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Abstract
To scale permissionless blockchains, one avenue is to en-
act transactions outside, or off- the blockchain, but to secure
them by a parent-chain with collateral. Payment channels
are one such instantiation, but suffer from expensive channel
setups, fragmented deposit costs and further challenges.

We present NOCUST, a 2nd-layer commit-chain, secure
against an adversary that attempts to double-spend assets
while controlling a set of malicious users, the commit-chain
operator, or both. NOCUST does not require an additional
consensus mechanism and the smart contract of a parent-
blockchain acts as a means of efficient dispute resolution,
via either provable consistency through zkSNARKs or users
auditing once in a time-window the commit-chain’s integrity.

NOCUST (i) does not require a parent-chain transaction
for peers to join, (ii) achieves delayed transaction finality
without additional collateral, (iii) achieves instant finality
with less collateral than payment channels and (iv) does not
require recipients of transactions to be online. Users do not
need to be constantly online to monitor their state, minimiz-
ing the need for watchtowers. NOCUST tempers the danger
of channel closing timeouts of payment channels by enforc-
ing fair mass exits. We show how NOCUST scales in prac-
tice to over one billion users on a PoW blockchain.

1 Introduction

Since the beginning of centralized banking in
Mesopotamia [1], financial intermediaries evolved as
middlemen between parties that have surplus capital and
others that desire access to liquid funds. Such financial
intermediaries traditionally operate as custodians, as they
(temporarily) hold the transmitted funds, and therefore are
entrusted with enacting secure transaction policies.

While the emergence of decentralized Proof-of-Work
(PoW) ledgers have portrayed a mechanism of performing fi-
nancial transactions without a centralized intermediary, low-
throughput, volatility of transaction fees and privacy con-

straints are fundamentally hindering the practical use of such
ledgers. To improve transaction utility, different classes of
blockchain scaling solutions are being pursued. Alternative
consensus mechanisms [2, 3] or sharding [4] typically intro-
duce different trust assumptions.

In this paper we focus on upper layer scaling solutions
such as payment channel networks (PCN) [5] which re-
duce the load on the blockchain ledger by performing op-
erations securely off-chain. Numerous contributions ad-
dress the performance characteristics of payment channel
networks [6, 7, 8, 9, 10]. While PCN should improve trans-
action throughputs, they face multiple challenges: (i) chan-
nel establishment requires at least one expensive and slow
parent-chain transaction, (ii) PCN rely on complex routing
topologies which need to be setup and maintained and (iii)
funds allocated to a payment channel are typically bound be-
tween two parties and can only be transferred further over
fee-contingent routes. The likely biggest usability bottle-
neck, however, is the condition that a transaction recipient
needs to be online to receive an incoming transfer - parting
from the provisions of traditional blockchain transactions.

This work We propose a novel 2nd-layer construction NO-
CUST, which is non-custodial (i.e. it doesn’t hold the user’s
assets), and by design can achieve the same transaction
throughput as custodian banks or credit card processors.
Contrary to side chains [11], NOCUST does not require
an additional consensus mechanism and relies on a parent
ledger. The NOCUST operator commits at regular intervals
checkpoints of the 2nd-layer state to its parent-ledger (hence
we term NOCUST a commit-chain) — or is forced to seize
operation. Our security analysis shows how commit-chain
users securely maintain custody of their funds, even in the
absence of the operator’s availability or under its adversarial
behavior and collusion with all other commit-chain users.

A user can join a NOCUST commit-chain without interac-
tion of the parent-chain, receive and forward commit-chain
assets to any NOCUST user, and forego the need for a costly
parent-chain initialization. Defining transaction finality as
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the point at which a transfer is irreversible, we demonstrate
how NOCUST achieves delayed finality after a time window,
without additional collateral by the commit-chain operator.
We also show how a NOCUST commit-chain achieves in-
stant finality with collateral stake set up by the NOCUST
operator. We show that this collateral requirement is reduced
compared to PCN. A NOCUST instance can allocate its col-
lateral to all its users using only one parent-chain transaction.

To demonstrate its practicality, we show how NOCUST
scales to billions of users, while the dispute mediation and
withdrawal costs remain below 0.5 USD. The operational
parent-chain fees for a commit-chain operator remain below
1.5 USD per month, irrespective of the number of commit-
chain transfers and users. We show how users can operate
lightweight clients that only need to store 4 kb plus their
transfers of e.g., the last 72 hours.

The main contributions of our work are as follows:

Merkleized Interval Tree: To the best of our knowledge,
we’re the first to specify the details of a scalable commit-
chain. At the heart of NOCUST lies a novel multi-layered
Merkleized interval tree which is carefully designed to pro-
vide an efficient account-based 2nd-layer ledger (efficient
deposit, withdraw, dispute, client requirements etc.).

Provable Commit-Chain Consistency: We design an ad-
ditional NOCUST version, where the commit-chain in-
tegrity is enforced by a constant-sized zkSNARK proof on
the parent-chain — foregoing the need for users to actively
dispute consistency.

Active and Passive Delivery: We design two transaction
deliverance models, one where the recipient acknowledges
a transfer, and one where the receiver of a NOCUST trans-
action can securely remain offline during reception.

Instant Onboarding: We specify an elegant user-
onboarding procedure, whereby users can join a NOCUST
commit-chain without any parent-chain transaction, then
receive and forward assets to other user within NOCUST.

Instant Transactions: NOCUST achieves delayed finality
for users’ transactions without additional collateral. Instant
finality is achieved by staking the estimated transaction vol-
ume of a time period. This collateral is allocated efficiently
with only one parent-chain transaction for all users.

Fair Mass Exit: In the event of a mass-exit, or operator
misbehaviour, all user accounts are closed fairly.

The remainder of the paper is organized as follows. Sec-
tion 2 provides the background and reviews related work,
while Section 3 provides an overview of NOCUST. Section 4
presents the details of NOCUST and Section 4.5 increases
NOCUST’s security with the use of zkSNARKs. Section 5
provides the security analysis, and Section 6 evaluates NO-
CUST in practice, showing how to scale beyond one billion
users. We conclude the paper in Section 7.

2 Background and Related Work

In this section, we provide the necessary background on per-
missionless blockchains and payment channel networks.

The majority of permissionless blockchains [12, 13] rely
on Proof-of-Work (PoW) [14], a computationally expensive
puzzle. They allow mutually mistrusting peers to interact,
without relying on a centralized custodian, and any peer can
join or leave the network at any time. The blockchain pro-
vides a coarse-grained time stamping service that can act as
an electronic payment solution solving the double-spending
problem — the problem of spending an electronic coin mul-
tiple times. The central costs associated to PoW blockchains
is the requirement that all peers are need to be made aware
of all transactions to not be vulnerable to double-spending.
PoW blockchains support up to 10 transactions per sec-
ond [15], for an in-depth background we refer to [16, 17].

2.1 Payment Channels
Payment channels establish direct P2P payment channels be-
tween two parties [18]. A channel is like a private two-party
ledger, instantiated and closed with a respective parent-chain
transaction. A channel is collateralized with a parent-chain
security deposit, the counter-parties do not need to trust
each other when accepting off-chain transactions. Transac-
tion costs are reduced, because channel transactions avoid
costly parent-chain transactions (besides channel establish-
ment and closure). Payment channel constructions either
rely on blockchain based time locks [18], or on punishment,
i.e. if one party misbehaves, the other party can claim funds
of the channel [5]. For a pair of users that are not directly
connected via a payment channel, a payment can be routed
along a set of payment channels, i.e. over a payment channel
network. Linked payments are atomically executed or in-
validated, intermediate hops are eligible to collect payment
forwarding fees. We outline in the Appendix in Section A.1
the fundamental drawbacks of payment channel networks.

2.1.1 Improvements and Alternative Constructions

Existing PCN are still in early development and allow for
several improvement proposals [6, 7, 19, 20, 8]. A multi-
tude of works cover privacy enhanced PCN designs [21, 22,
23, 24, 25], while Malavolta et al. [26] study in detail the
tradeoffs between concurrency and privacy in payment chan-
nel networks. Perun [9] reduces communication complexity
through virtual channels. Teechan [27] and Teechain [28]
trade the need for a blockchain clock with a trusted hardware
assumption which enables very efficient off-chain payments.
Plasma [29] proposes to connect an UTXO ledger with a par-
ent account-based ledger. With the incorporation of a UTXO
model comes all of the inefficiencies of transaction history
validation and the inflexibility of transaction output expendi-
ture. Costs for securely using accounts increase with a grow-
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ing UTXO set. Plasma does not specify a mechanism for
mitigating risk of reversal on yet to be finalized transactions,
parting its guarantees from those of PCN. NOCUST features
a more efficient account-based ledger that mitigates these is-
sues, permitting users to more efficiently verify the integrity
of their accounts, requiring less parent-chain data for dispute
and enabling instant transaction finality. Several contribu-
tions focus on state channels that execute arbitrary code off-
chain [30, 6, 31], while Pisa [32] allows to outsource channel
maintenance if e.g. a peer crashes.

2.2 Zero Knowledge Proofs

Zero Knowledge Proofs of Knowledge [33] allow a prover
to prove to a verifier that a certain statement is true, with-
out the need to reveal any other information. zkSNARK [34]
systems enhance ZKPs to be non-interactive, i.e. require no
interactions between the prover and the verifier except trans-
mission of the proof. zkSNARK are succinct, i.e. the proof
length is reasonably small (a few hundred bytes), and proofs
can be verified with few computational costs (and therefore
e.g. within a smart contract). zkSNARK, however, require a
trusted setup phase. To prove in a commit-chain that a par-
ticular state transition is valid, the chain rules must first be
converted into a (pre-processed) zkSNARK.

Computation→ Circuit→ R1CS→ QAP→ zkSNARK

The first step is to translate the desired computation into
the smallest possible circuits, i.e. a mathematical represen-
tation. Next, a Rank 1 Constraint System (R1CS) makes
sure that the input and output values to each gate within the
circuit remain sound. Instead of being pre-occupied to ver-
ify nearly one constraint per wire in a circuit, which is very
costly, the circuit is represented as a Quadratic Arithmetic
Program (QAP) [35]. Here, the constraints are represented
between polynomials, instead of numbers. Verifying that the
two polynomials of a gate match at one randomly chosen
point provides a high probability that the proof is correct.
The public reference string of a zkSNARK provides, in en-
crypted form, the point of the QAP that should be evaluated.
Neither the verifier nor the prover should therefore know this
point, and should therefore be incapable to construct fraud-
ulent polynomials/proofs. From a QAP, a zkSNARK is cre-
ated by the prover with random shifts of the original poly-
nomials. In this work, we heavily utilize the contributions in
[36, 37, 38], where preprocessed zkSNARKS are designed
to be embeddable in one another in a technique called recur-
sive composition. Nonetheless, we conjecture that the meth-
ods introduced in this work could be applicable in other ZKP
systems, especially when converted from recursive computa-
tions to iterative ones.

3 NOCUST Overview

We provide an overview of NOCUST’s architecture, oper-
ations and assumed attacker models. A NOCUST operator
is a centralized operator that coordinates and ratifies the ex-
ecution of payments in a pool of collateral deposited into
a parent-chain smart contract. The access to this collateral
pool is moderated by the smart contract, which expects to
periodically receive a commitment to the state of the 2nd-
layer ledger from the operator — hence the name commit-
chain. This state contains each user’s account, and the com-
mitment to this large state is constructed in such a way that
it is efficient to prove and verify that a user’s account was
updated correctly by the operator to the smart contract, such
that withdrawals and deposits can be securely enacted.

Untrusted Centralized Intermediaries The NOCUST
operator becomes only a single point of failure for avail-
ability, but not custody of funds or integrity of operation.
The centralized model provides a significant advantage in
terms of communication cost between its parties compared
to decentralized ledger networks and PCN. The complete
disappearance of a NOCUST commit-chain operator, or a
malicious attempt by it to double-spend or seize user funds
only leads to its halt, and does not affect the ability of users
to exit using the smart contract with their latest confirmed
balance. Despite adversarial or malfunctioning operator be-
haviour, users do not lose custody of their digital assets.

3.1 System Model
Our system model features the following entities:

Parent-Chain: We assume a parent-ledger, an integrity pro-
tected and immutable root of trust, that allows for the con-
venient deployment of tamper-proof smart contracts. The
ledger contains a global view of accounts with balances and
transactions, and extra associated data. Each account in the
ledger is controlled by a private key.

User: A user owns at least one private key/account in the
ledger and acts as recipient and payer of cryptocurrency
assets on the parent-ledger and on the commit-chain.

Commit-Chain Smart Contract: The smart contract acts
as supervisor of the NOCUST operator and verifies its cor-
rect operation, automatically verifies consistency (in the
zkSNARK model), or accepts dispute initializations from
users and halting the operator in case of misbehaviour.

Commit-Chain Operator: The operator server mediates
the communication between users, and is required to com-
mit at regular time intervals a constant-sized checkpoint of
all commit-chain accounts to the smart contract.

We also assume an underlying communication network,
where all the participants can communicate directly with the
operator and (if needed) among each other.
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3.2 High-Level Operation
In this section, we outline NOCUST’s high-level operations.
NOCUST supports active and passive asset transfers. Under
active delivery, the recipient is assumed to be online to sign
a transaction receipt (a common assumption in PCN). Under
passive delivery, the receipt of a transaction is not sought,
and the transaction is communicated to the recipient at a later
stage, either by the operator or out-of-band by the payer.

Figure 1 outlines the high-level operations, for both, ac-
tive and passive delivery of commit-chain transactions rep-
resented as IOU. The payer (1) deposits assets from the
parent- to the commit-chain and (2) authorizes a debit to-
wards the recipient. Under active delivery, the operator (3)
notifies the recipient of the incoming transfer, the recipient
(4) approves the state update to their account. The server
(5) signs both updated states and (6) gives its respective sig-
natures to both users, and (7) forwards the recipients’. The
NOCUST server (8) submits each eon a periodic constant-
sized checkpoint aggregating the user balances to the smart
contract. The users (9) observe the checkpoint submissions
and verify once every eon it’s integrity. When utilizing zk-
SNARK, the smart contract verifies the complete correctness
of the submitted checkpoint, users only verify its liveness.

