Figure 11). This changes the condition on line (11:31) so that X gets set on the
next line if T [N,A, Y ′] is defined and x = λ−1(|Y | − a) > 0. But the former condition implies the latter (by
definition of λ and Write ), so this change has no affect on the outcome of the game. Next, game Gb

3 replaces
the invocation of M.Demux (11:51) on input of X with execution of the simulator T on input of x = |X|.
(The simplification on lines 11:44–46 are the result of no longer needing the variable X and do not impact
the outcome.) There exists an adversary B such that

Pr
[
Expsim-mstat

M,T ,d (B) = 1
]

= Pr
[
G1

3−d(A,S) = 1
]

(13)

for every d ∈ {0, 1}. Adversary BDemux simulates adversary A in game G1
2. It is defined by the pseudocode

used to define the game, except line 11:50 is replaced with “M, sc ← ⊥; γ ←← Demux(X)”. SD requests
are forwarded to A. When A halts and outputs b′, adversary B halts and outputs b′. Then B runs in time
t + O(q1 + q2) and uses query resources (q2, µ2). Now consider the revisions in game Gb

4. The first change
is to replace sync2 with sync1 on line 11:55 and 11:60. The second is to change the condition on line 11:59
so that the branch is taken if x < 0 or ¬sync1 (rather than T [N,A, Y ′] being undefined). Recall that in

22



the proof of Theorem 4,we showed that when a Recv-query sets sync1 ← 0 for the first time, the same
query also sets sync2 ← 0. This implies that Pr

[
G1

3(A,S) = 1
]
≤ Pr

[
G1

4(A,S) = 1
]
. Summarizing, and

observing that the events Expsim-stat
CH,S,0 (A) = 1 and G0

4(A,S) = 1 are identically distributed,

Pr
[
Expsim-stat

CH,S,1 (A) = 1
]
≤Pr

[
G1

4(A,S) = 1
]

+ Advsim-mstat
M,T (B) + Advint

AE(C)
Advsim-stat

CH,S (A) ≤Pr
[
G1

4(A,S) = 1
]

− Pr
[
Expsim-stat

CH,S,0 (A) = 1
]

+ Advsim-mstat
M,T (B) + Advint

AE(C)

(14)

and so

Advsim-stat
CH,S (A) ≤Pr

b

[
Gb

4(A,S) = b
]
− 1/2

+ Advsim-mstat
M,T (B) + Advint

AE(C) ,
(15)

where equation 15 follows from conditioning on the value of b. But the definition of S, executed in case
b = 0, is equivalent to the game code executed when b = 1 in Gb

4. Hence, adversary A’s view in the game is
independent of the challenge bit, so the first term in the last line is 1/2.

Finally, note that the runtime of the simulator S is linear in the total bit length of A’s Recv queries and
incurs a cost of O(s) (the runtime of T ) for each query. Hence, each execution of S runs in t + O(s + µ2)
time. (The t factor comes from using A to handle SD requests.) �

Finally, putting together Theorems 1, 2, 3, and 4 yields our result for the PRIV-SR security of CH:

Corollary 1. For every t, s, q1, q2, µ1, µ2 ∈ N and s-time simulator S, it holds that

Advpriv-sr
CH,` (t, r) ≤ Advmpriv-s

M,` (t̂, q1, µ1) + 2Advsim-mstat
M,S (t̃, q2, µ2) +

4Advint
AE(t̃, r) + 2Advpriv

AE (t̂, q1, µ1) + 2 collN (q1) ,

where t̃ = t+O(q1 + q2), t̂ = O(q1 + q2(t+ s+ µ2)), r = (q1, q2, µ1, µ2), and ` ∈ {lensc, len, none}.

