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Abstract—Building trustless cross-blockchain trading proto-
cols is challenging. Therefore, centralized liquidity providers
remain the preferred route to execute transfers across chains
— which fundamentally contradicts the purpose of permission-
less ledgers to replace trusted intermediaries. Enabling cross-
blockchain trades could not only enable currently competing
blockchain projects to better collaborate, but seems of particular
importance to decentralized exchanges as those are currently
limited to the trade of digital assets within their respective
blockchain ecosystem.

In this paper we systematize the notion of cryptocurrency-
backed tokens, an approach towards trustless cross-chain com-
munication. We propose XCLAIM, a protocol for issuing, trading,
and redeeming e.g. Bitcoin-backed tokens on Ethereum. We
provide implementations for three possible protocol versions and
evaluate their security and on-chain costs. With XCLAIM, it
costs at most USD 1.17 to issue an arbitrary amount of Bitcoin-
backed tokens on Ethereum, given current blockchain transaction
fees. Our protocol requires no modifications to Bitcoin’s and
Ethereum’s consensus rules and is general enough to support
other cryptocurrencies.

I. INTRODUCTION

Blockchain protocols can be thought of conceptually as
isolated databases, with no dedicated input or output opera-
tions. As such, achieving interoperability between blockchains
is challenging. Enabling seamless cross-blockchain trades and
interaction could thus potentially pave the way for more inter-
operability and synergies among currently competing block-
chain projects.

While the promise of removing trusted intermediaries is an
appealing thought, we observe that in practice, many suppos-
edly decentralized trading services rely on traditional custodian
architectures. The increasing number of security breaches in
centralized exchanges [34], [36], [79], [85] have triggered the
development of decentralized exchange protocols [1], [2], [14],
[17], [19]. These protocols are however limited to the trustless
exchange of cryptocurrency-tokens, built within a specific
blockchain infrastructure [46]. As such, they do not offer trades
across blockchains (cross-chain). Due to the complexities of

constructing trustless cross-chain trading protocols, existing
techniques are therefore dominated by centralized liquidity
providers – contradicting the very purpose of replacing trusted
third parties with a decentralized ledger.

Currently, atomic swaps based on time locks and hash pre-
image revealing techniques [4], [5], [35], [61], [94] are one
possible trustless mechanism to perform cross-chain trades.
Atomic cross-chain swaps, however, are interactive, require
all involved parties to be online, and moreover, rely on the
existence of an order matching mechanism and an off-chain
channel to exchange metadata [38], [93].

In this paper we present XCLAIM, a protocol for cross-
chain cryptocurrency-backed tokens. XCLAIM allows to create
tokens on a cryptocurrency A (e.g. Ethereum) backed by
units of another cryptocurrency B (e.g. Bitcoin). To achieve
this, XCLAIM leverages collateralization and cross-chain state
verification to guarantee these tokens can be redeemed for
their monetary value. The cryptocurrency-backed tokens issued
in our protocol are tradeable via nowadays decentralized
exchange protocols, thus enabling trustless cross-chain com-
munication.

Contributions: As a summary, our contributions are as fol-
lows:

• To the best of our knowledge, we are the first to
present a protocol for issuing, trading, and redeem-
ing cryptocurrency-backed tokens, without necessitat-
ing full trust in a centralized entity. Our protocol
thereby requires no modifications to the underlying
cryptocurrencies. We develop Bitcoin-backed tokens
on Ethereum as an example use case, however, our
scheme is general enough to be applied to other
cryptocurrency pairs, to e.g. issue Litecoin [73] or
Zcash [37] tokens on Ethereum Classic [15].

• We present an implementation of our protocol for
Bitcoin-backed tokens on Ethereum and evaluate its
performance. In our (trustless) prototype, it costs USD
0.67-1.17 to issue, USD 0.41 to trade and USD 0.72 to
redeem an arbitrary amount of tokens (given the cur-
rent blockchain transaction fees)1. We further derive
two cost optimizations, reducing incurred costs by up
to 90%, by making a trade off between performance
and security, through the use of trusted hardware.

• We systematize the requirements to the underlying
blockchains/cryptocurrencies and analyse the secu-

1According to exchange rates as of 7 August 2018.
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rity challenges for cryptocurrency-backed tokens, dis-
cussing possible mitigations to preserve security and
privacy of our protocol.

Outline: The paper is structured as follows. We provide the
necessary background in Section II. We discuss our system
model and requirements in Section III and proceed to give
a detailed step-by-step description of the protocol design in
Section IV. We formulate XCLAIM protocol in Section V
and discuss system requirements. In Section VI we present
our implementations and provide evaluations of execution and
on-chain storage costs. In Section VII we outline security
challenges faced and discuss possible mitigations. Section VIII
gives an overview of related work. Finally, we conclude the
paper in Section IX.

II. BACKGROUND

We first provide background information on cryptocur-
rencies and blockchains. Next, we provide an overview of
cryptocurrency tokens and cross-chain communication pro-
tocols. Finally, we provide a summary of trusted execution
environments.

A. Cryptocurrencies and Blockchains

Bitcoin [80] is a digital cryptocurrency that allows users
to hold and exchange funds in a decentralized manner. In
comparison to previous works, Bitcoin was the first digital
cryptocurrency to operate securely without a central trusted
entity. To achieve such security properties, Bitcoin executes a
peer-to-peer replicated state machine that maintains a global
append-only ledger. The ledger contains the entire history of
all transactions in the network, and is constructed through
a sequence of blocks, with each block storing one or more
transactions. The blocks in the ledger are chained together
using a cryptographic hash function; thus forming a chain of
blocks, or blockchain.

Every node in the Bitcoin network keeps and maintains
a replicated copy of the blockchain. The generation and
chaining of new blocks to the blockchain is associated with a
cryptographic puzzle, and the nodes in the network compete for
block generation. This approach makes it difficult for attackers
to modify the blockchain and any transactions already in the
blockchain, but easy for nodes to verify the validity of existing
transactions. At any time, there may be uncertainty about the
current state of the blockchain, i.e. multiple valid new blocks
may exist, termed a blockchain fork. Due to this, transactions
are only guaranteed with a finite probability to be placed on the
blockchain, and thus users must wait for a sufficient number
of new blocks (confirmations) to be generated before they may
consider their transactions final.

B. Cryptocurrency Tokens

To extend the functionality offered by cryptocurrencies
such as Bitcoin, overlay protocols have been proposed. These
protocols sit on top of an underlying blockchain and provide
additional functionality to the blockchain while maintaining
similar security guarantees. The first approach to creating
an overlay protocol was coloured coins [87] which stored
additional meta-information in the Bitcoin blockchain to create

tradeable Bitcoins with associated attributes. This was followed
by other works, such as [8], [23], which created more complex
and feature-rich overlay protocols for Bitcoin. These types
of overlay protocols fall into the category of velvet forks of
Bitcoin [67], [100].

Subsequent overlay protocols have since been proposed
that create completely new cryptocurrencies of their own,
termed cryptocurrency tokens, built on top of existing
blockchains that offer Turing-complete programming lan-
guages, such as Ethereum [52]. Using the expressibility of
these blockchains, smart contracts can be programmed to
execute these protocols directly within the blockchain, without
the need to bootstrap a dedicated and separate blockchain.
Tokens built using this approach can be used to quantify
both fungible and non-fungible assets. Ethereum, for example,
specifies standards for the simple creation of fungible (e.g.
ERC20 [10], ERC223 [11]) and non-fungible tokens (e.g.
ERC721 [12], ERC994 [13]).

C. Cross-Chain Communication

There are thousands of different cryptocurrencies and alt-
coins in existence, each with their own properties and security
guarantees. Despite a large and growing ecosystem, it is not
currently possible to exchange or trade cryptocurrencies in a
trustless manner using their native protocols. Similarly, direct
communication between two separate cryptocurrencies and
blockchains is also not possible using their native protocols.

As such, additional protocols have been proposed, built on
top of existing blockchains, to enable direct bridges between
cryptocurrencies. One such approach is chain relays; programs
executed on one blockchain capable of interpreting the state
of another. A chain relay can verify if transactions or blocks
of one blockchain have been included in the underlying data
structure. For example, BTCRelay [6] which creates a bridge
between Bitcoin and Ethereum [52]. Other approaches to
cross-chain communication include atomic swaps via hash
time-locked contracts (HTLCs) allowing to perform a single
cryptocurrency exchange atomically, i.e., either both parties re-
ceive the agreed upon cryptocurrencies, or no trade is executed
at all.

