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Abstract. Dual receiver encryption (DRE), proposed by Diament et
al. at ACM CCS 2004, is a special extension notion of public-key en-
cryption, which enables two independent receivers to decrypt a cipher-
text into a same plaintext. This primitive is quite useful in designing
combined public key cryptosystems and denial of service attack-resilient
protocols. Up till now, a series of DRE schemes are constructed from
bilinear pairing groups and lattices. In this work, we introduce a con-
struction of lattice-based DRE. Our scheme is indistinguishable against
chosen-ciphertext attacks (IND-CCA) from the standard Learning with
Errors (LWE) assumption with a public key of bit-size about 2nm log q,
where m and q are small polynomials in n. Additionally, for the DRE
notion in the identity-based setting, identity-based DRE (IB-DRE), we
also give a lattice-based IB-DRE scheme that achieves chosen-plaintext
and adaptively chosen identity security based on the LWE assumption
with public parameter size about (2`+ 1)nm log q, where ` is the bit-size
of the identity in the scheme.

Keywords: Lattices, Dual Receiver Encryption, Identity-Based Dual
Receiver Encryption, Learning with Errors, Provable Security.

1 Introduction

The notion of dual receiver encryption (DRE), formlized by Diament, Lee,
Keromytis and Yung [8] at ACM CCS 2004, is an extension version of public
key encryption, in which a ciphertext can be decrypted into the same plaintex-
t by two independent users. More precisely, in a DRE scheme, the encryption
algorithm takes as input a message M and two receivers’ independently gener-
ated public keys pk1 and pk2 and produces a ciphertext c. Once the receivers
receive the ciphertext c, either of them can decrypt c and obtain the message
M using their respective secret key. With such a DRE primitive, one can ob-
tain a combined public key cryptosystem or design a denial of service attack-
resilient protocol [8]. A decade later, in CT-RSA 2014, Chow, Franklin, and
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Zhang [6] refined the syntax of DRE and appended some appealing features for
DRE. Recently, to simplify the difficulty of certificate management in tradition-
al certificate-based DRE schemes, Zhang et al. [24] extended the DRE concept
into the identity-based setting by introducing the identity-based dual receiver
encryption (IB-DRE) notion.

There exist many DRE and IB-DRE constructions from pairings and lattices,
which are described as follows.

• From pairings. In [8], Diament et al. presented the first DRE scheme by
transforming the three-party one-round Diffie-Hellman key exchange scheme
by Joux [12], and also proved that it is indistinguishable secure against cho-
sen ciphertext attacks (IND-CCA). However, their scheme relied on the ex-
istence of random oracle heuristic (RO), where a DRE that proven to be
secure in the RO model may turn into insecure one when the RO is instan-
tiated by an actual hash function in practice. Hence, Youn and Smith [23]
began with attempting to give a provably secure DRE scheme in the stan-
dard model by combining an adaptively CCA secure encryption scheme and
a non-interactive zero-knowledge protocol, while suffered low efficiency due
to the prohibitively huge proof size. Later on, Chow, Franklin, and Zhang
[6] proposed a CCA secure DRE scheme via combining a selective-tag weak-
ly CCA-secure tag-based DRE (based on the tag-based encryption scheme
in [14]) and a strong one-time signature scheme, as well as other DRE in-
stantiations for non-malleable and other properties 1. Recently, Zhang et
al. [24] constructed two provably secure IB-DRE schemes against adaptive-
ly chosen plaintext or ciphertext and chosen identity attacks based on an
identity-based encryption scheme in [22].

• From lattices. As studied in [6, 24], the DRE or IB-DRE can be viewed as a
special instance of a broadcast encryption (BE, for short) or identity-based
broadcast encryption (IBBE, for short) primitive which supports multiple
recipients in an encryption system. So a construction of BE or IBBE implies
a construction of DRE or IB-DRE. Georgescu [10] constructed a tag-based
anonymous hint system [15] under the ring learning with errors (RLWE)
assumption. Combining an IND-CCA secure public key encryption (PKE)
scheme and a strongly unforgeable one-time signature (OTS), we can get an
IND-CCA secure BE scheme which is a conclusion in [15]. Wang et al. [20]
presented a construction of BE which is indistinguishable against adaptively
chosen plaintext attacks (IND-CPA), based on the LWE problem. As for
IBBE constructions, Wang and Bi [21] proposed an adaptively secure IBBE
scheme in the random oracle model (ROM), under the LWE assumption.

1 Note that Chow, Franklin, and Zhang [6] also gave two generic DRE constructions:
one is combining Naor-Yung “two-key” paradigm [16] with Groth-Sahai proof system
[11], the other is from lossy trapdoor functions [17].
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Fig. 1. Comparison of DRE Schemes from Lattices.

Schemes
# of # of # of Other

Zn×mq matrix Zm×mq matrix Zmq vector Assumptions Security primitives
|pk| |sk| |c| needed

Geo′13
†

[10] − − − RLWE IND-CCA PKE, OTS
WWW’15 [20] 1 1 1 LWE IND-CPA
Ours:
Section 3 1 1 2 LWE IND-CCA OTS

|pk|,|sk| and |c| show the size of public key, secret key and ciphertext, respectively.
†, Because of the usage of an IND-CCA secure PKE scheme from lattices, we do not
konw how to show the detail of |pk|, |sk| and |c| about Geo’13 scheme.

Fig. 2. Comparison of IB-DRE Schemes from Lattices.

Schemes
# of # of # of Standard

Zn×mq matrix Zm×mq matrix Zmq vector Assumptions Security model
|PP| |Msk| |c| ?

WB’10 [21] 1 1 3 LWE IND-ID-CPA ROM
Ours:
Section 4 2n+ 1 1 3 LWE IND-ID-CPA X
Section 4.3 2n/ logn+ 1 1 3 LWE IND-ID-CPA X
Section 4.3 2n/ log2 n+ 1 1 3 LWE IND-ID-CPA X
|PP|,|Msk| and |c| show the size of public parameters, master secret key and ciphertext,
respectively.

1.1 Our Contributions

In this paper, we pay attention to the construction of DRE and IB-DRE from
lattices. Our two schemes are constructed in the standard model and satisfy
chosen-ciphertext or chosen-plaintext security, which are based on the hardness
of the Learning With Errors (LWE) problem. Specifically, based on the beautiful
work of Agrawal, Boneh and Boyen [1], our works are stated as follows.

• We construct a secure DRE scheme against chosen-ciphertext attacks from
the standard Learning with Errors assumption with a public key of bit-
size about 2nm log q, where m and q are small polynomials in n. In order
to encrypt a n-bit message, the ciphertext consists of two parts: one is a
(n+4m) log q-bit ciphertext which is an encryption of the message, the other
is a one-time signature of the first part. Please see more details in Figure 1.

