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Abstract

We construct indistinguishability obfuscation from subexponentially secure Learning
With Errors (LWE), bilinear maps, a constant-locality Pseudo Random Generator (PRG),
and a new tool called Pseudo Flawed-smudging Generator (PFG). A PFG is an expanding
function whose outputs Y satisfy a weak form of pseudo randomness. Roughly speaking, for
some polynomial bound B, and any B-bounded noise vector distribution χ, it guarantees
that for e← χ, the distribution of (e, Y + e) is indistinguishable from (e′, Y + e), where e′
is a fresh random sample from χ conditioned on agreeing with e at a few, o(λ), locations. In
other words, Y “hides” e at all but a few locations. Our construction of indistinguishability
obfuscation requires a PFG that is computable by a degree 2 polynomial over the integers
and has polynomially bounded outputs. We finally propose a candidate of such PFGs and
formalize an assumption under which it satisfies the requirements of our construction.

mailto:rachel.lin@cs.ucsb.edu
mailto:cmatt@cs.ucsb.edu


Contents

1 Introduction 3

2 Preliminaries 7
2.1 Notation and Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 µ-Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Learning with Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Pseudorandom Generators and Pseudorandom Functions . . . . . . . . . . . . . . 9
2.5 Indistinguishability Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Randomized Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Functional Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7.1 Public-Key Functional Encryption . . . . . . . . . . . . . . . . . . . . . . 11
2.7.2 FE for P/poly, NC1, and Compactness . . . . . . . . . . . . . . . . . . . . 12

2.8 (Fully) Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8.1 Threshold Multi-Key FHE . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Definition of Pseudo Flawed-Smudging Generators 15

4 Functional Encryption for Constant Degree Polynomials 16
4.1 Base Case: 2FEN,S for Quadratic Polynomials . . . . . . . . . . . . . . . . . . . . 17
4.2 Recursive Construction: d+1FEN,S for degree d+ 1 Polynomials . . . . . . . . . . 19

4.2.1 Proof of Special Purpose Simulation Security of d+1FE . . . . . . . . . . . 24
4.2.2 Property of DFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Functional Encryption for NC1 31
5.1 Bit-fixing Homomorphic Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Construction from Threshold Multi-Key FHE . . . . . . . . . . . . . . . . 33
5.2 Construction of FE for NC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Construction of Candidate PFG 42
6.1 Properties of (Flawed-)Smudging Distributions . . . . . . . . . . . . . . . . . . . 42

6.1.1 Preservation Under Addition of Independent Value . . . . . . . . . . . . . 42
6.1.2 Mixtures of (Flawed-)Smudging Distributions . . . . . . . . . . . . . . . . 42
6.1.3 Smudging and Independence Implies Flawed-Smudging . . . . . . . . . . . 43

6.2 Candidate Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.2 Flawed-Smudging Property of Candidate . . . . . . . . . . . . . . . . . . . 49
6.2.3 Choice of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Acknowledgments 54



1 Introduction

Indistinguishability obfuscation (IO), first defined in the seminal work of Barak et. al. [BGI+01],
aims to obfuscate functionally equivalent programs into indistinguishable ones while preserving
functionality. IO is an extraordinarily powerful object that has been shown to enable a large set
of new cryptographic applications.

The first-generation IO constructions [GGH+13, BR14, BGK+14, PST14, AGIS14, GLSW15,
Zim15, AB15, GMM+16, DGG+16] rely on polynomial-degree multilinear maps or graded encod-
ings. An L-linear map [BS03] essentially allows to evaluate degree-L polynomials on secret encoded
values, and to test whether the output of such polynomials is zero or not. While bilinear maps (i.e.,
L = 2) can be efficiently instantiated from elliptic curves, instantiation of L-linear maps for L ≥ 3
has remained elusive — so far, vulnerabilities [CHL+15, CGH+15, MSZ16, CGH17, ADGM17]
were demonstrated against all known candidates [CLT13, LSS14, GGH15, CLT15]. Of course,
this does not mean that the resulting IO constructions are insecure; in particular, the construction
of [GMM+16] is formally shown to withstand all existing attacks.

A line of recent works [Lin16, LV16, Lin17, AS17] aimed at finding the minimal degree
of multilinear maps sufficient for constructing IO, and has successfully reduced the required
degree to L = 3. A key ingredient in these second-generation constructions is PRGs with
simple structure, in particular, small locality. It was shown that the degree of multilinear maps
needed matches exactly the locality of the PRG [Lin16, AS17], or even a relaxed notion of block
locality [LT17]. These constructions essentially use degree-L multilinear maps to evaluate the
simple PRG with (block)-locality L, and then bootstrap from there to hide arbitrary complex
computation. Unfortunately, the locality of a PRG cannot be smaller than 5 [CM01, MST03],
and recent attacks [LV17, BBKK18] showed that block-locality cannot be smaller than 3. This
raises the following natural question:

Are there simple PRGs, with potentially weak security guarantees, that can be evaluated
using bilinear maps and are useful for constructing IO?

Flawed-Smudging Generators To this end, we propose Pseudo Flawed-smudging Generators
(PFGs). They are polynomially stretching functions from n input elements to m = n1+α output
elements (where n,m are parameterized by the security parameter λ), satisfying a weak form of
pseudo randomness called pseudo flawed-smudging. For IO construction, we need simple PFGs
that are computable by degree 2 polynomials over Z (with no restriction on locality) and have
polynomially bounded outputs (i.e., every output element is an integer of polynomial magnitude).
As such, they can be computed in the exponent of bilinear pairing groups, and their outputs can
be extracted via brute force discrete logarithm.

The pseudo flawed-smudging property ensures that the output of a PFG evaluated on an
input from a specific distribution is able to “smudge” (or flood) a small noise vector, at all but a
few, o(λ), locations. More precisely, we require the output of a PFG to be indistinguishable to a,
so-called, flawed-smudging distribution Y ← Y. It ensures that for some polynomial bound B,
and every B-bounded noise vector distribution e← χ, Y + e “hides” the noise vector e at all
but a few locations in the following sense. There is a random variable I correlated with e,Y,
representing a small (|I| = o(λ)) subset of locations to be fixed, so that, the joint distribution of
(I, e,Y + e) is close to that of (I, e′,Y + e),

{ I, e, Y + e } ≈
{
I, e′, Y + e

}
, where e′ ← χ|eI ,I ,
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where e′ is a fresh new sample from χ conditioned on agreeing with e at locations in I (i.e.,
e′i = ei for all i ∈ I). In short, given Y + e, the noise vector remains random, up to a few
locations being fixed! (The formal definition of flawed-smudging distribution is more complex, as
discussed in our techniques and in Section 3.)

In the literature, noise smudging (or noise flooding) is a commonly used technique for hiding
small noises in LWE samples, which is also our purpose. However, the smudging distributions
used in the literature usually have super-polynomially large output elements (for instance, a
discrete Gaussian with super-polynomial standard deviation, or a uniform distribution over a
consecutive super-polynomial-sized support). A sample Y from such distributions can hide a
small noise vector e entirely at all locations (with overwhelming probability), in the sense that
(e,Y + e) ≈ (e′,Y + e) for a completely independent e′ ← χ. In fact, to hide the noise vectors
e entirely, it is necessary that Y is super-polynomially large. This highlights the key rationale
behind the definition of flawed-smudging distributions — when the smudging distribution is
polynomially bounded, it inevitably leads to “leakage” of the noise vector e at some locations
with high probability (e.g., discrete Gaussian distributions with polynomial standard deviation,
and uniform distributions with consecutive polynomial-sized supports, both behave as such).

Our Results Leveraging the simple structure of PFGs, we construct functional encryption
schemes for computing NC1 circuits that have sublinearly compact ciphertexts (ciphertext size
grows polynomially in the security parameter and input-length, and sublinearly in the size of the
computation), and satisfy standard 1-key fully-selective indistinguishability security.

Theorem 1.1. There is a construction of public key functional encryption schemes for computing
polynomial-sized circuits in NC1, satisfying sublinearly compactness and 1-key fully selective
indistinguishability security, from LWE, bilinear maps, a constant-locality PRG (with mild
structural properties), and a degree-2 pseudo flawed-smudging generator over Z with polynomially
bounded outputs.

Previous works [AJ15, BV15, LPST16b, LPST16a, BNPW16, KNT18] showed that such
functional encryption schemes with subexponential security imply indistinguishability obfuscation.
Hence, we get the following corollary:

Corollary 1.2. There is a construction of indistinguishability obfuscation for polynomial-sized
circuits from LWE, bilinear maps, a constant-locality PRG (with mild structural properties), and
a degree-2 pseudo flawed-smudging generator over Z with polynomially bounded outputs, all with
sub-exponential security.

We further analyze properties of flawed-smudging distributions. First, we show that any
product distribution D1×· · ·×Dm, satisfying that every distribution Di has sufficiently (but still
polynomially) small statistical distance between Di and Di + e for every B-bounded constant e,
is a flawed-smudging distribution. Second, the flawed-smudging property is preserved under
addition with an independent distribution, and under convex combinations. More precisely, the
distribution obtained by adding a sample from a flawed-smudging distribution Y and a sample
from an arbitrary independent distribution T is flawed-smudging, and the convex combination of
any number of flawed-smudging distributions is also flawed-smudging.

Based on above properties, we propose a candidate PFG, which is a variant of random
Multivariate Quadratic (MQ) polynomials over Z. The security of random MQ polynomials have
been studied in finite rings such as Zp [BGP06, HLY12]. We emphasize that MQ polynomials
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over the integers behave differently. In particular, for a random MQ polynomial over Z, it is not
even clear whether the marginal distribution Di of an individual output element i can hide a
small (scalar) noise with good probability (for instance, the range of an output element may be
non-consecutive, and hence SD(Di,Di + 1) is already large). Our candidate PFG samples MQ
polynomials from a specific distribution which ensures that the marginal distribution of every
output element indeed satisfies that SD(Di,Di + e) is sufficiently small for all small e. Finally,
we propose to apply the aforementioned operations that preserve the flawed-smudging property
to make our candidate harder to attack, concretely, by adding it together with an independent
instance of random MQ polynomials.

Our Techniques Towards constructing functional encryption schemes for NC1, we follow the
same two-step approach as previous works [Lin16, LV16, Lin17, AS17]: First construct functional
encryption schemes for computing constant-degree polynomials, or constant-degree FE for short;
then bootstrap constant-degree FE to FE for computing NC1 circuits. The key difference of our
technique is that we manage to construct constant-degree FE from LWE, bilinear maps, and a
flawed-smudging generator, whereas previous constructions rely on constant-degree multilinear
maps. However, relying on only bilinear maps comes at a price — our constant-degree FE is
weak and leaky, and reveals the encrypted input vector at a few locations. As a result, the
bootstrapping step from constant-degree FE to FE for NC1 must be robust to such leakage.

Constant-Degree FE via Homomorphic Encryption. In order to avoid the use of multilinear maps
with degree larger than 2, we need to use other tools to compute a constant-degree polynomial f
over a secret input x, and then extract the output y = f(x) in the clear. The natural approach
is using Homomorphic Encryption (HE) schemes, which has been explored in [GKP+13, Agr18a]
as discussed in related work. At a high-level, our constant-degree FE scheme encrypts an
input x using a HE scheme and a secret vector s; one can then homomorphically evaluate
any function f on x and obtain a ciphertext ctf encrypting y. The difficult part is how to
decrypt a ciphertext ctf associated with a “legitimate” function f (ones for which secret keys
are generated) to recover f(x) in the clear. We do so using a FE scheme for computing only
quadratic polynomials (or quadratic FE for short). There are constructions of quadratic FE
schemes from bilinear maps [Lin16, BCFG17, AS17], which however have the limitation that
outputs are computed in the exponent of the target group of the bilinear map, and can only be
recovered in the clear if they reside in a polynomial-sized range.