3.2.1 Bootstrapping

We outline the following setup operations of NOCUST.

zkSNARK Setup: Generating a set of public parameters for
any party to use to prove or verify a zkSNARK must be
done such that the full set of initialization parameters, re-
ferred to as “toxic-waste”, is unrecoverable [39, 40]1.

Operator Setup: The operator deploys a smart contract on
the parent-chain and initializes a genesis checkpoint.

User Registration: Given its private key, a user signs a reg-
istration message and sends this message to the operator.

3.2.2 Cross-Chain Conversion

Assets are converted between their parent- and commit-chain
representations with a parent-chain transaction. One unit of
a parent-chain asset is equal to the mapped commit-chain as-
set, and enforced by the smart contract. Commit-chain assets
cannot be minted without parent-chain backing.

Deposit: Parent-Chain→ Commit-Chain: Parent-chain
coins deposited in the smart contract mint NOCUST coins.

Withdraw: Parent-Chain← Commit-Chain: Commit-
chain coins are withdrawn from the smart contract to the
parent-chain. NOCUST supports non-collaborative full

1Recovery would allow the forgery of proofs that are acceptable to veri-
fiers, but containing proving parameters that would be rejected if they were
revealed. To deter this possibility, the multi-party computation, used to pop-
ulate the parameters of Zcash, can be used to generate a set of parameters
that are reusable by any NOCUST instance.

withdrawal, without required approval by the operator, and
collaborative partial withdrawal. Withdrawals take up to
two eons to be declared final by the smart contract. To
improve this, the operator makes an instantly approved
withdrawal by sending the requested amount from its own
separate pool of funds and later reclaiming the requested
amount when it is approved by the smart contract.

Commit-Chain Data Structure: Commit-chain assets are
managed within the multi-layered Merkelized interval tree
(cf. Figure 2), separating individual user account balances
in exclusive, non-intersecting interval allotments. The
constant-sized tree root plus the total commit-chain assets
represent the checkpoint. Every internal Merkle tree node
is annotated with the continuous interval its two children
occupy. This allows for a straightforward verification that
the sum of all accounts in the tree match the actual parent-
chain balance of the smart contract. Double-spends become
obvious and fractional reserve scenarios are impossible.

3.2.3 Transmission of Commit-Chain Assets

A payer spends commit-chain assets to a recipient as follows:

Debit Authorization: The payer approves a state update to
their own account via a new IOU, containing the details of
the transaction, a unique randomly generated nonce, the
transferred amount, the intended recipient and if the ap-
proval of the recipient is mandatory (i.e. active delivery).

Transmission: The payer forwards the signed state update
and IOU to the operator, which notifies the recipient.

Credit Authorization: For active delivery, the recipient ap-
proves a state update to their own account that includes this
new IOU, and returns its approval to the NOCUST server.

Ratification: The operator, now in possession of both payer
and recipient state update authorizations (active delivery),
or just the payer’s authorization (passive delivery), signs
the updated states and reveals its signatures.

3.2.4 Parent-Chain Settlement

We define the time between two checkpoints as an eon. Once
the periodic eon has passed, the operator collects all not-
yet settled IOUs, reconstructs the Merkelized interval tree
(cf. Figure 2), generates a proof that this interval tree repre-
sents a correct transition from the last state, and commits the
constant-sized checkpoint to the parent-chain.

3.2.5 Disputes

NOCUST is a challenge-response protocol, where users re-
port fraudulent operators, while the smart contract mediates.

Consistency Challenge (non-zkSNARK model): Each
user is only preoccupied to verify their respective balance
interval of a checkpoint. Verification requires the partial
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Figure 1: High-level flow of operation of NOCUST, for both, active and passive delivery of commit-chain transactions.

Figure 2: Merkleized interval tree representing the commit-
chain assets. Here are 6 accounts with their respective
commit-chain balance (36 total commit-chain coins). Note,
not a simple Merkle sum tree, intermediate nodes are further
annotated with the balance intervals (cf. Section 4.3.1).

Merkle tree from the operator and to compare the state
to the locally stored ratified state. Only the most recent
checkpoint can be challenged. In case of misbehaviour,
users issue a challenge to NOCUST smart contract, which
the server must promptly answer with valid information.

Liveness Challenge (zkSNARK model): The zkSNARK
allows to provably verify the commit-chain consistency
by the smart contract (cf. Section 4.5), obsoleting the
consistency challenge. Users are still required to verify the
that the state transitions of their accounts are the latest.

Data Availability Challenge: Users are assumed to come
online once per eon, and request their partial Merkle tree
needed to withdraw assets from the commit-chain. If the
operator is non-responsive, users challenge the operator

through the smart contract to provide the requested data.
To prevent griefing attacks from the users towards the op-
erator, those challenges can be restricted to be only initi-
ated by the owners of the account, or a set of explicitly
whitelisted third parties such as watchtowers [32].

3.3 Main Properties
NOCUST provides the following properties for the entities:

Ledger: NOCUST requires periodic checkpoint transac-
tions, irrespective of the number of IOU’s exchanged over
the operator, increasing the ledgers’ transaction throughput.

User: Users convert assets between parent- and commit-
chain and transmit 2nd-layer funds via an IOU. Payer re-
ceive non-repudiable receipts, while recipients can enforce
IOUs on the smart contract. Concerning security, users re-
main custodians of their assets, even in the presence of a
malicious operator or a collusion with all other users. Users
can initialize disputes with the operator. Even if the opera-
tor disappears, users are able to withdraw their funds. Re-
garding privacy, IOUs are visible to the payer, operator and
recipient, but can be hidden from the remaining commit-
and parent-chain users. A recipient can instantly and trust-
lessly accept an IOU as payment if the operator allocated a
sufficient amount of collateral towards the recipient.

Operator: The non-custodial operator is occupied with ac-
counting the respective user account balances, submitting
checkpoints on time and managing its collateral attribu-
tions. An operator cannot perform successful double-
spending attacks, assuming users would challenge the oper-
ator’s behaviour on-time within an eon. The operator can-
not create funds without being halted by the smart contract.

Collateral Requirements for Instant Finality If the NO-
CUST operator chooses to disappear, or malfunctions prior
to a checkpoint, not-yet included commit-chain transfers are
lost. We define instant IOU finality such that at the moment
of the IOU ratification reception, a recipient is certain to be
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able to retrieve the amount of the incoming assets (and no
adversary can steal or e.g. double-spend the IOU). The oper-
ator allocates an amount of collateral to each user using the
Merkleized interval tree to claim in case of failure (cf. Sec-
tion 5.2). The amount required is equivalent to the incoming
transaction volume of the user within two eons.

Liveness Requirements For trustless operation of the op-
erator, users are required to be online at least once within an
eon. Otherwise, a malicious operator can alter the balance
interval allocation within the Merklelized interval tree when
zkSNARKS are not utilized. If users publish their commit-
chain data, others can issue challenges on their behalves,
similar to PCN watchtowers [32].

3.4 Attacker Models

We consider the adversary to control all network communi-
cation between users, and between the user and the operator
(Dolev-Yao [41]). Users, however, can always read and write
to the parent-chain which is considered non-malicious2, but
might be congested3. We assume that a user is online once
within an eon (unless outsourced to a watchtower [32]).

Malicious payer: A malicious user might attempt to sign
two conflicting debit authorizations, i.e. to spend more than
the user would be eligible to. As the operator is benign
and required to counter-sign each transfer, the user cannot
misbehave without the operators’ collusion.

Malicious payer colluding with the operator: A mali-
cious operator can collude with a user to try to double-
spend assets: (1) by creating more commit-chain assets,
i.e. by extending the Merkleized interval tree, or by (2)
shrinking an allocated interval of a user.
The smart contract rejects a checkpoint that accounts for
more commit-chain assets than deposited in the contract.
If the NOCUST operator incorrectly manipulates a user’s
account balance, the user will be able to detect and dispute
this using the smart contract. In our zkSNARK model, the
contract would immediately reject an inconsistent state.

Malicious user attacking the operator: A malicious user
can open many accounts on the commit-chain and flood
the operator with data availability challenges. To minimize
the impact of this attack, the operator can (i) only allow a
limited number of users to be able to dispute a particular
account (e.g. a watchtower), (ii) require human verification
on account opening, and (iii) require the user to subsidize
the response costs of a data availability challenge.

2e.g. there is no ongoing 51% attack or active double-spending/selfish-
mining attacks against the NOCUST smart contract.

3For example, if a checkpoint submission would cost 1k USD (current
costs are about 0.22 USD), then the operational costs under a 36 hour eon
are 20k USD per month.

4 NOCUST Details

This section outlines the details of the commit-chain 6⊂.

4.1 Operational Requirements
To disqualify 6⊂ from being a trusted custodian of its user’s
assets and the payments it facilitates, it would have to pro-
vide the following guarantees:

1. Funds may not be transacted without user authorization.

2. Transactions must always be executed correctly.

3. Users must always be able to independently withdraw
their commit-chain balances to a parent-chain account.

These guarantees need to be provided by the system to
an honest participant Pi regardless of the behavior of 6⊂ or
of any other participant P j (i 6= j) (cf. proofs in Section 5).
NOCUST utilizes the following components:

• A specialized account based commit-chain ledger B.
• A smart contract V 6⊂ to manage the global BG.
• An operator O 6⊂ to manage the local BL.
• A recursive zkSNARK procedure for V 6⊂ to verify BL.
• A protocol for interaction between P, O6⊂, and V6⊂.

4.2 The Commit-Chain Data Structure B
In this section we present a scheme for managing local and
global balance as well as transaction information in B.

Separation of the Commit-Chain Ledger The commit-
chain B is separated into the locally stored commit-chain
BL, containing information related to balances and transfers
performed through O 6⊂, and the globally stored parent-chain
BG, which is comprised of information on balances and op-
erations through V 6⊂. It is important to note that different
parties may have different views of the contents of BL, but
contents of BG are assumed to be globally consistent.

Time Progression The information in BL is committed to
on BG to make the transfers through O 6⊂ enforceable by V 6⊂
(i.e. allow a Pi to withdraw funds received through O 6⊂ from
a P j via V 6⊂). This constant-sized commitment is sent once
periodically from O 6⊂ to V 6⊂, within a so-called eon. An eon,
within the context of our scheme, is further divided into a
fixed number of eras (for brevity equivalent to a block con-
firmation within the context of a blockchain). Consequently,
an eon represents the amount of time for a fixed number of
blocks to be generated. We also use the term epoch to denote
a quarter of an eon. We use B(e) to refer to the state of the
commit-chain ledger at eon number e as of all eras passed,
and similarly for BL(e) and BG(e).
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4.2.1 Stored Information

In the following we differentiate between locally and glob-
ally stored information for the commit-chain ledger B.

Local Information For every eon e, for every Pi, BL(e)
can store the following entries:

Ai(e): Initially allotted balance of Pi for e.
Ra

i (e−1): Total actively received by Pi in e−1.
Rp

i (e−1): Total passively delivered to Pi.
Sa

i (e−1): Total sent on the commit-chain by Pi.
Sp

i (e−1): Passive sent transfer delivery offset for Pi.
T a

i (e−1): Commit-chain transactions involving Pi.
T p

i (e−1): Passively delivered transactions to Pi.
Ci(e+2): The amount exclusively allocated for Pi to claim

in case the 6⊂ instance is halted during e+2.

Global Information For every eon e, for every Pi, BG(e)
can store the following entries:

Di(e): Total amount deposited by Pi during e.
Wi(e): Total withdraw amount requested by Pi during e.
Ei(e): Has an exit been initiated by Pi during e.
Xb

i (e): A challenge of the integrity of Pi’s balance in 6⊂.
Xd

i (e): A challenge of the delivery of a transfer in 6⊂.
Ui(e): The additional amount exclusively allocated to Pi in

case the 6⊂ instance is halted during eons e or e+1.

Through combining the locally stored and globally stored
information, Ai(e) is to be calculated as follows4 in B:

Ai(e)=Ai(e−1)+Di(e−1)+Ra∪p
i (e−1)−Wi(e−1)−Si(e−1)

(1)
Additionally, For every eon e, BG(e) can store a commit-

ment (cf. Section 4.3.1) by O 6⊂ to the contents of BL(e).

4.3 TA
6⊂ Periodic Commitments

We now describe the data-structures and message formats
that enable the efficient provable integrity of a NOCUST eon.

4.3.1 Merkleized Interval Tree-Structure

To provably account for the allotted balances Ai(e) of each Pi
at the beginning of an eon e, we design a novel Merklelized
interval tree TA

6⊂(e). The Merkleized interval tree is similar
to the augmented Merkle tree proposed by Luu et al. [42], yet
built and utilized in completely different means. The nodes

4Equation 1 naturally reads as: The initially allotted balance for Pi for
the current eon is equal to the sum of Pi’s initially allotted balance, the
parent-chain amount deposited in its favor, and the amount it received on
the commit-chain in the previous eon minus the amount Pi requested for
withdrawal and the amount it transferred out on the commit-chain in the
previous eon.

in this Merkle tree [43] are augmented to store the user bal-
ances in an efficient manner that allows V 6⊂ to securely verify
the correct and exclusive allotment of funds by O 6⊂. A node
tn(e) of TA

6⊂ is structured as defined in Equation 2.

tn(e) = 〈 offset n(e), informationn(e),allotmentn(e)〉 (2)

offset and allotment are both numeric values, while
information is a cryptographic commitment to the infor-
mation contained within this node. A leaf ti(e) is used
to represent the commit-chain account of a Pi at eon e,
whereby allotmenti(e) is equal to Ai(e) (cf. Section 4.2.1),
and offset i(e) corresponds to the sum of the allotted balances
of all participants ordered before Pi (cf. Equation 4).

allotmenti(e) = Ai(e) (3)

offset i(e) = ∑
j<i

allotment j(e) (4)

informationi(e) is the cryptographic hash of the parent-
chain address of Pi and the commitment of the last balance
update agreed to by Pi in the previous eon. More precisely,

informationi(e) = {addressi,update
p
i (e−1),update

a
i (e−1)}

(5)
where updatei(e) represents the last state update of the
commit-chain account of Pi at eon e (cf. Section 4.3.3). An
internal node tu(e), with a left child tp(e) and a right child
tq(e), is constructed per Equation 6 and Equation 7:

allotmentu(e) = allotmentp(e)+ allotmentq(e) (6)

offset u(e) = offset p(e) (7)

informationu(e) is a cryptographic commitment similar to
that of an internal node of a Merkle tree but with the addition
of offset q(e) as a third middle value.

informationu(e) = {tp(e), offset q(e), tq(e)} (8)

It’s important to note that the middle value of offset q(e)
is interchangeable with that of offset p(e) + allotmentp(e) as
they must be equal in correct instances of this structure.