• Additionally, we construct a secure IB-DRE scheme against chosen-plaintext
and adaptively chosen-identity attacks from the same assumption . As a
result, the public parameter of our IB-DRE achieves (2` + 1)nm log q bit-
size, where ` is the bit-size of the identity. In order to encrypt a n-bit message,
the bit-size of ciphertext will become (n+ 3m) log q. Note that one can still
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get two IB-DRE schemes with more compact public parameters via relying
on other lattice-based IBE works that achieved short public parameter sizes,
which is formally discussed in Section 4.3. We also present the comparison
of IB-DRE schemes from lattices in Figure 2.

Remarks. This work has been accepted at the conference of ACISP’2018.

Organization. The rest of this paper is organized as follows. In Appendix A
and Section 2, we recall some lattice background, dual-receiver encryption and
identity-based dual-receiver encryption. Our DRE construction and its proof
are presented in Section 3, and IB-DRE construction along with its proof are
described in Section 4. In Section 5, we give a conclusion.

2 Preliminaries

Notations. Let λ be the security parameter, and all other quantities are im-
plicitly dependent on λ. Let negl(λ) denote a negligible function and poly(λ)
denote unspecified function f(λ) = O(λc) for a constant c. For n ∈ N, we use
[n] to denote a set {1, · · · , n}. And for integer q ≥ 2, Zq denotes the quotient
ring of integer modulo q. We use bold capital letters to denote matrices, such
as A,B, and bold lowercase letters to denote column vectors, such as x,y. The
notations A> and [A|B] denote the transpose of the matrix A and the matrix of
concatenating A and B, respectively. Additionally, we use (a)i, (A)i to denote
the i-th element, column of a, A. In denotes the n×n identity matrix and Invn
denotes the set of invertible matrices in Zn×nq .

2.1 Encoding Vectors into Matrices

In [7], Cramer et al. described an encoding function Ht,F that maps a domain
Ft to matrices in Ft×t with certain, strongly injective properties, where F is a
field. For a polynomial g ∈ F[X] of degree less than t − 1, coeff(g) ∈ Ft is the
t-vector of coefficients of g. Let f be a polynomial of degree t in F[X] that is
irreducible. Then for g ∈ F[X], the polynomial g mod f has degree at most
t − 1, so coeff(g mod f) ∈ Ft. Now, for an input h = (h0, h1, · · · , ht−1)> ∈ Ft
define the polynomial gh(X) =

∑t−1
i=0 hix

i ∈ F[X]. Define Ht,F(h) as

Ht,F(h) :=


coeff(gh mod f)>

coeff(x · gh mod f)>

...
coeff(xt−1 · gh mod f)>

 ∈ Ft×t.

From here on, we take F := Zq for a prime q. As stated in [4], it is easy to verify
that Ht,q : Ztq → Zt×tq obeys the following properties:

• Ht,q(ah1 + bh2) = a · Ht,q(h1) + b · Ht,q(h2) for any a, b ∈ Zq,h1,h2 ∈ Ztq.
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• For any vector h 6= 0, Ht,q(h) is invertible, and Ht,q(0) = 0.

In [1], according to function Ht,q, Agrawal et al. defined the following equa-
tion HABB : Z`q → Zn×n: For x = (x1, · · · , x`)> ∈ Z`q,

HABB(x) = In +
∑̀
i=1

xi · Ht,q(hi)⊗ In/t,

where hi
$← Ztq for i ∈ {1, · · · , `}, and assume that n is a multiple of t. Then,

they implicitly presented the following lemma. However, they did not give a
complete proof.

Lemma 1. For any integers `, t, n, and a prime q, let HABB be the hash function
family defined as above. Then for any fixed set S ⊆ Z`q, |S| ≤ Q, and any x ∈
Z`q\S, we have

Pr [HABB(x) = 0 ∧ (∀x′ ∈ S,HABB(x′) ∈ Invn)] ∈
(

1

qt
(1− Q

qt
),

1

qt

)
.

Proof. For a vector e1 = (1, 0, · · · , 0)> ∈ Ztq, we have Ht,q(e1) = It. For x =

(x1, · · · , x`)> ∈ Z`q, let S0 be the set of functions in HABB such that HABB(x) =
0. It is straightforward to verify that the following equation holds:

HABB(x) =In +
∑̀
i=1

xi · Ht,q(hi)⊗ In/t =

(
It +

∑̀
i=1

xi · Ht,q(hi)

)
⊗ In/t

=

(
Ht,q(e1) +

∑̀
i=1

xi · Ht,q(hi)

)
⊗ In/t = Ht,q

(
e1 +

∑̀
i=1

xihi

)
⊗ In/t.

By a simple observation, we have HABB(x) = 0 if and only if
∑`
i=1 xihi = −e1.

As a result, we can get |S0| = q(`−1)t. In the same way, we can get |S ′i| = q(`−1)t,
where S ′i is the set of functions HABB such that HABB(x′i) = 0 for x′i ∈ S =
{x′1, · · · ,x′|S|}. Moreover, |S0 ∩ S ′i| ≤ q(`−2)t for i ∈ {1, · · · , |S|}. The set of

functions in HABB such that HABB(x) = 0 and ∀x′ ∈ S,HABB(x′) ∈ Invn is

exactly S̃ = S0 \ {S ′1 ∪ · · · ∪ S ′|S|}. Now, we have

∣∣∣S̃∣∣∣ =
∣∣∣S0 \ {S ′1 ∪ · · · ∪ S ′|S|}∣∣∣ ≥ |S0| − |S|∑

i=1

|S0 ∩ S ′i| ≥ q(`−1)t −Qq(`−2)t.

Therefore the above probability holds with |S̃|/qt` is at least 1
qt (1− Q

qt ). And the

probability is at most 1
qt since |S̃| ≤ |S0| = q(`−1)t. ut
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2.2 (Identity-Based) Dual Receiver Encryption

Dual Receiver Encryption [8]. A DRE scheme consists of the following four
algorithms:

• CGenDRE(1λ) → crs: The randomized common reference string (CRS) gen-
eration algorithm takes as input a security parameter λ and outputs a CRS
crs.

• GenDRE(crs) → (pk, sk): The randomized key generation algorithm takes as
input crs and outputs a public/secret key pair (pk, sk). We regard (pk1, sk1)
and (pk2, sk2) as the key pairs of two independent users. Without loss of
generality, we assume pk1 <

d pk2, where <d is a “less-than” operator based
on lexicographic order throughout this paper.

• EncDRE(crs, pk1, pk2,M)→ c: The randomized encryption algorithm takes as
input crs, two public keys pk1 and pk2 (such that pk1 <

d pk2) and a message
M , and outputs a ciphertext c.

• DecDRE(crs, pk1, pk2, skj , c) → M : The deterministic decryption algorithm
takes two public keys pk1 and pk2 (such that pk1 <

d pk2), one of the secret
keys skj (j ∈ {1, 2}), and a ciphertext c as input, and outputs a message M
(which may be the special symbol ⊥).

Correctness. For consistency, we require that, if crs← CGenDRE(1λ), (pk1, sk1)←
GenDRE(crs) and (pk2, sk2) ← GenDRE(crs), and c ← EncDRE(crs, pk1, pk2,M),
then we have the probability

Pr [DecDRE(crs, pk1, pk2, sk1, c) = DecDRE(crs, pk1, pk2, sk2, c) = M ] = 1−negl(λ).