To decrypt HE ciphertext ctf using quadratic FE, we observe that the decryption of certain
HE schemes, such as [BV11, BGV12], is simple — in fact, a linear operation, such as 〈ctf , s〉,
already yields an approximate output, such as y + 2e, perturbed by a small noise vector e.
However, the noise e is sensitive, revealing information about the input x, the HE secret s,
and the noises used for generating the original ciphertext encrypting x. Therefore, we need a
way to hide e using just degree 2 computation. This is where noise smudging comes in: We
instead compute the approximate output y + 2e + 2Y further shifted by a large noise Y in order
to hide e. At a first glance, it seems that any degree 2 PRG (such as ones based on the MQ
assumptions over Zp) can be used to generate Y. However, a more careful examination reveals a
dilemma: Current quadratic FE schemes can only evaluate quadratic polynomials whose outputs
are polynomially bounded, and as we discussed earlier, polynomially-bounded Y cannot hide e
entirely.

Weak and Leaky Constant-Degree FE. Therefore, we use our Pseudo-Flawed-smudging Generator,
which has degree 2, polynomially-bounded outputs, and ensures that e + Y hides e at all but
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a few locations. However, revealing e even at a few locations violates the standard security
requirement of FE. Therefore, we turn to achieve what is the best possible. By using a HE
scheme that is robust to leakage, we construct constant-degree FE with (1-key) weak and leaky
simulation security. Roughly speaking, it guarantees that a tuple (mpk, skf , ctx) consisting of an
honestly generated master public key mpk, a secret key skf for a distributional function f ← FN ,
and a ciphertext ctx for a distributional input x ← X , can be simulated by a simulator Sim
using the output y = f(x) of a randomly sampled x conditioned on its value being fixed at a few
locations. More precisely, there is a distribution Fix over the fixed locations K and values x∗,
such that, |K| = o(λ), and

{ x, mpk, skf , ctx } ≈ { x, Sim ((x∗,K), f, y = f(x))} ,
where (x∗,K)← Fix, and x← X|x∗,K .

In other words, given mpk, skf , ctx, the encrypted input x appears random up to a few locations
being fixed, and the output being y.

HE schemes robust to leakage can be instantiated using the [BV11, BGV12] schemes based on
LWE, thanks to the robustness of LWE itself. When the LWE secret s comes from a small domain
(e.g., s is binary), the hardness of LWE holds as long as s has sufficient entropy and does not
necessarily need to be uniformly random [GKPV10, AKPW13]. Furthermore, for the construction
of weak and leaky constant-degree FE to go through, we need a slightly stronger version of the
flawed-smudging property: Consider a B-bounded noise vector distribution χ = e(R) where the
noise e is a function over other distributional secret w← R; there is again a correlated random
variable I, such that,

{ I, w, Y + e(w) } ≈
{
I, w′, Y + e(w)

}
, where w′ ← χ|wI ,I .

This means given Y + E(w), only a few locations of the secret w get fixed and leaked. In our
construction of constant-degree FE, we use this guarantee to bound what information of the HE
input x and secret s is fixed and leaked through leakage of the noise e in the ciphertext obtained
via homomorphic evaluation.

Bootstrapping from Weak and Leaky Constant-Degree FE. We next present a new bootstrapping
technique to FE for NC1 from weak and leaky constant-degree FE. Our bootstrapping follows
the same paradigm as previous works [Lin16, LV16, Lin17, AS17, LV17] — it uses a randomized
encoding [IK02, AIK04] to transform a NC1 computation g(v) into a simple constant-degree
polynomial ĝ(v; r), and uses a constant locality PRG to supply pseudorandom coins r = PRG(seed)
needed for the randomized encoding. The fact that the underlying constant-degree FE is weak
and leaky means both the input v, as well as the PRG seed maybe fixed and leaked at a few
locations. To deal with this, we introduce a new primitive called Bit-Fixing Homomorphic
Sharing in order to make the original computation g robust.

Our bit-fixing homomorphic sharing resembles the recent new concept of Homomorphic Secret
Sharing (HSS) [BGI15] in syntax, but differs in security and efficiency requirements. It enables
compiling a single computation g(v) into a collection of computations o1 = h1(x1), · · · , oλ =
hλ(xλ) that operates on a secret sharing x1, · · · , xq of the original input v, and from the collection
of outputs o1, · · · , oq, the original output g(v) can be reconstructed. Security ensures that the
original input v remains hidden, given all output shares o1 · · · oq and a small subset of input
shares (HSS only guarantees that the input remains hidden given a subset of input shares, without
the output shares). Moreover, the security is robust to a few bits in the input shares being fixed.
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We give a construction of bit-fixing homomorphic sharing from multi-key FHE with threshold
decryption as constructed in [MW16].

Next, we use the weak and leaky constant-degree FE to compute the randomized encoding
of the compiled computations

{
ĥi(xi ; ri)

}
. Through careful analysis, we show that the weak

security of constant-degree FE only leads to a small subset of the computation oi = hi(xi) being
“corrupted”, meaning the input share xi is revealed or some bits of xi are fixed. It then follows
from the security of bit-fixing homomorphic sharing that the original input v remains hidden.

Related Works As mentioned above, the approach of using a homomorphic encryption scheme
to construct functional encryption has already been explored in the works of [GKP+13, Agr18a].
The challenge lies in designing ways to decrypt ciphertexts ctf obtained from homomorphic
evaluations. The work of [GKP+13] achieves this using attribute-based encryption and garbled
circuits (with the HE secret s hardcoded), which, however, results in non-compact ciphertexts
whose sizes scale with the complexity of the computation. Such non-compact FE schemes are
insufficient for the construction of IO. To make the ciphertext size compact, Agrawal proposed
the approach [Agr18b] of using a noise generator to generate a large noise Y to flood the noise e
in ctf , so that it is safe to reveal y + e + Y. In this work, we follow her approach and explore
what happens when Y is polynomially bounded and e maybe leaked.

Outline of the paper We review some notation and standard cryptographic notions that
we use in the paper in Section 2. In Section 3, we define pseudo flawed-smudging generators
(PFGs). Section 4 describes the construction of a functional encryption scheme for constant
degree polynomials, which makes use of a PFG. In Section 5, we construct a functional encryption
scheme for NC1 using our FE scheme from Section 4 and additional tools, including bit-fixing
homomorphic sharing, which we introduce in Section 5.1. Finally, Section 6 discusses a candidate
PFG and proves its security under an assumption we formalize there.

2 Preliminaries

2.1 Notation and Basic Definitions

We denote by Z the set of integers and by N the set of nonnegative integers. For n ∈ N,
[n] := {1, . . . , n}. For a distribution D, x $← D denotes that x is sampled according to D, for
a probabilistic algorithm A, y $← A(x) denotes running A on input x and assigning the output
to y, and for a finite set S, x $← S denotes assigning a uniformly random value from S to x.

Definition 2.1 (Statistical Distance). Let X and X ′ be random variables over a discrete set X .
The statistical distance between X and X ′ is defined as

δ(X,X ′) :=
1

2

∑
x∈X
|Pr[X = x]− Pr[X ′ = x]|.

The min-entropy of a random variable X is defined as

H∞(X) := − log
(

max
x

Pr[X = x]
)
.
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We further define the conditional min-entropy of X given Z following Dodis et al. [DORS08] as

H∞(X | Z) := − log
(
E
z

$←Z

[
max
x

Pr[X = x | Z = z]
])
.

We denote by PPT probabilistic polynomial time Turing machines. The term negligible is
used for denoting functions that are (asymptotically) smaller than any inverse polynomial. More
precisely, a function ν from N to reals is called negligible if for every constant c > 0 and all
sufficiently large n, ν(n) < n−c.

2.2 µ-Indistinguishability

Definition 2.2 (µ-indistinguishability). Let µ : N→ [0, 1] be a function. A pair of distribution
ensembles {Xλ}λ∈N, {Yλ}λ∈N are µ-indistinguishable if for every family of polynomial-sized
distinguishers {Dλ}λ∈N, and every sufficiently large security parameter λ ∈ N,∣∣∣Pr

[
x

$← Xλ : D
(
1λ, x, z

)
= 1
]
− Pr

[
y

$← Yλ : D
(
1λ, y, z

)
= 1
]∣∣∣ ≤ O(µ(λ)).

2.3 Learning with Errors

We next state the decisional learning with errors (LWE) assumption, which was introduced by
Regev [Reg05].

Definition 2.3. Let n = n(λ), m = m(λ), and q = q(λ) be integers and let χ = χ(λ) be a
distribution over Zq(λ) for λ ∈ N. Then, the LWEn,m,q,χ assumption with µ-indistinguishability
is that the following distributions are µ-indistinguishable:{

A
$← Zm×nq ; s

$← Znq ; e
$← χm : (A,A · s + e)

}
λ∈N{

A
$← Zm×nq ;u

$← Zmq : (A,u)
}
λ∈N

It has been shown that this assumptions holds when χ is a discrete Gaussian distribution if
certain worst-case lattice problems are hard [Reg05, Pei09].

We further define LWE with weak and leaky secrets, as introduced in the full version
of [AKPW13].

Definition 2.4 (LWE with Weak and Leaky Secrets). Let n = n(λ), m = m(λ), q = q(λ), and
γ = γ(λ) ∈ (0, q/2)∩Z be integers, let k = k(λ) be a real, and let χ = χ(λ) be a distribution over
Zq(λ) for λ ∈ N. Then, the LWE

WL(γ,k)
n,m,q,χ assumption with µ-indistinguishability states that for all

efficiently samplable correlated random variables (s, aux), where the support of s is [−γ, γ]n ∩Zn
and H∞(s | aux) ≥ k, the following distributions are µ-indistinguishable

(aux,A,A · s + e), (aux,A,u),

where A
$← Zm×nq , e $← χm, and u

$← Zmq are sampled independently of (s, aux).
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2.4 Pseudorandom Generators and Pseudorandom Functions

We review the notion of a pseudorandom generator (PRG) family and its locality.

Definition 2.5 (Family of Pseudorandom Generators (PRGs)). Let n and m be polynomials. A
family of (n,m)-PRGs is an ensemble of distributions PRG = {PRGλ}λ∈N satisfying the following
properties:

Syntax: For every λ ∈ N, every PRG in the support of PRGλ defines a function {0, 1}n(λ) →
{0, 1}m(λ), for which we also write PRG.

Efficiency: There is a uniform Turing machine M satisfying that for every λ ∈ N, every PRG
in the support of PRGλ, and for every x ∈ {0, 1}n(λ), M(PRG, x) runs in time poly(λ) and
we have M(PRG, x) = PRG(x).

µ-Indistinguishability: The following ensembles are µ-indistinguishable:{
PRG

$← PRGλ; s
$← {0, 1}n(λ) : (PRG,PRG(s))

}
λ
,{

PRG
$← PRGλ; r

$← {0, 1}m(λ) : (PRG, r)
}
λ
.

Definition 2.6 (Locality of PRGs). Let n, m, and ` be polynomials. We say a family of
(n,m)-PRGs PRG has locality ` if for every λ and for every PRG in the support of PRGλ, every
output bit of PRG depends on at most `(λ) input bits.

We next define pseudorandom function (PRF) families.

Definition 2.7. For λ ∈ N, let K = K(λ), X = X(λ), and Y = Y (λ) be finite sets, and
let PRF = PRFλ : K ×X → Y be an efficiently computable function. We say (PRFλ)λ∈N is a
pseudorandom function family with µ-indistinguishability if for all PPT algorithms A with access
to an oracle, which is either PRF(K, ·) for K $← K or a truly uniform function X → Y ,∣∣∣Pr

[
K

$← K : APRF(K,·)(1λ) = 1
]
− Pr

[
U

$← (X → Y ) : AU(·)(1λ) = 1
]∣∣∣ ≤ O(µ(λ)).

2.5 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation for a class of circuit defined by [BGI+01].