4.3.2 Proof of Exclusive Allotment

For each Pi included in TA
6⊂(e), a proof of exclusive allot-

ment τA
i (e) can be constructed. The main goal of this con-

struct is to prove that Pi exclusively owns an allotment of size
Ai(e) within the pool of user funds covered by TA

6⊂(e). τA
i (e)

is constructed similar to a regular Merkle tree membership
proof, whereby the nodes adjacent to the path from the root
to the leaf constitute the membership proof hash chain. How-
ever, in addition to the hashes of the nodes in the membership
proof, a boundary value Ω is required for each node:

Ω(ti(e), tn(e))=

{
offset n(e) tn(e) left child
offset n(e)+ allotmentn(e) tn(e) right child

(9)
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The procedure of verifying τA
i (e) is similar to that of ver-

ifying set membership in a Merkle tree but the node recon-
struction is done so according to the definitions of the TA

6⊂
structure in Section 4.3.1 in conjunction with the Ω values.
This bounds the size of a τA

i (e) to O(log |P|).

4.3.3 Monotonic P-State Structure

The information in updatei(e) contained in TA
6⊂(e) divided

into an authorized portion, updatea
i (e), and a passive portion,

update
p
i (e). The authorized portion must be accompanied by

a signature from Pi, the passive portion can be set by O 6⊂.
The authorized portion updatea

i (e) is structured as follows:

update
a
i (e) = {T a

i (e),S
a
i (e),R

a
i (e)} (10)

T a
i (e) is committed to using a Merkle tree where the leaves

are the individual commit-chain transfers authorized by Pi
during eon e. The Merkle tree used to create the commitment
for T a

i (e) is not augmented. A commit-chain transfer T is a
tuple of the following information:

T := 〈eon, payer,recipient,nonce,amount,o f f set〉

The passive portion update
p
i (e) is structured as follows:

update
p
i (e) = {T

p
i (e),Sp

i (e),R
p
i (e)} (11)

The first notable difference is that Sp
i (e) does not spec-

ify an amount, but rather an offset that is to be specified by
O 6⊂ to allow V 6⊂ to secure passively delivered transfers. The
second difference is how the commitment for T p

i (e) is con-
structed; T p

i (e) may only contain incoming passive transfers
for Pi during e, and the commitment is constructed using the
annotated Merkle tree structure from Section 4.3.1 where the
following node definitions are used:

allotmentT = T.amount (12)

offset T = ∑
T p

i (e)3T′<T

T′.amount (13)

informationT = {T} (14)

In both cases, we refer to the proof of membership that a
transfer T belongs to a transaction set Ti(e) as λ (T ∈ Ti(e)).
A proof of membership in T p

i (e) would be accompanied by
the respective Ω values, similar to a τA

i (e), and the root node
allotment is the value of Rp

i (e).

4.3.4 Proof of Exclusive Insurance Collateral

To guarantee instant transaction finality, O 6⊂ stakes collat-
eral that is to be claimed by the recipients in case of fail-
ing to finalize transactions within two eons. To efficiently
manage the allocations of the staked collateral, O 6⊂ commits
each eon e to a simplified version of the TA

6⊂ structure from

Section 4.3.1, referred to as TC
6⊂, that exclusively divides this

collateral pool among members of P. All funds in the pool
covered by TC

6⊂ are separated from those covered by T6⊂.
In instances of TC

6⊂, informationi(e) is only comprised of
addressi, and Ai(e) is replaced by Ci(e+2). We refer to con-
structs of the proof that Pi will be exclusively assigned a col-
lateral portion of size Ci(e+2) two eons after e as τC

i (e).
The funds in the TC

6⊂ pool are only to be touched by a mem-
ber of P in case the 6⊂ instance is halted. An exclusive collat-
eral allotment proof τC

i (e) for Pi can be trivially constructed
and secured using the same methods for constructing TA

6⊂ and
τA

i . Using this specification, O 6⊂ can increase individual col-
lateral allotments on the parent-chain of members of P dur-
ing the current eon e, and submit a complete re-assignment
of all collateral that takes effect starting from e+2 using a
single constant-sized commitment. The eon delay between
the submission of a TC

6⊂ and its enforcement ensures that a
Pi does not accept a transfer during an eon e without cer-
tainty of whether the collateral allocated to itself insures in-
stant finality or not for this transfer. When utilizing this, O 6⊂
is required to commit to a valid instance of TC

6⊂ alongside
each TA

6⊂(e) commitment and provide the respective proofs
to each Pi. If Pi does not learn τC

i (e−1) by the start of eon
e, it should assume that Ci(e+ 1) is zero, and reason about
the affected transfers as if they are not guaranteed finality in
case of the 6⊂ instance being halted.

4.3.5 Exit allocations

O 6⊂ is required to post another simplified version of the TA
6⊂

structure from Section 4.3.1 that enables a Pi to exit from the
6⊂ instance with all of its funds. This structure is denoted by
TE
6⊂, and informationi(e) is again only comprised of addressi.

The purpose of this structure is to exclusively allocate the
finalized balances of users who utilized Ei in BG. Once a
Pi initiates an exit in eon e−1, Ai(e) is to be set to zero in
TA
6⊂(e), and its value is instead put in TE

6⊂(e), whose funds are
also isolated. V 6⊂ makes sure that O 6⊂ correctly carries out
this non-optional task and that every Pi learns their respec-
tive τE

i (e) so that the third requirement from Section 4.1 is
fulfilled or the 6⊂ instance is halted. Pi then submits τE

i (e) to
V 6⊂ in eon e+1 to finalize their exit with their balance.

4.4 Involved Participants
V 6⊂ Parent-chain Verifier The parent-chain component
V 6⊂ acts as the moderator of the bridge between BL and BG.
We assume that its procedures are executed honestly by BC,
and it supports the following operations.

The O 6⊂ can (1) commit once per eon e a TA
6⊂(e), T

C
6⊂(e)

and TE
6⊂(e) for which the V 6⊂ can then (2) verify a respec-

tive τA
i (e), τC

i (e) or τE
i (e). A Pi can (3) make a deposit into

6⊂, by sending assets to V 6⊂. A Pi can send a request to V 6⊂
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to (4) initiate a withdrawal from 6⊂ by providing a signed
withdrawal authorization Wi from O 6⊂, or (5) request an exit
from 6⊂ without providing any data. (6) A withdrawal can
be confirmed and the V 6⊂ issues a transfer from the balance
pool it manages in favor of Pi with the requested amount
after two eons. The operator can (7) proxy a withdrawal
by transferring the requested amount from its own balance
pool and rerouting the pending withdrawal destination to it-
self once it is confirmed. To moderate the validity of the
committed TA

6⊂(e), V 6⊂ can (8) open a balance update chal-
lenge Xb

i (e) given a τA
i (e− 1) and an updatei(e− 1) signed

by O 6⊂ as inputs from a Pi, or (9) open a transfer delivery
challenge Xd

i (e) given an updatea
j(e−1) signed by O 6⊂, and

a transfer T j
i (e−1) ∈ Tj(e−1) as inputs from Pi or P j. Both

challenge types can be closed once O 6⊂ presents the corre-
sponding proofs of valid operation to V 6⊂ as input. In case
the commit-chain is halted at eon e, i.e TA

6⊂(e), T
C
6⊂(e) and

TE
6⊂(e) are deemed invalid, V 6⊂ can (10) transfer Ai(e−1) +

Ci(e− 2) to Pi given valid τC
i (e), τC

i (e− 2) as input. V 6⊂
can (11) transfer Ai(e− 1) to Pi if Pi had requested an exit
in eon e−2, and provides a valid τE

i (e− 1), or (12) trans-
fer Wi(e− 2) to Pi if no T6⊂(e−1) was contested. A more
detailed specification is presented in Appendix D.3.

O 6⊂ Commit-chain Operator The commit-chain compo-
nent O 6⊂ acts as the facilitator of transfers between members
of P, and is not assumed as exempt from behaving dishon-
estly, but is designed to support the following operations.

As the operator of the 6⊂ instance, O6⊂ can (1) admit new
members to P by providing them with initially empty ac-
counts. At the end of eon e−1 it (2) creates TA,C,E

6⊂ (e) using
all of the confirmed information from e−1, and (3) com-
mits the roots of TA,C,E

6⊂ (e) to V 6⊂. To prove to a Pi that its
account in BL(e) is being managed properly, and to guaran-
tee insurance collateral in case of a halt, O 6⊂ must (4) pro-
vide τ

A,C,E
i (e) to a Pi upon request or risk a challenge being

opened through V 6⊂. At its discretion, O 6⊂ is in charge of
(5) delivering transfers Ti

j(e) between any two Pi, P j pro-
vided the payer holds sufficient balance. For any Pi, O 6⊂
must (6) credit deposits Di(e), debit withdrawals Wi(e) and
facilitate exits Ei(e) or risk facing challenges by any ill-
affected Pi in e+1. O6⊂ can (7) facilitate partial withdrawals
Wi(e) through providing authorization messages Wi(e). Se-
lectively, the operator can (8) proxy withdrawals by trans-
ferring their requested amounts to the recipients for instant
use and accept to be reimbursed by the later occurring con-
firmation of the original withdrawal. In such cases where
challenges are issued, O 6⊂ must (9) close challenges Xb

i (e),
Xd

i (e) within a timely manner, or face being halted by V 6⊂.
A more detailed specification is presented in Appendix D.4.

P Users Members of P are the main parties interested in
transferring funds to each other using the 6⊂ instance, and
are designed to support the following operations.

First an interested Pi can (1) join 6⊂ by submitting a re-
quest to O 6⊂ for an initially empty account. After receiv-
ing this approval it can (2) send and receive transfers Ti

j(e)
to/from any other P j in the same 6⊂ instance, (3) deposit
Di(e) funds into its 6⊂ account, or (4) partially withdraw
Wi(e) funds from it by requesting a Wi(e) from O 6⊂. As
the custodian of its account, Pi must (5) audit τ

A,C,E
i (e) for

each eon e, and (6) issue challenges Xb
i (e) and Xd

i (e) using
V 6⊂ in case of any discrepancies or missing data. In case of
the 6⊂ instance being halted, a Pi should (7) recover funds by
providing the necessary proofs on the parent-chain. Lastly
clients can (8) request a full exit using V 6⊂. A more detailed
specification is presented in Appendix D.5.

4.5 Provably Consistent Checkpoints

In this section we present verification procedures for a non-
interactive ZKP environment, allowing V 6⊂ to efficiently ver-
ify the consistency of every submitted TA

6⊂ and prevent O 6⊂
from being able to submit a semantically invalid checkpoint.

We explicitly refer to two types of input and one type
of output. Moreover, there exists an implicit constant-sized
prover output for every procedure which we refer to as π .
The verifier input and output are public values that are to be
provided both when generating a proof for a procedure and
when verifying it. The prover input is private to the prover
and is to be used only when generating the prover output, π .
Verifiers are required to obtain π if they wish to verify that a
verifer input and output are accepted by the target procedure.

Algorithm 1: combiner
Verifier Input : VL,VR,IL,IR,F
Prover Input : πL, πR
Verifier Output: F(OL,OR)
OL← VπL

L (IL)
OR← VπR

R (IR)
return F(OL,OR)

Algorithm 1 combines the results from two verification
sub-procedures into one. Its verifier inputs are the two ver-
ifiers whose outputs are to be combined, the public inputs
to those verifiers and the combination method of the out-
puts. The procedure’s prover inputs are the two prover out-
puts of the to-be-combined subprocedures. The size of the
prover output π from the combiner remains constant even
though it encapsulates πL and πR. We concretize this abstract
combination procedure to merge various sub-procedures into
more useful ones through nesting zkSNARKS inside one an-
other [36, 37, 38] without burdening the verifier with addi-
tional costs.
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Transfer Delivery Consistency In the following we de-
scribe how to guarantee that every transfer Ti

j debited in TA
6⊂

from Pi was correctly credited in TA
6⊂. Algorithm 4 (cf. Ap-

pendix) ensures that a single transfer delivery for a Ti
j(e−1)

is enforced in TA
6⊂(e). For brevity, we omit the differences be-

tween passive and active delivery. To verify that a larger set
of transfers is entirely enforced, we compose a series of veri-
fiers by parameterizing the combiner procedure described in
Algorithm 1 as follows:

F= hash(OL‖OR), IL = IR = troot(e)
V0

L = V0
R = verifyTxDelivery

VN
L = VN

R = combiner(VN−1
L ,VN−1

R ,IL,IR,F)
The output of the Nth toplevel combiner is the Merkle root

of the set of transfers T a
i whose enforcement is being proven.

The definition leaves no room for sets whose size is not a per-
fect power of two, but we forgo discussing obvious remedies
to this nuisance, such as using filler values, a different output
combination method F or a different flavor of Algorithm 4.

State Update Consistency Algorithm 5 (cf. Appendix) is
a nestable procedure that enforces the correct balance update
per Equation 1, and the validation of Algorithm 4 on T a

i (e−
1), for a Pi. Algorithm 5 requires the pre-establishment of
four verification procedures. VD, VW , and VE , are plug-in
subroutines which return the values of Di(e− 1), Wi(e− 1)
and Ei(e−1) in BG. These procedures must be implemented
to verifiably return BG storage values from the parent chain
BC. We present an extended specification of the NOCUST
ledger B in Appendix D.2 that permits the creation of such
verifiers without the implementation of any BC-specific se-
cure storage introspection procedures. Lastly, VT is defined
to be the top-level instance of the transfer delivery proof
combiner defined in Section 4.5. Enabling the verification
then of an entire TA

6⊂ commitment is accomplished through
parameterizing the combiner from Algorithm 1 to output the
reconstructed parent node of two verified neighbors, along
with its offset and allotment such that the output from the
root combiner would then be 0, troot(e),allotmentroot when
the correct data is provided.