Security. A DRE scheme is said to be indistinguishable against chosen-ciphertext
attacks (IND-CCA) if for any PPT adversary A,

Advind−cca
DRE,A(1λ) =

∣∣∣∣Pr
[
Expind−cca
DRE,A(1λ) = 1

]
− 1

2

∣∣∣∣
is negligible in λ.

Identity-Based Dual Receiver Encryption [24]. An IB-DRE scheme con-
sists of the following four algorithms:

• SetupID(1λ) → (PP,Msk). The setup algorithm takes in a security param-
eter 1λ as input. It outputs public parameters PP and a master secret key
Msk.

• KeyGenID(PP,Msk, id1st, id2nd ∈ ID)→ skid1st , skid2nd
. The key generation

algorithm takes public parameters PP , master secret key Msk, and two
identities id1st, id2nd as input. It outputs skid1st as the secret key for the
first receiver id1st, and skid2nd

for the second receiver id2nd.
• EncID(PP, id1st, id2nd,M) → c. The encryption algorithm takes in public

parameters PP , two identities id1st and id2nd, and a message M as input.
It outputs a ciphertext c.
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Fig. 3. IND-CCA security for DRE and IND-ID-CPA security for IB-DRE

Experiment Expind−cca
DRE,A(1λ) :

crs
$← CGenDRE(1λ);

(pkj , skj)
$← GenDRE(crs) for j ∈ 1, 2;

(M0,M1, s)
$← ADecDRE(skj ,c)(crs, pk1, pk2);

b
$← {0, 1}, c? $← EncDRE(crs, pk1, pk2,Mb);

b′
$← ADecDRE(skj ,c)∧c 6=c?(c?, s);

if b′ = b then return 1 else return 0.

Experiment Expind−id−cpa
IB−DRE,A(1λ) :

(PP,Msk)
$← SetupID(1λ)

(id?1st, id
?
2nd,M0,M1, s)

$← AKeyGenID(PP,Msk,id1st,id2nd)(PP );

b
$← {0, 1},c? $← EncID(PP, id?1st, id

?
2nd,Mb);

b′
$← AKeyGenID(PP,Msk,id1st,id2nd)∧idj 6=id?j,j=1st,2nd(c?, s);

if b′ = b then return 1 else return 0.

• DecID(PP, c, skidj ) → M . The decryption algorithm takes in public pa-
rameters PP , a ciphertext c, and one secret key skidj as input, where
j ∈ {1st, 2nd}. It outputs a message M .

Correctness. For all (PP,Msk)
$← SetupID(1λ), all identities idj ∈ ID, all mes-

sagesM , all skidj ← KeyGenID(PP,Msk, idj), all c← EncID(PP, id1st, id2nd,M),
we have

Pr[DecID(PP, skid1st , c) = DecID(PP, skid2nd
, c) = M ] = 1− negl(λ).

Security. An IB-DRE scheme is said to be indistinguishable against chosen-
plaintext and adaptively chosen-identity attacks (IND-ID-CPA) if for any PPT
adversary A,

Advind−id−cpa
IB−DRE,A(1λ) =

∣∣∣∣Pr
[
Expind−id−cpa
IB−DRE,A(1λ) = 1

]
− 1

2

∣∣∣∣
is negligible in λ.

3 Dual Receiver Encryption Construction

Our scheme relies upon a strongly unforgeable one-time signature schemeOT S =
(GenOTS,SigOTS,VrfOTS) whose verification key is exactly λ bits long. The de-
scription of our DRE scheme DRE is as follows.

• CGenDRE(1λ). On input a security parameter λ, algorithm CGenDRE sets the
parameters n,m, q as specified in Figure 4. Then it selects a uniformly ran-
dom matrix U ∈ Zn×nq . Finally it outputs a CRS crs = (n,m, q,U).
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• GenDRE(crs). For user j ∈ {1, 2}, this algorithm generates a pair matrices
(Aj ,TAj

) ∈ Zn×mq × Zm×mq by running TrapGen(1n, 1m, q) and selects a

random matrix Bj
$← Zn×mq . Finally, it outputs

pkj = (Aj ,Bj) and skj = TAj
.

• EncDRE(crs, pk1, pk2,m ∈ {0, 1}n). It first obtains a pair (vk, sk) by running
GenOTS(1λ) and computes C1 = [A1|B1 + Hn,q(vk) · G] ∈ Zn×2mq ,C2 =

[A2|B2 +Hn,q(vk) ·G] ∈ Zn×2mq . Then, it picks s
$← Znq , ẽ0

$← DZn,αq, and

e1,1, e2,1, e1,2, e2,2
$← DZm,α′q. Finally, it computes and returns the cipher-

text c = (vk, c0, c1, c2, δ), where δ = SigOTS(sk, (c0, c1, c2)) and

c0 = U>s + ẽ0 +
⌈q

2

⌉
·m ∈ Znq ,

c1 = C>1 s +

[
e1,1

e1,2

]
∈ Z2m

q , c2 = C>2 s +

[
e2,1

e2,2

]
∈ Z2m

q .

• DecDRE(crs, pk1, pk2, sk1, c). To decrypt a ciphertext c = (vk, c0, c1, c2, δ)
with a private key sk1 = TA1

, the algorithm DecDRE performs each of the
following steps:
(1) it runs VrfOTS(vk, (c0, c1, c2), δ), outputs ⊥ if VrfOTS rejects;
(2) for i ∈ {1, · · · , n}, it runs SampleLeft(A1,B1+Hn,q(vk)·G, (U)i,TA1

, σ)
to obtain (E1)i, i.e., it obtains E1 ∈ Z2m×n

q such that C1 ·E1 = U;

(3) it computes b = c0−E>1 c1 and treats each element of b = [(b)1, · · · , (b)n]>

as an integer in Z, and sets (m)i = 1 if
∣∣(b)i − d q2e

∣∣ < d q4e, else (m)i = 0,
where i ∈ {1, · · · , n}.

(4) finally, it returns the plaintext m = [(m)1, · · · , (m)n]>.

3.1 Correctness and Parameter Selection

In order to satisfy the correctness requirement and make the security proof work,
we need that

◦ for i ∈ {1, · · · , n}, the error term is bounded by∣∣∣∣(ẽ0)i − (E)>i

[
e1,1

e1,2

]∣∣∣∣ ≤ αq√m+ (σ
√

2m) · (α′q
√

2m) < q/4.

◦ TrapGen in Lemma 12 (Item 1) can work (m ≥ 6ndlog qe), and it returns TA

satisfying ‖T̃A‖ ≥ O(
√
n log q).

◦ the Leftover Hash Lemma in Lemma 12 (Item 4) can be applied to the
security proof (m > (n+ 1) log q + ω(log n)).

◦ SampleLeft in Lemma 12 (Item 2) can operate (σ ≥ ‖T̃A‖ · ω(
√

logm) =
O(
√
n log q) · ω(

√
logm)).