Definition 2.8 (Indistinguishability Obfuscator (iO) for a circuit class). A uniform PPT machine
iO is an indistinguishability obfuscator for a class of circuits {Cλ}λ∈N, if the following conditions
are satisfied:

Correctness: For all security parameters λ ∈ N, for every C ∈ Cλ, and every input x, we have
that

Pr[C ′ ← iO(1λ, C) : C ′(x) = C(x)] = 1

where the probability is taken over the coin-tosses of the obfuscator iO.
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µ-Indistinguishability: For every ensemble of pairs of circuits {C0,λ, C1,λ}λ∈N satisfying that
Cb,λ ∈ Cλ, |C0,λ| = |C1,λ|, and C0,λ(x) = C1,λ(x) for every x, the following ensembles of
distributions are µ-indistinguishable:{

C1,λ, C2,λ, iO(1λ, C1,λ)
}
λ∈N{

C1,λ, C2,λ, iO(1λ, C2,λ)
}
λ∈N

Definition 2.9 (IO for P/poly). A uniform PPT machine iOP/poly(?, ?) is an indistinguishability
obfuscator for P/poly if it is an indistinguishability obfuscator for the class {Cλ}λ∈N of circuits
of size at most λ.

2.6 Randomized Encodings

In this section, we recall the traditional definition of randomized encodings with simulation
security [IK02, AIK06].

Definition 2.10 (Randomized encoding scheme for circuits). A randomized encoding scheme
RE consists of two PPT algorithms,

• Ĉx
$← REnc(1λ, C, x): On input a security parameter 1λ, circuit C, and input x, REnc

generates an encoding Ĉx.

• y = REval(Ĉx): On input Ĉx produced by REnc, REval outputs y.

Correctness: The two algorithms REnc and REval satisfy the following correctness condition:
For all security parameters λ ∈ N, circuit C, input x, it holds that,

Pr
[
Ĉx

$← REnc(1λ, C, x) : Eval(Ĉx) = C(x)
]

= 1

µ-Simulation Security: There exists a PPT algorithm RSim, such that, for every ensemble
{Cλ, xλ}λ where |Cλ|, |xλ| ≤ poly(λ), the following ensembles are µ-indistinguishable for
all λ ∈ N . {

Ĉx
$← REnc(1λ, C, x) : Ĉx

}
λ∈N{

Ĉx
$← RSim(1λ, C(x), 1|C|, 1|x|) : Ĉx

}
λ∈N

where C = Cλ and x = xλ.

Furthermore, let C be a complexity class, we say that randomized encoding scheme RE is in C, if
the encoding algorithm REnc can be implemented in that complexity class.

2.7 Functional Encryption

We provide the indistinguishability-based security definition of a public-key functional encryption
(FE) scheme, which originally appeared in [BSW11, O’N10].
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2.7.1 Public-Key Functional Encryption

Syntax Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles of sets. Let F = {Fλ}λ∈N, where
every function in the set Fλ maps inputs in Xλ to outputs in Yλ.

A public-key functional encryption scheme FE for {Fλ}λ∈N consists of four PPT algorithms
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec).

• Setup: FE.Setup(1λ, pp) is an algorithm that on input a security parameter and some public
parameter (e.g., description of bilinear pairing groups) outputs a master public key and a
master secret key (mpk,msk).

• Key Generation: FE.KeyGen(msk, f) on input the master secret key msk and the description
of a function f ∈ Fλ, outputs a secret key skf .

• Encryption: FE.Enc(mpk, x) on input the master public key mpk and a message x ∈ Xλ,
outputs an encryption ct of x.

• Decryption: FE.Dec(sk, ct) on input the secret key associated with f and an encryption of
x, outputs y ∈ Yλ.

Correctness: We define perfect correctness here. For every λ, f ∈ Fλ, x ∈ Xλ, it holds that,

Pr

 (mpk,msk)
$← FE.Setup(1λ, pp)

ct
$← FE.Enc(mpk, x)

sk
$← FE.KeyGen(msk, f)

: f(x) = FE.Dec(sk, ct)

 = 1

Indistinguishability Security. Indistinguishability security of a functional encryption re-
quires that no adversary can distinguish the FE encryption of one input x0 from that of another
x1, if the adversary only obtains secret keys for functions that yield the same outputs on x0 and
x1, that is, for every secret key skf , it holds that f(x0) = f(x1). In this work, we consider the
restricted setting where only a single function key is released, though the associated function
may have multiple output bits.

Definition 2.11 (1-key Full-Sel-Ind-security). A public-key functional encryption scheme FE =
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for {Fλ}λ∈N is 1-key µ-Full-Sel-Ind-secure, if for every
sequence of functions {fλ}λ∈N where fλ ∈ Fλ, and every sequence of pairs of inputs {x0

λ, x
1
λ}λ∈N

where x0
λ, x

1
λ ∈ Xλ and fλ(x0

λ) = fλ(x1
λ), the following distributions are µ-indistinguishable.

(mpk,msk)← FE.Setup(1λ, pp)
sk← FE.KeyGen(msk, fλ)
ct← FE.Enc(mpk, x0

λ)
: (mpk, sk, ct)


λ∈N

(mpk,msk)← FE.Setup(1λ, pp)
sk← FE.KeyGen(msk, fλ)
ct← FE.Enc(mpk, x1

λ)
: (mpk, sk, ct)


λ∈N

Note that our notion of fully-selective security is weaker than the notion of selective security
in some papers in the literature (e.g., [GKP+13, ABSV15]), which only requires the adversaries
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to choose challenge inputs x0, x1 statically, but allows the adversaries to choose challenge function
inputs adaptively. Intuitively, the notion of fully-selective security is sufficient for applications
that are non-interactive, for instance, building IO from FE as in [AJ15, BV15].

Simulation Security We will also consider 1-key simulation-based security, which requires
that the master public key, secret key for a function f , and ciphertext for an input x, can be
simulated via a simulator receiving only f and f(x).

Definition 2.12 (1-key Full-Sel-Sim-security). A public-key functional encryption scheme FE =
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for {Fλ}λ∈N is 1-key µ-Full-Sel-Sim-secure, if for every
sequence of efficiently samplable distributions {Dλ}λ∈N over pairs (f, x) where f ∈ Fλ and x
is in the domain of f , there exists a simulator Sim, such that, the following distributions are
µ-indistinguishable.

(f, x)← Dλ
(mpk,msk)← FE.Setup(1λ, pp)

sk← FE.KeyGen(msk, f)
ct← FE.Enc(mpk, x)

: (mpk, sk, ct)


λ∈N{

(f, x)← Dλ : Sim(f, f(x))
}
λ∈N

2.7.2 FE for P/poly, NC1, and Compactness

Definition 2.13 (FE schemes for families of function classes). Let {FI}I∈I be a family of
function classes. We say that FE = {FEI}I∈I is a family of (1-key) FE schemes for {FI}I∈I
with µ-Adap-security or µ-Full-Sel-security if for every function class FI = {FIλ}λ∈N, FE

I is a
(1-key) FE scheme for FI with µ-Adap-security or µ-Full-Sel-security.

Moreover, define the following special cases: Let {FN,S}N ,S be a family of function classes
indexed by arbitrary polynomials N ∈ N and S ∈ S, such that, FN ,Sλ includes a subset of
functions that can be computed by circuits with N(λ)-bit inputs and S(λ) size. (For instance,
P/polyN,Sλ includes all circuits with N(λ) input bits and S(λ) size).

Compactness In the above definition of families of FE schemes for {FN,S}, algorithms in the
FE schemes could run in polynomial time depending on the polynomial parameters, such as,
N,S. In the literature, stronger efficiency requirements have been considered. In particular, the
works of [AJ15, BV15] defined compact FE schemes, which requires the encryption time to be
independent of the circuit size S of the functions.

Definition 2.14 (Compactness of FE schemes). Let FE =
{
FEN,S

}
be a family of FE schemes

for {FN,S}.

Compactness: We say that the functional encryption scheme FE is compact if there exists
a polynomial p, such that, for every polynomials N,S, ciphertexts of FEN,S have size
p(λ,N(λ), logS(λ)).

(1− ε)-Sublinear Compactness (a.k.a. (1− ε)-Weakly Compactness): We say that FE
is (1−ε)-sublinearly compact, if there exists a polynomial p, such that, for every polynomials
N,S, ciphertexts of FEN,S have size p(λ,N(λ)) · S(λ)1−ε.
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2.8 (Fully) Homomorphic Encryption

We give a definition of secret key fully homomorphic encryption following [Gen09a, Gen09b].

Definition 2.15 ((Fully) Homomorphic Encryption). A fully homomorphic secret-key encryption
(FHE) scheme FHE consists of the following four PPT algorithms:

Key generation: The algorithm FHE.KeyGen on input a security parameter 1λ, outputs a key s.

Encryption: The algorithm FHE.Enc on input a key s and a message x, outputs a ciphertext ct.

Evaluation: The algorithm FHE.Eval on input a circuit C and a tuple of ciphertexts (ct1, . . . , ctt),
outputs a ciphertext ct′.

Decryption: The algorithm FHE.Dec on input a key s and a ciphertext ct, outputs a message y.

A FHE scheme is required to have to following two properties:

Correctness: For all s output by FHE.KeyGen(1λ), all circuits C, all messages x1, . . . , xt, and
all ciphertexts ct1, . . . , ctt output by FHE.Enc(s, x1), . . . ,FHE.Enc(s, xt), we have

Pr
[
ct′

$← FHE.Eval(C, (ct1, . . . , ctt)) : FHE.Dec(s, ct′) = C(x1, . . . , xt)
]

= 1− negl(λ).

Compactness: There is a polynomial p such that for all s output by FHE.KeyGen(1λ), all
circuits C, all messages x1, . . . , xt, all ciphertexts ct1, . . . , ctt output by FHE.Enc(s, x1), . . . ,
FHE.Enc(s, xt), and all ct′ output by FHE.Eval(C, (ct1, . . . , ctt)), we have that |ct′| ≤ p(λ)
and FHE.Dec(s, ct′) runs in time bounded by p(λ) (independently of C).

If the evaluation only allows circuits from a certain class (and correctness and compact-
ness holds for such circuits), we call the scheme homomorphic for that class (instead of fully
homomorphic).

Definition 2.16 (Leveled Homomorphic Encryption). A family of homomorphic encryption
schemes {HE(d)}d∈N, where for all d ∈ N, HE(d) is homomorphic for all circuits of depth at
most d, is called leveled fully homomorphic if all HE(d) use the same decryption circuit, and the
computational complexity of all algorithms in HE(d) is polynomial in λ, d, and (for the evaluation
algorithm) the size of the circuit.

The definition of CPA-security for (fully) homomorphic encryption is identical to the definition
for ordinary secret-key encryption:

Definition 2.17 (CPA-Security). Let FHE = (FHE.KeyGen,FHE.Enc,FHE.Eval,FHE.Dec) be a
FHE scheme. We say FHE is µ-CPA-secure if for every PPT adversary A and for every sufficiently
large λ, the advantage of A in the following game is bounded by O(µ(λ)):

• The challenger runs s $← FHE.KeyGen(1λ).

• The adversary A with access to an encryption oracle FHE.Enc(s, ·) chooses a pair of
messages x0, x1 of equal length and sends them to the challenger.

• The challenger samples a bit b $← {0, 1}, computes ct $← FHE.Enc(s, xb), and sends ct to A.
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• The adversary A again has access to an encryption oracle FHE.Enc(s, ·), and finally outputs
a bit b′.

The advantage of A is defined as

AdvtFHE
A :=

∣∣2 · Pr[b′ = b]− 1
∣∣.

2.8.1 Threshold Multi-Key FHE

We next give definitions for multi-key FHE [LATV12] and threshold multi-key FHE following
[MW16].

Definition 2.18 (Multi-Key (Leveled) FHE). A multi-key (leveled) FHE scheme consists of the
following PPT algorithms:

• MFHE.Setup on input a security parameter 1λ and circuit depth 1d, outputs the system
parameters params.

• MFHE.KeyGen on input the system parameters params, outputs a public key pk and a
secret key sk.

• MFHE.Enc on input pk and a message x, outputs a ciphertext ct.