Non-collaborative Exit Consistency Algorithm 6 (cf. Ap-
pendix) can be combined and parameterized similar to Algo-
rithm 5 to verify the integrity of a TE

6⊂ commitment.

5 Security Analysis

In this section we analyze NOCUST’s security.

5.1 Threat Model
We assume that the underlying BC allows to settle disputes
on the integrity of 6⊂, and charges transaction fees. We con-
sider these expenses as external to the balance of a Pi in 6⊂.

We have designed NOCUST to minimize these expenses (cf.
Section 4.3) and show their practicality in Section 6.

NOCUST is designed to prevent any honest member of P
from losing any funds despite a strong set of adversarial ca-
pabilities. Further formalizing the attacker model from Sec-
tion 3.4, we assume (1) an operator O 6⊂ and (2) P participants
which can both receive incoming and send outgoing trans-
fers. We assume the existence of an irrational adversary
willing to sustain financial losses to cause honest parties to
lose some or all of their funds in 6⊂. This irrational adver-
sary may seize control of O6⊂, some or all but one of P, or
a combination thereof, to attack an honest Pi not under its
control. The adversary has full control of the identities asso-
ciated with the compromised parties and may authorize any
messages on their behalf or front-run any user input, but can-
not violate the integrity of the honest users’ identities. More-
over, an adversary may launch denial of service attacks that
degrade the off-chain communication between O 6⊂ and mem-
bers of P, but may not compromise an honest Pi’s communi-
cation with BC, respectively V 6⊂. Moreover, we assume that
the adversary is incapable of causing the underlying ledger
layer BC to malfunction or misbehave. In the following dis-
cussion, we define malicious behavior as that which aims to
cause an honest Pi to lose control of some or all of its funds
in 6⊂ or cause an honest O 6⊂ to be forcibly shut down by V6⊂.

5.2 Guarantees

In this section we explain how under the stated threat model,
an honest Pi can securely maintain custody of its funds and
ensure that its enacted transfers are correctly delivered in 6⊂,
but will not be able to forcibly enact any new transfer Ti

j(e)
in the system without facilitation by O 6⊂. We also demon-
strate how an honest O6⊂ can sustain service under the malice
of a subset of P. We prove the security guarantees of NO-
CUST through proving that an honest Pi or honest O 6⊂ fol-
lowing the prescribed protocol may not end in a state where
they cannot utilize V 6⊂ to enforce the integrity of 6⊂. We re-
frain from building a single comprehensive model of the sys-
tem due to the many interactions present, and instead break
down the system into components and prove their security
properties. We argue that under the stated system model in
Section 3.1 it suffices to prove the sanity of agent behavior
in NOCUST due to the presence of V 6⊂ and the feasibility of
deploying its functionality to operate honestly on BC.

Exclusive Allotment NOCUST depends on a valid τi to
guarantee to a Pi the exclusive allotment of a portion of size
Ai in the funds managed by V 6⊂. We proceed to prove in
Appendix C.1 that no valid instance of TA

6⊂, TC
6⊂, TE

6⊂ or T p
i

may contain two overlapping allotments, and therefore that
V 6⊂ cannot accept an invalid τA

i , τC
i , τE

i or λ (Ti
j ∈ T p

i ).
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Balance Custody An honest participant Pi of 6⊂ maintains
custody of its balance because it may always resort to V 6⊂
in case O 6⊂ does not provide a valid τA

i (e) or τE
i (e) during

the current eon e. Pi must maintain knowledge about its
state to be able to utilize V 6⊂ for dispute regardless of how
other P j and O6⊂ behave. By keeping track of every autho-
rized updatea

i (e) and every τi(e) from O 6⊂ for each eon e that
passes after Pi entered 6⊂, Pi may always open Xb

i (e) in case
O 6⊂ fails to provide a τA

i (e), or τE
i (e) in case of exit, with

a correct exclusive Ai(e). This guarantees that Pi is always
able to enforce a provably correct update by O 6⊂ to its state,
or halt 6⊂. As an exit may only be initiated and finalized
through V 6⊂, no other P j may attempt to lay a claim to any
portion of Ai. A τE

i (e) may not be utilized to finalize any
withdrawals until eon e+1 commences with no open chal-
lenges against the integrity of TA

6⊂(e) and TE
6⊂(e). This guar-

antees that only uncontested exclusive balance allotments in
correct TA,C,E

6⊂ (e) instances may be used to enact withdrawals
and exits.

s0start

e−1

s1

s2 e

O 6⊂ 6→ V 6⊂: TA,C,E
6⊂ (e)

O 6⊂→ V6⊂: TA,C,E
6⊂ (e)

O
6⊂ →

P
i :

τ A,Ei
(e)

Pi → V 6⊂: Xb
i (e)

O 6⊂→ V 6⊂→ Pi: τ
A,E
i (e)O6⊂ 6→ V6⊂: τ

A,E
i (e)

Figure 3: Finite state automaton capturing the custodian state
of an honest Pi during an eon e. Given a O 6⊂’s commitment
to T6⊂, an honest Pi always knows a valid τA

i (e) either co-
operatively with O 6⊂ or through V 6⊂. Terminal states denote
which eon’s balance Pi is given custody of.

We refer the reader to Appendix C.2 where we prove how
a Pi in NOCUST can protect its funds to always reach a
custodian state. For simplicity we omit states and transi-
tions whereby Pi does not receive a valid τi(e) from O 6⊂
and chooses to not resort to V 6⊂ to demand its broadcast
within the next epoch, as this behavior does not describe an
honest Pi. It is important to recall what V 6⊂ accepts as a
valid response from O 6⊂ to a Xb

i (e) as stated in Section D.3.
The updatea

i (e− 1) in the commitment must be as recent as
that submitted in Xb

i (e) by Pi, and must bear Pi’s signature.
This prevents O 6⊂ from attempting to commit an outdated or
forged state, and provides Pi sufficient knowledge to enact
any future delivery challenges.

Double-Spend Futility In the following discussion we re-
fer to a double-spend as the adversary controlling a Pi, with
or without control of O6⊂, to attempt any of the following:

1. Double-spend Pi’s balance in BL

2. Spend Pi’s balance in BL and withdraw it from BG

In case the adversary lacks control of O6⊂, attempting to
double-spend only in BL will be trivially prevented by an
honest O 6⊂, and attempted withdrawals in eon e from BG of
funds spent in e− 1 will also be cancelled by an honest O 6⊂
through V 6⊂. Even with control of O 6⊂, an adversary may
not double-spend in the current eon e and able to construct
valid TA,C,E

6⊂ in the next eon e+1 correctly satisfying every

member of P, as valid instances of TA,C,E
6⊂ guarantee exclu-

sive allotments, the sizes of which must correspond to the
confirmed balances expected by each honest member of P.
We refer the interested reader to Appendix C.3 for our proof.

Operational Integrity An adversary in control of some
participants in P may maliciously open a set of challenges
against O 6⊂ using V 6⊂. In NOCUST, there is no way for V 6⊂
to verify whether a participant is opening a challenge ma-
liciously or not, and therefore O6⊂ must answer every chal-
lenge opened. However, it is guaranteed that an honest O 6⊂
is able to close any challenge opened in V 6⊂, and a dishonest
O 6⊂ that misconstructs TA,C,E

6⊂ (e) will not be able to answer
correct challenges in e.

The information required by an honest O 6⊂ to close a
Xb

i (e) is τA
i (e), which is constructed by O6⊂, τE

i (e) in case
Ei(e−1) is set, and the updatei(e−1) used in the construc-
tion. O 6⊂ always possesses sufficient knowledge to close
any open challenges, and successfully does so if the com-
mitted TA,C,E

6⊂ (e) correspond to the latest ratified contents of
B(e−1), given the honesty of V 6⊂ in managing the pool of
funds in the 6⊂ instance on BC (cf. Appendix C.4 for proof).

Instant Transaction Finality V 6⊂ is in charge of maintain-
ing the insurance collateral pool balance C such that a valid
τC

i (e) can always be used at most once in case the 6⊂ instance
enters recovery to claim the amount it covers. A Pi with a rat-
ified incoming transfer T j

i (e) can then either withdraw this
transfer from V 6⊂ starting from eon e+2 if the 6⊂ instance
remains operational, or can withdraw the staked collateral
covering its amount from V 6⊂ if the instance enters recovery
during eons e or e+1. For a Pi to guarantee itself instant
finality on its ratified received amounts, it must only approve
incoming transfers if they do not lead to a state update that
violates either of the following two constraints:

Ri(e−1)+Ri(e)≤Ci(e)+Ti(e−1)+Ti(e) (15)

Ri(e)≤Ci(e+1)+Ti(e) (16)

We refer the reader to Appendix C.5 for our proof.

Challenge Justification Decidability A Pi in possession
of τ

A,C,E
i (e) can decide whether it needs to challenge the con-

sistency of the contents of the current TA,C,E
6⊂ (e), and which
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inconsistency it particularly needs to challenge. We prove
this guarantee through simple case analysis of the following
three possible inconsistency scenarios:

Exclusive Balance Allotment: Discussed in Section 5.2.
Active Transfer Delivery: As a recipient, upon being

shown a valid λ (T j
i (e− 1) ∈ T a

j (e−1)) by a payer P j for

a T j
i (e−1) that required recipient approval, Pi can check if

T j
i (e−1) 6∈ T a

i (e−1), and infer that a Xd
i (e) on T j

i (e−1)
should be executed as it will not be closeable by O 6⊂.

Passive Transfer Delivery: A recipient Pi of passive
T j

i (e − 1) can immediately check whether it knows
of a different transfer Tk

i (e − 1) where the intervals
[ offset

T
j
i
, offset

T
j
i
+ T j

i .amount) and [ offset Tk
i
, offset Tk

i
+

Tk
i .amount) intersect, or if offset

T
j
i
+ T j

i .amount >

Rp
i (e−1). All it requires is λ (T j

i (e− 1) ∈ T a
j (e−1)),

along with the corresponding offset
T

j
i

value, either in the

form of Sp
j (e) or T j

i (e− 1).offset. If there is an incon-

sistency, then Pi can infer that a Xd
i (e) on T j

i (e− 1) or
Tk

i (e− 1) should be executed as it will not be closeable
by O 6⊂. This is because T p

i (e− 1) is constructed with its
transfers reserving exclusive allotments for their amounts
(cf. Section 5.2).�

A Pi’s reasoning here assumes that members of P are able
to communicate directly. Without this assumption, and as-
suming that O 6⊂ is withholding data, the ability of a Pi to
reason in advance whether a transfer delivery challenge is
justifiable, before incurring the costs of issuing that chal-
lenge on BC, is hindered. Trivially, a cooperative operator
can produce verifiable proofs of correct transfer delivery to
both payers and recipients after committing to TA,C,E

6⊂ .

Secure Instant Commit-Chain Registration Because
off-chain channel establishment is not common in 2nd-layer
solutions, we elaborate why NOCUST can securely provide
this feature. The registration procedure allows a registering
Pi to learn the operator’s signature on an initially empty ac-
count. This signature allows to instantiate challenges in V 6⊂
in case no transfers were performed in favor of Pi, but only
parent-chain deposits. This allows the operator to securely
federate who can and cannot deposit funds into it, and guar-
antees that Pi would be able to initiate a Xb

i (e+ 1) in case
its deposits were not credited as an allotment in the next eon
e+1. The full specification for opening a challenge is pre-
sented in Appendix D.3.9, where the information in BG com-
bined with Pi’s knowledge of O 6⊂’s signature on the registra-
tion suffices to ensure custody as described in Section 5.2. A
new Pi who joins during the current eon does, however, does
not have any stake allocated to it upon registration, and thus
has no instant finality guarantees until reserve-collateral is
allocated to it. This is done through one parent-chain trans-
action to individually increase all Ui(e) in V 6⊂.

6 Evaluation

In this section, we evaluate the NOCUST in terms of real-
world practicality and light-client usability. We deployed
NOCUST on the Ethereum mainnet5, with a Solidity smart
contract (1894 LOC), costing 3.9M gas (11.14 USD6). Our
implementation follows a 36 hour eon interval7. The oper-
ator’s rver code is implemented in Python (6937 LOC) and
operates with 2 cores, 4 GB of RAM and SSD drives. The
server requires a reliable blockchain source to view and re-
spond to challenges, we deployed a full geth and parity node.
For users, we developed a JavaScript wallet library (9281
LOC) capable to issue challenges towards the operator. Sim-
ple user-onboarding is shown with a free crypto faucet8.

Parent-Chain Costs We registered 147815 addresses with
O 6⊂ in exponential steps (cf. Figure 4). For each step, we
randomly choose 10 users making 20 transactions towards
random users, and then commit a checkpoint. Costs increase
with each additional height of the ledger’s Merkle tree and
remain below 0.5 USD, even if one billion registrations.

Checkpoint (Operator): Checkpoint submission costs are
constant 96073 gas (0.072 USD) on the Ethereum mainet.

Deposit Costs (User): Creation of commit-chain from
parent-chain amount to 64720 gas (0.048 USD).

Withdrawal (User): A non-collaborative withdraw re-
quires two parent-chain transactions separated by a dispute
period, one to initialize a withdrawal, base cost of 169238
gas (0.126 USD) and one to confirm (31500 gas, 0.023
USD), if the initialization was not voided through a dispute.

Initiate State Update Costs (User): Ensures data avail-
ability and integrity of an account, base cost 281686 gas
(0.211 USD) growing log(n) cf. Figure 4.

Answer State Update Challenge (Operator): Base trans-
action cost of 80769 gas (0.061 USD).

Initiate Delivery Challenge (User): Ensures transfer in-
clusion in checkpoint, cost 225642 gas (0.169 USD).

Answer Delivery Challenge (Operator): Base cost of
68152 gas (0.051 USD). Growing O(logn+ logv) with n
users and v transfers executed in the previous eon.

Parent-Chain Storage: If a user does not perform any
withdrawal, deposit or challenge, no data is stored on the
parent-chain for this user (besides the contribution to the
constant-size checkpoint). A deposit adds 160 bytes, a
withdrawal 192 bytes. A Merkle root amounts to 68 bytes,
a hash of all parent-chain operations to 32 bytes.