◦ SampleRight in Lemma 12 (Item 3) can operate (σ ≥ ‖T̃G‖·s1(Rj)·ω(
√

logm),
for j = 1, 2).
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◦ ReRand (Lemma 13) in the security proof can operate (αq > ω(
√

logm),
and α′q/(2αq) > s1([Im|Rj ]

>), where s1([Im|Rj ]
>) ≤ (1 + s1(Rj)) ≤ (1 +

12
√

2m), for j = 1, 2.

To satisfy the above requirements, we set the parameters in Figure 4.

Fig. 4. Parameter Selection of DRE Construction
Parameters Description Setting

λ security parameter
n PK-matrix row number n = λ
m PK-matrix column number 6n log q

σ SampleLeft,SampleRight width 12
√

10m · ω(
√

logn)

q modulus 96
√

5m3/2nω(
√

logn)

αq error width 2
√

2n
α′q error width 96

√
mn

3.2 Security Proof

Theorem 1. If OT S is a strongly existential unforgeable one-time signature
scheme and the DLWEq,n,n+2m,α assumption holds, then the above scheme DRE
is a secure DRE against chosen-ciphertext attacks.

Proof (of Theorem 1). Assume A is a probabilistic polonomial time (PPT) ad-
versary attacks DRE in a chosen-ciphertext attack. If VrfOTS(vk, (c0, c1, c2), δ) =
1, we say the ciphertext c = (vk, (c0, c1, c2), δ) is valid. Let c? denote the chal-
lenge ciphertext (vk?, (c?0, c

?
1, c

?
2), δ?) received by A during a particular run of

the experiment, and let Forge denote the event that A submits a valid cipher-
text (vk?, (c0, c1, c2), δ) to the decryption oracle (we assume that vk? is chosen
at the outer of the experiment so this well-defined even before A is given c?.)
According to the security of OT S, Pr [Forge] is negligible. We then prove the
following lemma:

Lemma 2.
∣∣∣Pr
[
Expind−cca
DRE,A (1λ) = 1 ∧ Forge

]
+ 1

2 Pr [Forge]− 1
2

∣∣∣ is negligible, if

assuming that the DLWEq,n,n+2m,α assumption holds.

To see that this implies the theorem, note that

Advind−ccaDRE,A (1λ) =

∣∣∣∣Pr
[
Expind−cca
DRE,A (1λ) = 1

]
− 1

2

∣∣∣∣
≤
∣∣∣∣Pr
[
Expind−cca
DRE,A (1λ) = 1 ∧ Forge

]
− 1

2
Pr [Forge]

∣∣∣∣
+

∣∣∣∣Pr
[
Expind−cca
DRE,A (1λ) = 1 ∧ Forge

]
+

1

2
Pr [Forge]− 1

2

∣∣∣∣
≤1

2
Pr [Forge] +

∣∣∣∣Pr
[
Expind−cca
DRE,A (1λ) = 1 ∧ Forge

]
+

1

2
Pr [Forge]− 1

2

∣∣∣∣ .
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Proof (of Lemma 2). We sketch the proof via a sequence of games. The games
involve the challenger and an adversary A. In the following, we define Xκ as the
event that the challenger outputs 1 in Gameκ, for κ ∈ {1, 2, 3, 4, 5}.

Game1: This game is the original experiment Expind−cca
DRE,A (1λ) except that when

the adversary A submits a valid ciphertext (vk?, (c0, c1, c2), δ) to the decryp-
tion oracle, the challenger outputs a random bit. It is easy to see that∣∣∣∣Pr [X1]− 1

2

∣∣∣∣ =

∣∣∣∣Pr
[
Expind−cca
DRE,A (1λ) = 1 ∧ Forge

]
+

1

2
Pr [Forge]− 1

2

∣∣∣∣ .
Game2: This game is identical to Game1 except that the challenger changes

(1) the generation of public keys pk1, pk2: the challenger selects random
matrices A1,A2 ∈ Zn×mq instead of running TrapGen, and random matri-
ces R1,R2 ∈ {−1, 1}m×m; then, the challenger computes B1 = A1R1 −
Hn,q(vk?)G,B2 = A2R2 −Hn,q(vk?)G ∈ Zn×mq . (2) the decryption oracle:
when A submits a valid ciphertext (vk 6= vk?, (c0, c1, c2), δ), the challenger
can generate E1 by running the algorithm SampleRight(A1,G,R1,Hn,q(vk−
vk?), (U)i,TG, σ) (In the similar way, the challenger obtains E2 by running
SampleRight(A1,G,R2,Hn,q(vk−vk?), (U)i,TG, σ) ) instead of SampleLeft,
for i ∈ {1, · · · , n}. Note that the following equation holds:

c?0 = U>s + ẽ0 +
⌈q

2

⌉
·mb,

c?1 =

[
(A1)>s + e1,1

(R1)>(A1)>s + e1,2

]
, c?2 =

[
(A2)>s + e2,1

(R2)>(A2)>s + e2,2

]
,

where ẽ0
$← DZn,αq and e1,1, e1,2, e2,1, e2,2

$← DZm,α′q.
Game3: In this game, the challenger changes the way that the challenge cipher-

text c? is created: the challenger first picks s
$← Znq , ẽ0

$← DZn,αq, ẽ1,1, ẽ2,1
$←

DZm,αq and sets w = U>s + ẽ0,b1 = (A1)>s + ẽ1,1,b2 = (A2)>s + ẽ2,1.
Then, it computes

c?0 = w +
⌈q

2

⌉
·mb,

c?1 = ReRand

([
Im

(R1)>

]
,b1, αq,

α′q

2αq

)
, c?2 = ReRand

([
Im

(R2)>

]
,b2, αq,

α′q

2αq

)
.

Game4: In this game, the challenger changes the way that the challenge cipher-

text c? is created: the challenger first picks random vectors w
$← Znq , b̃1

$←
Zmq , b̃2

$← Zmq , ẽ1,1, ẽ2,1
$← DZm,αq and sets b1 = b̃1 + ẽ1,1,b2 = b̃2 + ẽ2,1.

Then, it computes

c?0 = w +
⌈q

2

⌉
·mb,

c?1 = ReRand

([
Im

(R1)>

]
,b1, αq,

α′q

2αq

)
, c?2 = ReRand

([
Im

(R2)>

]
,b2, αq,

α′q

2αq

)
.
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Game5: In this game, the challenger changes the way that the challenge ci-

phertext c? is created: the challenger first picks w
$← Znq , b̃1

$← Zmq , b̃2
$←

Zmq , e1,1, e1,2, e2,1, e2,2
$← DZm,α′q and computes

c?0 = w +
⌈q

2

⌉
·mb,

c?1 =

[
b̃1 + e1,1

(R1)>b̃1 + e1,2

]
, c?2 =

[
b̃2 + e2,1

(R2)>b̃2 + e2,2

]
.

Analysis of Games. We use the following lemmas to give a analysis between
each adjacent games.