• MFHE.Expand on input a sequence of public keys pk1, . . . , pkN , an index i ∈ [N ], and a
fresh ciphertext c under the ith key pki, outputs an “expanded” ciphertext ĉt.

• MFHE.Eval on input params, a boolean circuit C of depth at most d, and expanded
ciphertexts ĉt1, . . . , ĉt`, outputs an evaluated ciphertext ĉt.

• MFHE.Dec on input params, a sequence of secret keys sk1, . . . , skN , and a ciphertext ĉt,
outputs a message.

We require the following properties:

µ-Semantic Security: For any polynomial d and any two messages x0, x1, the following two
distributions are µ-indistinguishable:{

params
$← MFHE.Setup

(
1λ, 1d(λ)

)
(pk, sk)

$← MFHE.KeyGen(params)
:
(
params, pk,MFHE.Enc(pk, x0)

)}
λ∈N{

params
$← MFHE.Setup

(
1λ, 1d(λ)

)
(pk, sk)

$← MFHE.KeyGen(params)
:
(
params, pk,MFHE.Enc(pk, x1)

)}
λ∈N

Correctness and Compactness: Let params
$← MFHE.Setup

(
1λ, 1d

)
, let for all i ∈ {1, . . . , N},

(pki, ski)
$← MFHE.KeyGen(params), and let x1, . . . , x` be messages. For I1 ∈ [N ], . . . , I` ∈

[N ], let cti
$← MFHE.Enc(pkIi , xi) and let ĉti

$← MFHE.Expand((pk1, . . . , pkN ), Ii, cti) for
i ∈ [`]. Further let C be a circuit of depth at most d and let ĉt := MFHE.Eval(C, (ĉt1, . . . , ĉt`)).
Then the following holds:

Correctness of Expansion: MFHE.Dec
(
params, (sk1, . . . , skN ), ĉti

)
= xi for all i ∈ [`].
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Correctness of Evaluation: MFHE.Dec
(
params, (sk1, . . . , skN ), ĉt) = C(x1, . . . , x`

)
.

Compactness:
∣∣ĉt∣∣ is polynomial in λ, d, and N (independently of C and `).

Definition 2.19 (Threshold Multi-Key FHE). A threshold multi-key FHE scheme is a multi-key
FHE scheme with the following two additional algorithms:

• MFHE.PartDec on input an expanded ciphertext ĉt, public keys pk1, . . . , pkN , an index i ∈
[N ], and the ith secret key ski, outputs a partial decryption pi.

• MFHE.FinDec on input partial decryptions p1, . . . , pN , outputs a message.

We further require correctness and simulatability of partial decryptions defined as follows:
Let params

$← MFHE.Setup
(
1λ, 1d

)
, (pki, ski)

$← MFHE.KeyGen(params) for i ∈ [N ], and let

x1, . . . , x` be messages. Further let I1 ∈ [N ], . . . , I` ∈ [N ], and let cti
$← MFHE.Enc(pkIi , xi) and

ĉti
$← MFHE.Expand

(
(pk1, . . . , pkN ), Ii, cti

)
for i ∈ [`]. Finally let C be a circuit of depth at

most d and let ĉt := MFHE.Eval
(
params, C,

(
ĉt1, . . . , ĉt`

))
. We then require:

Correctness of Decryption: For pi
$← MFHE.PartDec

(
ĉt, (pk1, . . . , pkN ), i, ski

)
, i ∈ [N ], we

have MFHE.FinDec(p1, . . . , pN ) = C(x1, . . . , x`) with probability 1.

µ-Simulatability of Partial Decryptions: There exists a PPT simulator Sim that on input
i ∈ [N ], (skj)j∈[N ]\{i}, ĉt, and C(x1, . . . , x`), produces a simulated partial decryption p′i
such that

δ(pi, p
′
i) ≤ O(µ(λ)),

where pi
$← MFHE.PartDec

(
ĉt, (pk1, . . . , pkN ), i, ski

)
. Here, the randomness for the statis-

tical distance is only over the coins of Sim and MFHE.PartDec, and all other values are
fixed.

3 Definition of Pseudo Flawed-Smudging Generators

Definition 3.1. Let B, ` be positive integers. We say that a distribution D over Z` is B-bounded,
if Support(D) ⊆ [−B,B]`.

Definition 3.2 (Smudging Distributions). Let ` and B be positive integers and ε ∈ [0, 1]. We
say a distribution X over Z` is (B, ε)-smudging if for X $← X and for all e ∈ [−B,B]` ∩Z`, we
have δ(X,X + e) ≤ ε.

Definition 3.3 (Bit-fixing distributions). Let D be a distribution over strings in ∆≤` for some
integer `. Let I ⊆ [`] be a set of indices, and x an arbitrary string in ∆|I|. Define D|x,I to be the
distribution of sampling x from D conditioned on xI = x. For convenience, we sometimes also
write I as its characteristic vector v, where vi = 1 iff i ∈ I.

We say that D is bit-fixing efficiently samplable, if D|x,I is efficiently samplable for any x, I.

Definition 3.4 (Flawed-Smudging Distributions). Let ` and m be positive integers and let X
and V be distributions over Z` and Zm, respectively. Further let for i ∈ [`], Φi ⊆ [m] and let
Ei : Z

|φi| → Z be functions. For I ⊆ [`], let ΦI :=
⋃
i∈I Φi. Define E : Zm → Z` as

E(v1, . . . , vm) =
(
E1

(
(vj)j∈φ1

)
, . . . , E`

(
(vj)j∈φ`

))
.
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We say that X is (K,µ)-flawed-smudging for (E,V), if there exist randomized predicates{
BADi : Z`+1 → {0, 1}

}
i∈[`]

such that the following two distributions are identical,

D1 =


V ← V
X ← X

bad =
(
badi ← BADi(Ei(VΦi), X)

)
i∈[`]

: (V, E(V ) +X, bad)

 ,

D2 =


V ← V
X ← X

bad =
(
badi ← BADi(Ei(VΦi), X)

)
i∈[`]

V ← V|VΦbad
,Φbad

:
(
V , E(V ) +X, bad

)
 ,

and in addition, with probability at least 1− µ, the 1-norm of bad is bounded by |bad|1 ≤ K.
We say that X is (K,µ)-flawed-smudging for B-bounded distributions, if it is (K,µ)-

flawed-smudging for every (E,V) such that E(V) is B-bounded.

Definition 3.5. (Pseudo Flawed-Smudging Generator) Let n,m,K,B be polynomials. A family
of (n,m)-pseudo flawed-smudging generator (PFG) is an ensemble of distributions PFG =
{PFGλ}λ∈N satisfying the following properties:

Syntax: For every λ ∈ N, every (PFG,Dseed) in the support of PFGλ defines a function
PFG : Zn(λ) → Zm(λ) and a poly(λ)-bounded distribution Dseed over seeds.

Efficiency: There is a uniform Turing machine M satisfying that for every λ ∈ N, every
(PFG,Dseed) ∈ Support(PFGλ) and seed ∈ Support(Dseed), M(PFG, seed) runs in time
poly(λ) and we have M(PFG, seed) = PFG(seed). Furthermore, PFG and all Dseed in the
support of PFGλ are efficiently samplable.

(K,µ)-pseudo-flawed-smudging for B-bounded distributions: There exists an ensemble
{Xλ} of distributions where Xλ is (K(λ), µ(λ))-flawed-smudging for all B(λ)-bounded
distributions, and the following ensembles are µ-indistinguishable:{

(PFG,Dseed)
$← PFGλ; seed

$← Dseed : (PFG,PFG(seed))
}
λ∈N

,{
(PFG,Dseed)

$← PFGλ;X
$← Xλ : (PFG, X)

}
λ∈N

.

4 Functional Encryption for Constant Degree Polynomials

Fix an arbitrary maximum degree D, an appropriate sequence of modulus p2 � p3 > · · · pd >
pd+1 · · · > pD where p2 = λw(1), {p3, · · · , pD} are polynomially large as set in Remark 4.3 and
(pd, pd+1) for every 3 ≤ d ≤ D − 1 are coprime, and an appropriate sequence of component-size
bounds s2 > s3 > · · · > sd > sd+1 > · · · > sD all poly(λ)-bounded. We construct special-purpose
FE schemes for the following families of constant-degree polynomials:

• Family dFN,S = {dFN,Sλ } indexed by arbitrary polynomials N,S, contains degree d poly-
nomials f over Zpd , with input-length N = N(λ), size S = S(λ). f = {fi} may have many
output elements {fi(x)} and satisfies that each component fi has size at most sd = sd(λ).

Our FE schemes are constructed recursively, starting from the base case for quadratic d = 2
polynomials. We will show that the constructed schemes satisfies special-purpose sub-linear
compactness, correctness and simulation-security.
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4.1 Base Case: 2FEN,S for Quadratic Polynomials

We start with constructing a special-purpose FE scheme 2FEN,S for computing quadratic polyno-
mials in 2FN,S . Our FE scheme 2FE = 2FEN,S relies on the following building blocks. Let λ be
the global security parameter, B < B are appropriately set polynomials in λ specified below.

• A polynomial-stretch (S1−α, S)-PFG (PFG,Dseed), whose output is indistinguishable to a
(λε2 , µ)-flawed-smudging distribution X for B-bounded distributions. Importantly, PFG
must be a quadratic polynomial over Z, and its output to be B-bounded, where B =
poly(B, λ). In Section 6.2, we provide a candidate of such generators.

(Here for convenience, we use a single PFG (PFG,Dseed). It can be replaced with a family
of PFGs PFG by sampling (PFG,Dseed)← PFGλ in the FE setup algorithm.)

• FE schemes {QFEN,S} for computing quadratic functions f over Zp2 of input-length N and
size S, with the following properties:

– Linear compactness: Ciphertext size is poly(λ)N , depending linearly on the input
length and is independent of the size of computation.

– Simulation Security: The scheme satisfies 1-key 2−λ
ε1 -Full-Sel-Sim-security.

Such a scheme can be constructed from bilinear maps over Zp as in [Lin17, BCFG17],
together with a degree-2 PRG over Zp. However, these schemes achieves only weak
correctness, in the sense that the outputs are computed in the target group of the bilinear
map and can only be extracted in plaintext if the outputs resides some in polynomially-sized
set.

– Weak Correctness: For any correctly generated qsk for a quadratic function f and
ciphertext qct for an input x, QFE.Dec(qsk, qct) = [f(x)]T , where [f(x)]T = g

f(x)
T is

encoding of the output in the target group of the underlying bilinear map.

Construction of 2FEN,S: Our special-purpose FE scheme is parameterized by a public pa-
rameter pp = (p2, p3, · · · , pD, s2, · · · sD, npad) consisting all fixed parameters and a sufficiently
large polynomial npad = poly(s2) > poly(sd).

• 2FE.Setup(1λ, pp): On input the security parameter and public parameter pp, generate a pair
of QFE keys (qmpk, qmsk)← QFE.Setup(1λ), and output mpk = (pp, qmpk),msk = qmsk.

• 2FE.Enc(mpk, x): On input mpk = (pp, qmpk) and x ∈ ZNp2
, do:

– For every 3 ≤ β ≤ D and every k ∈ [npad], sample seedβ,k ← Dseed.
– Encrypt qct← QFE.Enc(qmpk, (x, {seedβ,k}β,k)).

Output 2ct = qct.

• 2FE.KeyGen(msk, f): On input msk and a quadratic polynomial f over ZNp2
, do:

– Let g(x, {seedβ,k}β,k) denote the following quadratic function: For every output
element i of f ,

gi(x, {seedβ,k}β,k) := fi(x) +
∑

3≤β≤D
pβ ×

 ∑
k∈[npad]

PFGi(seedβ,k)

 .
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For simplicity of notation, we suppress the subscript i and write

g(x, {seedβ,k}β,k) = f(x) +
∑

3≤β≤D
pβ ×

∑
k∈[npad]

PFG(seedβ,k),
1

Note that since PFG is a quadratic polynomial over Z, g is a quadratic polynomial
over Zp2 .