5cf. contract 0xac8c3D5242b425DE1b86b17E407D8E949D994010
6Assuming a gas price of 5 Gwei and Ether price of 150 USD.
7Which allows for sufficient time to manually intervene if the operator

fails to commit a checkpoint. Faster interval times reduce the amount of
required collateral for instant finality, but require users to be more frequently
online (i.e. once per eon) for trustless operation (and vice versa).

8The faucet allows to receive 100 Wei (1 Wei = 10−18 ETH, 0.00 USD).

12



101 102 103 104 105 106 107 108 109

Number of users

100000

150000

200000

250000

300000

350000

400000

G
as

co
st

0.10

0.15

0.20

0.25

0.30

G
as

co
st

in
U
S
D

Withdrawal

Initiate state challenge

Answer state challenge

Figure 4: Cost evolution for challenges. The continuous line
is empirical, the dotted line estimated. State challenge costs
remain less than $0.5, at one billion users registered to a
NOCUST 6⊂, increase with the height ledger’s Merkle tree.
We assume that each user has at most one account/address.

User Storage: Users store at least the data for the current
and previous eon, including all commit-chain transfers with
their signatures (312 bytes per transfer). After each check-
point, the user queries the operator to retrieve the Merkle
proof for his account. The proof grows logarithmically,
1280 bytes for 1M, 1920 bytes 1B user9. These user storage
requirements are ideal for lightweight clients.

Operator Storage: All users account states, transfers of the
current and previous round, and Merkle proofs for all users.

Transaction Throughput: About 20 tps on a single core
between two accounts without network latency. Scales out
with the accounts and based on non-optimized code.

zkSNARK Evaluation Table 2 (cf. Appendix E.2), shows
the complexities (e.g. constraints) and computing times10

(e.g. generation, proving) of our libsnark implementation,
built to verify commitments containing up to 4 billion users
and up to 4 billion transactions per user. Verification times
are always ≤ 0.03s, practical for smart contract execution.

O6⊂ can distribute the task of creating a checkpoint con-
sistency proof (constant-size 2690 bits). Figure 5 shows the
time to create a proof, depending on the fraction of P collab-
orating (we ignore network latencies) with O 6⊂. We assume
one CPU per Pi. Given e.g. one billion users, one active and
one passively delivered transfer per eon per user, generating
a provably consistent checkpoint would require less than 4
hours with 1% of P’s combined computational power.

Instant Finality Collateral Costs No stake is required
from O 6⊂ to provide transaction finality within two eons. For
instant finality (cf. Section 4.3.4), only the incoming trans-
action volume of a user within two eons is to be insured. To

9The proof is used to verify the correctness of the account update, and
published on the parent-chain to open a dispute if necessary.

10Measured on an Intel i7-7700K CPU at 4.20GHz.

0 1 2 3 4 5
% Percentage of Participants Generating Proofs

0

5

10

15

20

25

30

35

C
h
ec
kp

oi
nt

P
ro
vi
n
g
T
im

e
(H

ou
rs
)

|T a
i | = 1, |T p

i | = 1

|T a
i | = 1, |T p

i | = 4

|T a
i | = 2, |T p

i | = 8

|T a
i | = 3, |T p

i | = 12

|T a
i | = 5, |T p

i | = 20

Figure 5: Time required to create a checkpoint consistency
proof with a fraction of P to generate proofs in parallel. We
assume one Pi corresponds to one CPU (cf. Table 2).

enable instant finality for n = 1M users and a value 100 USD
per user over a timespan of 20 eons, O 6⊂ needs to stake 200M
USD. This stake is “re-usable” each eon11.

If O 6⊂ maintains a payment channel for each member of
P [9] (i.e. a payment channel hub, PCH), collateral would be
isolated in each channel, and cannot achieve finality without
collateral. A PCH with n = 1M users, with each user ex-
pecting to receive 100 USD each eon within 20 eons, would
require a O6⊂ lockup of 2B USD (vs. 200M in NOCUST).
When channel collateral is exhausted, the PCH is required to
retrieve and consolidate its funds from other channels, either
directly through parent-chain withdrawal (expensive) or co-
ordinated rebalancing operations. Collateral fragmentation
is expected to increase with a growing user-base.

7 Conclusion

In this work we presented a non-custodial commit-chain that
can securely facilitate payments between participants in its
2nd-layer network, without reliance on a consensus mecha-
nism as in side-chains, but rather on a practical challenge-
response protocol that leverages a purpose-designed data-
structure, and the consistency of which is further strength-
ened via zkSNARKs.

NOCUST not only raises the throughput of blockchains
by several orders of magnitude, but (re)enables micropay-
ments while economically supporting higher 2nd-layer value
transfers. Contrary to payment channels, a recipient is not
required to be online for a payment — securely solving a
critical usability burden — while offering concise security
proofs, coupled with an evaluation towards and beyond bil-
lions of user.

11Note the eon time-window could be reduced to cut down the necessary
collateral at the cost of increasing the availability requirements of users.

13



References

[1] Jimuta Naik. Beginning of the early banking industry in
mesopotamia civilization from 8th century bce. 2014.

[2] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nico-
las Gailly, Ismail Khoffi, Linus Gasser, and Bryan
Ford. Enhancing bitcoin security and performance
with strong consistency via collective signing. In 25th
USENIX Security Symposium (USENIX Security 16),
pages 279–296. USENIX Association, 2016.

[3] Rafael Pass and Elaine Shi. Hybrid consensus: Effi-
cient consensus in the permissionless model, 2016.

[4] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Ku-
nal Baweja, Seth Gilbert, and Prateek Saxena. A se-
cure sharding protocol for open blockchains. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 17–30.
ACM, 2016.

[5] Joseph Poon and Thaddeus Dryja. The bitcoin light-
ning network: Scalable off-chain instant payments,
2015.

[6] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and
Patrick McCorry. Sprites: Payment channels that go
faster than lightning. arXiv preprint arXiv:1702.05812,
2017.

[7] Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Alek-
sei Ostrovskiy, and Olaoluwa Osuntokun. Flare: An
approach to routing in lightning network. 2016.

[8] Rami Khalil and Arthur Gervais. Revive: Rebalanc-
ing off-blockchain payment networks. Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017.

[9] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and
Daniel Malinowski. Perun: Virtual payment channels
over cryptographic currencies. In Security and Privacy
(SP), 2019 IEEE Symposium on. IEEE, 2019.

[10] Matthew Green and Ian Miers. Bolt: Anonymous pay-
ment channels for decentralized currencies. Technical
report, Cryptology ePrint Archive, Report 2016/701,
2016.

[11] Adam Back, Matt Corallo, Luke Dashjr, Mark
Friedenbach, Gregory Maxwell, Andrew Miller,
Andrew Poelstra, Jorge Timón, and Pieter Wuille.
Enabling blockchain innovations with pegged
sidechains. URL: http://www. opensciencereview.
com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains, 2014.

[12] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system, 2008.

[13] Gavin Wood. Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum Project Yellow
Paper, 2014.

[14] Cynthia Dwork and Moni Naor. Pricing via Processing
or Combatting Junk Mail, pages 139–147. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1993.

[15] Arthur Gervais, Ghassan O Karame, Karl Wüst,
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Appendices
A Addendum

A.1 Fundamental drawbacks of Payment
Channel Networks

In the following we elaborate on the fundamental drawbacks
of existing payment channel designs.
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Figure 6: Commit-chain architecture. Under normal opera-
tion, a user communicates with the server to perform trans-
actions towards other commit-chain users. Under adversarial
conditions, the user resorts to the NOCUST smart contract
on the parent-chain to perform a dispute process.

Online Requirement to Receive Transaction: PCN re-
quire the recipient of a transaction to actively accept an
incoming transfer — parting from the usability feature
offered by on-blockchain transactions.

Locked and Fragmented Collateral: PCN require collat-
eral to be locked up for every channel. For example, given
a PCN node with 1M channels, each channel sending on
average 10k USD of transaction volume, would require the
node to lock up a total of 10B USD. Collateral could be
rebalanced by dynamically adjusting channels, which how-
ever would require costly parent-chain transactions.

Expensive Channel Setup: A PCN node with 1M users
would be required to setup 1M parent-chain transactions
for each channel setup. This in itself represents a substan-
tial investment (beyond 100k USD on Ethereum).

Costly Routing: Route finding, has shown to be a signifi-
cant difficulty in the realization of PCN [26]. Peers might
become unresponsive, which requires payments to be di-
verted over newer, possibly more costly routes.

Online Watchdog Requirements: The two parties of a
payment channel should remain online to observe their
channel state continuously. That is, because if one party
were to transition offline, the other party could attempt to
close the channel with an outdated state and effectively
double-spend a disputable amount. Users could outsource
their channel to watchdogs, a third party, which however
introduces new trust assumptions and costs.

Reduced Privacy: Because off-chain transactions are no
longer recorded in the readable blockchain, one would ar-
gue that PCN offer better privacy guarantees than parent-
chain transactions. Related work however has argued other-
wise and proposed privacy enhanced payment channel de-
signs [26, 21, 22, 23].

Double-Spending Attacks on Blockchain Congestion:
Under a congested blockchain, channel termination could
result in a bidding war among PCN nodes — and some
channel might close unfairly. Incorrect channel termination
can in particular be aggravated in the event of a mass-exit,
where many channels are attempted to be closed. Note that

the dispute resolution mechanism might in some cases not
be worth considering if the disputed value is insignificant.

A.2 Architecture Overview
We provide an overview of our system model in Figure 6.

B Further Discussions

In this section, we discuss the privacy provisions of NO-
CUST and the implications of underlying BC congestion.

B.1 Privacy
In the course of running the protocol, participants acquire
proofs of correct operation from and concede state updates
to O 6⊂, while broadcasting some of that information to V 6⊂
on BC. As the security of the protocol depends on non-
repudiation and the forced revelation of information, we ex-
plore what each party in the protocol maintains knowledge
of and can learn throughout NOCUST.

O 6⊂ Knowledge: O 6⊂ maintains knowledge of all transfers
and balances in 6⊂. This is a requirement in NOCUST to
enable O 6⊂ perform transfers and synchronize between BG

and BL every eon, while retaining provable integrity. As
such, an adversary in control of O 6⊂ has complete knowl-
edge of all commit-chain information. Interestingly, at eon
e, O 6⊂ need only maintain knowledge of e and e−1 to be
able to construct TA,C,E

6⊂ (e) and close any challenge Xb
i (e),

Xd
i (e) by a Pi. A O 6⊂ can erase e−2 at the end of eon e−1

to maintain a form of forward secrecy on the contents of BL

in e−2 without losing operational efficacy, which would
retain privacy on all transfers enacted on the commit-chain
prior to e−1 if O6⊂ were compromised in e.

P Knowledge: Throughout its participation in a 6⊂, a Pi ob-
tains τ

A,C,E
i (e) for every eon e, and constructs various Ti

j(e)
messages for different P j. A τA

i (e) reveals the allotment
intervals at each height of TA

6⊂(e), but does not reveal indi-
vidual account addresses or any transfer details. Therefore
a Pi can learn that it has some neighbor account with a cer-
tain balance, and learn how the allotted intervals are desig-
nated at each level of TA

6⊂(e), without learning the identities
of which members of P these allotments are made to. To
enact a transfer Ti

j(e) where the recipient’s approval is re-
quired, Pi needs to sign a new updatea

i (e) and send it to O 6⊂,
and P j needs to sign a new updatea

j(e) and also send it to
O 6⊂. Pi and P j need not learn any information about the
balance or transfer history of each other to construct these
messages, but need to know the full details of the transfer
Ti

j(e) to ratify it in the state update authorizations they con-
cede. When enacting a transfer Ti

j that does not require the
recipient’s approval, however, Pi learns the offset T value
from O 6⊂ after ratification as Sp

i , which reveals to Pi that
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P j has received at least Sp
i units passively prior to Ti

j in the
current round. Moreover, to enact a delivery challenge on a
transfer Ti

j(e−1), Pi and P j need to share τA
i (e) and τA

j (e)
to validate that the transfer was misenforced by O 6⊂.

V 6⊂ Knowledge: The privacy of the deposits, challenges,
exits and withdrawals conducted through V 6⊂ is scoped by
the underlying BC layer. In NOCUST we do not rely on
any privacy of BC operations. Closing a balance update
challenge Xb

i (e) requires that a Pi learn the τi(e) used in
the closure to maintain custody of its account, which re-
veals Ai(e). Therefore deposits may be used to guess a por-
tion of a Pi’s balance in BL without interaction with O 6⊂,
while closing a Xb

i (e) reveals Pi’s balance in e, and initiat-
ing a Wi(e) reveals Pi’s balance in e−1. It’s noteworthy
that a Pi wishing to mask its balance may assume multiple
identities on BC (and consequently in O 6⊂) and fragment its
deposits and withdrawals over them. However, we leave an
extensive analysis for future work.

Comparison to Two-Party Payment Channels The guar-
antees provided in NOCUST are not trivial to compare with
those of two-party channel networks. A party’s maximum
total balance may be inferred from the amount committed to
a channel, as the commitment may only be in favor of one
party or the other, and the exact amount can be learned from
a parent-chain withdrawal which necessitates the broadcast
of the latest off-chain state. The leakage of the off-chain bal-
ance during attempted withdrawals is similar in NOCUST
and two-party channels, but inferring the maximum commit-
chain balance prior to broadcast is not as simple in NOCUST
due to the increased number of participants without leakage
from O6⊂. As we have not described the enactment of pay-
ments across multiple instances of 6⊂, we leave an extensive
comparison to two-party channel networks for future work.

B.2 Underlying Ledger Congestion
The processing capacity of a BC plays a large role in practice
in the security of 2nd-layer scaling solutions due to their use
of limited time windows where off-chain operations can be
disputed on the parent-chain.

Checkpoint Period: The maximum number of challenges
that can be issued per eon is effectively dependent on the
chosen eon duration in terms of number of eras, whereby
with more eras, more challenge initiation transactions can
be received by BC, and more challenge responses, as the
epoch duration would also increase.

Mass Dispute: In scenarios where a malicious hub attempts
to seize its users’ assets, an influx of dispute transactions
will be submitted to BC, and depending on the dispute
timeout duration and BC congestion, some participants
may not be able to commit their dispute on time. If the hub

is instantiated across individual two-party payment chan-
nels, some channels may be disputed correctly, while oth-
ers may be closed unfairly. In a 6⊂ commit-chain instance,
however, a single successful dispute is sufficient to protect
all participants’ assets from potential misbehavior by O 6⊂.
As O 6⊂ has to respond to all challenges, it must also succeed
in committing its responses to BC, and not only rely on the
failure of participants to commit challenge initiations under
congestion.