Moreover, Layer-2 systems propose cross-chain commu-
nication protocols to provide a base synchronization layer
between heterogeneous blockchains, abstracting the underly-
ing details of the interconnected systems. These approaches
usually rely on existing consensus protocols, require a permis-
sioned setup and introduce incentive structures to promote hon-
est behaviour. Examples include Polkadot [97], Cosmos [70],
AION [91] and COMIT [62].

D. Trusted Execution Environments

Recent commodity CPUs offer hardware support for trusted
execution environments (TEEs). TEEs provide a hardware root-
of-trust, offering confidentiality and integrity guarantees to
code and data in an untrusted system [33], [63]. Even when the
hardware and all privileged software (e.g. OS, hypervisor and
BIOS), are controlled by an untrusted entity, confidentiality
and integrity are maintained as long as the physical CPU is
not breached. This allows new software deployment models:
by only trusting the CPU, software can be securely deployed in
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an otherwise untrusted system. Existing TEE implementations
include Intel SGX [63], ARM TrustZone [33], and AMD
SEV [66].

TEEs divide computing resources into two distinct environ-
ments: a trusted environment and an untrusted environment.
Trusted code and memory is cryptographically secured, while
the CPU manages the isolation between the two environments,
ensuring that only trusted code accesses trusted memory. The
trusted environment has no direct I/O capabilities, but instead
communicates with the untrusted environment; a dedicated
interface allows trusted code to interact with untrusted code.

In addition, TEEs typically support remote attestation [64],
[65], allowing parties to verify the authenticity of program
instances in a remote deployment. More specifically, remote
attestation provides the ability to ascertain that a certain piece
of software is running within a genuine TEE. For this, the CPU
(i) hashes the trusted code and data in the TEE, producing
a measurement; (ii) cryptographically signs the measurement;
and (iii) provides the measurements and signatures to the re-
mote attestor. The attestor then verifies the provided attestation,
i.e., whether the signature is valid and whether the provided
measurements correspond to a set of known values. This allows
to establish trust in a remote system.

III. SYSTEM OVERVIEW

In this section, we provide an overview of the system and
threat models for cryptocurrency-backed tokens, and formulate
the main goals of our approach.

A. System Model and Actors

We assume a user Alice owns funds in cryptocurrency A
and wishes to create the corresponding amount of A-backed
tokens on cryptocurrency B . We further assume a user Bob
owns cryptocurrency B and wishes to acquire A-backed tokens
on cryptocurrency B , which may at a later point be redeemed
for A. We denote funds held in cryptocurrencies A and B
as a and b, respectively. We also denote A-backed tokens on
cryptocurrency B as ab .

We differentiate between the following types of actors in
our protocol:

• Creator. Locks a on A to create ab tokens on B .

• Sender. Owns ab and transfers ownership to another
user on B (e.g. Alice transfers ownership of ab to
Bob).

• Receiver. Receives ab as part of an exchange transac-
tion on B (e.g. Bob receives ab from Alice).

• Redeemer. Destroys or burns ab on B to unlock the
corresponding amount of a on A .

• Issuer. An intermediary overseeing the correct issuing
and redeeming of tokens on A.

• Treasury. An intermediary responsible for issuing,
trading and redeeming ab tokens on B .

Sender (Alice) and receiver (Bob) interact during the
exchange and mutually distrust each other. Both creator and

Fig. 1. Simplified visualization of the actors involved in the XCLAIM
protocol, along with the interactions between them.

redeemer interact with the issuer. We discuss the trust require-
ments for the issuer in detail in Section IV. All parties interact
with the Treasury.

B. Network and Threat Model

We make several assumptions about the networks un-
derlying the cryptocurrencies on which our protocol oper-
ates. Unless stated otherwise, we assume the trust models
of cryptocurrencies A and B to hold, i.e., the portion of
the overall mining power controlled by a computationally-
bounded adversary is less than 50%. We further assume the
cryptographic primitives used in cryptocurrencies A and B
to be secure. Under these assumptions, an honest majority
suffices to allow for consensus under Byzantine conditions,
making tampering with on-chain smart contracts and state not
possible. However, since cryptocurrencies A and B may only
provide eventual consistency guarantees [54], accidental chain
reorganizations must be considered possible.

While honest participants adhere to protocol rules, an
adversary can behave arbitrarily. Thereby, we make the as-
sumption that the adversary is economically rational. Our
protocol has to take into account that an adversary might
censor transactions and/or delay delivery of such transactions
if it benefits them. As such, our approach must prevent partial
execution of trades to avoid inconsistencies.

C. Protocol Goals

The goal of our protocol is to enable the issuing, exchange
and redeeming of cryptocurrency-backed tokens, while mini-
mizing trust between any of the actors in our system.

As such, we ideally do not want to require the safety of the
protocol to depend on the availability and honest behaviour of a
(trusted) third party. If a third party is necessary, however, then
deviations from the protocol must be penalised, with potential
financial damage to users reimbursed, so as to minimise the
incentive for malicious behaviour by economically-rational
adversaries.

The desirable properties for cryptocurrency-backed tokens
can be formulated as follows:
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1) Generality. The scheme for issuing, trading and
redeeming tokens should be general enough to allow
backing by many different cryptocurrencies, i.e., our
protocols should not introduce dependencies on a
specific cryptocurrency or implementation, such as
Bitcoin, or Ethereum.

2) Fungibility. Alice must be able to lock any portion
of her funds a to create the corresponding amount of
ab tokens on cryptocurrency B . In turn, she must be
able to trade these tokens to Bob against b or some
other tokens on B .

3) Divisibility. Alice must be able to trade any fraction
of ab , as long as it exceeds the minimal possible unit
in A, e.g., in Bitcoin, the minimal possible unit would
be a Satoshi (10−8 BTC). We note this requirement
must only hold for the token itself - services used
to execute token exchanges may impose restrictions
with regards to the minimal amount or value of
transferred tokens.

4) Value Redeemability. Any user on B , e.g., both
Alice or Bob, when in possession of ab must be
able to redeem the equivalent amount of a (less
potential transaction fees) on A, or the corresponding
(monetary) value in b, by destroying or burning the
tokens on B .

5) Transfer Atomicity. Once Alice has transferred ab

she can no longer spend the corresponding units of
a on A, as this would constitute a double spend.

6) Consistency. At any point in time, the existence of
ab tokens and the availability of the corresponding
units of a are mutually exclusive. That is, ab tokens
can only be generated on B if the respective amount
of a is locked in A, while the lock can be released
only if the corresponding tokens have been destroyed
on B .

IV. DESIGN ROADMAP

We propose a protocol for creating cryptocurrency-backed
tokens. We start by describing a naı̈ve centralised approach
to outline the intuition behind our design and then reduce the
trust requirements step by step. We settle on a final solution,
made up of several sub-protocols, in Section V.

For ease of explanation, we present our protocols in the
context of constructing Bitcoin-backed tokens on Ethereum.
We note, however, that our approach and protocols are not
limited to these two cryptocurrencies; they are general enough
to support many other cryptocurrency-backed tokens. We dis-
cuss the generality of our approach in Section V-C.

A. Centralised Issuing: A Strawman Scheme

We first present a strawman scheme outlining the general
idea of Bitcoin-backed tokens on Ethereum. We refer to the
actors outlined in III-A throughout our descriptions.

The intuition behind the strawman scheme is simple; create
a publicly verifiable log of actions by all actors. Should an
actor misbehave, their misbehaviour can be seen, proven and
action can be taken against them. To achieve this scheme, we:
(i) make use of a single trusted entity to act as the Issuer,
trusted to process the issuing and redeeming of tokens on

Bitcoin correctly; and (ii) deploy a publicly verifiable smart
contract on Ethereum to act as the Treasury, referred to as
the treasury contract. By forcing all actors to interact with
the treasury contract, their actions can be logged in a
secure, publicly verifiable way, thus creating a secure audit-
trail that can be used alongside public transactions in Bitcoin
and Ethereum to prove any misbehaviour.