– Generate key qsk← QFE.KeyGen(qmsk, g).

Output 2sk = qsk.

• 2FE.Dec(2sk, 2ct) : Output y = QFE.Dec(qsk, qct).

It is easy to see that the above construction satisfies the following properties.

• Special-Purpose Sublinear Compactness: It follows from the fact that PFG has polynomial-
stretch, every seedβ,k has length S1−α. Then, by the linear compactness of QFE, we have
that the size of ciphertext is

|2ct| = |qct| = poly(λ)(N + npad × S1−α) = poly(λ)(N + S1−α) ,

where the last equality follows from the fact that npad = poly(λ). Note that unlike standard
sublinear compactness which allows ciphertext size to grow polynomially with the length of
the input poly(λ,N)S1−α, the ciphertext size of 2FE grows linearly in N . We refer to this
as special-purpose (1− α)-sublinear compactness.

• Special-Purpose Weak Correctness: By construction of g, we have

y = g(x, {seedβ,k})

= f(x) +
∑

3≤β≤D
pβ ×

 ∑
k∈[npad]

PFG(seedβ,k)


= f(x) +

∑
3≤β≤D

pβ × Λβ ,

where Λβ =
∑

k PFG(seedβ,k), and since the output of PFGi is B-bounded, Λβ is (Bnpad =
poly(λ))-bounded. It then follows from the weak correctness of QFE that

2FE.Dec(2sk, 2ct) =

y = (f(x) +
∑

3≤β≤D
pβ × Λβ)


T

. (1)

• Special-Purpose Simulation Security: It follows from the 1-key µ-Full-Sel-Sim-security of
QFE that if for every sequence of distributions {FN λ} over f ∈ 2FN,Sλ , and every sequence

1This notation ignores the fact that PFG may have longer outputs than f . More precisely, g is defined
component-wise as above.
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of efficiently samplable input distributions {Dλ} over ZNq2 , there exists a simulator Sim,
such that, the following distributions are µ-indistinguishable.

f ← FN λ, x← Dλ
(mpk,msk)← 2FE.Setup(1λ, pp)

2sk← 2FE.KeyGen(msk, f)
2ct← 2FE.Enc(mpk, x)

: (mpk, 2sk, 2ct)


λ∈N f ← FN λ, x← Dλ

{seedβ,k ← Dseed}3≤β≤D,k∈[npad]
: Sim(f, y = f(x) +

∑
β,k

pβPFG(seedβ,k))


λ∈N

It further follows from the pseudo-flawed-smudging property of PFG that the second
ensemble above is indistinguishable to the following, where the outputs of the PFG are
replaced with samples from the (λε2 , µ)-flawed-smudging distribution X for B-bounded
distributions. f ← FN λ, x← Dλ

{∆β,k ← Xλ}3≤β≤D,k∈[npad]
: Sim(f, y = f(x) +

∑
β,k

pβ∆β,k)


λ∈N

(2)

4.2 Recursive Construction: d+1FEN,S for degree d+ 1 Polynomials

We recursively construct our special-purpose FE scheme d+1FE = d+1FEN,S for computing degree
d+ 1 polynomials over Zpd+1

from our special purpose FE scheme dFE = dFEN
′,S′ for computing

degree d polynomials over Zpd . The construction also makes use of a secret-key encryption
scheme HE = (HE.KeyGen,HE.Enc,HE.Eval,HE.Dec) supporting homomorphic evaluation of
constant-degree polynomials with special properties.

Secret-key Homomorphic Encryption for Constant-Degree Polynomials We describe
a specific instantiation of HE using the simple secret-key encryption scheme based on the hardness
of LWE— a ciphertext of x ∈ Zpd+1

is of form a, 〈a, s〉+pd+1e+x over Zpd . It was shown in [BV11]
that this simple scheme supports homomorphic evaluation of constant-degree polynomials. In
addition, as shown in [GKPV10, AKPW13] that when the secret s is binary from {−1, 1}, the
hardness of LWE holds even if the secret s is only entropic instead of uniformly random. This
means the semantic security of the scheme holds as long as s has sufficient entropy. Below we
describe the scheme, and highlight the special properties that are useful for our construction of
FE schemes.

• HE.KeyGen(1n, hpp = (pd+1, pd)) on input a security parameter 1n, outputs a random
binary vector s← {−1, 1}n.

• HE.Enc(s, x), on input message x ∈ ZNpd+1
, samples a vector a ← Znpd , and noise e ← χ

where χ is a poly(n)-bounded noise distribution, and outputs

hct = (a, c = 〈a, s〉+ pd+1e+ x) (mod pd) .

Property 1 — Encryption with partial information of secret: Note that encryption depends
only 〈a, s〉 instead of s entirely. This means if information related to generating a few
ciphertexts is revealed, s still has high entropy. To make this explicit, we write

hct = HE.Enc′(a, 〈a, s〉, x, e) ,
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In addition, note that HE.Enc′ has constant locality in its input.

• HE.Eval(f, hct1, · · · hctt) on input a degree d+ 1 polynomial f : ZNpd+1
→ Zpd+1

, and a list
of ciphertexts, expand f as a sum of monomials

f(x) =
∑
j

mnlj(x) , where mnlj(x) =
∏

γ∈[d+1]

xjγ

output ciphertext

hctf =
∑
j

hctmnlj , where hctmnlj = ⊗γ∈[d+1]hctjγ (mod pd) ,

where ⊗ stands for vector tensor product.

• HE.Dec(s, hct) learns the degree d+ 1 of homomorphic evaluation from |hct|, and outputs

y = 〈s⊗d+1, hct〉 (mod pd) , where s⊗d = ⊗γ∈[d+1]s .

Note that the actual message can be extracted as y mod pd+1. For convenience of notation,
we let HE.Dec output directly y.

Property 2–Additive and Local Structure of Noise By construction, for hctf derived from
ciphertexts hct1 · · · hctt described above,

HE.Dec(s, hctmnlj ) = mnlj(x) + emnlj (xj1 , · · · , xjd+1
, ej1 , · · · , ejd+1

) ,

HE.Dec(s, hctf ) = f(x) + ef = f(x) +
∑
j

emnlj

where xi, ei are respectively the input and noise underlying the i’th input ciphertext hcti,
and emnlj (xj1 , · · · , xjd+1

, ej1 , · · · , ejd+1
) is the noise underlying hctmnlj , which depends only

on the inputs and noises underlying the ciphertexts hctj1 , · · · , hctjd+1
involved in computing

this monomial.

Since the noise distribution is poly(n)-bounded, every emnlj is also poly(n)-bounded, where
the polynomial depends on d+ 1.

Property 3 Decomposing homomorphic evaluation and decryption: For every polynomial
f(x) of degree d+ 1, we define the following polynomials

HE.Dec(s,HE.Eval(f, (hct1, · · · , hctt))) =: f̂1(s, (hct1, · · · , hctt)) + f̂2(hct1, · · · , hctt) ,

The total degree of f̂1 is d+ 1 and its degree in (hct1, · · · , hctt) is d. Hence there is a degree
d function f̃1 s.t.

f̃1((s⊗d+1, 1)⊗ (hct1, · · · , hctt, 1)) := f̂1(s⊗d+1, (hct1, · · · , hctt)) .

When having multiple functions f = {fi}, one can perform homomorphic evaluation and
decryption component-wise.

HE.Dec(s,HE.Eval(fi, (hct1, · · · , hctt)))
= f̂2,i(hct1, · · · , hctt) + f̃1,i((s

⊗d+1, 1)⊗ (hct1, · · · , hctt, 1)) . (3)

For convenience, below we often suppress the subscript i. By construction of HE, f̃2 is a
degree d polynomial over Zpd . For each component f̃2,i, its size and input-length are only a
multiplicative poly(λ) factor larger than the size and input-length of fi.
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Property 4 — Robustness under entropic secrets Semantic security of HE follows directly from the
hardness of LWE with binary secrets. Therefore, by the robustness of LWE [GKPV10, AKPW13],
semantic security holds as long as the binary LWE secret has sufficient entropy. More precisely,

Lemma 4.1 (Robustness of HE). Let pd > pd+1 be co-prime integers. By the µ-indistinguishability
of LWE

WL(1,k)
n,m,pd,χ (Definition 2.4), it holds that for all efficiently samplable correlated random

variables (s, aux), where the support of s is {−1, 1}n and H∞(s | aux) ≥ k, the following
distributions are µ-indistinguishable

(aux, {hct← HE.Enc(s, xi)}i∈[m]) (aux, {hct← HE.Enc(s, 0)}i∈[m]) ,

where {xi}i∈m are arbitrary messages in Zpd+1
and the encryption randomness is independent of

(s, aux).

It was shown first in [GKPV10] that the weak and leaky LWE assumption is implied by
standard LWE. However, their result requires super-polynomial modulus (pd here) and modulus-
to-noise ratio, which is insufficient for our purpose. Fortunately, a later work by [AKPW13]
improved the result to work with polynomial modulus and modulus-to-noise ratio. We recall
their theorem.

Theorem 4.2 ([AKPW13, Theorem B.5]). Let k, `, m, n, β, γ, σ, and pd be integers, and let
Ψ be a distribution (all parameterized by λ) such that Pr

x
$←Ψ

[|x| ≥ β] ≤ negl(λ) and σ ≥ βγnm.
Further let χσ be either the discrete Gaussian distribution with standard deviation σ, or the
uniform distribution over [−σ, σ]∩Z. Assuming that the LWE`,m,pd,Ψ-assumption holds, the weak
and leaky LWE

WL(γ,k)
n,m,pd,χσ -assumption holds if k ≥ (`+ Ω(λ)) log(pd), with polynomial security loss.

Remark 4.3. In particular, the modulus pd, which needs to be larger than the noises from χσ,
can be set to a polynomial, depending on n, γ, and β all bounded by fixed polynomials in λ, and
the number m of LWE samples. Since in our construction of FE, the number of LWE samples
generated is polynomial (looking ahead, it depends on the input length N and size S of the
computation), pd is polynomial.

Construction of d+1FE Using our special purpose FE scheme dFE = dFEN
′,S′ for degree d

polynomials with appropriate N ′, S′ set below, and the homomorphic encryptions scheme HE for
constant degree computation above, our d+1FE = d+1FEN,S scheme proceeds as follows:

• d+1FE.Setup(1λ, pp): On input the security parameter 1λ and public parameter pp, generate
a pair of dFE keys (dmpk, dmsk)← dFE.Setup(1λ, pp), and output mpk = (pp, dmpk),msk =
dmsk.

• d+1FE.Enc(mpk, x): On input mpk = (pp, dmpk) and x ∈ ZNpd+1
, do:

– Sample s← HE.KeyGen(1n, hpp = (pd+1, pd)), where n(λ) = poly(λ) is an appropriate
polynomial in the global security λ.

– Encrypt hct = {hcti = HE.Enc′(ai, 〈ai, s〉, xi ; ei)}i∈[N ].

– Generate message X = (s⊗d+1, 1)⊗ (hct, 1), and encrypt dct← dFE.Enc(dmpk, X).

Output ct = (hct, dct).

(Note that |hct| = poly(λ)N , X ∈ Z|X|pd , and |X| = poly(λ)N .)
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• d+1FE.KeyGen(msk, f): On input msk = dmsk, and a degree d + 1 polynomial f over
ZNpd+1

, output a key for the polynomial f̃1(X) associated with f (Equation 3), dsk ←
dFE.KeyGen(dmsk, f̃1).

(Note that f̃1 is a degree d polynomial over Zpd; it has size S′ = poly(λ)S, input length
N ′ = |X| = poly(λ)N , and every component f̃1i has size sd = poly(λ)sd+1.)

• d+1FE.Dec(sk, ct) : On input sk = dsk and ct = (hct, dct), output

y = f̂2(hct) � dFE.Dec(dsk, dct) .

where � denotes component-wise addition between a scalar and an encoding in the target
group of the bilinear map.