C Proofs

C.1 Exclusive Allotment
We proceed to prove that no valid instance of T6⊂ may be
used to construct a τi that permits a non-exclusive allotment
by contradiction. Assume a valid instance of T6⊂, and with-
out loss of generality let tx and ty be two successive nodes
(y > x) within T6⊂ that have overlapping allotments, where
offset y < offset x + allotmentx.

Let tu be their least common ancestor with tp and tq as
its direct children such that tp is an ancestor of tx, and tq of
ty. Without loss of generality, assume tp and tq are correctly
reconstructible from τx and τy respectively.

Given τx, constructing tu on the path up to troot will be
performed with knowledge of offset p and allotmentp (from
reconstructing tp) and the boundary value and commitment
of tq supplied in τx.

Ω(tu, tq) = offset q + allotmentq (17)

Recall the definition in Section 4.3.1. As offset q is inter-
changeable with offset p + allotmentp, reconstructing tu will
need to be performed as follows due to the lack of presence
of offset q in τx by substitution in equation 8 as follows:

informationu = {tp, offset p + allotmentp, tq} (18)

Given the correctness of the sub-tree of tp in isolation, it
follows that offset p + allotmentp = offset x + allotmentx, and
therefore, assuming offset q was used in the original com-
mitment to the considered instance of T6⊂, the reconstructed
tu will not match, and the remaining trail of reconstructed
nodes in τx

12 will lead to a t
′
root 6= troot , violating the assump-

tion that the instance under consideration is a valid T6⊂ and
that τx is acceptable �

C.2 Balance Custody
We proceed to prove how an honest Pi in NOCUST can pro-
tect its funds through modelling the state of a Pi’s custody
as a finite state machine whereby Pi may always reach a
custodian state. A Pi is considered a non-custodian in eon

12A symmetric argument can be made for τy
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Figure 7: A finite state automaton capturing the provable in-
tegrity of O 6⊂. An honest O6⊂ may not find itself in a state
whereby it cannot prove its integrity in eon e+1 after com-
mitting to its e operations, while a dishonest O 6⊂ that at-
tempts to reverse transfers or incorrectly enforce them will
find itself unable to do so. *There exists a transition from s2
to Xi(e+1) on (O 6⊂→ V 6⊂: TA

6⊂ 3 Ti) omitted for clarity.

e if e−1 had passed successfully (6⊂ did not enter recov-
ery) without Pi learning valid τ

A,E
i (e−1) that exclusively ac-

count for its confirmed balance, assuming Pi joined 6⊂ prior
to e−1.

It’s straightforward to infer from the automaton in Figure 3
that a Pi may always reach a state of custody from s1 given
that O 6⊂ commits to TA,C,E

6⊂ (e) within the first epoch. Re-

call that if O 6⊂ does not commit to TA,C,E
6⊂ (e) within the first

epoch, the 6⊂ instance is halted, and therefore Pi retains cus-
tody of the previous allotment Ai(e−1) which it may claim
through V 6⊂’s recovery. This may also happen if O6⊂ ignores
Pi’s challenge.�

C.3 Double-Spend Futility
Proof Let Pi and O 6⊂ be under the control of the adversary
A such that the running balance of Pi during eon e is double-
spent towards a subset of P whereby Ai(e+1) < 0 holds by
the end of e. A must construct a valid TA

6⊂ for e+ 1 to com-
mit the transfers in e and successfully double-spend, while
avoiding the halt of 6⊂ by an honest P j.

However, using Equation 23, validated by V 6⊂:

∑
j

A j(e+1) = ∑
j

A j(e)+Ra∪p
j (e)+D j(e)−W j(e)−Sa

j(e)

= ∑
j

A j(e)+∑
j
D j(e)−W j(e)+∑

j
Ra∪p

j (e)−Sa
j(e)

= allotmentroot(e+1)+∑
j

Ra∪p
j (e)−Sa

j(e)

(19)

With Equation 19 in mind, if A were double-spending in

BL by not updating Sa
i (e), then ∑ j Ra∪p

j (e)−Sa
j(e)> 0 would

follow, and allotmentroot(e + 1) < ∑ j A j(e + 1) would lead
to a challenge in e+ 1 by the affected honest P j whose al-
lotment is incorrect, foiling as well any concurrent double-
spend in BG.

Moreover, if A were double-spending in BL and updat-
ing Sa

i (e) such that ∑ j Ra∪p
j (e)− Sa

j(e) = 0, and/or double-
spending through Wi(e) in BG, then an allotmentroot(e+ 1)
would be rejected by V 6⊂ in violation of Equation 23.�

C.4 Operational Integrity
We proceed to prove how an honest O 6⊂ in NOCUST can
maintain functionality under a subset of malicious users in P,
and how a dishonest O 6⊂ that attempts to compromise trans-
fers will lead to the 6⊂ instance being stopped through a proof
by case analysis, where we model the provability of a O 6⊂’s
integrity as a finite state machine whereby transfers are facil-
itated by O6⊂ in e and committed during e+ 1 in . A server
is defined as maintaining provable integrity during eon e so
long as it is able to close any challenge Xi(e) using V 6⊂.

The automaton presented in Figure 7 specifies how an
honest O 6⊂ may always behave in such a way that allows it to
retain provable integrity in e+ 1 regardless of the behavior
of members of P.

• Given no interactions between O 6⊂ and Pi during e,
an honest O6⊂ may create TA,C,E

6⊂ (e+1) with Ai(e+ 1)
equal to Ai(e) and no updatea

i (e) applied.
• Once a Pi requests an exit Ei, an honest O 6⊂ can con-

struct TE
6⊂ and retain all information necessary to close

any Xb
i (e+1).

• O 6⊂ can justifiably authorize a Pi to initiate a partial
withdrawal using V 6⊂, and still guarantee being able to
satisfy the allotment constraint defined in Equation 23
in e+1, as long as it does not allow Pi to request to
overdraw its funds.
• Given only an updatea

i (e) signed by Pi where P j’s ap-
proval is mandatory, but no updatea

j(e) signed by P j, an
honest O 6⊂ may wait for P j or discard Ti

j. No Xd
i (e+1)

may be opened as Pi and P j would not possess an
updatea

i (e) signed by O 6⊂ containing Ti
j(e). A Xb

i (e+1)

may be closed with the submission of a τ
A,E
i (e) reflect-

ing the correct Ai(e+1).
• Given an updatea

i (e) signed by Pi where P j’s approval
is not mandatory, an honest O 6⊂ may discard or syn-
chronize Ti

j(e), or commit to its delivery by sending a
countersigned updatea

i (e) to Pi and/or P j and then must
synchronize its delivery in TA

6⊂(e+1). The operator re-
tains sufficient information to close any Xb

i (e + 1) or
Xd

i (e+1) in V 6⊂.
• Given an updatea

i (e) signed by Pi and an updatea
j(e)

signed by P j, an honest O 6⊂ may discard or synchronize
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Ti
j(e), or commit to its delivery by sending a counter-

signed updatea to Pi and/or P j and then must synchro-
nize its delivery in TA

6⊂(e+1). The operator retains suf-
ficient information to close any Xb

i (e+1) or Xd
i (e+1)

in V 6⊂.

Moreover, a dishonest server which tries to debit a Pi with-
out authorization, or without crediting the corresponding P j
in case of a Ti

j, or one that provides partial withdrawal au-
thorizations Wi that overspend a Pi balance, may not find
itself in a state of provable integrity in e+1.

• Given no interactions between O 6⊂ and Pi during e, the
operator cannot construct a valid TA

6⊂(e+1) containing
an updatea

i (e) signed by Pi. As O 6⊂ cannot forge Pi’s
signature, it cannot close a Xb

i (e+1).
• If O 6⊂ authorizes a P j to initiate a partial withdrawal

using V 6⊂ that overdraws its funds, it will not be able to
satisfy the allotment constraint defined in Equation 23
in e+1.
• Given only an updatea

i (e) signed by Pi where P j’s ap-
proval is mandatory, the operator cannot construct a
valid TA

6⊂(e+1) containing an updatea
j(e) signed by P j.

A Xd
i (e + 1) on Ti

j(e) by a custodian Pi will not be
closeable by O6⊂.
• Given an updatea

i (e) signed by Pi where P j’s approval
is not mandatory, the operator cannot construct a valid
TA
6⊂(e+1) where Ti

j(e) does not reserve an exclusive
allotment in . A Xd

i (e+ 1) on Ti
j(e) by a custodian Pi

will not be closeable by O 6⊂.
• Once the operator delivers a countersigned updatea

i (e)
and/or updatea

j(e) (s2 → s3) to either Pi or P j respec-
tively, it may not back out of enforcing Ti

j(e), as O6⊂
will not be able to close a Xb

i (e+1), and/or Xb
j(e+1),

if it commits an outdated state in TA
6⊂(e+1).�

C.5 Instant Transaction Finality
We proceed to prove prove how a Pi enacting transfers in
a 6⊂ instance is guaranteed to be able to finalize receipt of
incoming amounts up to a known total amount, regardless
of the adversary’s behavior while controlling O6⊂ and/or all
other members of P.

Proof The proof that a Pi observing the constraints in
Equation 15 and Equation 16 has guaranteed finality of re-
ceipt on ratified incoming transfers is straightforward.

• If the 6⊂ instance fails during eon e, then Pi can recover
an amount equal to the R.H.S of Equation 15.

• If the 6⊂ instance fails during eon e+1, then Pi can re-
cover an amount equal to the R.H.S of Equation 16.

• Otherwise, T j
i (e) has been in included in TA

6⊂(e+1),
and its amount can be withdrawn in e+2.

Ui(e−1) and Ui(e) are accounted for by V 6⊂, while Ci(e)
and Ci(e+ 1) are committed to by and learned by Pi before
eon e commences, or assumed to be zero. The exclusivity
of the amounts Ci(e) and Ci(e+ 1) are guaranteed through
validation of τC

i (e−2) and τC
i (e−1) respectively (ref. C.1)

Moreover, O 6⊂ cannot withdraw staked collateral such the
total amount, C(e), promised in TC

6⊂(e−2), is unavailable in
V 6⊂ for recovery, which means the recoverable amount from
a τC

i (e−2) is always available in eon e. �

D Extended Specifications

D.1 Sequential Overview of NOCUST
In Figure 8 we present a sequential view of NOCUST’s par-
ticipants and their actions.

Pi 6⊂ P j

Registration Registration

Admission Admission

EntryEntry Participants join through O6⊂

Deposit Deposit

DepositsDeposits P deposit to V6⊂ on BC

Transfer
Receipt

Confirmation Confirmation

TransfersTransfers Transfers are ratified by O6⊂

Commitment

Enforcement
Proof Proof

Dispute Dispute

SynchronizationSynchronization O6⊂ commits TA
6⊂ to V6⊂

Withdrawal Withdrawal

WithdrawalWithdrawal P withdraw from V 6⊂

Figure 8: A sequential view of a NOCUST instance life-
cycle. In practicality, transfers, deposits, and withdrawals
may interleave post entry. Receipt of an commit-chain trans-
fer is possible after admission and does not require a prior
deposit.

D.2 B Bi-Modal Ledger For zkSNARKS
The motivation for this extended specification is to pro-
vide specifications for the three BG verifiers: VD, VW , and

19



Algorithm 2: verifyDepositOperationInclusion

Verifier Input : tA
D

root(e), tS
D

root(e)
Prover Input : λ (op ∈ A(e)), λ (op ∈SD

i (e)),
λ (SD

i (e) ∈SD(e)), op
Verifier Output: offset op, informationop, allotmentop

verify λ (op ∈ A(e)) leads to tA
D

root(e)
verify λ (op ∈SD

i (e)) and λ (SD
i (e) ∈SD(e)) lead to tS

D

root(e)
return offset op, informationop, allotmentop

VE , that are required in Algorithms 5 and 6 without worry-
ing about the storage introspection details of the underlying
parent-chain BC. For every eon e, BG(e) is amended with
the following:

A(e): Accumulator of V 6⊂ operations performed in e.

The accumulator A(e) is structured as a set of Merkle
Mountain Ranges [44] that are built up as deposits Di(e),
withdrawals Wi(e) and exits Ei(e) are performed using V 6⊂
during the current eon e. To enable this structure to be us-
able, V 6⊂ will need to keep track of the current set of roots for
A(e), and append a new element for every deposit made to
AD(e), withdrawal initialized to AW (e) and exit requested to
AE(e). Each element should be a commitment of the details
of the operation made:

{operation,address,amount}

O6⊂ then re-organizes two of these three accumulators into
Merkle tree structures for deposits SD(e) and withdrawals
SW (e). Designed to consolidate the amounts of operations
in AD(e) and AW (e) according to their Pi, these trees are
built up as Merkleized Interval Trees akin to the TA

6⊂ structure
from Section 4.3.1.

The following definitions are used for the leaves of SD(e)
and symmetrically for SW (e), along with that of Equation 4:

allotmenti(e) = Di(e) (20)

informationi(e) = {addressi,S
D
i (e)} (21)

The subscripted SD
i (e) is defined as yet another annotated

Merkle tree which consolidates the deposits in A(e) that are
only specific to one Pi. Meaning that each leaf in SD(e)
contains the subtree SD

i (e), and the allotment size of the leaf
is the allotment size of the root of the subtree. The allot-
ment size then of the leaves of the subtree are the individual
amounts of the operations, and the information within them
are commitments to their respective operation’s details. This
symmetrically applies to SW (e) and SW

i (e).
BG(e) is further amended to then store commitments to the

roots of SD(e) and SW (e). V 6⊂ is then extended to accept
the submission of these commitments only when they are

correctly constructed, the allotment of the root of SD(e) is
equal to D(e), that of the root of SW (e) equals W(e) and
that underlying data leaves obey the following constraints:

∀pi, p j ∈Sx : i < j→ addressi < address j

op ∈ Aop.type(e)↔∃i : op ∈Sop.type
i (e)

The conditions on the allotment of the two roots are easy to
validate in V 6⊂, but verifying the correct construction of the
underlying data and the validity of the above two constraints
will require the usage of the same zkSNARK combination
scheme previously described in Section 4.5.