3.4 Discussion

The preceding analysis offers good news about TLS 1.3. We regarded the record layer as a multiplexed,
stream-based channel, a setting which accurately models secure channels as they are used in practice. We
formalized it as a partially specified channel, allowing us to encapsulate in one scheme (see Figure 7) the
myriad implementations that its standardizing document admits. We confirm its privacy and integrity in
our strong adversarial model, but with two important caveats: first, whether the record layer hides the
length, content, or type of input streams depends crucially on details left unspecified by the standard. Nev-
ertheless, our results—specifically, Theorems 2 and 4—provide guidance on how to develop implementations
that achieve a target security goal. Concretely, the goal is a propety of the stream multiplexer used to con-
struct the channel. The second caveat is that draft 23 of the record layer does not achieve security in the
sense of ciphertext-stream integrity; we suggested a simple change to the standard so that it provably does
(Theorem 3), which was adopted in the latest draft.

Our partial specification of the record layer is simple and flexible; our hope is that this paradigm will
help shape the standard-writing process. Thinking formally about what the protocol must get right and
what it may get wrong provides principled guidance in its development. This paper leaves open a number
of directions for future work. Our notions of security apply to settings in which an out-of-order packet
is regarded as an attack (e.g., TLS and SSH); our framework can be applied to other notions of security
appropriate for settings in which packet loss is expected (e.g., DTLS and IPSec). Beyond channels, we hope
to see the Rogaway-Stegers framework applied more broadly. e.g., to the TLS handshake.

23



Gb
1(A,S) Gb

2(A,S)

1 declare str S, T [ ], bool b, sync[ ]
2 (Mu,Wr ,Re,De)←← Init ( )
3 b, sync1, sync2 ← 1
4 b′ ←← ASend,Recv

5 return b′

Send(M, sc)

6 (X,N,α)←← MuxA(M, sc,var Mu)
7 (C, γ)←←WriteA(X,N,α,var Wr)
8 S ← S ‖C
9 return (C, γ)

Recv(C)

10 if b = 1 then
11 (Y,N, α)←← ReadA(C,var Re)
12 if sync1 and Y � S then S ← S%Y
13 else sync1 ← 0
14 (∗, ∗, γ)←← DemuxA(Y,N, α,var De)
15 else γ ←← SA(C, S)
16 return γ

WriteA(X,N,α,var Wr)
17 declare strA, γ
18 〈A, γ〉 ←← A(〈write, create ad, |X|, α〉)
19 if X = � then return (�, γ)
20 Y ′ ← AE .Enc(Wr .K,N,A,X)
21 T [N,A, Y ′]← X
22 if Y ′ = ⊥ then
23 γ ←← O(〈write, invalid ptxt〉)
24 return (�, γ)
25 return (A ‖Y ′, γ)

DemuxA(Y,N, α,var De)
26 declare strX, γ, int x, a

27 〈a, γ〉 ←← A(〈demux, ad len, Y, α〉)
28 if (Y = � and γ 6= �) or ¬sync2 then
29 return (⊥,⊥, γ)
30 else if Y 6= � then
31 x← λ−1(|Y | − a); A← Y [:a]; Y ′ ← Y %A

32 if x > 0 and T [N,A, Y ′] 6= � then
33 X ← T [N,A, Y ′]
34 else
35 sync2 ← 0; γ ←← A(〈demux, invalid ctxt〉)
36 return (⊥,⊥, γ)
37 (M, sc, γ)←←M.DemuxA(X,var De.dx )
38 return (M, sc, γ)

DemuxA(Y,N, α,var De) Gb
2 Gb

3

39 declare str X, γ, int x, a

40 〈a, γ〉 ←← A(〈demux, ad len, Y, α〉)
41 if (Y = � and γ 6= �) or ¬sync2 then
42 return (⊥,⊥, γ)
43 else if Y 6= � then
44 x← λ−1(|Y | − a); A← Y [:a]; Y ′ ← Y %A

45 if x ≥ 0 and T [N,A, Y ′] 6= � then
46 X ← T [N,A, Y ′]
47 else

48 if x ≤ 0 or T [N,A, Y ′] = � then
49 sync2 ← 0; γ ←← A(〈demux, invalid ctxt〉)
50 return (⊥,⊥, γ)

51 (M, sc, γ)←←M.DemuxA(X,var De.dx )

52 M, sc ← ⊥; γ ←← T A(x)

53 return (M, sc, γ)