We first argue the succinctness and special-purpose correctness of the schemes, and then show
that they satisfy special-purpose simulation-security. All proofs go by induction on d, and the
base case d = 2 was proven in Section 4.1.

• Special-Purpose Sublinear Compactness: Assume that dFEN
′,S′ satisfies special-purpose (1−

α)-sublinear compactness, that is,

|dct| = poly(λ)(N ′ + S′1−α) .

Then, d+1FEN,S constructed above also satisfies that

|ct| = poly(λ)(N + S1−α) .

By construction, ct = (hct, dct), and we have

|hct| = poly(λ)|x| ,
|dct| = poly(λ)(N ′ + S′1−α) = poly(λ)(N + S1−α) ,

where the latter follows from the fact that N ′ = poly(λ)N and S′ = poly(λ)S. This
concludes the proof.

• Special-Purpose Weak Correctness: Assume that dFEN
′,S′ satisfies special-purpose weak

correctness that for any correctly generated secret key dsk for function f̃ and ciphertext
dct for input X,

dFE.Dec(dsk, dct) =

f̃(X) +
∑

d+1≤β≤D
pβ × Λ̃β +

∑
3≤β<d+1

pβỸβ


T

,

where every Λ̃β is (Bnpad)-bounded, and every Ỹβ is (B +B)npad-bounded.

Then d+1FEN,S also satisfies that for any correctly generated secret key sk for function f
and ciphertext ct for input x,

d+1FE.Dec(sk, ct) =

f(x) +
∑

d+2≤β≤D
pβ × Λβ +

∑
3≤β<d+2

pβYβ


T

,
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where again every Λβ is (Bnpad)-bounded, and every Yβ is (B +B)npad-bounded.

Since sk = dsk for function f̃1 associated with f , ct = (hct, dct) encrypting respectively x
and X, and

d+1FE.Dec(sk, ct) = f̂2(hct) � dFE.Dec(dsk, dct)

=

f̂2(hct) + f̃1(X) +
∑

d+1≤β≤D
pβ × Λ̃β +

∑
3≤β<d+1

pβỸβ


T

=

f(x) + ef +
∑

d+1≤β≤D
pβ × Λ̃β +

∑
3≤β<d+1

pβỸβ


T

=

f(x) +
∑

d+2≤β≤D
pβ × Λ̃β + pd+1(Yd+1 = Λ̃d+1 + ef ) +

∑
3≤β<d+1

pβỸβ


T

.

We claim that ef is (Bnpad)-bounded, when B and npad are set to sufficiently large
polynomial in λ. Then Yd+1 = Λ̃d+1 + ef is (B +B)npad-bounded as desired.

For any f = {fi}, ef = {efi}, where efi is the noise in the ciphertext produced by
homomorphically evaluating fi. By the additive and local structure of noise of HE (Property
2), efi =

∑
j e

mnli,j where mnli,j is the j’th monomial in function fi, and emnli,j is poly(λ)-
bounded, depending on the degree d+ 1 and size of LWE noises from χ.

Set B = B(λ) to be larger than emnli,j for maximum degree D and noise distribu-
tion χ.

In addition, as fi has size sd+1, it contains at most poly(sd+1) monomials.

Set npad to be larger than the number of monomials in maximum degree D
polynomials with size at most s2 (recall s2 > sd+1).

Therefore, efi is Bnpad-bounded.

• Special-Purpose Simulation Security: We start with defining special-purpose simulation
security.

Definition 4.4. We say that dFEN,S satisfies special-purpose µ-simulation security if for
every distribution {FN}λ over f ∈ dFN,S , and every distribution {inp(R)}λ where inp
is a constant locality function with range ZNqd and R is a distribution over the domain of
I, there exist correlated random variables (rK ,K, st) sampled by dDSim, and an efficient
simulator dSim, such that,

– the following distributions dReal (top) and dIdeal (bottom) are µ-indistinguishable,
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and 
f ← FN , r ← R, x← inp(r)

(mpk,msk)← dFE.Setup(1λ, pp)
sk← dFE.KeyGen(msk, f)
ct← dFE.Enc(mpk, x)

: r, (mpk, sk, ct)


λ∈N

f ← FN ,
(rK ,K, st)← dDSim(f),
r̄ ← R|rK ,K , x̄ = inp(r̄)
{∆β,k ← X}d+1≤β≤D,k∈[npad]

: r̄, dSim

(
(rK ,K, st), f,

y = f(x̄) +
∑

d+1≤β≤D
k∈[npad]

pβ∆β,k

) 
λ∈N

– with probability 1− µ, |K| ≤ O(λε2).

More intuitively, the special-purpose simulation security states that honestly generated
(mpk, sk, ct) of dFE can be simulated using i) the output f(x̄) “perturbed” by some “noise”
∆β,k (sampled from the (λε2 , µ)-flawed-smudging distribution X for B-bounded distribu-
tions associated with the PFG PFG), and ii) the distribution under which the input x̄
is sampled — instead of sampling x randomly from inp(R), x̄ is sampled using r̄ that is
partially fixed at locations K to rK , where (rK ,K) are sampled from a distribution dDSim

together with a state st. Importantly, the set of fixed locations is small, bounded sublinear
in λ.

As analyzed in Section 4.1, 2FEN,S satisfies the above definition w.r.t. a distribution 2DSim

that always outputs null, and a simulator 2Sim established in Section 4.1. Next, we show
inductively that special-purpose simulation security holds.

Lemma 4.5 (Induction). If for every polynomial N ′, S′, dFEN
′,S′ satisfies O(µ)-special-

purpose simulation security, then for every polynomial N,S, d+1FEN,S also satisfies O(µ)-
special-purpose simulation security.

Therefore, all our schemes satisfies special-purpose simulation security.

Next, we first prove Lemma 4.5 and then based on the proof show a structural property of
dDSim.

4.2.1 Proof of Special Purpose Simulation Security of d+1FE

Fix d+1FEN,S , FN , and inp(R) as in Definition 4.4. We want to show that there exists correlated
random variables (rK ,K, st) sampled by d+1DSim, and an efficient simulator d+1Sim, such that,
d+1Real (top) and d+1Ideal (bottom) are O(µ)-indistinguishable, and

f ← FN , r ← R, x = inp(r)
(mpk,msk)← d+1FE.Setup(1λ, pp)

sk← d+1FE.KeyGen(msk, f)
ct← d+1FE.Enc(mpk, x)

: r, (mpk, sk, ct)


f ← FN ,

(rK ,K, st)← d+1DSim(f),
r̄ ← R|rK ,K , x̄ = inp(r̄)
{∆β,k ← X}d+2≤β≤D,k∈[npad]

: r̄, d+1Sim

(
(rK ,K, st), f,

y = f(x̄) +
∑

d+2≤β≤D
k∈[npad]

pβ∆β,k

) 
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We show this via a sequence of hybrids H0, · · ·H4, where H0 = d+1Real and H4 = d+1Ideal
for some d+1DSim and d+1Sim constructed along the way.

Hybrid H0 is identical to d+1Real. By construction of d+1FE, H0 is identical to:{(
r,
(
hct, dmpk, dsk(f̃1), dct(X)

))
← Samp0

}
, 2

where Samp0 does:

1. Sample f ← FN , r ← R, x← inp(r).
2. Generate s← HE.KeyGen(1n, hpp) and encrypt hct = {HE.Enc′(ai, 〈ai, s〉, xi ; ei)}i∈[N ]

using random ai’s.
3. Generate (dmpk, dmsk)← dFE.Setup(1λ, pp), dsk← dFE.KeyGen(msk, f̃1) for f̃1 related

to f , and dct← dFE.Enc(mpk, X) for X = (s⊗d+1, 1)⊗ (hct, 1).

In order to invoke the special-purpose simulation security of dFE for (dmpk, dsk, dct),
we observe that the above distribution can be efficiently generated from the following
distribution
We define dFN and dinp(dR) to be the distributions that sample the function f̃1 and input
X used by the dFE scheme:

dFN samples f ← FN , output f̃1 associated with f
dR samples ( r, s,A = {ai},As = {〈ai, s〉}, e = {ei}) as in the steps 1, 2 of Samp0

dinp (r, s,A,As, e) computes X = (s⊗d+1, 1)⊗ (hct, 1) as in step 2, 3 of Samp0

We observe that dR is bit fixing efficiently samplable (i.e., for any subset of indexes K ′,
and any RK′ , one can efficiently sample R̄ conditioned on R̄K′ = RK′). Moreover, since
both inp and HE.Enc′ have constant locality, dinp also has constant locality. Consider the
following dReal distribution w.r.t. the degree d scheme dFE.

f̃1 ← dFN
(R = (r, s,A,As, e))← dR

X = dinp(R)
(dmpk, dmsk)← dFE.Setup(1λ, pp)

dsk← dFE.KeyGen(msk, f̃1)
dct← dFE.Enc(mpk, X)

: R, (dmpk, dsk(f̃1), dct(X))


It is easy to see that Real can be efficiently reconstructed from dReal, as given R one can
obtain r and compute hct(x).
It follows from the special-purpose simulation security of dFE that there exist a distribution
dDSim and an efficient simulator dSim, such that, dReal is O(µ)-indistinguishable to the
following dIdeal distribution{ f̃1 ← dFN

((RK′ ,K
′, st′), R̄, X̄)← Samp1(f̃1)

{∆β,k ← X}d+1≤β≤D,k∈[npad]

:

R̄, dSim

 (RK′ ,K
′, st′), f̃1,

y′ = f̃1(X̄) +
∑

d+1≤β≤D
k∈[npad]

pβ∆β,k

 }
2We changed the order of components, without loss of generality.

25



where Samp1(f̃1) does:

1. Sample (RK′ ,K
′, st′)← dDSim(f̃1)

2. Sample R̄← R|RK′ ,K′ where R̄ contains
(
r̄, ē, s̄, Ā, Ās̄

)
.

3. Compute x̄ = inp(r̄), and X̄ = dinp(R̄) = (s̄⊗d+1, 1) ⊗ (hct, 1), where hct =
{HE.Enc′(āi, 〈āi, s̄〉, x̄i, ēi)}.

Since H0 can be reconstructed from dReal, it is O(µ)-indistinguishable to the following
hybrid H1 reconstructed from dIdeal.

Hybrid H1, based on dIdeal, samples as follows:

{ f̃1 ← dFN
((RK′ ,K

′, st′), R̄, X̄)← Samp1(f̃1),
{∆β,k ← X}d+1≤β≤D,k∈[npad]

:

r̄, hct, dSim

 (RK′ ,K
′, st′), f̃1,

y′ = f̃1(X̄) +
∑

d+1≤β≤D
k∈[npad]

pβ∆β,k

 }

where r̄ is contained in R̄ and hct in X̄.

By property of HE, homomorphic evaluation of f followed by decryption (Property 3) can
be decomposed into

HE.Dec(s̄,HE.Eval(f, hct)) = f̂2(hct) + f̃1(X̄) = f(x̄) + pd+1e
f ,

where ef = {efi} and ∀i, efi =
∑
j

emnlij (x̄, ē)

The second line follows from the additive and local structure of noise of HE (Property 2).
By the same property, we also know that emnlij (x̄, ē) depends only on variables (x̄l, ēl) s.t.
x̄l appears in mnlij . Thus, emnlij has constant locality 2(d+ 1).

Therefore, y′ above can be written as:

y′ = f(x̄)− f̂2(hct) + pd+1

ef +
∑

k∈[npad]

∆d+1,k

+
∑

d+2≤β≤D
k∈[npad]

pβ∆β,k

where ∀i, efi +
∑
k

∆d+1,k,i =
∑
k

(emnlik + ∆d+1,k,i) .

(Recall that npad upper bounds the number of monomials contained in every component fi;
if for some k ∈ [npad], monomial mnlik does not exist, let emnlik = 0.)