Lemma 3. Game1 and Game2 are statistically indistinguishable.

Proof Sketch. We can prove that Game2 is statistically close to Game1 using
Leftover Hash Lemma (Lemma 12, item 4) and the properties of the algorithms
SampleRight, TrapGen. ut

Lemma 4. Game2 and Game3 are identically distributed, and Game4 and
Game5 are identically distributed.

Proof. This lemma can be proved just according to the property of Rand. ut

Lemma 5. Assume the DLWEq,n,n+2m,α assumption holds, Game3 and Game4

are computationally indistinguishable.

Proof. Suppose there exists an adversary A who has a non-negligible advantage
in distinguishing Game3 and Game4, then we can construct an adversary B
who can break the LWE assumption as follows.

Instance. Based on the given LWE instance (U,A1,A2,w,b1,b2) ∈ Zn×nq ×
Zn×mq × Zn×mq × Znq × Zmq × Zmq and assume w = w̃ + ẽ0 and b1 = b̃1 +

ẽ1,1,b2 = b̃2 + ẽ2,1 where ẽ0
$← DZn,αq, ẽ1,1, ẽ2,1

$← DZm,αq. Then B should

distinguish whether w̃ = U>s, b̃1 = A>1 s, b̃2 = A>2 s for some s ∈ Znq or

w̃
$← Znq , b̃1, b̃2

$← Zmq . We note this subtle change from the standard LWE
problem is done only for the convenience of the proof.

Setup. The B constructs {B1,B2} for i ∈ {1, · · · , `} as in Game3.
Decryption Queries. The B answers decryption oracle as in Game3.
Challenge ciphertext. When A sends two message (m0,m1), the reduction B

computes the challenge ciphertext as follows

c?0 = w +
⌈q

2

⌉
·mb ∈ Znq ,

c?1 = ReRand

([
Im

(R1)>

]
,b1, αq,

α′q

2αq

)
, c?2 = ReRand

([
Im

(R2)>

]
,b2, αq,

α′q

2αq

)
.

Guess. After being allowed to make additional queries, A guesses if it interacts
with a challenger of Game3 or Game4 .
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It can be easily seen that if (U,A,w,b) is a valid LWE sample, the view
of A corresponds to Game3; otherwise, the view of A corresponds to that of
Game4. We complete the proof of this lemma. ut

Complete the Proof of Theorem 1. It is obvious that Pr[X5] = 1
2 , this is

because the challenge bit b is independent of the A’s view. From Lemma 3 to
Lemma 5, we know that

Pr[X1] ≈ Pr[X2],Pr[X2] = Pr[X3],Pr[X4] = Pr[X5].

From Lemma 5, we know that

|Pr[X3]− Pr[X4]| =
∣∣∣∣Pr[X4]− 1

2

∣∣∣∣ ≤ DLWEq,n,n+2m,α,

which implies
∣∣Pr [X1]− 1

2

∣∣ ≤ DLWEq,n,n+2m,α − negl(λ). utut

4 Identity-Based Dual Receiver Encryption Construction

Assume an identity space ID = {−1, 1}` (In general, IB-DRE needs to support
n-bit length identity, i.e., ` = n) and a message spaceM = {0, 1}n, our IB-DRE
scheme IB-DRE consists of the following four algorithms:

• SetupID(1λ) → (PP,Msk) : On input a security parameter λ, it sets the
parameters n,m, q as specified in Figure 5. Then it obtains a pair matrices
(A,TA) ∈ Zn×mq × Zm×mq by running TrapGen(1n, 1m, q) and selects a uni-
formly random matrix U ∈ Zn×nq ,A1

i ,A
2
i ∈ Zn×mq , where i ∈ {1, · · · , n}.

Finally it outputs PP = (n,m, q,A,A1
i ,A

2
i ,U) and Msk = TA.

• KeyGenID(PP,Msk, id1st, id2nd ∈ ID) → skid1st
, skid2nd

: On input public
parameters PP , a master key Msk, and identities id1st, id2nd, it first com-
putes Aid1

=
∑n
i=1(id1st)i ·A1

i + G,Aid2
=
∑n
i=1(id2nd)i ·A2

i + G. Then
for i ∈ {1, · · · , n}, it runs SampleLeft(A,Aid1 , (U)i,TA, σ) to obtain (Eid1)i
and sets skid1st = Eid1 ∈ Z2m×n

q . Similarly, it can obtain skid2nd
= Eid2 such

that [A|Aid2
] ·Eid2

= U.
• EncID(PP, id1st, id2nd,m) → c. It computes Aid1

,Aid2
as above. Then, it

picks s
$← Znq , ẽ0

$← DZn,αq, and e1,1, e2,1, e1,2, e2,2
$← DZm,α′q. Finally, it

computes and returns the ciphertext c = (c0, c1), where

c0 = U>s + e0 +
⌈q

2

⌉
·m ∈ Znq ,

c1 =

c1,1
c1,2
c1,3

 =

 A>

(Aid1
)>

(Aid2
)>

 s +

e1,1

e1,2

e1,3

 ∈ Z3m
q ,

• DecID(PP, skidj
, c)→m. To decrypt a ciphertext c = (c0, c1) with a private

key skid1st = Eid1 , it computes b = c0 − E>id1
·
[

c1,1
c1,2

]
and regards each

coordinate of b = [(b)1, · · · , (b)n]> as an integer in Z, and sets (m)i = 1 if∣∣(b)i − d q2e
∣∣ < d q4e; otherwise sets (m)i = 0 where i ∈ {1, · · · , n}. Finally, it

returns a plaintext m = [(m)1, · · · , (m)n]>.
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4.1 Correctness and Parameter Selection

In order to satisfy the correctness requirement and make the security proof work
(which is very similar to Subsection 3.1), we set the parameters in Figure 5.

Fig. 5. Parameter Selection of IB-DRE Construction
Parameters Description Setting

λ security parameter
n PK-matrix row number n = λ
m PK-matrix column number 6n log q
` length of identity n

σ SampleLeft,SampleRight width 12
√

10mn · ω(
√

logn)

q modulus O(m2n5/2ω(
√

logn))

αq error width 2
√

2n

α′q error width 192n3/2√m

4.2 Security Proof

Theorem 2. If the DLWEq,n,n+m,α assumption holds, then the above scheme
IB-DRE is a secure IB-DRE scheme against chosen-plaintext and adaptively
chosen-identity attacks.

Proof (of Theorem 2). We prove the theorem with showing that if a PP-
T adversary A can break our IB-DRE scheme with a non-negligible advan-
tage ε (i.e., success probability 1

2 + ε), then there exists a reduction that can
break the DLWEq,n,n+m,α assumption with an advantage poly(ε) − negl(1λ).
Let Q = Q(λ) be the upper bound of the number of KeyGenID queries and I∗ =
{(id∗1st, id

∗
2nd), (id


1st, id


2nd)∈[Q]} be the challenge ID along with the queried

ID’s.

We formally give the proof via a sequence of games and define Xκ as the
event that the challenger outputs 1 in Gameκ, for κ ∈ {0, 1, 2, 3, 4, 5, 6}.