The combiner for the procedure defined in Algorithm 2,
denoted as VDI , is left as an exercise to the reader, noting
that it will have to be instantiated twice to prove both sides
of the bi-implication in the second constraint. The verifiers
and their combiners for proving the consistency of SW

i (e)
with respect to AW (e) will be symmetric to those of SD

i (e).

Algorithm 3: verifyDepositAllotment

Verifier Input : tA
D

root(e), tS
D

root(e)
Prover Input : λ (SD

i (e) ∈SD(e)), πDI , op
Verifier Output: offset i(e), informationi(e), allotmenti(e)
operations← VπDI

DI (t
AD

root(e), tS
D

root(e))
verify λ (SD

i (e) ∈SD(e)) leads to tS
D

root(e)
assert allotmenti(e) is equal to deposits.allotment

return offset i(e), informationi(e), allotmenti(e)

The combiner for the procedure defined in Algorithm 3
is left as an exercise to the reader, noting that the combiner
should enforce the ordering constraint on leaf addresses. Our
sought after VD then becomes a procedure for retrieving the
allotment of Pi from SD(e), another exercise for the reader.
The verifiers and their combiners for proving the consistency
of SW (e) with respect to AW (e) will be symmetric to those
of SD(e), along with VW .

The full specification of VE then becomes an exercise for
the reader, where SE(e) contains no subtrees and is easily
verifiable and Ei(e) is easily retrievable.

Algorithm 4: verifyTxDelivery
Verifier Input : troot(e)
Prover Input : τA

j (e), update j(e),
λ (Ti

j(e−1) ∈ Tj(e−1)), Ti
j(e−1)

Verifier Output: hash(Ti
j(e−1))

verify τA
j (e) leads to troot(e)

verify τA
j (e) applies update j(e)

verify λ (Ti
j(e−1) ∈ Tj(e−1))

return hash(Ti
j(e−1))
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Algorithm 5: verifyAccountIntegrity
Verifier Input : troot(e−1), troot(e)
Prover Input : τA

i (e−1), τA
i (e), updatei(e−1), πD, πW ,

πE ,πT
Verifier Output: offset i(e), informationi(e), allotmenti(e)
verify τA

i (e−1) leads to troot(e−1)
verify τA

i (e) leads to troot(e)
verify τA

i (e) applies updatei(e−1)
verify that updatei(e−1) is signed by Pi if not empty
Di(e−1)← VπD

D (BG(e−1), Pi)
Wi(e−1)← VπW

W (BG(e−1), Pi)
Ei(e−1)← VπE

E (BG(e−1), Pi)
verify Ai(e) according to Equation 1 and Ei(e−1)
verify result of VπT

T (troot(e)) is equal to T a
i (e−1)

return offset i(e), informationi(e), allotmenti(e)

Algorithm 6: verifyExitIntegrity

Verifier Input : tA
root(e−1), tE

root(e)
Prover Input : τA

i (e−1), τE
i (e), updatei(e−1), πD, πW ,

πE ,πT
Verifier Output: offset i(e), informationi(e), allotmenti(e)
Ei(e−1)← VπE

E (BG(e−1), Pi)
assert Ei(e−1) is true
verify τA

i (e−1) leads to tA
root(e−1)

verify τE
i (e) leads to tE

root(e)
verify that updatei(e−1) is signed by Pi if not empty
Di(e−1)← VπD

D (BG(e−1), Pi)
Wi(e−1)← VπW

W (BG(e−1), Pi)
verify Ai(e) according to Equation 1
return offset i(e), informationi(e), allotmenti(e)

D.3 V6⊂ Parent-chain Verifier
The parent-chain component V 6⊂ acts as the bridge between
the O 6⊂ ledger BL and the BC ledger BG. Its procedures are
assumed to be executed honestly by BC, and it supports the
following operations:

D.3.1 Commit TA,C,E
6⊂ (e)

Committing to TA,C,E
6⊂ (e) may only be done once per eon e

during its first epoch by O 6⊂. The commitment requires only
submission of the root nodes of TA,C,E

6⊂ (e) and not their full
contents.

The commitment procedure involves no validation on
information if no consistency proofs are required, but the fol-
lowing requirements always exist on the offset and allotment

of the root nodes:

offset
A(e) = offset

C(e) = offset
E(e) = 0 (22)

allotment
A(e)+ allotment

E(e) =allotment
A(e−1)

+D(e−1)

−W(e−1)

(23)

allotment
C(e)≤ C (24)

If the 6⊂ instance is setup to accept checkpoints that are
accompanied by a proof of consistency, as described in Sec-
tion 4.5, then V 6⊂ validates this proof on the parent-chain
prior to accepting the commitment.

After running its validations, V 6⊂ stores the root TA,C,E
6⊂ (e)

nodes, making them available to any P or any other V6⊂ pro-
cedure.

Preconditions:

• O 6⊂ must not have committed to TA,C,E
6⊂ (e)

• 6⊂ must not have entered recovery

Input: tA
root(e), tC

root(e), tE
root(e), πA, πE

1. Verify conditions of Equations 22, 23 and 24

2. Verify VπA

TA(tA
root(e)) and VπE

TE (tE
root(e)) if snarks setup

3. Store tA
root(e), tC

root(e) and tE
root(e)

D.3.2 Verify τ
A,C,E
i (e)

This verification procedure enables V 6⊂ to verify a τi(e) for
any e in which O 6⊂ had committed to a T6⊂. This validation
acts as a foundation for the security of NOCUST.

Preconditions:

• O 6⊂ must have committed to TA,C,E
6⊂ (e)

Input: τi(e)

1. Reconstruct t
′
root(e) from τi(e)

2. output true iff t
′
root(e) = troot(e)

D.3.3 Receive Deposit Di(e)

For a Pi to make a deposit into 6⊂, it would simply send a
transfer in the BC ledger with V 6⊂ as the recipient. The only
requirement on V 6⊂ is then that it adds the value of the trans-
fer to Di(e), where e is the current eon.

Preconditions:

• 6⊂ must not have entered recovery

Input: BC transfer T from Pi to V 6⊂

1. Set Di(e) to Di(e) + T.amount
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D.3.4 Initiate Exit Ei(e)

A Pi can initiate a complete exit from 6⊂ by submitting a
request to V 6⊂. V 6⊂ is simply required to set Ei(e) to true in
response such that this exit can be finalized in eon e+2.

Preconditions:

• 6⊂ must not have entered recovery
• Pi must not be already pending exit

Input: -

1. Assert Ei(e) is false.

2. Set Ei(e) to true

D.3.5 Finalize Exit Ei(e)

In eon e, an exit request can be finalized if it was scheduled
in eon e− 2 and the first epoch has passed, or if it had been
scheduled in an eon ≤ e−3. Upon confirmation of the exit,
V 6⊂ issues a transfer from the balance pool it manages in fa-
vor of Pi with the requested amount.

Preconditions:

• Ei(s)> 0 for some s≤ e−2

Input: τE
i (e−1)

1. Reject if s= e−2 and the first epoch of e has not passed

2. Transfer Ai(s) to Pi on BC

D.3.6 Initiate Withdrawal Wi(e)

A Pi can initiate a withdrawal from 6⊂ by submitting a request
to V 6⊂. This request consists of the amount to be withdrawn
once the request is confirmed in e+1, and of an authoriza-
tion Wi(e) that is signed by O 6⊂. After validation, V 6⊂ is
required to set Wi(e) to the requested amount, while upon
validation failure V 6⊂ should reject the request.

Preconditions:

• 6⊂ must not have entered recovery

Input: Wi(e)

1. Validate Wi(e)

2. Set Wi(e) to Wi(e).amount

D.3.7 Proxy Withdrawal Wi(e)

O 6⊂ can opt to act as a proxy for a withdrawal request, reliev-
ing the requesting Pi of the waiting period of 2 eons for con-
firmation, and instead transferring to it the requested amount
on the parent-chain in exchange for being the recipient of the
final confirmation of the withdrawal after the waiting period.

Preconditions:

• 6⊂ must not have entered recovery
• Wi(s)> 0 for some s≤ e−2

Input: Pi

1. Forward Wi(s) from O 6⊂ to Pi on BC
2. Set recipient of Wi(s) to O 6⊂

D.3.8 Confirm Withdrawal Wi(e)

In eon e, a withdrawal request can be confirmed if it was
scheduled in eon e−2 and the first epoch has passed, or if it
had been scheduled in an eon ≤ e−3. Upon confirmation of
a withdrawal, V 6⊂ issues a transfer from the balance pool it
manages in favor of Pi with the requested amount.

Preconditions:

• Wi(s)> 0 for some s≤ e−2

Input: none

1. Reject if s= e−2 and the first epoch of e has not passed

2. Transfer Wi(s) to its recipient on BC
3. Set Wi(s) to 0

D.3.9 Open Balance Update Challenge Xb
i (e)

Given a τA
i (e−1) and an updatei(e−1) signed by O 6⊂ as in-

puts from a Pi, the V 6⊂ challenge procedure requires that the
operator provides a satisfying τ

A,E
i (e) V 6⊂ before an epoch

passes. Otherwise, 6⊂ is shut down, and all transactions since
the beginning of e−1 are reverted.

Preconditions:

• 6⊂ must not have entered recovery

Input: At least one of τA
i (e−1) and updatei(e−1)

• Verify τA
i (e−1), or Ai(e−1) = 0

• Verify SigO(updatei(e−1)), or Ra
i (e−1) =Sa

i (e−1) =0
• Store expected Ai(e) in Xb

i (e)

D.3.10 Close Balance Update Challenge Xb
i (e)

Given a valid τ
A,E
i (e) as input from O 6⊂, V 6⊂ marks Xb

i (e) as
closed if it were open within the last epoch.

Preconditions:

• 6⊂ must not have entered recovery
• ∃ Xb

i (e) not older than an epoch

Input: τ
A,E
i (e), updatei(e−1)

1. Verify τA
i (e)

2. Verify Sigi(updatei(e−1))

3. Verify SigO(updatei(e−1))

4. Verify updatei(e−1) is at least as recent as in Xb
i (e)

5. Validate that τA
i (e) ratifies updatei(e−1)

6. If Ei(e−1) is true, verify τE
i (e)

7. Mark Xb
i (e) closed
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D.3.11 Open Transfer Delivery Challenge Xd
i (e)

Given an updatea
j(e−1) signed by O 6⊂, and a transfer T j

i (e−
1) ∈ T a

j (e−1) as inputs from Pi or P j, the V 6⊂ delivery chal-
lenge procedure requires that the operator provide a satis-
fying τA

i (e) and λ (T j
i (e− 1) ∈ Ti(e−1)) to V 6⊂ before an

epoch passes. Otherwise, 6⊂ is shut down, and all transac-
tions since the beginning of e−1 are reverted.

Preconditions:

• 6⊂ must not have entered recovery

Input: updatea
j(e−1), Ti

j(e−1), λ (T j
i (e−1)∈ T a

j (e−1))

• Verify SigO(updatea
j(e−1))

• Verify λ (T j
i (e−1) ∈ T a

j (e−1))

• Verify offset T ∈ T j
i (e−1) or T j

i (e−1) required autho-
rization from recipient.

• Store T j
i (e−1) in Xd

i (e)

D.3.12 Open Offset Transfer Delivery Challenge Xd
i (e)

Given an update j(e−1) signed by O 6⊂, the last outgoing pas-
sive delivery transfer T j

i (e− 1) ∈ T a
j (e−1), and τA

j (e) as
inputs from Pi or P j the V 6⊂ last passive transfer delivery
challenge procedure for transfers where the recipient’s au-
thorization is not mandatory requires that the operator pro-
vide a satisfying τA

i (e) and λ (T j
i (e−1) ∈ T p

i (e−1)) to V 6⊂
before an epoch passes. Otherwise, 6⊂ is shut down, and all
transactions since the beginning of e−1 are reverted.

Preconditions:

• 6⊂ must not have entered recovery

Input: update j(e−1), T j
i (e−1), λ (T j

i (e−1)∈ T a
j (e−1))

• Verify τA
j (e)

• Validate that τA
j (e) ratifies update j(e−1)

• Verify λ (T j
i (e−1) ∈ T a

j (e−1))
• Store offset T = Sp

j (e) in Xd
i (e)

• Store T j
i (e−1) in Xd

i (e)

D.3.13 Close Authorized Transfer Delivery Challenge
Xd

i (e)

Given a valid τA
i (e), updatea

i (e − 1) and λ (T j
i (e − 1) ∈

T a
i (e−1)) as input from O 6⊂, V 6⊂ marks Xd

i (e) as closed if it
were open within the last epoch.

Preconditions:

• 6⊂ must not have entered recovery
• ∃ Xd

i (e) not older than an epoch

Input: τA
i (e), updatea

i (e−1), λ (T j
i (e−1) ∈ T a

i (e−1))

1. Verify τA
i (e)

2. Validate Sigi(updatea
i (e−1))

3. Validate that τA
i (e) ratifies updatea

i (e−1)

4. Validate λ (T j
i (e−1) ∈ T a

i (e−1))

5. Mark Xd
i (e) closed

D.3.14 Close Passive Transfer Delivery Challenge Xd
i (e)

Given a valid τA
i (e), updatei(e − 1) and λ (T j

i (e − 1) ∈
T p

i (e−1)) as input from O 6⊂, V 6⊂ marks Xd
i (e) as closed if it

were open within the last epoch.
Preconditions:

• 6⊂ must not have entered recovery
• ∃ Xd

i (e) not older than an epoch

Input: τA
i (e), updatei(e−1), λ (T j

i (e−1) ∈ T p
i (e−1))

1. Verify τA
i (e)

2. Validate that τA
i (e) ratifies updatei(e−1)

3. Validate λ (T j
i (e− 1) ∈ T p

i (e−1)) with stored offset T

from Xd
i (e)

4. Mark Xd
i (e) closed

D.3.15 Deposit Staked Collateral

O 6⊂ can top-up the collateral staked in favor of a single Pi by
simply transferring it to V 6⊂ in favor of Pi.