For every k, {emnlik} is B-bounded. On the other hand, each ∆d+1,k is a sample from the
(λε2 , µ)-flawed-smudging distribution X for exactly B-bounded distributions. This means,
there are randomized predicates {BADk,i}, such that, the following two distributions are
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identical for any f̃1,

D1(f̃1) =


(?, r̄, ē, ?)← Samp1(f̃1)

{ emnlik = emnlik(inp(r̄), ē) }i,k
{∆d+1,k ← X}k

{ badk,i ← BADk,i(e
mnlik ,∆d+1,k) }i,k

:

(r̄, ē),
{
emnlik + ∆d+1,k,i

}
k,i
, bad)

}
,

D2(f̃1) =

{
same sampling as in D1

(?, r̃, ẽ, ?)← Samp1(f̃1)|(r̄,ē)I ,I
: (r̃, ẽ),

{
emnlik + ∆d+1,k,i

}
k,i
, bad)

}
.

(4)

where I is the set of indices l of variables in r̄, ē that emnli,k for with badk,i = 1 depend
on. In addition, with probability 1− µ, |bad|1 = O(λε2). Since both emnli,k and inp have
constant locality, we have that |I| = O(λε2).

Hybrid H2: Apply the above equality of distribution to hybrid H1, we have that it is identical
to distribution H2 below, where r̄, ē are replaced with r̃, ẽ as sampled above everywhere,
except in the sums {emnlik + ∆d+1,k,i}k,i.

f̃1 ← dFN ,
Same sampling as in D1(f̃1)

((RK′′ ,K
′′, st′′), R̃, X̃)← Samp1(f̃1)|(r̄,ē)I ,I

{∆β,k ← X}d+2≤β≤D,k∈[npad]

: r̃, h̃ct, dSim
(

(RK′′ ,K
′′, st′′), f̃1, ỹ

) 
where ỹ = f(x̃)− f̂2(h̃ct) + pd+1

{∑
k

(
emnlik + ∆d+1,k,i

)}
i

+
∑

d+2≤β≤D
k∈[npad]

pβ∆β,k

By construction of Samp1(f̃1), the bit-fixing distribution Samp1(f̃1)|(r̄,ē)I ,I proceeds as
follows:

1. Sample (RK′′ ,K
′′, st′′)← dDSim(f̃1)

2. Sample R̃←
(
R|RK′′ ,K′′

)
|(r̄,ē)I ,I .

Note that the bit fixing distribution simply composes, requiring sampling R̃ =
(r̃, ẽ, s̃Ã, Ã, s̃) at random conditioned on R̃K′′ = RK′′ and (r̃, ẽ)I = (r̄, ē)I . Since R
is bit-fixing efficient, this sampling can be done efficiently.

3. Compute x̃ = inp(r̃), and X̃ = dinp(R̃) = (s̃⊗d+1, 1) ⊗ (h̃ct, 1), where h̃ct =
{HE.Enc′(ãi, 〈ãi, s̃〉, x̃i, ẽi)}.

Consider the HE ciphertexts in two cases:

• Case 1: h̃cti = HE.Enc′(ãi, 〈ãi, s̃〉, x̃i, ẽi) has that i) ãi is fixed in RK′′ , or ii) 〈ãi, s̃〉 is
fixed in RK′′ , or iii) ẽi is fixed in (r̄, ē)I .
Let S = S(K ′′, I) denote the indices of these ciphertexts, efficiently computable from
K ′′ and I. We have that |S| ≤ |K ′′|+ |I|. With probability 1−O(µ), both |K ′′| and
|I| are bounded by O(λε2), and so is |S|.
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• Case 2: for every i 6∈ S, h̃cti is generated using randomly sampled ãi and ẽi, and
〈ãi, s̃〉 is not leaked nor fixed.

Intuitively, ciphertext in S are generated using fixed values, and are potentially not hiding.
However, since there are only a few O(λε2) of them, even if all information used for
generating them are revealed, the secret key s̃ still have high entropy. Therefore, by
robustness of HE, ciphertexts in ¬S, generated using random ãi and ẽi and entropy s̃,
remain semantically secure. This yields the next hybrid H3.

Hybrid H3 is the same as H2 except that HE ciphertexts in ¬S encrypt 0 instead of x̃S .

f̃1 ← dFN ,
Same sampling as in D1(f̃1)

((RK′′ ,K
′′, st′′), R̃, X̃)← Samp1(f̃1)|(r̄,ē)I ,I

S = S(K ′′, I)
{∆β,k ← X}d+2≤β≤D,k∈[npad]

:

r̃,
(
h̃ctS(x̃S)ĥct¬S(0)

)
, dSim

(
(RK′′ ,K

′′, st′′), f̃1, ỹ
) }

,

where

h̃ctS(xS) = {h̃cti = HE.Enc′(ãi, 〈ãi, s̃〉, x̃i, ẽi)}i∈S ,

ĥctS̄(0) = {ĥcti = HE.Enc′(ãi, 〈ãi, s̃〉, 0, ẽi)}i 6∈S ,

ỹ = f(x̃)− f̂2(
(
h̃ctS(x̃S)ĥct¬S(0)

)
)

+ pd+1

{∑
k

(
emnlik + ∆d+1,k,i

)}
i

+
∑

d+2≤β≤D
k∈[npad]

pβ∆β,k.

We show that H3 and H4 are O(µ)-indistinguishable following the µ-robustness of HE. We
already argued that ciphertexts in ¬S are generated using random ãi and noise ẽi. It
remains to argue that secret s̃ is efficiently samplable and has high-entropy.

Note thatH3 andH4 make the same potentially inefficient sampling steps, namely, sampling
from D1, dDSim (first step in Samp1|(r̄,ē)I ,I), and X . The other sampling and computing
steps are all efficient, including sampling from

(
R|RK′′ ,K′′

)
|(r̄,ē)I ,I and computing x̃, X̃ (the

second and third step in Samp1|(r̄,ē)I ,I), and computing S.
Let T be the set of possible values sampled from D1, dDSim and X . We know that for an
1−O(µ) fraction of T , it holds that |K ′′| and |I| are bounded by O(λε2). Take any t ∈ T
satisfying this. H3 and H4 conditioned on t being sampled are efficient. Furthermore, s̃
has high entropy conditioned on t, r̃, and ciphertexts in S,

H∞

(
s̃ | t r̃, h̃ctS

)
≥ n−O(λε2) .

Observe that t, r̃ contains information for computing the entire output of H3 and H4

except for ĥctS̄(x¬S) in H3 and ĥct¬S(0) in H4. Conditioned on t, by the robustness of
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HE, these ciphertexts are µ-indistinguishable. Therefore, conditioned on t, H3 and H4 are
µ-indistinguishable. Since this holds for a 1−O(µ) fraction of t, we conclude that H3 and
H4 are O(µ)-indistinguishable.

Next, we re-write H3 in the form of the ideal distribution d+1Ideal for d+1FE scheme.

Hybrid H4 is the d+1Ideal distribution with d+1DSim and d+1Sim specified below.
f ← FN , (r∗K ,K, st)← d+1DSim(f),

r̃ ← R|r∗K ,K , x̃ = inp(r̃)

{∆β,k ← X}d+2≤β≤D,k∈[npad]

:

r̃, d+1Sim

(
(r∗K ,K, st), f,

y = f(x̃) +
∑

d+2≤β≤D
k∈[npad]

pβ∆β,k

) }
,

The distribution d+1DSim(f) works as follows:

1. Sample
(

(r̄, ē),
{
emnlik + ∆d+1,k,i

}
k,i
, bad

)
← D1(f̃1), where bad determines I.

2. Sample (RK′′ ,K
′′, st′′)← dDSim(f̃1).

3. Compute S = S(K ′′, I) and let S ′ be the set of indices of randomness that determine
inputs at location S, that is, uS = inp(vS).

4. Sample (R̃ = (r̃, ẽ, s̃Ã, Ã, s̃))←
(
R|RK′′ ,K′′

)
|(r̄,ē)I ,I .

5. Set K to be the set of indices in r̃ that are in (S ′,K ′′, I), set r∗K = r̃K , and set st to
include (ẽ, s̃Ã, Ã, s̃),

{
emnlik + ∆d+1,k,i

}
k,i
, (RK′′ ,K

′′, st′′).

The simulator d+1Sim((r∗K ,K, st), f, y) samples the following components in H3:

1. It generates
(
h̃ctS(x̃S)ĥctS̄(0)

)
by first computing x̃S = inp(r∗S′), generating cipher-

texts h̃ctS(x̃S) and ĥct¬S(0) using (ẽ, s̃Ã, Ã, s̃) contained in st.

2. It generates dSim
(

(RK′′ ,K
′′, st′′), f̃1, ỹ

)
, using (RK′′ ,K

′′, st′′) contained in st and

ỹ = y − f̂2(
(
h̃ctS(x̃S)ĥct¬S(0)

)
) + pd+1

{∑
k

(
emnlik + ∆d+1,k,i

)}
i

It is easy to see that d+1Sim is efficiently computable.

By construction of d+1DSim and d+1Sim, hybrids H3 and H4 are identically distributed.

By a hybrid argument, we have that d+1Real and d+1Ideal are O(µ)-indistinguishable, which
concludes that d+1FE satisfies special-purpose simulation security.

4.2.2 Property of DFE

In Section 5, we will use DFE, the scheme for the maximum degree d = D set by the public
parameter pp, to construct FE schemes for NC1 computation. Here, we describe the special-
purpose function and input distributions that will be used and prove a structural property about
the distribution DDSim when using such distributions.

Special-Purpose Function DistributionWe will use DFE for function distribution FN that samples
f of form:
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• f [G] : {0, 1}n → {0, 1}n is defined by i) a fixed collection of predicates {gi}i∈[m], one
for every output bit, and ii) an input-output dependency graph G← G sampled from a
distribution G.

∀ (x, seed) ∈ {0, 1}n, i, fi(x, seed) = gi(x, seedG(i)) .

We refer to the second input as the seed.

• f [G] has constant locality ` in seed, that is, for every i, |G(i)| ≤ `.

In other words, the actual functions to be computed {gi} are fixed, but which seed bits are fed
into each gi is distributional.

Correspondingly, we will use an input distribution inp(R × U) = R × U (i.e., inp is the
identity function), where x← R is sampled arbitrarily and seed← U uniformly randomly.

For every such special-purpose distributions, the special-purpose O(µ)-simulation security of
DFE implies the existence of DDSim and Sim, such that, the real DReal distribution is indistin-
guishable to the following ideal DIdeal distribution.

DIdeal =


f ← FN ,

((x, seed)K ,K, st)← DDSim(f),

(x̄, seed)← R|(x,seed)K ,K ,
:

(x̄, seed), DSim
(
((x, seed)K ,K, st), f, y = f(x̄, seed)

) }
λ∈N

With probability 1 − O(µ), |K| = O(λε2). Let Kseed be the random variable representing the
indexes of seed bits seedKseed

that are fixed in (x, seed)K .
The following lemma says that the positions Kseed of fixed seed bits only “weakly depends” on

the dependency graph G, in the sense that, there is a set K independent of G, s.t. G(K) contains
Kseed. This property will be very instrumental later in our construction of FE for NC1.

Lemma 4.6. For every λ, every superpolynomially small µ = λ−ω(1), every special-purpose
distribution FN , and every R, there exists a random variable K, such that, i) K is correlated
with (f [G]← FN , (xK ,K, st)← DDSim(f [G])), and ii) K is independent of G, iii) Kseed ⊆ G(K)
and |K| = O(λε2) with probability 1−O(

√
µ).

Proof. Let us analyze how DDSim decides which seed bits to fix. By construction, DDSim recursively
calls dDSim for smaller degree d. In the base case, 2DSim does not fix any bits. In each recursion
step, d+1DSim fixes the bits fixed by dDSim and adds new bits to be fixed according to a collection
{BADd+1

k,i } of randomized predicates (see Equation (4)). Each predicate BADd+1
k,i (emnlik ,∆d+1,k)

is evaluated on the noises in the HE ciphertext produced by homomorphic evaluation of the k’th
monomial mnlik in function fd+1

i computed using d+1DSim. Thus, BADd+1
k,i depends only on

input bits that mnlik depends on; if BADd+1
ki

evaluates to 1, these input bits would be fixed.
By construction, the function fd that dDSim evaluates is determined by fd+1 that d+1DSim

evaluates. In particular, fd = f̃d+1
1 , operating on (s⊗d+1, 1)⊗ (hct, 1).