Game0: This game is the original experiment Expind−id−cpa
IB−DRE,A(1λ) in Figure 3. It

is easy to see that

ε =

∣∣∣∣Pr [X0]− 1

2

∣∣∣∣ =

∣∣∣∣Pr
[
Expind−id−cpa
IB−DRE,A(1λ) = 1

]
− 1

2

∣∣∣∣ .
Game1: This game is as same as Game0 except that we add an abort event that

is independent of the adversary’s view. Let n, `, q be the parameters as in the
scheme’s setup algorithm and the challenger selects t = dlogq(2Q/ε)e, hence
we have qt ≥ 2Q/ε ≥ qt−1. Then the challenger chooses 2n random integer
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vectors h1
i ,h

2
i ∈ Ztq and defines two functions H1

ABB,H2
ABB : ID → Zn×nq as

follows: ∀id ∈ ID,

H1
ABB(id) = In+

n∑
i=1

(id)i·H(h1
i )⊗In/t,H2

ABB(id) = In+

n∑
i=1

(id)i·H(h2
i )⊗In/t.

We then describe how the challenger behaves in Game1 as follows:

• Setup : The same as Game0 except that the challenger keeps the hash
functions H1

ABB and H2
ABB passed from the experiment.

• Secret key and ciphertext query: The challenger responds to secret
key queries for identities and challenge ciphertext query (with a random
bit b ∈ {0, 1}) as same as that in Game0.

• Gauss: When the adversary returns a bit b′, the challenger checks if

H2
ABB(id?1st) = 0,H2

ABB(id1st) ∈ Invn

H2
ABB(id?2nd) = 0,H2

ABB(id2nd) ∈ Invn

for  ∈ {1, · · · , Q} where Invn denotes invertible matrices in Zn×nq . If the
condition does not hold, the challenger outputs a random bit b ∈ {0, 1},
namely we say the challenger aborts the game.

Note that A never sees the random hash functions H1
ABB and H2

ABB, and has
no idea if an abort event took place. While it is convenient to describe the
abort action at the end of the game, nothing would change if the challenger
aborts the game as soon as the abort condition becomes true.

Game2: This game is as same as Game1 except that we slightly change the
way that the challenger generates the matrices A1

i ,A
1
i for i ∈ {1, · · · , n}.

Taking t as t = dlogq 2Q/εe, we thus have qt ≥ 2Q/ε ≥ qt−1. Assume n is
a multiple of t. For i = 1, · · · , n, the challenger chooses 2n random integer
vectors h1

i ,h
2
i ∈ Ztq and random matrices R1

i ,R
2
i ∈ {−1, 1}m×m. Then it

sets A1
i = AR1

i + (Ht,q(h1
i )⊗ In/t) ·G,A2

i = AR2
i + (Ht,q(h2

i )⊗ In/t) ·G.

Game3: This game is identical to Game2 except that the challenger chooses a
random matrix A instead of running TrapGen and responds to private key
queries by involving the algorithm SampleRight instead of SampleLeft. To
respond to a private key query for id1st, id2nd, the challenger needs short

vectors (Eid1
)i ∈ ∧(U)i

q ([A|Aid1
]) and (Eid2

)i ∈ ∧(U)i
q ([A|Aid2

]), where

Aid1
=

n∑
i=1

(id1st)i ·A
1
i + G = A

(
n∑
i=1

(id1st)i ·R1
i

)
+H1

ABB(id1st) ·G;

Aid2 =

n∑
i=1

(id2nd)i ·A2
i + G = A

(
n∑
i=1

(id2nd)i ·R2
i

)
+H2

ABB(id2nd) ·G.

If H1
ABB(id1st) /∈ Invn or H2

ABB(id2nd) /∈ Invn, the challenger aborts this
game and returns a random bit. Otherwise, the challenger responds the pri-
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vate key query by running

SampleRight(A,G,

n∑
i=1

(id1st)i R
1
i ,H1

ABB(id1st), (U)i,TG, σ), to get Eid1
,

SampleRight(A,G,

n∑
i=1

(id2nd)i R
2
i ,H2

ABB(id2nd), (U)i,TG, σ), to get Eid2
,

for i ∈ {1, · · · , n}. Since H1
ABB(id?1st) = 0,H2

ABB(id?2nd) = 0, it holds:

c?0 = U>s + ẽ0 +
⌈q

2

⌉
·mb, c

?
1 =

 A>s + e1,1(∑n
i=1(id?1st)i ·R1

i

)>
A>s + e1,2(∑n

i=1(id?2nd)i ·R2
i

)>
A>s + e1,2

 ,
where ẽ0

$← DZn,αq, e1,1, e1,2, e1,3
$← DZm,α′q.

Game4: In this game, the challenge ciphertext is generated as follows: it chooses

s
$← Znq , ẽ0

$← DZn,αq, ẽ1
$← DZm,αq and sets w = U>s + ẽ0,b = A>s + ẽ1.

Then, it computes

c?0 = w +
⌈q

2

⌉
·mb, c

?
1 = ReRand


 Im(∑n

i=1(id?1st)i ·R1
i

)>(∑n
i=1(id?2nd)i ·R2

i

)>
 ,b, αq, α′q

2αq

 .

Game5: In this game, the challenge ciphertext is generated as follows: it first

picks random vectors w
$← Znq , b̃

$← Zmq , ẽ1
$← DZm,αq and sets b = b̃ + ẽ1.

Then, it computes

c?0 = w +
⌈q

2

⌉
·mb, c

?
1 = ReRand


 Im(∑n

i=1(id?1st)i ·R1
i

)>(∑n
i=1(id?2nd)i ·R2

i

)>
 ,b, αq, α′q

2αq

 .

Game6: In this game, the challenge ciphertext is generated as follows: it first

picks w
$← Znq , b̃

$← Zmq and e1,1, e1,2, e1,3
$← DZm,α′q and computes

c?0 = w +
⌈q

2

⌉
·mb, c

?
1 =

 b̃ + e1,1

(
∑n
i=1(id?1st)i ·R1

i )
>b̃ + e1,2

(
∑n
i=1(id?2nd)i ·R2

i )
>b̃ + e1,3

 .
Analysis of Games. We use the following lemmas to give a analysis between
each adjacent games.

The only difference between Game1 and Game0 is the abort event. We use
Lemma 28 in [1] to argue that the adversary still has a non-negligible advantage
in Game1 even though the abort event happens.
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Lemma 6 ([1]). Let I∗ be a (Q + 1)-ID tuple {id∗, {idj}j∈[Q]} denoted the
challenge ID along with the queried ID’s, and η(I∗) be the probability that an
abort event does not happen in Game1. Let ηmax = max η(I∗) and ηmin =
min η(I∗). For i = 0, 1, we let Xi be the event that the challenger returns 1 as
the output of Gamei. Then, we have∣∣∣∣Pr[X1]− 1

2

∣∣∣∣ ≥ ηmin ∣∣∣∣Pr[X0]− 1

2

∣∣∣∣− 1

2
(ηmax − ηmin).