To show how this solution works, we present three sub-
protocols, Issue, Trade and Redeem below. We assume a user
Alice owns Bitcoin (btc), linked to her public/private key pair
(pkbtc

A , skbtc
A ) and wishes to create the corresponding amount

of Bitcoin-backed tokens on Ethereum (btceth ). Bob owns
Ethereum (eth), associated with his public/private key pair
(pketh

B , sketh
B ) and wishes to acquire btceth , and at some later

point redeem the tokens for units of btc on Bitcoin. In this
scenario, Alice takes the roles of the Creator and the Sender,
while Bob takes the roles of the Receiver and Redeemer
(see Section III-A). We denote transactions created in Bitcoin
T btc , while transactions on Ethereum are denoted T eth . For
simplicity we omit fees charged by the Issuer in the following
sections.

Sub-protocol: Issue (see Figure 2)

1) Alice as the initiator of the protocol verifies the
treasury contract is correct, available and creates
a new account on Ethereum, i.e., a public/private key
pair (pketh

A , sketh
A ).

2) Next, she locks her funds on Bitcoin in a publicly
verifiable manner, such that this event can be verified
by any Bitcoin client. That is, Alice creates a trans-
action T btc

lock signed with skbtc
A by which she transfers

the to-be-locked btc to the Issuer. In this transaction
she also includes pketh

A (or a hash-based “address”
thereof) so as to inform the Issuer, where the tokens
shall be issued to2.

3) Once T btc
lock has been included in the Bitcoin block-

chain and has received sufficient confirmations (cf.
Section VII-C), the Issuer, providing his digital sig-
nature sig(sketh

I ), instructs the treasury contract
to issue btceth to Alice on Ethereum, such that
|btceth | = |btc|.

Sub-protocol: Trade

1) When Alice trades some amount of btceth tokens
to Bob, she appoints him as the new owner via the
treasury contract.

2) From this moment on, the Issuer will no longer allow
Alice to withdraw the associated amount of locked
btc in Bitcoin. That is, the transfer of ownership
occurs atomically on both chains. The process for
any further transfers is analogous.

Sub-protocol: Redeem (see Figure 3)

1) Once Bob decides to redeem his btceth for the
corresponding amount btc, he first creates a new
public/private key pair (pkbtc

B , skbtc
B ) on Bitcoin.

2This can be achieved by using the OP_RETURN opcode in Bitcoin [41],
which allows to push up to 80 bytes of arbitrary data onto the Script stack.
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Fig. 2. Visualization of the strawmanIssue protocol, on the example of Bitcoin
and Ethereum.

2) Next, he signals to the treasury contract that he
wishes to initiate the redeem procedure (e.g., with a
function call).

3) In turn, the contract burns the btceth tokens and emits
an “unlock” event verifiable by any Ethereum client.

4) The Issuer becomes aware of this and sends the
corresponding amount of btc to Bob on Bitcoin by
publishing a transaction T btc

redeem .

While this approach is easy to implement and it is easy
to see how the Issuer can enforce the correct behaviour of
the protocol, full trust in the availability and honest behaviour
of the Issuer is required. As such, neither safety nor liveness
are guaranteed if an economically rational Issuer becomes
malicious and decides to steal Alice’s btc, generate fake btceth

or not send btc to Bob despite btceth having been burnt.

Furthermore, to achieve this scheme, the following func-
tionalities are required to be supported by the treasury
contract deployed on Ethereum:

Functionality 1 (treasury: issueTokens)
Given proof that an amount of btc has been locked in
Bitcoin for some pre-defined contestation period tcontest,
i.e., received sufficient confirmations, create and allocate
the corresponding amount of btceth to the Ethereum
account associated with a given public key pketh.

Functionality 2 (treasury: transferTokens)
Provided with the signature sig(sketh) of the current
token owner and a receiver identified by pketh′

, the
contract reassigns the ownership of the tokens to the new
Ethereum account associated with pketh′

.

Functionality 3 (treasury: redeemTokens)
If a user controlling units of btceth signals to redeem the
corresponding amount of btc on Bitcoin, emit a publicly
visible “unlock” event, signalling that the lock-in Bitcoin
is to be lifted, and burn the returned btceth tokens.

Although this approach requires trust in the Issuer, it is still
arguably more transparent than tokens backed by real-world

Fig. 3. Visualization of the strawmanRedeem protocol, on the example of
Bitcoin and Ethereum.

assets, since any user with access to the Bitcoin and Ethereum
blockchains can at least observe an audited trace of the actions
of the Issuer. As such, users would quickly become aware of
malicious behaviour and cease to trust the misbehaving parties
in the protocol. While the presence of a well-defined fee model
may theoretically be sufficient to incentivise honest behaviour
of the Issuer, this approach is similar to relying on centralised
liquidity providers, i.e., exchanges.

B. Chain Relays: Non-interactive Token Issuance

The strawman solution presented in IV-A requires the
Issuer to monitor the Bitcoin blockchain to notify the
treasury of confirmed Bitcoin transactions in order to
issue tokens (see sub-protocol Issue in IV-A). In addition, the
Issuer is required to monitor the Ethereum blockchain and
treasury contract to release Bitcoin when it is redeemed
by burning btceth (see sub-protocol Redeem in IV-A).

We remove these requirements by adding Bitcoin trans-
action verification logic to the treasury contract. This
makes the treasury capable of verifying the inclusion
of transactions in the Bitcoin blockchain, comparable to a
Bitcoin SPV-Client [3]. We achieve this by deploying a chain
relay [96] contract for Bitcoin on Ethereum. We note that such
a contract is already available in the form of BTC Relay [6].
We therefore assume the chain relay is directly incorporated
in the treasury contract, extending it by the following
functionality:

Functionality 4 (treasury: verifyBtcTx)
Given a chain of Bitcoin block headers starting with the
genesis block, a transaction and a Merkle Tree proof [75],
verify that the transaction has been included in the
Bitcoin blockchain for at least tcontest .

By enabling verification of Bitcoin transactions in the
treasury contract, we achieve two improvements:

• During the Issue sub-protocol, Alice can directly prove
to the treasury that she has correctly locked up her
funds with T btc

lock . This eliminates the requirement for
the Issuer to be involved in token issuance, making
this part of the protocol non-interactive.
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• The treasury contract requires the Issuer to prove
correct behaviour during the Redeem protocol, i.e.,
submit a transaction inclusion proof showing he re-
leased btc to Bob within some grace period tredeem.
Should the Issuer fail to comply by not providing the
required proof, he is in turn financially penalised. We
discuss the penalties in the next sections. Note: just
as in the case of the Issue protocol, the proof must
consider a sufficient contestation period tcontest of
T btc

redeem .

C. Collateral: Introducing Incentives

Using a chain relay, users can prove misbehaviour by the
Issuer to the treasury. Although this does not prevent
the Issuer from misbehaving, it allows the treasury to
impose penalties upon such misbehaviour; if the Issuer decides
to ignore a redeem request and does not release Bitcoin
when btceth is burnt (see Section IV-B), the treasury will
financially penalise the Issuer.

To this end, we introduce the notion of collateral, where the
Issuer is required to lock up funds on Ethereum as collateral
to enable users to be reimbursed in the case of deviation from
the protocol. To incentivize the Issuer to lock up collateral and
partake in the scheme, they can earn fees on token issuance,
trade and redemption.

As such, the Issuer is required to lock up sufficient col-
lateral in eth to match the value of issued btceth tokens,
plus an additional amount to cover any potential penalties.
Now, with the means to penalise crash and Byzantine failures
of the Issuer, we instruct the treasury to issue btceth

tokens if and only if sufficient eth collateral has been locked
by the Issuer. We note that the Issuer should be able to
incrementally add and remove collateral from the treasury
as needed; to handle changing demand in the number of tokens
to be issued. A discussion on the correct parametrization of
collateral requirements is provided in Section VII-F.

As such, we add the following required functionalities to
the treasury contract :

Functionality 5 (treasury: lock/releaseCollateral)
Accept collateral deposits from the Issuer and hold these
funds until all associated btceth are redeemed.

Functionality 6 (treasury: penalizeIssuer)
If the Issuer fails to submit a transaction inclusion
proof showing he released btc to a user, within some
grace period tredeem, penalize the Issuer by taking his
collateral and reimbursing the user.