DemuxA(Y,N, α,var De) Gb
3 Gb

4

54 declare str γ, int x, a
55 〈a, γ〉 ←← A(〈demux, ad len, Y, α〉)
56 if (Y = � and γ 6= �) or ¬sync2 ¬sync1 then

57 return (⊥,⊥, γ)
58 else if Y 6= � then
59 x← λ−1(|Y | − a) ; A← Y [:a]; Y ′ ← Y %A

60 if x ≤ 0 or T [N,A, Y ′] = � ¬sync1 then

61 sync2 ← 0 sync1 ← 0

62 γ ←← A(〈demux, invalid ctxt〉)
63 return (⊥,⊥, γ)
64 M, sc ← ⊥; γ ←← T A(x)
65 return (M, sc, γ)

Fig. 11: Games for proof of Theorem 5.

24



References

1. Albrecht, M.R., Degabriele, J.P., Hansen, T.B., Paterson, K.G.: A surfeit of SSH cipher suites. In: Proceedings
of the 23rd ACM SIGSAC Conference on Computer and Communications Security, ACM (2016) 1480–1491

2. Albrecht, M.R., Paterson, K.G., Watson, G.J.: Plaintext recovery attacks against SSH. In: Proceedings of the
30th IEEE Symposium on Security and Privacy, IEEE (2009) 16–26

3. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS record protocols. In: 2013 IEEE
Symposium on Security and Privacy, IEEE (2013) 526–540

4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How to securely release unver-
ified plaintext in authenticated encryption. In: Advances in Cryptology – ASIACRYPT 2014, Springer Berlin
Heidelberg (2014) 105–125

5. Badertscher, C., Matt, C., Maurer, U., Rogaway, P., Tackmann, B.: Augmented secure channels and the goal of
the TLS 1.3 record layer. In: Provable Security, Springer International Publishing (2015) 85–104

6. Barwell, G., Page, D., Stam, M.: Rogue decryption failures: Reconciling ae robustness notions. In: Proceedings of
the 15th IMA International Conference on Cryptography and Coding, Springer International Publishing (2015)
94–111

7. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the SSH authenticated encryption
scheme: A case study of the Encode-then-Encrypt-and-MAC paradigm. ACM Trans. Inf. Syst. Secur. 7(2) (2004)
206–241

8. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic
composition paradigm. Cryptology ePrint Archive, Report 2000/025 (2000) https://eprint.iacr.org/2000/

025.
9. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs.

In: Proceedings of the 24th Annual International Conference on The Theory and Applications of Cryptographic
Techniques, Springer-Verlag (2006) 409–426

10. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption: AES-GCM in TLS 1.3. In:
Advances in Cryptology – CRYPTO 2016, Springer Berlin Heidelberg (2016) 247–276

11. Bhargavan, K., Lavaud, A.D., Fournet, C., Pironti, A., Strub, P.Y.: Triple handshakes and cookie cutters:
Breaking and fixing authentication over TLS. In: Proceedings of the 35th IEEE Symposium on Security and
Privacy, IEEE (2014) 98–113

12. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: Security of symmetric encryption in the presence of
ciphertext fragmentation. In: Advances in Cryptology – EUROCRYPT 2012, Springer Berlin Heidelberg (2012)
682–699

13. Boldyreva, A., Degabriele, J.P., Paterson, K.G., Stam, M.: On symmetric encryption with distinguishable de-
cryption failures. In: Fast Software Encryption, Springer Berlin Heidelberg (2014) 367–390

14. Degabriele, J.P., Paterson, K., Watson, G.: Provable security in the real world. IEEE Security & Privacy 9(3)
(2011) 33–41

15. Degabriele, J.P., Paterson, K.G.: On the (in)Security of IPsec in MAC-then-encrypt Configurations. In: Pro-
ceedings of the 17th ACM Conference on Computer and Communications Security, ACM (2010) 493–504

16. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Protzenko, J., Rastogi, A., Swamy, N., Zanella-Beguelin, S.,
Bhargavan, K., Pan, J., Zinzindohoue, J.K.: Implementing and proving the TLS 1.3 record layer. In: Proceedings
of the 38th IEEE Symposium on Security and Privacy (SP), IEEE (2017) 463–482

17. Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: Security of stream-based channels.
In: Advances in Cryptology – CRYPTO 2015, Springer Berlin Heidelberg (2015) 545–564

18. Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: Security of stream-based channels.
Cryptology ePrint Archive, Report 2017/1191 (2017) https://eprint.iacr.org/2017/1191.

19. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and the problem that it solves.
In: Advances in Cryptology – EUROCRYPT 2015, Springer Berlin Heidelberg (2015) 15–44

20. Kent, S., Seo, K.: Security architecture for the internet protocol. RFC 4301, RFC Editor (December 2005)
http://www.rfc-editor.org/rfc/rfc4301.txt.

21. Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme. In: Advances in Cryptology –
CRYPTO 2010, Springer Berlin Heidelberg (2010) 631–648

22. McGrew, D.: An interface and algorithms for authenticated encryption. RFC 5116, RFC Editor (January 2008)
http://www.rfc-editor.org/rfc/rfc5116.txt.

23. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition. In: Advances in Cryptology
– EUROCRYPT 2014, Springer Berlin Heidelberg (2014) 257–274

24. Paterson, K.G., AlFardan, N.J.: Plaintext-recovery attacks against datagram TLS. In: 19th Annual Network and
Distributed System Security Symposium, NDSS. (2012)

25. Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: Attacks and proofs for the tls record
protocol. In: Advances in Cryptology – ASIACRYPT 2011, Springer Berlin Heidelberg (2011) 372–389

25

https://eprint.iacr.org/2000/025
https://eprint.iacr.org/2000/025
https://eprint.iacr.org/2017/1191
http://www.rfc-editor.org/rfc/rfc4301.txt
http://www.rfc-editor.org/rfc/rfc5116.txt


26. Paterson, K.G., Watson, G.J.: Plaintext-dependent decryption: A formal security treatment of SSH-CTR. Cryp-
tology ePrint Archive, Report 2010/095 (2010) https://eprint.iacr.org/2010/095.

27. Rescorla, E., Tschofenig, H., Modadugu, N.: The Datagram Transport Layer Security (DTLS) Protocol
Version 1.3. Internet-Draft draft-ietf-tls-dtls13-22, IETF Secretariat (2017) https://tools.ietf.org/html/

draft-ietf-tls-dtls13-22.

28. Rescorla, E.: The Transport Layer Security (TLS) Protocol version 1.3. Internet-Draft draft-ietf-tls-tls13-23,
IETF Secretariat (2018) https://tools.ietf.org/html/draft-ietf-tls-tls13-23.

29. Rogaway, P., Stegers, T.: Authentication without elision. In: 2009 22nd IEEE Computer Security Foundations
Symposium, IEEE (2009) 26–39

30. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of the 9th ACM Conference on
Computer and Communications Security, ACM (2002) 98–107

31. Smyth, B., Pironti, A.: Truncating TLS connections to violate beliefs in web applications. In: Presented as part
of the 7th USENIX Workshop on Offensive Technologies, USENIX (2013)

32. Vaudenay, S.: Security flaws induced by CBC padding — Applications to SSL, IPSEC, WTLS... In: Advances
in Cryptology — EUROCRYPT 2002, Springer Berlin Heidelberg (2002) 534–545

33. Ylonen, T., Lonvick, C.: The secure shell (SSH) protocol architecture. RFC 4251, RFC Editor (January 2006)
http://www.rfc-editor.org/rfc/rfc4251.txt.

A Fully specified channels

Conspicuously absent from our treatment in Section 2 is a correctness condition for PSCs. Indeed, it is
undesirable to require correctness in our setting; we want our results to hold up even when the SD is realized
by the adversary. But this choice is not without consequences, since we cannot assume correctness in proofs
of security, as is so often done in cryptography [8,18]. In particular, contrary to prior settings, it is not
the case that ciphertext-stream integrity implies plaintext-stream integrity for PSCs. We show this with a
counter example, then show how to restrict the SD in order to recover the classic result.