Preconditions:

• 6⊂ must not have entered recovery

Input: BC transfer T from O 6⊂ to V 6⊂, Pi

1. Set Ui(e) to Ui(e) + T.amount

D.3.16 Withdraw Staked Collateral

If the total amount maintained by V 6⊂ as insurance collateral
deposit, denoted as C, is greater than C(e), C(e + 1) and
C(e+2), then O 6⊂ can request to withdraw the excess collat-
eral from V 6⊂.

Preconditions:

• 6⊂ must not have entered recovery

Input: amount to be withdrawn w

1. Verify C − w ≥ C(e)
2. Verify C − w ≥ C(e+1)

3. Verify C − w ≥ C(e+2)

4. Transfer w to O 6⊂
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D.3.17 Recover Funds

Had any Xb
i (e− 1) or Xd

i (e− 1) not been closed for any i
within one epoch, or if O6⊂ fails to commit to TA

6⊂(e) within
the first epoch of e, 6⊂ is considered to have shut down and
gone into recovery mode, whereby any Pi may withdraw all
their commit-chain funds as of the end of e−3, and all their
parent-chain deposits starting from e−2 by providing τA

i (e−
2) to V 6⊂.

Preconditions:

• 6⊂ must have entered recovery
• Pi may not have previously recovered its funds

Input: τA
i (e−2), τC

i (e−2)

1. Validate τA
i (e−2), τC

i (e−2)

2. Transfer Ai(e−2) + Di(e−2) + Di(e−1) to Pi

3. Transfer Ci(e) + Ui(e−1) + Ui(e) to Pi

4. Mark Pi as recovered

D.4 O 6⊂ Commit-chain Operator
The commit-chain operator O6⊂ acts as the facilitator of
transfers between members of P, and is designed to behave
as follows:

D.4.1 Admit Pi

On request to enter the managed 6⊂ instance from a partici-
pant, O 6⊂ need only append the participant to P and acknowl-
edgement its updatea

i (e) reflecting an empty balance by pro-
viding a countersignature on it.

D.4.2 Create TA,C,E
6⊂ (e)

After an eon e−1 is over, O 6⊂ creates TA,C,E
6⊂ (e) by using all

confirmed transfer information in e−1. This means that for
each Pi, the last updatei(e−1) ratified by O 6⊂ would be used
to construct TA

6⊂(e) as described in Section 4.3.1. Tree TC
6⊂(e)

is constructed per O 6⊂’s requirements, and TE
6⊂(e) is createt

per the E values in BG(e).
In case the consistency verification methods from Sec-

tion 4.5 are utilized, O 6⊂ will also have to compute
O(P log |P|+T log |T |) verification subroutines, where:

T =
⋃

Pi∈P
T a

i (e)

D.4.3 Commit TA,C,E
6⊂ (e)

After the creation of TA
6⊂(e) and TC

6⊂(e), O 6⊂ needs to commit
each troot(e) to V 6⊂ within the first epoch of e, or be halted in
V 6⊂.

D.4.4 Provide τ
A,C,E
i (e)

After constructing TA,C,E
6⊂ (e), O6⊂ communicates each

τ
A,C,E
i (e) to its respective Pi such that Pi can verify the in-

tegrity of its commit-chain balance or issue a challenge if
need be. τC

i (e) is to be provided to each Pi to prevent them
from assuming that no collateral will be available in eon
e+2 to cover their transfers in case of failure.

D.4.5 Deliver Transfers

O 6⊂ requires a transfer Ti
j(e) from a Pi to a P j to proceed as

follows:

1. Pi sends a new signed updatea
i (e) to O6⊂ with Ti(e) ∪

Ti
j(e).

2. P j sends a new signed updatea
j(e) to O 6⊂ with Tj(e) ∪

Ti
j(e).

3. O 6⊂ ratifies both updatea
i (e) and updatea

j(e) and sends its
signatures to Pi and P j respectively.

O6⊂ must enforce that a Pi may only have one transfer on-
going at a time. Abortion prior to the last confirmation by
O 6⊂ may be signaled via peripheral messages.

D.4.6 Deliver Passive Transfers

O 6⊂ requires a passive transfer Ti
j(e) from a Pi to a P j to

proceed as follows:

1. Pi sends a new signed updatea
i (e) to O 6⊂ with T a

i (e) ∪
Ti

j(e).

2. O 6⊂ inserts Ti
j(e) into T p

j (e)

3. O 6⊂ sets Sp
i (e) to Rp

j (e)

4. O 6⊂ adds Ti
j(e).amount to Rp

j (e)

5. O 6⊂ ratifies updatea
i (e) and sends its signature to Pi.

O6⊂ must enforce that a Pi may only have one transfer
ongoing at a time. Abortion prior to the last confirmation
by O6⊂ may be signaled via peripheral messages. The new
updatea

i (e) must set offset T of the last outgoing passive trans-
fer in e to the previous value of Sp

i (e) in addition to authoriz-
ing the new Ti

j(e).

D.4.7 Credit Deposits Di(e)

O 6⊂ is required to monitor V 6⊂ and properly credit all deposits
Di(e) made by every Pi or face balance update challenges in
the next eon. This is done by simply increasing the allotment
Ai(e+1) for a deposit made in e such that Equation 23 holds
for e+1.
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D.4.8 Proxy Withdrawals Wi(e)

A Pi can request instant liquidity from O6⊂ after initiating a
withdrawal using V 6⊂. The O 6⊂ should then, if it decides that
the withdrawal is valid, and if it possess sufficient funds to
cover it, use V 6⊂ to act as a proxy for this withdrawal, where
O 6⊂ directly sends Pi its requested withdrawal amount in ex-
change for being the recipient of the withdrawal it requested
in V 6⊂ once two eons pass and it is confirmed.

D.4.9 Close challenges Xb
i (e), Xd

i (e)

A Pi may issue a challenge via V 6⊂ at any moment. O 6⊂ needs
to monitor V 6⊂ for these challenges and issue appropriate re-
sponses to close them, or risk being halted. It is guaranteed
that an honest O 6⊂ will always have the information required
to construct a valid call to V 6⊂ to close invalid challenges.

D.4.10 Manage Instant Finality Collateral C

O 6⊂ is in charge of re-assigning the instant finality collateral
every eon. It should withdraw from, or deposit to, the insur-
ance collateral pool using V 6⊂ to expand or shrink it to cover
more users to reclaim un-utilized collateral.

D.5 P Users
Members of P are the main parties interested in transferring
funds to each other in 6⊂, and are designed to behave as fol-
lows:

D.5.1 Join 6⊂
A Pi wishing to join a 6⊂ instance during eon e need only do
so through O 6⊂ by providing a signed updatea

i (e) and wait-
ing for acknowledgement in the form of a countersignature.
The update should reflect an empty account within the 6⊂ in-
stance.

D.5.2 Audit τA
i (e) and τC

i (e)

Pi must ensure that it always receives a valid τA
i (e) (accept-

able by V 6⊂) every eon e from O 6⊂ to maintain custody of its
funds throughout the time progression and enforce correct
transfer delivery by O 6⊂.
Pi must also ensure that τC

i (e) is valid, or otherwise infer
Ci(e+2) to be equal to zero, to verify the amount guaranteed
to be delivered to it in case of failure.

D.5.3 Send Transfer

A Pi wishing to enact a Ti
j(e) to a P j during eon e sends

a signed updatea
i (e) to O6⊂ and notifies P j to send a signed

updatea
j(e) to O6⊂ that authorizes the transfer’s receipt. Pi

should expect O 6⊂ to return its own signature on updatea
i (e),

after P j submits its receipt to O 6⊂, before proceeding with
sending or receiving further transfers. Moreover, Pi may not
attempt to initiate any other transfers until O 6⊂ countersigns
updatea

i (e).

D.5.4 Receive Transfer

A Pi notified of a transfer T j
i (e) by a P j should hand over

a signed updatei(e) to O 6⊂ reflecting receipt and wait for
a countersignature on updatei(e) by O6⊂ to confirm deliv-
ery commitment before proceeding with further transfers.
Again, Pi may not initiate any other transfers until O6⊂ coun-
tersigns updatei(e).

D.5.5 Send Passively Delivered Transfer

A Pi wishing to enact a Ti
j(e) to a P j that can be delivered

without requiring P j to come online during eon e sends a
signed updatea

i (e) to O 6⊂. Pi should expect O6⊂ to return its
own signature on updatea

i (e) inserting it into T p
j (e). Pi may

not attempt to initiate any other transfers until O6⊂ counter-
signs updatea

i (e) and reveals the new value of Sp
i (e).

Moreover, Pi should send the countersigned updatea
i (e)

to P j directly to notify it that it should expect an incoming
transfer to be credited in T p

j (e).

D.5.6 Deposit Di(e)

Users that wish to deposit into 6⊂ must do so only while in
possession of a τA

i (e), or a ratified updatei(e) if this is the
first eon for Pi in 6⊂, and only if 6⊂ is not in recovery. The
deposit is done through sending a BC transaction to V6⊂.

D.5.7 Withdrawal Wi(e)

To withdraw funds during eon e, users utilize their τA
i (e−1)

and not attempt to overdraw beyond their minimum within
the current and past eon, or face their withdrawals being can-
celled by an honest O 6⊂, or cancelled by the halt of 6⊂. After
the first epoch of e+2 passes successfully, users may claim
Wi(e) on BC using V 6⊂.

D.5.8 Issue Xb
i (e)

If O 6⊂ does not provide a valid τA
i (e) after commitment to

TA
6⊂(e), a Pi should issue a Xb

i (e) using V 6⊂.

D.5.9 Issue Xd
i (e)

When shown proof of debit (signed update j(e) by O6⊂) not
reflected by an authorized credit in τA

i (e), a Pi should issue a
Xd

i (e) to V 6⊂. Unless P j is malicious, O6⊂ will not be able to
close Xd

i (e). P j should also issue the challenge in case of Pi’s
noncooperation or if a receipt confirmation is not provided.
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Figure 9: Collateral by O6⊂ to provide a given transaction
volume within 24 hours, with instant finality. Given e.g. an
eon interval of 24h, 20M USD volume, O 6⊂ must stake 40M
USD to provide instant transaction finality.

More verbosely, given τA
i (e) and τA

j (e), along with the
corresponding updatei(e− 1), update j(e− 1), Pi, the recip-
ient, can determine in advance whether O 6⊂ would be able to
close a corresponding Xd

i (e) for a T j
i (e− 1). Since Pi is al-

ways aware of all the contents of updatei(e−1), it can deter-
mine if a corresponding credit authorization in updatei(e−1)
is missing for the debit authorization in update j(e−1). If so,
from the definition of V 6⊂, a Xd

i (e) against this T j
i (e− 1)

would not be closeable by O 6⊂.

D.5.10 Recover Funds

Upon O 6⊂’s failure to close any challenge within one epoch
and before e ends, 6⊂’s time progression stops at e and it en-
ters into recovery. Every Pi will need to recover its confirmed
commit-chain funds through V 6⊂.

E Extended Evaluation

E.1 Instant Transaction Collateral Discussion
In Figure 9, we visualize the collateral for O 6⊂ to stake to
provide instant transaction finality to its users.

At an eon interval of 24 hours, the operator must stake e.g.
20M USD to provide instant transaction finality of 10M USD
towards its users within 24 hours, at e.g. n = 1M users, each
receiving at most 10 USD. The operator could now choose
to halve the eon interval (from 24h to 12h), to halve the re-
quired stake (from 20M to 10M USD), while still providing
the same instant transaction finality volume within 24 hours.
The reduction in eon time, however, also reduces the max-
imum transaction amount that a user can instantly receive
within an eon. Following the previous example, at an eon
interval of e.g. 12h, a user would be able to accept instantly
at most 5 USD.

Note that stake must be individually allocated within a
checkpoint commitment (cf. Section 4.3.4).

Users eon Per user/eon Per user/24h Stake

1M 24 hours 1000 USD 1000 USD 2B USD
1M 12 hours 1000 USD 2000 USD 2B USD
1M 24 hours 100 USD 100 USD 0.2B USD
1M 12 hours 100 USD 200 USD 0.2B USD

Table 1: Example numbers to quantify the potential stake for
O 6⊂ to provide instant transaction finality to its users.

E.2 Libsnark Evaluation
Table 2 presents the respective constraints, variables, inputs,
and utilization frequency of our libsnark implementation.
The measured generation and proving times are taken on a
locally running machine with an Intel i7-7700K 4.20GHz.
The total time required to generate a complete proof of
checkpoint consistency can be estimated using the utiliza-
tion frequency column in conjunction with the proving time
for each procedure.
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Procedure Constraints Variable V Inputs Generation Proving Recurrence |π|
Merkle Membership 132109 132079 5 5.48s 3.83s |T a|− |T p| 2690 bits
+ Wrapper 45129 45121 5 2.80s 2.59s |T a|− |T p| 2988 bits
Exclusive Allotment 229377 229088 8 8.71s 4.88s |T p|+ |P| 2690 bits
+ Wrapper 54954 54946 8 3.15s 2.93s |T p|+ |P| 2988 bits
Transfer Inclusion 100085 100067 7 5.33s 5.07s |T a| 2988 bits
Transfer Delivery 179394 193462 5 6.19s 6.89s |T a| 2690 bits
+ Wrapper 45129 45121 5 2.82s 2.57s ∑2|T a

i |−1 2988 bits
+ Combiner 148349 162425 5 5.28s 5.91s ∑2|T a

i |−1 2690 bits
Deposit/Withdrawal 110828 110798 5 5.96s 5.39s |P| 2988 bits
Exit Notification 91174 91146 4 4.47s 4.67s |P| 2988 bits
Chain Accumulator 220407 241520 6 7.55s 8.03s |P| 2690 bits
+ Wrapper 48404 48396 6 2.89s 2.63s |P| 2988 bits
Account Integrity 240922 272350 12 8.24s 8.24s |P| 2690 bits
+ Wrapper 68054 68046 12 3.70s 3.65s 2|P|−1 2988 bits
+ Combiner 197839 211894 5 6.75s 7.50s 2|P|−1 2690 bits

Table 2: zkSNARKs implemented in libsnark. Wrapper circuits convert the generated snark from one verifiable in the MNT6
curve to one verifiable in the MNT4 curve. zkSNARKs proving and generation times expressed in seconds. Measuremed on an
Intel i7-7700K 4.20GHz CPU with 4x 8GB 2400 MT/s DDR4 RAM. Measured verification times were ≤ 0.03s.
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