D. Preventing Race Conditions during Issue

As defined in Section IV-C, the Issuer is required to first
provide sufficient collateral before any corresponding tokens
can be issued. Despite this requirement, the Issue protocol
exhibits potential race conditions that expose the Sender’s
locked funds to theft during token creation.

When attempting to issue btceth , Alice (the Sender) must
first lock in the corresponding amount of btc by transferring

it to the Issuer. The T btc
lock must be included in the Bitcoin

blockchain for at least tcontest before the treasury contract
considers the transaction valid, i.e., the transaction must re-
ceive a sufficient number of confirmations. Between the time
that Alice publishes T btc

lock on the blockchain and the time it
receives sufficient confirmations, Alice’s funds are vulnerable
to theft as the Issuer may withdraw not yet locked collateral or
another user may lock up the maximum amount of collateral
for new tokens before Alice can finalize the issue process. This
prevents the treasury from being able to reimburse Alice
if the Issuer misbehaves, as there will be insufficient collateral
deposited by the Issuer. To avoid these race conditions, we
propose two possible solutions:

1) Collateralized Issue Commitments: One solution is to
require Alice to register an issue request with the treasury
before initiating the Issue protocol. This locks the correspond-
ing collateral of the Issuer for a predefined amount of time
tcommit . Once the commitment has been registered, Alice must
then create T btc

lock and prove its existence to the chain relay
within period tcommit . During this time, the Issuer cannot
withdraw the specified amount of T btc

lock from the contract, nor
can it be assigned to anyone else’s commitment.

To avoid griefing, Alice must also temporarily lock up
some amount of eth as collateral committing herself to lock
up the corresponding amount of btc in T btc

lock , i.e., create a
collateralized commitment. If Alice fails to transfer btc to the
Issuer before the time expires, her collateral is confiscated and
(optionally) transferred to the Issuer. Alice’s collateral there-
fore must be dependent on the total btceth she is requesting.

As such, we require the following functionality from the
treasury contract:

Functionality 9 a (treasury: registerIssueCommit)
Given a specified amount of btceth , and a corresponding
amount of eth as user collateral, lock the appropriate
amount of Issuer collateral for time tcommit .

One major advantage of this scheme is that it does not
require any interaction from the Issuer during the Issue pro-
tocol, and therefore maintains non-interactivity as originally
achieved in Section IV-B. However, requiring users to provide
collateral is less than ideal and may present an obstacle to
users, impeding adoption.

2) Hashed Time-Lock Contracts: An alternative solution
to preventing race conditions in the Issue protocol is through
the use of Hashed Time-Lock Contracts (HTLCs). Instead
of directly transferring btc to the Issuer, the Sender (Alice)
generates a random secret s and creates a deposit with the
following spending conditions: (i) either the Issuer provides
the hash pre-image to H(s) alongside his digital signature
sig(skbtcI ), where H is a cryptographically secure hash func-
tion3, or (ii) Alice revokes the lock by providing her digital
signature sig(skbtcA ) after a pre-defined period tabort .

Once Alice has published the respective T btc
lock(HTLC )

(P2SH [42]) transaction, she can prove to the chain relay that
the correct amount of btc has been locked in Bitcoin. The
treasury will then require Alice to publicly reveal the hash

3For example, SHA-256 or Keccak-256
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pre-image s on Ethereum via T eth
reveal(HTLC ), before issuing

the btceth tokens. To prevent Alice from publishing s only
shortly before the expiry of tabort and attempting to spend from
T btc

lock(HTLC ) before the Issuer, essentially double spending the
locked btc, the treasury contract requires that s be revealed
before treveal (treveal < tabort !).

As a result, there are two possible outcomes for the Issue
protocol:

• Success. The Issuer has locked sufficient collateral
in the treasury contract and Alice reveals s be-
fore treveal . The contract issues btceth to Alice and
the Issuer, now in possession of s, spends from
T btc

lock(HTLC ).

• Abort. Alice proves the inclusion of T btc
lock(HTLC )

in Bitcoin to the treasury contract but the Issuer
possesses insufficient collateral to process the issue re-
quest. After tabort , Alice revokes the lock and spends
T btc

lock(HTLC ) by providing her digital signature.

The implementation of HTLCs requires the following func-
tionality to be added to the treasury contract:

Functionality 9 b (treasury: verifyHTLC)
Given T btc

lock(HTLC ) and a secret s, verify s is the pre-
image of H(s) in T btc

lock(HTLC ) and that s was revealed
within the time period treveal < tabort .

While HTLCs do not require users to lock in collateral
(in contrast to IV-D1), the Issuer is now required to be online
throughout the Issue protocol. This breaks the non-interactive
property previously established in Section IV-B. If the Issuer
is not online, Alice could attempt to double spend the locked
btc In addition, another drawback to this approach occurs in
the case of an aborted issue: while Alice is able to reclaim
the locked btc, she must cover the incurred transaction costs
both in Bitcoin and Ethereum. However, a possible mitigation
to this is to simply introduce a fund in the treasury contract
to reimburse users in such cases, instantiated during contract
deployment.

E. Issuer Replacement

Until now, for simplicity, we have assumed the Issuer
remains part of the protocol indefinitely. However, in a real
world scenario, the Issuer may wish to leave the scheme and
transfer their role to another party safely, without loss of
collateral. We hence present a straightforward Replace sub-
protocol allowing the Issuer to find replacement for his role
the treasury contract.

Sub-protocol: Replace

1) The Issuer to submits a replacement request to the
treasury contract (T eth

replace ).
2) In turn, one user (the first to respond) may answer

the request by locking the necessary eth collateral in
the treasury, providing their Bitcoin public key (or
hash-based address).

3) The active Issuer must then migrate the locked btc
to the new Issuer by creating a transaction T btc

migrate

on Bitcoin and proving its inclusion in the Bitcoin
blockchain to the treasury, within a period tmigrate .

4) After a pre-defined contestation period (cf. Sec-
tion VII-C), the treasury releases the current Is-
suer’s collateral, finalizing the replacement through
the new candidate.

Should the Issuer not execute the migration within the
specified period, the new candidate’s funds are released, while
transaction fees incurred by the locking/unlocking process are
reimbursed from the Issuer’s collateral.

We thus add one final required functionality to the
treasury contract:

Functionality 10 (treasury: replaceIssuer)
Upon receipt of a replacement request by the Issuer, one
user (the first to respond) may become an Issuer by
locking the corresponding amount of eth as collateral.
Given proof the original Issuer generated and included
T btc

migrate in the Bitcoin blockchain, unlock the original
Issuer’s collateral and return it. Otherwise release the
new Issuer’s collateral.

V. XCLAIM PROTOCOL

In this section we provide a formal description of the
XCLAIM protocol, followed by an overview of its require-
ments and a discussion on how XCLAIM satisfies the goals
formulated in Section III-C.

A. Formal Protocol Description

We present the XCLAIM protocol. For ease of explanation,
we present XCLAIM in the context of constructing Bitcoin-
backed tokens on Ethereum (as in Section IV). We note, how-
ever, that XCLAIM is not limited to these two cryptocurrencies;
we discuss the generality of our approach in V-C.

XCLAIM follows the roadmap outlined in Section IV. It
makes use of all incremental design improvements and consists
of sub-protocols: Issue, Trade, Redeem and Replace. XCLAIM
offers two variants in the case of Issue; the first is based on
HTLCs as discussed Section IV-D2, and the second on col-
lateralized issue commitments, as discussed in Section IV-D1.
Figure 4 shows the life-cycle of a Bitcoin-backed token on
Ethereum in XCLAIM. We refer to this life-cycle throughout
our algorithms. Furthermore, where relevant, we refer directly
to the functionalities required by the treasury contract (as
defined in section IV).

We write btc → pkbtc
A to denote that btc is controlled by

Alice’s Bitcoin public key pkbtc
A . Similar, eth → treasury

expresses that eth is controlled by the treasury contract.
We use pkbtc

A
btc−−→ pkbtc

I to describe a transfer/allocation of
btc from Alice to the Issuer. If a transaction has a complex
spending condition, the conditions are listed after a vertical bar
“|”. Collateral provided, e.g. by the Issuer, is denoted as ethcol

I
(analogous for other users). We further use |btc| to refer to the
economic value of the specified cryptocurrency/token units.