INT-CS 6⇒ INT-PS for PSCs. Let CH = (Init ,Mux ,Write ,Read ,Demux ) be a PSC. We define from
this a new PSC CH′ = (Init ,Mux ,Write ,Read ′,Demux ′), where Read ′ and Demux ′ are given in Figure 12.
Whatever were the SD associated to PSC CH, we add to this a new reader specification detail that on
input 〈read, output 1〉 returns a bit c. Under any correct realization of CH′ this bit must be 1. The Read ′

algorithm takes input runs (Y,H, α) ←← Read (C,var Re), and outputs (Y,H ‖ c, α). Likewise, we add two
new demultiplexer SD hooks: first, one that on input 〈demux, frag,M 〉, where M is a string or ⊥, and
returns a string F ; second, one that on input 〈demux, ctx, sc〉, where sc is a string or ⊥, and returns a
string ϕ. The Demux ′ algorithm, on input (X,H ′, α,var De) parses H ′ into H and the extra bit, and executes
DemuxO(Y,H, α,var De). If the extra bit is 1, then Demux ′ returns whatever Demux did. Otherwise, the
output fragment M is replaced with F and the stream context sc gets replaced with ϕ.

It is easy to show that for every A, there exists A′ such that Advint-cs
CH (A) = Advint-cs

CH′ (A′). Consider
the following INT-PS attack: choose any string C and ask it of Recv. On SD request 〈read, output 1〉, the
attacker responds with 〈0〉. On SD request 〈demux, frag,M 〉 for some M ∈ {0, 1}∗ ∪ {⊥}, if M 6= ⊥, then
choose any string F 6� M and output it; otherwise, choose any string F 6= ε and output it. On SD request
〈demux, ctx, sc〉 for some sc ∈ {0, 1}∗ ∪ {⊥}, if sc 6= ⊥, then output ϕ = sc; otherwise, choose any string ϕ
and output it. Then Sϕ = � by definition, and the adversary ensures that Rϕ 6= �. Clearly Rϕ 6� Sϕ, and
the adversary wins with probability 1. ♦

Read ′O(C,var Re)
1 declare bool b
2 (Y,H, α)←← ReadO(C,var Re)
3 〈c〉 ←← O(〈read, output 1〉)
4 return (Y,H ‖ c, α)

Demux ′O(X,H ′, α,var De)
5 `← |H ′|; H ← H ′[1:`− 1]; c← H ′`
6 (M, sc, γ)←← DemuxO(Y,H, α,var De)
7 if c = 1 then return (M, sc, γ)
8 F ←← O(〈demux, frag,M 〉)
9 ϕ←← O(〈demux, ctx, sc〉)

10 return (F,ϕ, γ)

Fig. 12: Procedures Read ′ and Demux ′.

26

https://eprint.iacr.org/2010/095
https://tools.ietf.org/html/draft-ietf-tls-dtls13-22
https://tools.ietf.org/html/draft-ietf-tls-dtls13-22
https://tools.ietf.org/html/draft-ietf-tls-tls13-23
http://www.rfc-editor.org/rfc/rfc4251.txt


Gets (M , s, sc)

1 M ′ ← ε
2 for i← 1 to |s| do
3 if si = sc then M ′ ←M ′ ‖M i

4 return M ′

Corr (C′,M , s)

5 (Mu,Wr ,Re,De)←← Init
6 C ←← Sends (M , s,Mu,Wr)
7 (Y ′,M ′, s′)←← Recvs (C′,Re,De)
8 return (C,Y ′,M ′, s′)

Sends (M , s,Mu,Wr) //M , s ∈ {0, 1}∗∗

9 for i← 1 to |s| do
10 (X,H,α)←← Mux S(M i, si,var Mu)
11 (Ci, ∗)←←WriteS(X,H,α,var Wr)
12 return C

Recvs (C′,Re,De)

13 for i← 1 to |C′| do
14 (Y ′i, H, α)←← ReadR(C′i,var Re)
15 (M ′

i, s
′
i, ∗)←← DemuxR(Y ′i, H, α,var De)

16 return (Y ′,M ′, s′)

G(A)

1 declare strR[ ], S[ ], T
2 declare bool sync,win[ ]
3 (Mu,Wr ,Re,De)←← Init ( )
4 sync ← 1; ASend,Recv