Lemma 7. Let ε =
∣∣Pr [X0]− 1

2

∣∣, then
∣∣Pr[X1]− 1

2

∣∣ ≥ ε3

64q2Q2 .

Proof. As the selections of h1
i ,h

2
i are independent, then according to Lemma 1

we have

Pr
[
H1

ABB(id?1) = 0,H1
ABB(idi) ∈ Invn ∧H2

ABB(id?2) = 0,H2
ABB(idi) ∈ Invn

]
= Pr

[
H1

ABB(id?1) = 0,H1
ABB(idi) ∈ Invn

]
· Pr

[
H2

ABB(id?2) = 0,H2
ABB(idi) ∈ Invn

]
∈
(

1

q2t
(1− Q

qt
)2,

1

q2t

)
.

Since t = dlogq 2Q/εe, we have qt ≥ 2Q/ε ≥ qt−1, 1
qt ≥

ε
2qQ and Q < 0.5εqt.

According to Lemma 6, we hence have∣∣∣∣Pr[X1]− 1

2

∣∣∣∣ ≥ηmin ∣∣∣∣Pr[X0]− 1

2

∣∣∣∣− 1

2
(ηmax − ηmin)

=
1

q2t
(1− 0.5ε)2ε− 1

2q2t
(ε− 0.25ε2)

≥ 9ε

16q2t
− ε

2q2t
≥ ε

16q2t
≥ ε3

64q2Q2
.

(1)

ut

Lemma 8. Game1 and Game2 are statistically indistinguishable.

Proof. We show that Game2 is statistically close to Game1 using Leftover
Hash Lemma (Lemma 12, item 4). Note that the only difference between the
two games is how the matrices A1

i ,A
2
i were generated. According to Leftover

Hash Lemma, (
A, {A1

i }, {A2
i }
)
≈
(
A, {AR1

i }, {AR2
i }
)
,

where A1
i ,A

2
i

$← Zn×mq . Then, we have(
A,
{
A1
i

}
,
{
A2
i

})
≈
(
A,
{
AR1

i +Ht,q(h1
i )⊗ In/t ·G

}
,
{
AR2

i +Ht,q(h2
i )⊗ In/t ·G

})
.

Therefore, Game1 and Game2 are statistically indistinguishable. ut

Lemma 9. Game2 and Game3 are statistically indistinguishable.
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Proof. We prove that Game2 and Game3 are statistically indistinguishable by
using Lemma 12, items 1, 2, 3. Note that in Game2, the matrix A is generat-
ed by using algorithm TrapGen, and secret key queries are answered by using
SampleLeft. While in Game3, the matrix A is generated by uniformly selecting
from Zn×mq , and secret key queries are answered by using SampleRgiht.

According to Lemma 12, item 1, A is statistically close to an uniform distribu-
tion over Zn×mq as in Game3. As we set Gaussian parameter σ in subsection 4.1,
the output of SampleRgiht is identically distributed to the output of SampleLeft
according to Lemma 12, items 2 and 3. Therefore, Game2 and Game3 are
statistically indistinguishable. ut

Lemma 10. Game3 and Game4 are identically distributed, and Game5 and
Game6 are identically distributed.

Proof. This lemma can be proved just according to the property of Rand. ut

Lemma 11. Assume the DLWEq,n,n+m,α assumption holds, Game4 and Game5

are computationally indistinguishable.

Proof. Suppose there exists an adversary A who has a non-negligible advantage
in distinguishing Game4 and Game5, then we can construct an adversary B
who can break the LWE assumption as follows.

Instance. Based on the given LWE instance (U,A,w,b) ∈ Zn×nq ×Zn×mq ×Znq×
Zmq and assume w = w̃+ẽ0 and b = b̃+ẽ1 where ẽ0

$← DZn,αq, ẽ1
$← DZm,αq.

Then B should distinguish whether w̃ = U>s, b̃ = A>s for some s ∈ Znq
or w̃

$← Znq , b̃
$← Zmq . We note this subtle change from the standard LWE

problem is done only for the convenience of the proof.

Setup. The B constructs {A1
i ,A

2
i } for i ∈ {1, · · · , `} as in Game3. Then it sets

PP = (A,A1
i ,A

2
i ,U).

Queries. The B answers identity queries as in Game3 including aborting the
simulation if needed.

Challenge ciphertext. WhenA sends identities (id?1, id
?
2) and message (m0,m1),

the reduction B computes the challenge ciphertext as follows

c?0 = w +
⌈q

2

⌉
·m ∈ Zq, c?1 = ReRand

 Im
(
∑`
i=1(id?1)iR

1
i )
>

(
∑`
i=1(id?2)iR

2
i )
>

 ,b, αq, α′q
2αq

 ∈ Z3m
q .

Guess. After being allowed to make additional queries, A guesses if it interacts
with a challenger of Game4 or Game5 .

It can be easily seen that if (U,A,w,b) is a valid LWE sample, the view
of A corresponds to Game4; otherwise, the view of A corresponds to that of
Game5. We complete the proof of this lemma. ut
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Complete the Proof of Theorem 2. It is obvious that Pr[X6] = 1
2 , this is

because the challenge bit b is independent of the A’s view. From Lemma 7 to
Lemma 10, we know that

Pr[X1] ≈ Pr[X2],Pr[X2] ≈ Pr[X3],Pr[X3] = Pr[X4],Pr[X5] = Pr[X6]. (2)

From Lemma 11, we know that

|Pr[X4]− Pr[X5]| =
∣∣∣∣Pr[X4]− 1

2

∣∣∣∣ ≤ DLWEq,n,n+m,α,

which implies DLWEq,n,n+m,α ≥ ε3

64q2Q2 −negl(λ), according to Equations 1 and
2. utut

4.3 Extension: IB-DRE with More Compact Parameters.

As mentioned above, our IB-DRE scheme is based on the beautiful work of A-
grawal, Boneh and Boyen [1], i.e., an adaptively secure identity-based encryption
(IBE) scheme. However, one drawback of Agarwal et al.’s adaptive secure IBE
scheme [1] is the large public parameter sizes: namely, the public parameters
contain `+1 matrices composed of n×m elements, where ` is the size of the bit-
string representing identities. As a result, the public parameters in our IB-DRE
scheme contain 2 · `+ 1 matrices composed of n×m elements.

In [19], Singh, Pandurangan and Banerjee considered identities as one chunk
rather than bit-by-bit. In fact, the maximum of the above chunk is a number
in Zq, so that they can reduce the number of the matrices in the scheme by
a factor at most log q, while encryption and decryption are almost as efficient
as that in [1]. Applying their technique (they called ”Blocking Technique”) to
our construction, we can get an IB-DRE scheme with more compact public
parameter sizes. More precisely, we can get a more efficient IB-DRE scheme in
which there exist only 2 · `

log q +1 matrices composed of n×m elements, or about

O( n
logn ) matrices (since l = n and q is a polynomial of n ).