Algorithms 1 and 2 show the two variants of the Issue
sub-protocols. The purpose of Issue is to issue Bitcoin-backed
tokens on Ethereum securely, through the subsequent locking
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up of Bitcoin. To avoid the vulnerabilities outlined in IV-D, ei-
ther HTLCs are required, or collateralized issue commitments.
Upon successful execution, Issue moves from life-cycle state
NONE to ISSUED (algorithm 1, line 11 and algorithm 2, line 9).

Algorithm 3 shows the Trade sub-protocol. The purpose of
Trade is to enable Bitcoin-backed tokens to be transferred from
one user (sender) to another (receiver). This happens securely
through the treasury contract. Upon successful execution,
XCLAIM tokens are transferred between users; tokens remain
in the ISSUED state (algorithm 3, lines 7 and 10).

Algorithm 4 shows the Redeem sub-protocol. The purpose
of Redeem is to enable Bitcoin-backed tokens on Ethereum to
be redeemed for Bitcoin. This happens securely through the
treasury contract and the Issuer. Upon successful execution,
Bitcoin-backed tokens on Ethereum are burnt, and a corre-
sponding amount of Bitcoin is issued to the redeemer, moving
tokens from state ISSUED to REDEEMED (algorithm 4, line 10).
Otherwise, if the Issuer misbehaves, collateral is confiscated
and used to reimburse the user, moving from state ISSUED to
REIMBURSED (algorithm 4, line 14). The use of collateral in
this way is discussed in Section IV-D1.

Algorithm 5 shows the Replace sub-protocol. The purpose
of Replace is to enable the Issuer to leave the protocol
and transfer their role to another party safely, without losing
collateral. This happens through interaction with the treasury
contract, who assigns the role of the Issuer from one user to
another securely, before releasing collateral. See the discussion
in IV-E.

Fig. 4. State machine visualizing the token lifecycle throughout the protocol
(simplified).

NONEstart

PENDING
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REDEEM
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B. System Requirements

To create XCLAIM cryptocurrency-backed tokens, the
backing cryptocurrency A and issuing cryptocurrency B must
satisfy several properties. We outline these requirements be-
low:

• A, as the backing cryptocurrency, must support the
following operations on the underlying blockchain:
(i) transfer of cryptocurrency units; (ii) verification
of digital signatures; (iii) a cryptographically secure

Sub-protocol 1 Issue - Hashed Time-Lock Contracts
Actors: Creator (Alice): (pkbtc

A , skbtc
A ), (pketh

A , sketh
A ); Issuer:

(pkbtc
I , skbtc

I ), (pketh
I , sketh

I ); treasury.
Require: btc → pkbtc

A , ethcol
I → treasury.

1: procedure ISSUE HTLC( )
2: Alice generates s← random()

3: Alice publishes T btc
lock(HTLC): pkbtc

A
btc−−→ pkbtc

I

|
(
∃sig(skbtc

I ) ∧H(< input >) = H(s)
)
∨(

∃sig(skbtc
A ) ∧ tcurrent ≥ tabort

)
, including pketh

A as data
4: Alice publishes T eth

proof , calling verifyBtcTx(T btc
lock )

in treasury
5: if

(
verifyBtcTx(T btc

lock ) = > ∧ ∃(ethcol
I ) ∧ |ethcol

I | ≈ |btc|)
)

then
6: Alice publishes T eth

reveal , calling verifyHTLC(s) in
treasury

7: if (tcurrent ≤ treveal ∧ verifyHTLC(s) = >) then
8: treasury executes issueTokens(btceth , pk

eth
A )

9: do
10: Issuer publishes T btc

spend(HTLC): pk
btc
A

btc−−→ pkbtc
I

spending T btc
lock(HTLC) by providing s

11: return SUCCESS
// Token state: ISSUED

12: while tcurrent < tabort

13: else
14: return ABORT ISSUE()
15: end if
16: else
17: return ABORT ISSUE()
18: end if
19: end procedure
20: procedure ABORT ISSUE( )
21: while tcurrent < tabort do
22: wait
23: end while
24: Alice spends from T btc

lock(HTLC) by publishing T btc
spend(HTLC) :

pkbtc
A

btc−−→ pkbtc
I and providing s

25: return FAIL
// Token state: NONE

26: end procedure
Result if Success: btc → pkbtc

I , btceth → pketh
A ;

hash function; and (iv) the ability to store additional
metadata for transactions.

• B , as the issuing cryptocurrency, must provide a pro-
gramming language expressive enough to implement
all the required functionalities (1-9) outlined for the
treasury contract in Section IV. The only function-
ality that is not required by default, is verifyBtcTx
(functionality 4, section IV-B) for implementing chain
relays on the underlying blockchain. This functionality
is recommended, but is not fundamentally required.4.

While Bitcoin meets the requirements for the backing
cryptocurrency A, the instruction set available in its current
implementation is not sufficient for Bitcoin to act as the issuing
cryptocurrency B [40]. Ethereum, on the other hand, can
successfully act as the backing cryptocurrency A as well as
the issuing cryptocurrency B , as the Ethereum Virtual Machine
offers a Turing-complete set of operations [55]. We note that

4We present a more generic approach in Section VI that does not require
support for chain relays, but this comes at the cost of additional trust
assumptions.
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Sub-protocol 2 Issue - Collateralized Issue Commitments
Actors: Creator (Alice): (pkbtc

A , skbtc
A ), (pketh

A , sketh
A ); treasury.

Require: btc → pkbtc
A , ethcol

I → treasury.
1: procedure ISSUE COMMIT( )

2: Alice publishes T eth
commit : pk

eth
A

ethcol
A−−−→ treasury , calling

registerIssueCommit(btcissue , pkbtc
A ) in treasury

3: treasury executes lockCollateral(ethcol
I , tcommit), where

|ethcol
I | ≈ |btcissue |

// Token state: PENDING ISSUE
4: Alice publishes T btc

lock : pkbtc
A

btc−−→ pkbtc
I

5: Alice publishes T eth
proof , calling verifyBtcTx(T btc

lock ) in
treasury

6: if
(
verifyBtcTx(T btc

lock ) = > ∧ tcurrent ≤ tcommit

)
then

7: treasury executes issueTokens(btceth , pk
eth
A )

8: Alice publishes T eth
withdraw : treasury

ethcol
A−−−→ pketh

A

9: return SUCCESS
// Token state: ISSUED

10: else
11: treasury executed unlockCollateral(ethcol

I )
12: [Optional]: treasury reimburses the Issuer with Alice’s

collateral: ethcol
A → pketh

I
13: return FAIL

// Token state: NONE
14: end if
15: end procedure
Result if Success: btc → pkbtc

I , btceth → pketh
A ;

Sub-protocol 3 Trade
Actors: Sender (Alice):(pketh

A , sketh
A ); Receiver (Bob): (pketh

B , sketh
B );

treasury.
Require: btc → pkbtc

I , btceth → pketh
A , eth → pketh

B

1: procedure TRADE( )
2: Alice publishes T eth

offer declaring btceth → treasury
3: do
4: Bob publishes T eth

match : pketh
B

eth−−→ treasury
5: treasury declares btceth → pketh

B

6: Alice publishes T eth
withdraw : treasury eth−−→ pketh

A

7: return SUCCESS
// Token state: ISSUED

8: while tcurrent < toffer

// Bob does not match the offer, trade aborted
9: treasury declares btceth → pketh

A

10: return FAIL
// Token state: ISSUED

11: end procedure
Result if Success: btc → pkbtc

I , btceth → pketh
B , eth → pketh

A

Turing-completeness, however, is not necessarily a requirement
for the issuing cryptocurrency B , since XCLAIM is also sup-
ported by non-Turing-complete languages such as Scilla [89].
Examples of backing cryptocurrencies that are supported by
XCLAIM are Bitcoin [83], Namecoin [81], Zcash [37], Lite-
coin [73] and Monero [20]. Examples of issuing cryptocur-
rencies supported by XCLAIM are Ethereum [52], Ethereum
Classic [15], Cardano [7], NEO [22] and Rootstock [72].

C. Satisfaction of Protocol Goals

We now discuss how XCLAIM satisfies the goals formu-
lated in Section III-C for cryptocurrency-backed tokens.