Send(M, sc)

5 (X,H,α)←← MuxA(M, sc,var Mu)
6 (C, γ)←←WriteA(X,H,α,var Wr)
7 T ← T ‖C; Ssc ← Ssc ‖M
8 return (C, γ)

Recv(C)

9 (Y,H, α)←← ReadA(C,var Re)
10 (M, sc, γ)←← DemuxA(Y,H, α,var De)
11 if sync and Y � T then T ← T %Y
12 else sync ← 0
13 if M 6= ⊥ ∧ sc 6= ⊥ then
14 Rsc ← Rsc ‖M
15 if Rsc 6� Ssc then win2 ← 1
16 if ¬sync then win1 ← 1
17 return (M, sc, γ)

Fig. 13: top: procedures for defining correctness of FSC (CH,S,R). Bottom: a game for proving Theorem 5.

The attack just described exploits the fact that the adversary controls the SD. Note, too, that the
adversarial handling of the SD does not result in a correct realization of CH′. This raises the question of
whether or not there is a separation when the PSC is correctly realized.

A partially specified channel is transformed into a fully specified channel (FSC) by instantiating the SD
oracle for each algorithm. Given a PSC CH, we define an FSC as a triple (CH,S,R), where S and R are
randomized and stateful algorithms that instantiate the SD oracle for the sender (Mux ,Write ) and receiver
(Read ,Demux ), respectively. We may define correctness FSCs as follows:

Definition 1. Refer to procedures Gets and Corr defined in Figure 13. We say that FSC (CH,S,R) is
correct if for every C ′,M , s ∈ {0, 1}∗∗ such that |M | = |s| and sc ∈ {0, 1}∗, it holds that

Pr
[
(C,Y ′,M ′, s′)←← Corr (C ′,M , s) :

cat(Y ′) � cat(C)⇒ Gets (M ′, s′, sc) � Gets (M , s, sc)
]

= 1 .

We say that PSC CH has a correct realization if there exists a pair (S,R) such that the FSC (CH,S,R) is
correct. ♦

The definition says that each plaintext stream output by the receiver must be a prefix of the corresponding
stream input to the sender, as long as the ciphertext stream consumed by the receiver is a prefix of the
ciphertext stream produced by the sender. This naturally generalizes the correctness condition of FGMP for
single stream-based channels [18, Definition 3.1].

INT-CS ⇒ INT-PS for correct FSCs. We show that if the SD are handled by A in a manner that yields
a correct FSC, then the traditional relationship holds.

Theorem 5. For every adversary A, if (CH,A,A) is a correct FSC, then Advint-ps
CH (A) ≤ Advint-cs

CH (A).

Proof. Consider the game G defined in Figure 13. It combines the game logic of INT-CS and INT-PS
so that flag win1 has the semantics as the win flag of the INT-CS game and win2 has the semantics
of the win flag in the INT-PS game. Then by definition, Advint-cs

CH (A) = Pr
[
G(A) sets sets win1

]
and

27



Expstae
Π,b (A)

1 declare str E[ ], stateD[ ]
2 π ←← Gen ( ) // Sets π.seqn = 0.
3 b′ ←← AEnc,Dec,GenD

4 return b′

Enc(strH,M)

5 if b = 1 then C ← Enc(var π,H,M)
6 else
7 c← cipherlen (|M |); C ←← {0, 1}c
8 π.seqn ← π.seqn + 1
9 E[π. seqn − 1, H,C]←M

10 return C

GenD(int d)

11 if D[d] 6= ⊥ then return ⊥
12 D[d]←← GenD (π) // Sets D[d].seqn = 0.