Based the IBE schemes in [1, 19], Apon, Fan and Liu [4] proposed an identity-
based encryption scheme which only needs O( n

log2 n
) public matrices to support

n-bit length identity. The reason why the number of the matrices in their scheme
is less about log n times than that of the IBE scheme in [19] is that they used

a different gadget matrix Ĝ and flattening function Ĝ−1 in logarithmic (log n)
base instead of the usual gadget matrix G and flattening function G−1 in 2
base. Note that the encryption and decryption of the IBE scheme in [4] are less

efficient than that in [1, 19], this is because the flattening function Ĝ−1 is much
slower than G−1. Applying their technique to our construction, we can get a
more efficient IB-DRE scheme in which there exist about O( n

log2 n
) matrices.

Overall, we can further obtain more compact IB-DRE schemes from the IBE
schemes in [19, 4].
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5 Conclusion

The learning with errors (LWE) problem is a promising cryptographic primitive
that is believed to be resistant to attacks by quantum computers. Under this
assumption, we construct a dual-receiver encryption scheme with a CCA security.
Additionally, for the DRE notion in the identity-based setting, namely IB-DRE,
we also give a lattice-based IB-DRE scheme that achieves IND-ID-CPA security.
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Appendix A: Lattice Background

For positive integers q, n,m, and a matrix A ∈ Zn×mq , the m-dimensional integer

lattices are defined as: Λq(A) = {y : y = A>s for some s ∈ Zn} and Λ⊥q (A) =
{y : Ay = 0 mod q}.

Let S be a set of vectors S = {s1, · · · , sn} in Rm. We use S̃ = {s̃1, · · · , s̃n}
to denote the Gram-Schmidt orthogonalization of the vectors s1, · · · , sn in that
order, and ‖S‖ to denote the length of the longest vector in S. For a real-valued
matrix R, let s1(R) = max‖u‖=1 ‖Ru‖ (respectively, ‖R‖∞ = max ‖ri‖∞) de-
note the operator norm (respectively, infinity norm) of R.

For x ∈ Λ, define the Gaussian function ρs,c(x) over Λ ⊆ Zm centered at
c ∈ Rm with parameter s > 0 as ρs,c(x) = exp(−π||x− c||/s2). Let ρs,c(Λ) =∑

x∈Λ ρs,c(x), and define the discrete Gaussian distribution over Λ asDΛ,s,c(x) =
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ρs,c(x)
ρs,c(Λ)

, where x ∈ Λ. For simplicity, ρs,0 and DΛ,s,0 are abbreviated as ρs and

DΛ,s, respectively.

Learning with Errors Assumption. The learning with errors problem, denot-
ed by LWEq,n,m,α, was first proposed by Regev [18]. For integer n,m = m(n), a
prime integer q > 2, an error rate α ∈ (0, 1), the LWE problem LWEq,n,m,α is to
distinguish the following pairs of distributions: {A,A>s + e} and {A,u}, where

A
$← Zn×mq , s

$← Znq ,u
$← Zmq and e

$← DZm,αq. Regev [18] showed that solving

decisional LWEq,n,m,α (denoted by DLWEq,n,m,α) for αq > 2
√

2n is (quantumly)

as hard as approximating the SIVP and GapSVP problems to within Õ(n/α)
factors in the worst case.

Lemma 12. Let p, q, n,m be positive integers with q ≥ p ≥ 2 and q prime.
There exists PPT algorithms such that

• ([2, 3]): TrapGen(1n, 1m, q) a randomized algorithm that, when m ≥ 6ndlog qe,
outputs a pair (A,TA) ∈ Zn×mq ×Zm×m such that A is statistically close to

uniform in Zn×mq and TA is a basis of Λ⊥q (A), satisfying ‖T̃A‖ ≤ O(
√
n log q)

with overwhelming probability.

• ([5]): SampleLeft(A,B,u,TA, σ) a randomized algorithm that, given a full
rank matrix A ∈ Zn×mq , a matrix B ∈ Zn×mq , a basis TA of Λ⊥q (A), a vector

u ∈ Znq and σ ≥ ‖T̃A‖·ω(
√

logm), then outputs a vector r ∈ Z2m
q distributed

statistically close to DΛu
q (F),σ where F = [A|B].

• ([1]): SampleRight(A,G,R,S,u,TG, σ) a randomized algorithm that, given
a full rank matrix A ∈ Zn×mq , a matrix R ∈ Zm×mq , an invertible matrix

S ∈ Zn×nq , a vector u ∈ Znq and σ ≥ ‖T̃G‖·s1(R)·ω(
√

logm), then it outputs
a vector r ∈ Z2m

q statistically close to DΛu
q (F),σ where F = [A|AR + SG].

• (Generalized Leftover Hash Lemma [1, 9]): For m > (n+ 1) log q + ω(log n)

and prime q > 2, let R
$← {−1, 1}m×k and A

$← Zn×mq ,B
$← Zn×kq be

uniformly random matrices. Then the distribution (A,AR,R>w) is negl(n)-
close to the distribution (A,B,R>w) for all vector w ∈ Zmq . When w is
always 0, this lemma is called Leftover Hash Lemma.

In [13], Katsuamta and Yamada introduced the “Noise Rerandomization” lemma
which plays an important role in the security proof because of creating a well
distributed challenge ciphertext.

Lemma 13 (Noise Rerandomization [13]). Let q, w,m be positive integers
and r a positive real number with r > max{ω(

√
logm), ω(

√
logw)}. For arbitrary

column vector b ∈ Zmq , vector e chosen from DZm,r, any matrix V ∈ Zw×m and
positive real number σ > s1(V), there exists a PPT algorithm ReRand(V,b +
e, r, σ) that outputs b′ = Vb + e′ ∈ Zw where e′ is distributed statistically close
to DZw,2rσ.
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Appendix B: Signature

Definition 1 (Signature Scheme). A signature scheme is a triple of proba-
bilistic polynomial-time algorithms as follows:

• Gen(1λ) outputs a verification key vk and a signing key sk.
• Sign(sk, µ), given sk and a message µ ∈ {0, 1}?, outputs a signature σ ∈
{0, 1}?.

• Ver(vk, µ, σ) either accepts or rejects the signature σ for message µ.

The correctness requirement is: for any message µ ∈ M, and for (vk, sk)
$←

Gen(1λ), σ
$← Sign(sk;µ), Ver(vk, µ, σ) should accept with overwhelming proba-

bility (over all the randomness of the experiment).
The notion of security that we require for our IND-CCA DRE construction

is strong existential unforgeability under a one-time chosen-message attack. The

attack is defined as follows: generate (vk, sk)
$← Gen(1λ) and give vk to the

adversary A, then A outputs a message µ. Generate σ
$← Sign(sk, µ) and give σ

to A. The advantage of A in the attack is the probability that it outputs some
(µ?, σ?) 6= (µ, σ) such that Ver(vk, µ?, σ?) accepts. We say that the signature
scheme is secure if for every PPT adversary A, its advantage in the attack is
negl(λ).