1) Generality. As discussed in V-B above, XCLAIM
requires only several properties from the underlying

Sub-protocol 4 Redeem
Actors: Redeemer (Bob): (pkbtc

B , skbtc
B ), (pketh

B , sketh
B ); Issuer:

(pkbtc
I , skbtc

I ), (pketh
I , sketh

I ); treasury.
Require: btc → pkbtc

I , btceth → pketh
B

1: procedure REDEEM( )
2: Bob publishes T eth

redeem , calling redeemTokens(btceth) in
treasury

3: treasury contract emits Event(“unlock btc to pkbtc
B ”)

4: do
5: Issuer publishes T btc

redeem : pkbtc
I

btc−−→ pkbtc
B

6: Issuer publishes T eth
proof , calling verifyBtcTx(T btc

redeem) in
treasury

7: if
(
verifyBtcTx(T btc

redeem) = >
)

then
8: treasury contract destroys tokens: btceth → X
9: treasury executed unlockCollateral(ethcol

I )
10: return SUCCESS

// Token state: REDEEMED
11: end if
12: while tcurrent < tgrace

// Issuer provides no proof
13: treasury executes penalizeIssuer(ethcol

I , pketh
B ), reimbursing

Bob the value of btceth
14: return FAIL

// Token state: REIMBURSED
15: end procedure
Result if Success: btc → pkbtc

B , btceth → X

Sub-protocol 5 Replace
Actors: Issuer: (pkbtc

I , skbtc
I ), (pketh

I , sketh
I ); New issue candidate

(Carol): (pkbtc
C , skbtc

C ), (pketh
C , sketh

C ); treasury.
Require: btc → pkbtc

I , ethcol
I → treasury, eth → pkethC

1: procedure REPLACE( )
2: The Issuer publishes T eth

replace , calling replaceIssuer()
3: Carol publishes T eth

lock : calling lockCollateral(ethcol
C ) in

treasury
4: if

(
|ethcol

C | = |ethcol
I |

)
then

5: do
6: Issuer publishes T btc

migrate : pkbtc
I

btc−−→ pkbtc
C

7: Issuer publishes T eth
proof , calling verifyBtcTx(T btc

migrate)
in treasury

8: if
(
verifyBtcTx(T btc

migrate) = >
)

then
9: treasury executes lockCollateral(ethcol

C ) and
unlockCollateral(ethcol

I )

10: Issuer published T eth
withdraw : treasury

ethcol
I−−−→ pketh

I

11: return SUCCESS
12: end if
13: while tcurrent < tmigrate

14: end if
// Issuer ignored migration

15: treasury executes unlockCollateral(ethcol
C )

16: Carol publishes T eth
abort : treasury

ethcol
C−−−→ pketh

C

17: return FAIL
18: end procedure
Result if Success: btc → pkbtc

B , btceth → X

blockchains on which it operates. As such, XCLAIM
is not limited to a single blockchain implementation,
such as Bitcoin, or Ethereum, but can operate in
its current form on many different cryptocurrencies.
Furthermore, the implementation already presented
in Section VI can be used to generate Namecoin-
backed [81] tokens on Ethereum Classic [15], straight
out the box, with little to no modification.

9



2) Fungibility. Once issued, XCLAIM does not allow to
distinguish between two tokens ab and a′b issued on
B backed by the same cryptocurrency A. As such,
the value of one token is substantially equivalent to
the value of any other token (backed by the same
cryptocurrency), at any given point in time.

3) Divisibility. XCLAIM imposes no restrictions regard-
ing the divisibility of the issued tokens, and hence
this property is dependent on the functionality of
the issuing blockchain. In the case of Ethereum,
the smallest currency unit is 10−18, exceeding the
divisibility limits of Bitcoin (10−8).

4) Value Redeemability. XCLAIM is trustless in the
sense that users are guaranteed to receive the
(monetary) value of the issued and collateralized
cryptocurrency-backed tokens ab, even in case of a
crash or Byzantine failure of the Issuer. That is, either
ab can be redeemed for corresponding units of b, or
the treasury contract reimburses the user with units
of a, equivalent in value to ab.

5/6) Transfer Atomicity and Consistency. In XCLAIM,
the Issuer ensures locked units b of the backed
cryptocurrency B cannot be moved while the cor-
responding units of tokens ab are in circulation.
Should the Issuer fail to prevent atomicity, the chain
relay functionality allows to prove the failure to the
contract, which will destroy the corresponding tokens
ab, ensuring atomicity, and reimburse the victim with
the equivalent value in a using the Issuer’s collateral.

VI. IMPLEMENTATION AND EVALUATION

We implement the XCLAIM protocol as described in Sec-
tion V to create Bitcoin-backed tokens on Ethereum. Our im-
plementation supports both the collateralized commitment and
the HTCL-based schemes of the Issue sub-protocol. Moreover,
our treasury contract is ERC20 compatible allowing tokens
issued through XCLAIM to be traded at various decentralized
exchanges [1], [17], [19]. We also present two optimizations to
our implementation through the use of trusted execution envi-
ronments (TEEs). Here, we use Intel SGX; our optimizations
trade-off performance and efficiency against trust. These are:
(i) using TEEs for the chain relay functionality; and (ii) using
TEEs for the Issuer. Finally, we provide an evaluation of the
three implementations.

A. Implementation

For our implementation of the treasury contract on
Ethereum we use the Solidity smart contract programming lan-
guage v0.4.24 [29]. Our implementation consists of around 820
lines of Solidity code. Besides the constructor, the treasury
contract exposes API calls for issuing (both versions), trading,
and redeeming Bitcoin-backed tokens, as well as gracefully
replacing the issuer. All additional functions necessary to be
compliant with the ERC20 standard [10] are also implemented.
The contract provides a simple access control system, as access
to certain functions must be restricted to either Issuer or the
chain relay, depending on the implementation.

The existing version of BTC Relay is implemented in the
outdated Serpent [30] programming language5 and is based on

5Last commit on 1 October 2017.

an old version of the EVM, exhibiting significant performance
issues. Hence, we implement a subset of the chain relay
functionality necessary for the evaluation of XCLAIM in So-
lidity v0.4.24 [29]. Specifically, we implement the verifyTx
functionality which, given a transaction, a Merkle Tree proof,
the index of the transaction in its block, and the hash of the
block as input, checks if the transaction was included in the
block. Our implementation consist of 140 lines of code and
improves upon the existing BTC Relay version (Serpent) by
using native functions for the SHA-256 implementation and
the bitwise negation functions in Solidity.

For Bitcoin, we implement the hashed time-lock contract
used in the HTLC-based version of the Issue sub-protocol
using Bitcoin’s Script according to the P2SH [42] transaction
format.

B. Optimization 1: XCLAIM with SGX Relay

The XCLAIM protocol requires no trust between the ac-
tors in the system. However, the need to perform on-chain
transaction verification through a chain relay incurs high costs.
To avoid this, one could trade-off performance, efficiency and
practicality against trust; operating a chain relay inside a TEE,
such as Intel SGX, to remove the cost of having to operate a
chain-relay on-chain.

For this, the TEE would operate a full cryptocurrency
node and verify the state of the blockchain in a secure
manner. Using the confidentiality and integrity guarantees of
TEEs, the treasury could first attest the TEE chain relay
before trusting it to verify the inclusion of transactions in the
underlying blockchain and notify it of misbehaviours by the
actors. However, this optimization comes at the cost of having
to trust the TEE to operate securely. Otherwise, if the TEE
is compromised by an adversary, the Issuer and the adversary
could collude to present invalid transaction inclusion proofs to
the treasury to steal funds. We discuss mitigations against
compromise in VII.

C. Optimization 2: XCLAIM with SGX Issuer

A second optimization that XCLAIM could employ would
be to execute the role of the Issuer inside a TEE. The benefit
of this approach is that the Issuer would be trusted to operate
correctly, issuing tokens and redeeming funds on request. This
would significantly simplify the XCLAIM protocol, removing
the need for chain relays and Issuer collateral. In comparison
to VI-B, this approach further trades-off simplicity and prac-
ticality for trust. The TEE who operates the Issuer would be
trusted entirely; if it were to be compromised or suffered a loss
of availability, funds could be stolen. We discuss mitigations
to these in VII.