Dec(int d, strH,C)

13 if D[d] 6= ⊥ then return ⊥
14 if b = 1 then M ← Dec(varD[d], H,C)
15 else
16 M ← E[D[d].seqn, H,C ]
17 if M 6= ⊥ then
18 D[d].seqn ← D[d].seqn + 1
19 return M

Explhse
Π,b (A)

20 declare str E[ ], stateD[ ]
21 π ←← Gen ( ) // Sets π.seqn = 0.
22 b′ ←← AEnc,Dec,GenD

23 return b′

Enc(int `, str F ) //What if ` < |F |?
24 R0 ← 0`; R1 ← finalize (R0)
25 if b = 1 then V ← Enc(var π, `, F )
26 else V ← Enc(var π, `, Rfinal (F ))
27 E[π. seqn − 1, V ]← F
28 return V

GenD(int d)

29 if D[d] 6= ⊥ then return ⊥
30 D[d]←← GenD (π) // Sets D[d].seqn = 0.

Dec(int d, str V )

31 if D[d] 6= ⊥ then return ⊥
32 if b = 1 then F ← Dec(varD[d], V )
33 else
34 if closed (D[d]) then return ⊥
35 F ← E[D[d].seqn, V ]
36 if F 6= ⊥ then D[d].seqn ← D[d].seqn + 1
37 if F 6= ⊥ and final (F ) then close (varD[d])
38 return F

Fig. 14: Left: StAE security of stateful AE scheme Π = (Gen ,GenD ,Enc ,Dec , cipherlen ). Type state is implicitly
defined as a struct with int seqn being one of its attributes; otherwise state is defined by the scheme. Right: Lhse
security of content-hiding, stateful AE scheme Π = (Gen ,GenD ,Enc ,Dec ,final ,finalize , closed , close ).

Advint-ps
CH (A) = Pr

[
G(A) sets sets win2

]
. To prove the claim, it suffices to show that if G(A) sets win2,

then it also sets win1. A sufficient condition is that if at any point in the game, if Rsc 6� Ssc for some sc, then
¬sync holds. Suppose that sync holds. Then satisfying Definition 1 implies that Rsc � Ssc for every sc. �

The results above imply the following:

Corollary 2. For every adversary A, Advint-ps
CH (A) ≤ Advint-cs

CH (A) if and only if (CH,A,A) is correct.

B The notions of Delignat-Lavaud et al.

In this appendix we discuss the security notions of DLFK+ [16] for stateful authenticated encryption. These
notions were devised in order to formalize the security properties of their F∗ implementation of the TLS 1.3
record layer (draft 18).

Change of notation. For the purpose of presenting their notions, it will be convenient to change a con-
vention used in the rest of this paper. In this appendix, uninitialized variables (or elements of an associative
array) now implicitly have the value ⊥ instead of �.

The StAE notion. Figure 14 defines the DLFK+’s security notion for stateful, authenticated encryption.
It is largely an extension of AEAD security to stateful schemes that use a sequence number to generate
nonces, but it incorporates an additional feature designed to cope with a real-world problem. We elaborate
below.

Multiple receivers. The Gen procedure generates a secret (modeling the outcome of the handshake) and
outputs the state of the encrypting party. The decrypting party’s state is initialized via the GenD procedure,

28



which takes as input the encrypting party’s state. The security game models a setting in which there is one
encryptor and any number of decryptors. This is intended to cope with the fact that “[i]n practice, it is
difficult to prevent multiple honest servers from decrypting and processing the same 0-RTT encryption
stream” [16, Section 6]. In order to reduce latency of the connection, TLS 1.3 allows clients to send early
application data using a shared secret derived from a prior session before the new key exchange is finished.
This so-called 0-RTT data is piggy-backed on the client’s first handshake flow, thus reducing the time to
wait before application data can start flowing the other direction. In fact, web servers usually balance their
load across multiple front-end servers. In order to support 0-RTT data, it is necessary that each of these
servers share the state needed to resume the old session. As a result, it is possible for an adversary to replay
0-RTT data to more than one front-end server. This motivates DLFK+’s consideration of multiple receivers.

The possibility of multiple decrypting parties appears to be a non-trivial extension of the usual security
model, and something that our setting does not capture. Follow-on work should verify that our construction
remains secure when the model is augmented in this fashion. Intuitively, this gives the adversary additional
power in the sense that there are now multiple ciphertext streams that may go out of sync; we conjecture
this would degrade the privacy and integrity bounds by no more than a factor of the number of channels.