D. Execution and Storage Evaluation

To evaluate the on-chain execution and storage costs of
XCLAIM, we deploy the treasury contract on the Ethereum
Ropsten test network [16]. We deploy XCLAIM with and
without optimizations. The three implementations we deploy
are thus: XCLAIM6, XCLAIM with an SGX chain relay7 and

6Contract address online: 0xcfdb6fcb7f3c2b5acefb0121d7aa68aa4690dab9
7Contract address online: 0xefd81db13797cb010ed67b0abfc9c78e228a8fae
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TABLE I. Detailed evaluation of execution and on-chain storage costs of our XCLAIM prototype implementation, including the optimizations using TEEs.
Measurements are provided for individual sub-protocols. Presented costs include both Bitcoin transaction fees and Ethereum gas costs, calculated according to

BTC/USD and ETH/USD exchange rates as of 7 August 2018.

XCLAIM † (Trustless) XCLAIM with SGX Relay XCLAIM with SGX Issuer
Success Failure Success Failure Success Failure

TX Cost
[USD]

TX Cost
[USD]

TX Cost
[USD]

TX Cost
[USD]

TX Cost
[USD]

TX Cost
[USD]

ET
H

BT
C

ET
H

BT
C

ET
H

BT
C

ET
H

BT
C

ET
H

BT
C

ET
H

BT
C

Issue HTLC 2 2 1.17 2 2 1.10 2 2 0.76 2 2 0.69 2 2 0.76 2 2 0.69
Collateralized

Commit 2 1 0.67 2 - 0.45 2 1 0.45 2 - 0.23 2 1 0.45 2 - 0.23

Trade 2 - 0.41 1 - 0.25 2 - 0.41 1 - 0.25 2 - 0.41 1 - 0.25
Redeem 2 1 0.72 2 - 0.61 2 1 0.49 2 - 0.38 1 1 0.19 - - -
Replace‡ 3+ 2+ 0.69+ 3+ - 0.27+ 3+ 2+ 0.47+ 3+ - 0.27+ - - - - - -

†Costs for verification of Bitcoin transaction inclusion proofs calculated for the average number of transaction per block in 2018, i.e., ≈ 1349 [43].
‡The execution costs of the Replace protocol depend on the number of Bitcoin UTXOs which need to be migrated.

XCLAIM with an SGX Issuer8.

We define on-chain execution costs as the amount of Bit-
coin transaction fees and Ethereum gas costs to execute each
of the sub-protocols: Issue, Trade, Redeem and Replace9. We
define on-chain storage costs as the number of transactions to
be placed on the underlying blockchains for each sub-protocol.
Table I shows a detailed breakdown of the on-chain execution
costs (in USD), and on-chain transaction storage costs (in
number of transactions) of each of the three implementations,
for both successful execution and faulty termination.

Issue. We observe a difference in the number of Bitcoin
transactions to be placed on the Bitcoin blockchain for the
two versions of the Issue sub-protocol (2 vs 1). Furthermore,
the HTLC scheme places larger transactions on the blockchain
due to more complex conditions (P2SH). This increases the
corresponding cost of protocol execution. While using an on-
chain relay allows to check Bitcoin transaction inclusion proofs
in a publicly verifiable manner, the fact that the verification
logic is executed on Ethereum results in higher gas costs. As
such, it costs ≈398.8 thousand gas (USD 0.82) to success-
fully issue (HTLC-based) cryptocurrency-backed tokens. The
Ethereum gas costs are reduced by 50% (to USD 0.41) if the
chain relay functionality is outsourced to TEEs. For the version
using collateralized commitments the SGX relay achieves an
improvement from USD 0.67 to USD 0.45 (32.8%).

Trade. The Trade sub-protocol does not require any interac-
tions with the Issuer or the chain relay and thus the execution
and storage costs are contained within Ethereum; these costs
are therefore identical across all three implementations.

Redeem. Similar to Issue, the redeem sub-protocol requires
verification of Bitcoin transactions. As a result, the execution
costs of ≈289.1 thousand gas (USD 0.59) on Ethereum are re-
duced by 39% (to USD 0.36) if the chain relay is implemented
using TEEs. Furthermore, in case the Issuer is completely
implemented via TEEs, the gas costs for redeeming tokens
are minimized to USD 0.06, i.e., an improvement of 89.8%,
due to less transactions being published on Ethereum.

Replace. The costs of the Replace protocol depend on the
number of Bitcoin deposits the original Issuer must forward
to the new Issuer. In the optimal case, the Issuer could first
group the deposits before executing the protocol, reducing
the number of Bitcoin transaction costs substantially. The

8Contract address online: 0xb300630d2e658cdb0a691cba48581a5da942ed36
9Conversion rates as of 7 August 2018: BTC/USD 6949.17; ETH/USD

409.00

measurements presented in Table I do this, and are thus lower
bounds.

VII. SECURITY CHALLENGES

We discuss the security challenges of XCLAIM; we outline
possible attack vectors and their impact on the system.

A. Infrastructure Denial-of-Service

The Issuer, as an individual, may be exposed to out of
band Denial-of-Service (DoS) attacks. Crash failures only ever
benefit the Issuer in the case of a significant exchange rate
fluctuation during the Redeem sub-protocol. To overcome this,
multiple Issuers can be introduced, forming a committee, and
using threshold signatures for token issuance and redemption.
This makes the cost of DoS attacks significantly more expen-
sive. Committee election schemes are generally well known
and have been proposed by many works [39], [48], [68],
[76]. As such, it is potentially possible to utilise schemes like
Byzcoin [69], Hybrid Consensus [86] and PeerCensus [49]
for XCLAIM to sample a committee of issuers from PoW
blockchains.

Moreover, attempting to perform a DoS attack against the
treasury contract in XCLAIM is difficult; such an attack
is equivalent to a DoS attack against either cryptocurrency
network that underpins the tokens. If however trusted hardware
is used alongside XCLAIM instead of a chain relay, a single
point of failure is introduced. To avoid centralization, multiple
trusted hardware devices can operate in unison, sharing state
and operating a consensus protocol such as PAXOS [71] to
agree on the state of the underlying blockchain. This avoids
centralization through the use of trusted hardware chain relays.

B. Network Layer Eclipse Attacks

An adversary may attempt to perform network layer eclipse
attacks [57], [60]. In XCLAIM, eclipse attacks pose a threat for
the Issuer; a successful attack on the Issuer has the same effect
as an infrastructure DoS attack. This is because blockchain
transactions trigger no actions by the Issuer, but rather by the
chain relay functionality of the treasury. Similarly, if the
chain relay is operated in trusted hardware as an optimization,
it can also be isolated from the network, allowing an adversary
to present it with an invalid state of the blockchain.

The mitigation of eclipse attacks against the Issuer or
the chain relay functionality of the contract, as in the case
of DoS attacks, is replication: rely on the availability and
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honest behaviour of multiple Issuers/chain relays, instead of
a single entity. We note here that vulnerability to eclipse-
attacks and network partitioning is not a result of the XCLAIM
protocol, but rather a general problem faced by all peer to peer
cryptocurrencies [56], [60], [98].

C. Chain Reorganizations and Forking Attacks

Most cryptocurrencies, such as Bitcoin and Ethereum, pro-
vide only eventual consistency guarantees for transactions [54]
i.e., chain reorganizations and forks can occur. Furthermore,
Byzantine consensus participants can perform selfish mining
attacks, where an adversary attempts to create a secret chain
with more accumulated work to force the blockchain to be
reorganized [53], [56], [88].

In cases of accidental or malicious reorganizations, all
cryptocurrency applications are vulnerable. Likewise for
XCLAIM; an unsafe or too optimistic parametrization of the
contestation periods for the underlying cryptocurrencies, e.g.
tbtc
contest and teth

contest , can lead to inconsistencies between the
amount of locked btc and issued btceth . As such, to address
this, Sompolinsky and Zohar propose that the period to wait
until a transaction is considered secure must be set dynam-
ically, depending on the transferred value [90]. A detailed
overview of possible forking attacks against Bitcoin-backed
tokens in XCLAIM, their impact on security, as well as possible
mitigations, is presented in Table II.

D. Compromise of Trusted Execution Environments

Should TEEs be employed by XCLAIM as an optimization,
compromise of the hardware is a concern. To defend against
compromise, XCLAIM offers two approaches: First, to protect
against side-channel attacks [99], which may compromise the
confidentiality and integrity of the TEE, side-channel resistant
libraries and practical mitigation strategies can be employed
inside the TEE (e.g. [44], [58], [84]). This makes side-channel
attacks more expensive and less practical to exploit by an
adversary. Second, should compromise of a single TEE still
remain a concern, XCLAIM can use the replication strategies
outlined for the Issuer and the chain relay as described in
VII-B and VII-A, respectively. Replication in this manner
would now require that a subset of TEEs must be compromised
successfully, and in unison, in order to violate the security
properties offered by XCLAIM. This makes attacks against the
hardware much more unlikely, and difficult.

E. User Privacy

XCLAIM allows users to transfer cryptocurrencies in the
form of tokens, without being visible on the backing cryp-
tocurrency blockchain (e.g. Bitcoin). As such, only creator
and redeemer must disclose their addresses/public keys, while
all intermediates remain anonymous. However, since all trades
are executed via the treasury contract, a publicly auditable
log of all token transfers is created on the issuing blockchain
(e.g. Ethereum). Furthermore, since Issue and Redeem require
information on the source/target addresses, in a naı̈ve imple-
mentation the creator and redeemer of tokens essentially link
their accounts on the issuing and backing cryptocurrencies (e.g.
link their Ethereum accounts to their Bitcoin addresses).

This can be partly avoided by allowing the redeemer to
encrypt the public key, to which the units of the backing
cryptocurrency are to be released to, with the Issuer public
key before submitting the data to the treasury contract. As
a result, optimistically only the Issuer will be able to link
the redeemer’s public keys across chains. A further mitigation
for such privacy leaks is to introduce mixing services to the
treasury contract, which make transaction linking difficult
(e.g. [59], [74], [95]). Finally, ongoing research on zero
knowledge protocols and ring signatures for permissionless
cryptocurrencies (e.g. [37], [51], [82], [92]) may introduce new
mechanisms for preserving privacy during token trading.

F. Collateral Deterioration due to Exchange Rate Volatility

One difficulty of our approach is needing to account for
volatile exchange rates between cryptocurrencies. To over-
come this, the collateral locked in the treasury contract
must be sufficient enough to account for any potential price
drops/surges. We therefore require over-collateralization by
the Issuer. Furthermore, we also assume for simplicity that
the Bitcoin–Ethereum exchange rate can be retrieved from
a trusted oracle and all participants agree on it, e.g., Ora-
clize [24]. Although relying on a trusted third party for the
exchange rate is problematic, as this introduces a single point
of failure, we defer alternative, less centralized, solutions to
future work.

VIII. RELATED WORK

A. Centralized and decentralized exchanges

While the core idea behind decentralized cryptocurrencies
is to move away from centralized payment providers, central-
ized exchanges remain the preferred way to exchange cryp-
tocurrencies. However, with increasing popularity and more
money moving into the market, centralized service providers
become a lucrative target for attacks, leading to a number of
high-profile thefts throughout the past years [34], [36], [79],
[85]. The most famous of these was Mt. Gox [21], [78].

As a response, decentralized exchanges, i.e., exchanges
where no trust is required by the liquidity provider, have begun
to operate [1], [2], [17]–[19], [32]. However, these protocols
are mostly limited to facilitating trades of cryptocurrency
tokens within a single cryptocurrency, e.g., ERC-20 tokens on
Ethereum [46], and do not offer cross-chain exchanges.

B. Cross-Chain Communication Techniques

There are three fundamental approaches to achieving cross-
chain communication [96]: (i) atomic swaps via hashed time-
lock contracts; (ii) chain relays; and (iii) notary schemes.

Hashed Time-Lock Contracts (HTLC) can be used to
achieve atomic cross-chain swaps [4], [31], [35], [61], [93],
[94]. A formalisation of the concept is provided in [61]. While
HTCLs provide a simple mechanism to facilitate cross-chain
communication, the timing constraints require both users to
be online throughout the trade and expose the scheme to
race conditions. Furthermore, the necessity to exchange data
off-chain requires an out-of-band channel to be established
between users in a censorship-resistant manner.
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TABLE II. Overview of possible forking attacks, their impact on the security of XCLAIM and possible mitigations.

Bitcoin Fork (Relay Poisoning†) Ethereum Fork
Attack Impact Mitigation Attack Impact Mitigation

Issue HTLC
Creator:
Reverse T btc

lock(HTLC);
Reverse T btc

redeem(HTLC)

fake btceth increase tbtc
contest

Issuer: reverse
T eth

proof or T eth
reveal

btc theft
increase teth

contest ;
resubmit T eth

proof +
T eth

redeem

Collateralized
Commit Creator: Reverse T btc

lock fake btceth increase tbtc
contest

Issuer: reverse
T eth

commit or T eth
proof

btc theft
increase teth

contest ;
resubmit T eth

proof +
T eth

commit

Trade – – – Sender: reverse T eth
offer ;

Receiver: reverse T eth
match

Tx fee
loss –

Redeem Issuer: Reverse T btc
redeem ;

(Redeemer: prevent T eth
proof

†)
btc theft;
(eth col. theft†)

increase tbtc
contest Redeemer: reverse T eth

redeem btc theft
increase teth

contest ;
resubmit T eth

redeem &
T eth

proof
‡

Replace Issuer: Reverse T btc
redeem ;

(new candidate: prevent T eth
proof

†)
btc theft;
(eth col. theft†)

increase tbtc
contest

New candidate:
Reverse T eth

lock

btc theft
increase
teth
contest

†Relay poisoning is a special case of selfish mining; an adversary attempts to submit a conflicting version of the block chain to the
chain relay. If successful, this allows to present arbitrary Bitcoin states to the treasury contract.

‡Note: cannot be effectively mitigated if the Redeemer is quick enough to spend the, now non-backed, btceth before the Issuer
can resubmit the transaction inclusion proof for T btc

redeem .

Chain relays can verify if transactions or blocks of the one
blockchain have been included in the underlying data structure.
However, chain relays require a sufficient set of operations
to be supported by the underlying blockchain. Moreover,
these programs must be kept up to date with the state of
the verified blockchain, i.e., users must continuously submit
updates, accounting for the related computation costs. Notable
chain relay projects include BTC Relay [6], PeaceRelay [26],
Project Alchemy [28], Dogethereum [9], Cosmos “Peggy” [47]
and Parity Bridge [25].

Notary schemes replace trust in a single entity by trust in
a set of entities, i.e., a committee also referred to as a set
of validators. Validators employ a consensus algorithm such
as Tendermint [45] or HoneyBadger [77] to reach agreement
over a set of transactions which transfer tokens of value
between chains. Safety and liveness thereby depend on the
availability and honest behaviour of the majority of validators.
Notary schemes can be used for cross-chain communication;
validators can be responsible for actively signing cross-chain
transactions, as in Liquid [50], or attest to exchange partners
that the trading conditions have been met, as in the case of
Interledger [93]. Notary schemes however suffer from high
overheads, due to the need to include a sufficient number
of validators, and for those validators to constantly remain
online. Furthermore, electing an honest validator committee
under dynamically changing pseudonymous participants and
not fully synchronous network assumptions, is a non-trivial
problem.

C. Cryptocurrency-backed tokens

PeaceRelay [26] first proposed how cryptocurrency-
backed tokens can be exchanged between two distributed
ledgers supporting Turing complete programming languages,
namely Ethereum and Ethereum Classic. Further works use
cryptocurrency-backed tokens for value transfers between
Ethereum and permissioned systems [27], [47]. In contrast to
our scheme, however, all of these proposals require Turing
complete programming capabilities on both source and receiv-
ing chains. Bentov et al. describe how cryptocurrency-backed
tokens can be issued within a centralized exchange platform
built on top of trusted execution environments (TEEs) [38]. In
contrast, XCLAIM uses TEEs as an optional optimization only;

their use is not required by default. Without TEEs, XCLAIM
still offers trustless cryptocurrency-backed tokens.

IX. CONCLUSION

We presented XCLAIM, the first trustless protocol for
constructing cryptocurrency-backed tokens on blockchains.
XCLAIM is general in design and supports many existing
blockchain implementations. It offers four sub-protocols: Issue,
Trade, Redeem and Replace, including two variants for Issue;
each providing different benefits and costs. We implemented
XCLAIM to construct Bitcoin-backed tokens on Ethereum. We
also presented two optional optimizations to XCLAIM that
use TEEs to trade-off practicality, performance and efficiency
against trust. Finally, we evaluated XCLAIM and compared the
execution and storage costs of each design.
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