StAE does not support ciphertext fragmentation. Consider the following attack. First, choose some H,M ∈
{0, 1}∗ such that cipherlen (|M |) > 1 and ask C ← Enc(H,M). Next, ask M1 ← Dec(1, H,C[1]) followed
by M2 ← Dec(1, H,C[2:]). If b = 0, then M1 = M2 = ⊥. Suppose that b = 1. If the scheme does support
fragmentation, then the correctness condition on the scheme [12, Definition 3.2] would imply that M2 6= ⊥.
Therefore, for a scheme to be deemed secure in the StAE sense, it must not support fragmentation.

The Lhse notion. DLFK+ define a stronger notion that captures three additional goals. First and foremost,
this notion incorporates length hiding, which obscures the length of the message fragments. Second, the
content type is encoded by the fragment itself, and hence is kept private. Third, the syntax is extended so
that the sender may signal the end-of-stream to the receiver; security demands that, upon receipt of this
signal, the peer close the channel.

A content-hiding, stateful AE scheme is composed of eight algorithms. The first four — Gen , GenD , Enc ,
and Dec — are much the same as before, except that (1) encryption takes as input an int ` that specifies
the length of the padded fragment, and (2) the associated data is dropped from encryption and decryption.
The remaining algorithms are used to signal closure of the channel. Algorithm final (str) 7→ bool tests if a
fragment encodes the end-of-stream, i.e., is the final fragment, and algorithm finalize (str) 7→ str encodes
its input as the final fragment. Algorithm closed (state) 7→ bool tests if the peer’s state indicates that the
channel has been closed, and close (var state) closes the channel.

We highlight the important differences between Lhse and StAE security. (Refer to Figure 14.) Line 14:24
defines two strings. The first, R0, is the all-zero string of the specified length (`), and R1 is the finalized
version of that string. If b = 1 (the “real” world), then the Enc encrypts the input F ; if b = 0 (the “simulated”
world), it encrypts one of R0 and R1, depending on whether the F is a final fragment, i.e., if final (F ) = 1
holds. The simulated decryption oracle is defined so that if it receives a ciphertext output by the encryption
oracle corresponding to a final fragment, then it closes the stream (14:37). This mandates that Dec call close
on the state upon receipt of a final fragment.

None of the three additional properties captured by Lhse are mandated by the TLS 1.3 specification [28].
Since draft 09, the content type has been moved from the associated data to the scope of the plaintext being
encrypted. This might signal that the authors of the spec intend that the content type not be discernible from
the ciphertext stream, but since the record boundaries depend on the content type, this is not true of every
implementation (see the discussion in Section 3.1). (Though it is certainly true of DLFK+’s.) Next, length
hiding MAY be used to mitigate traffic analysis attacks, but this too is not mandatory. Finally, the document
does not mandate the end-of-stream semantics as defined in the Lhse game; certainly the application might
make good use of such a functionality (as suggested by DLFK+, see [16, Section 7]), but specification is
silent on the subject. Nevertheless, the end-of-stream semantics could be captured as a permitted leakage
parameter in our PRIV-SR notion (see Section 2.2).

Record layer security. Finally, DLFK+ define a game for modeling the security provided by the overall
record-layer protocol. In addition to the content-hiding properties of Lhse, they allow the adversary to re-

29



initialize the channel at will, modeling the key changes that occur during the normal execution of the protocol.
For their implementation of the record layer, they are able to show that Lhse of the underlying stateful AE
scheme implies record layer security, losing only a hybrid term in the reduction [16, Theorem 4]. Roughly
speaking, they show that permitting qi key changes is equivalent to executing the Lhse game qi times. This
follows easily from the observation that no state is carried over after re-initializing the channel. Thus, the
ability to re-initialize the channel does not really give the adversary more power, at least with respect to the
record layer.

30


	Partially specified channels:The TLS 1.3 record layer without elision
	Introduction
	Partially specified channels
	Syntax
	Privacy
	Integrity
	Receiver-status simulatability and a generic composition

	The TLS 1.3 record layer
	Overview
	The building blocks
	The partially specified record layer
	Discussion

	Fully specified channels
	The notions of Delignat-Lavaud et al.