If fd+1
i (xd+1, seedd+1) = gd+1

i (xd+1, seedd+1

Gd+1
i

) , for fixed gd+1
i

and distributional Gd+1 .

Then f̃di ((s⊗d+1, 1)⊗ (hct, 1)) = g̃d+1
i1 ((s⊗d+1, 1)⊗ (hct(xd+1), hct(seedd+1

Gd+1(i)
), 1))

= hdi (x
d+1, seedd+1

Gd+1(i)) , for fixed h̃
d
i .
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The last equality simply rewrites the second last line as evaluating a randomized function hdi
on xd+1, seedGd+1(i) (that samples other variables such as s, A, and e that gd+1

i uses internally).
In other words, fdi depends (“recursively”) only on seed bits seedGd+1(i) . Thus, BADd

k,i can also
be written as a fixed randomized predicate depending only on seed bits seedGd+1(i) . Given that
the starting-point function fDi = gi(x, seedG(i)) indeed has this structure, we have that every
BADd

k,i can be written as a fixed randomized predicate P dk,i(x, seedG(i)), and if it evaluates to 1,
a subset of x, seedGi is fixed.

In the analysis of the special purpose O(µ)-simulation security of dFE, we showed that with
probability 1−O(µ), the number of BADd

k,i that evaluates to 1 is bounded by O(λε2). Therefore,
for a 1 − O(

√
µ) fraction of randomness r of {P dk,i} and input x, conditioned on them being

sampled, the number of P dk,i(x, seedG(i) ; r) that evaluates to 1 is bounded by O(λε2), with
probability 1 − O(

√
µ) over the choice of seed and G. For every such x, r, we have that the

expectation of the sum of outputs of P dk,i is bounded.

E
seed,G

∑
i,k

P dk,i
(
x, seedG(i) ; r

) = O(λε2)
(
as µ = λ−ω(1)

)
.

For any x, r, let Ebk,i = E[P dk,i(x, seedG(i) ; r)] be the expectation of P dk,i over the choice of
seed and G. Observe that since G has locality ` and the marginal distribution of seedG(i) is
uniform, the expectation Ebk,i is either zero if P dk,i(x, ? ; r) is a zero predicate, or at least 1/2`.
Let K be the set of i s.t., for some d and i, P dk,i(x, ? ; r) is non-zero and Ebk,i ≥ 1/2`. We have
that for an 1−O(

√
µ) fraction of x, r, the number of non-zero predicates is bounded by O(2`λε2).

We observe that K satisfy the conditions in the lemma statement: i) K is correlated f ,
((x, seed)K ,K, st) ← DDSim, but ii) K is independent of G (it depends on fixed randomized
predicates P dk,i, their randomness r, and input x). iii)Kseed ⊆ G(K) as only non-zero predicate P dk,i
can lead to fixed seed bits seedG(i); in addition, with probability 1−O(

√
µ), |K| = O(2`λε2).

5 Functional Encryption for NC1

In this section, we construct sublinearly compact FE schemes for NC1 with standard fully
selective indistinguishability security, using a constant-locality PRG, the AIK randomized
encoding [AIK04], our special-purpose FE scheme DFE constructed in Section 4, and a new
primitive called bit-fixing homomorphic sharing. Below, we start with introducing the new
primitive and constructing it from multi-key FHE in Section 5.1, and then move to the construction
of FE for NC1 in Section 5.2.

5.1 Bit-fixing Homomorphic Sharing

A bit-fixing homomorphic sharing scheme has the same syntax as a Homomorphic Secret Sharing
(HSS) scheme introduced by [BGI15, BGI16] — it enables generating a secret sharing x1, · · · , xλ
of an input v, and homomorphically evaluating a circuit C on each share separately to obtain
a set of output shares o1, · · · , oλ, from which the final output y = C(v) can be reconstructed.
However, the similarity stops here, and the efficiency and security requirements are different.

• Security: similar to homomorphic encryption, HSS assumes that the output shares are
private, and the the shared value v is hidden when the adversary sees only a subset of t
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input shares. In contrast, bit-fixing homomorphic sharing require v to be hidden even to
adversaries knowing all output shares and t input shares. Furthermore, security needs to
hold not just for honestly generated input shares, as the name suggests, but also for shares
where a few bits are fixed to arbitrary values.

• Efficiency: HSS (and homomorphic encryption) schemes have trivial constructions if
reconstruction from the output shares can be as complex as evaluating the circuit itself
(the output share can be an additive sharing of v together with C). Therefore, HSS is only
meaningful when the reconstruction is “simpler” than the computation itself. This is not
the case for bit-fixing homomorphic sharing — the trivial construction of HSS does not
satisfy the above security requirement — and the sharing and reconstruction procedure
can take time proportional the circuit size.

We now present the formal definition:

Definition 5.1. A (t, µ)-bit-fixing homomorphic sharing scheme BF = (BFsetup,BFshare,BFeval,
BFdec) consists of four efficient algorithms satisfying the following.

Syntax: The four algorithms have the following syntax

• BFsetup(1λ, 1s, 1d) is a randomized algorithm that, on input a security parameter λ
and bounds s and d on the function size and depth, outputs a CRS crs.
• BFshare(crs, v) is a randomized algorithm that on input crs and v ∈ {0, 1}poly(λ),

outputs input shares x1, · · · , xλ of v. Let n = n(λ) be the length of all input shares.
• BFeval(crs, xi, i, f) is a deterministic algorithm that on input crs, a share xi and its
index i, and a function f , represented as a circuit of size s and depth d, outputs an
output share oi.
Without loss of generality, if f has multiple output bits, BFeval is invoked separately
for each output bit. The collection of output shares form oi.
• BFdec(crs, {oi}, f) is a deterministic algorithm that, on input crs, all output shares,

and the function f , outputs a string y.

Correctness: For every λ, s, d ∈ N, every input v, and every function f of size s and depth d,

Pr

 crs← BFsetup(1λ, 1s, 1d)
(x1, · · · , xλ)← BFshare(crs, v)
∀ i ∈ [λ], oi ← BFeval(crs, xi, i, f)

: BFdec(crs, {oi}, f) = f(v)

 = 1

(t, µ)-bit-fixing-security For every polynomials s and d, every sufficiently large λ ∈ N, s = s(λ),
and d = d(λ), every pair of poly(λ)-bit inputs (v0, v1), every t-bit string x∗ ∈ {0, 1}t, every
set of t indexes J ⊆ [n(λ)],3, every set of t indexes K ⊆ [λ], every function f of size s and
depth d that does not separate v0 and v1 (i.e., f(v0) = f(v1)), and every PPT adversary A,

Pr


b← {0, 1}

crs← BFsetup(1λ, 1s, 1d)
(x1, · · · , xλ)← BFshare(crs, vb)|x∗,J
∀ i ∈ [λ], oi ← BFeval(crs, xi, i, f)

:
A
(
Binary(x)J , J,
{xi}i∈K , {oi}i∈[λ]

)
= b

 ≤ 1

2
+ µ(λ),

3Formally, we should only quantify over x∗ and J for which BFshare(crs, vb)|x∗,J is a valid distribution, i.e., for
which the support of BFshare(crs, vb) contains a bit string which coincides with x∗ on the indices in J . We ignore
this subtlety for ease of presentation.
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where Binary(x) denotes the binary representation of (x1, . . . , xλ) and Binary(x)J are the
bits at positions in J .

5.1.1 Construction from Threshold Multi-Key FHE

A bit-fixing homomorphic sharing scheme BF scheme can be constructed from a threshold multi-
key FHE scheme MFHE for functions outputting a bit, and a pseudorandom function PRF as
follows:

• BFsetup(1λ, 1s, 1d) runs params
$← MFHE.Setup(1λ, 1d) and outputs crs := params.

• BFshare(crs, v) on input v ∈ {0, 1}poly(λ), computes the following:

– (pki, ski)
$← MFHE.KeyGen(crs) for i ∈ [λ],

– an additive sharing ss1, . . . , ssλ of v, i.e., sample uniform bit strings ss1, . . . , ssλ−1 of
length |v| each and set ssλ = v ⊕

⊕λ−1
i=1 ssi,

– cti
$← MFHE.Enc(pki, ssi) for i ∈ [λ],

– ĉti
$← MFHE.Expand((pk1, . . . , pkλ), i, cti) for i ∈ [λ].

It finally samples PRF keys Ki for i ∈ [λ] and outputs (x1, . . . , xλ), where

xi :=
((

ĉtj , pkj
)
j∈λ, ski,Ki

)
.

• BFeval(crs, xi, i, f) on input crs, xi =
((
ĉtj , pkj

)
j∈λ, ski,Ki

)
, i, and a function f with `

output bits, where fj denotes the function computing the jth output bit, computes for all
j ∈ [`]:

– ĉt
(j)

= MFHE.Eval(crs, f ′j , ĉt1, . . . , ĉtλ), with f ′j(ss1, . . . , ssλ) := fj
(⊕λ

i=1 ssi
)

= fj(v),
– ri,j = PRF(Ki, j),

– oi,j = MFHE.PartDec
(
ĉt

(j)
, (pk1, . . . , pkλ), i, ski; ri,j

)
, which means ri,j is used as the

randomness for the algorithm MFHE.PartDec.

It outputs the share oi = (oi,1, . . . , oi,`).

• BFdec(crs, {oi}i∈[λ], f) on input crs, {oi}i∈[λ] = {oi,j}i∈[λ],j∈[`], and a function f , computes
yj = MFHE.FinDec(o1,j , . . . , oλ,j) for j ∈ [`], and outputs y = (y1, . . . , y`).

Correctness of the construction follows directly from the correctness of decryption of MFHE.
We next show that the scheme is also bit-fixing secure.

Theorem 5.2. If MFHE is µ-semantically secure, has µ-simulatability of partial decryptions,
and PRF is µ-pseudorandom, then BF is

(
t, O(L · µ)

)
-bit-fixing secure for t ≤ (λ− 1)/2, where L

is an upper bound on the number of output bits of the function f .

Proof. Let s and d be polynomials, λ ∈ N, s = s(λ), d = d(λ), let v0 and v1 be poly(λ)-
bit inputs, let x∗ ∈ {0, 1}t, let J ⊆ [n(λ)] and K ⊆ [λ] with |J | = |K| = t, let f be a
function of size s and depth d with ` ≤ L output bits and f(v0) = f(v1), and let A be a PPT
adversary. Now let H0 be the

(
t, O(L · µ)

)
-bit-fixing-security experiment, i.e., b← {0, 1}, crs←
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BFsetup(1λ, 1s, 1d), (x1, · · · , xλ) ← BFshare(crs, vb)|x∗,J , ∀ i ∈ [λ], oi ← BFeval(crs, xi, i, f),
b′ ← A

(
Binary(x)J , J, {xi}i∈K , {oi}i∈[λ]

)
, and let the output of H0 be 1 if b′ = b, and 0 otherwise.

Note that since |K| ≤ t and x∗ fixes only t ≤ (λ− 1)/2 bits, there exists an i0 ∈ [λ] such that no
bit within xi0 gets fixed and i0 /∈ K.

Define H1 to be identical to H0 except that for j ∈ [`], ri0,j in the execution of BFeval(crs, xi0 ,
i0, f) gets replaced by a truly random value. Let APRF be an adversary with access to an oracle,
which is either PRF or a truly random function, and let APRF emulate the experiment toward A,
where instead of running ri0,j = PRF(Ki0 , j), APRF obtains ri0,j by querying its oracle on input j.
Note that this emulation can be done without Ki0 since no bits in xi0 get fixed and A does not
get xi0 as an input. Finally let APRF output 1 if A guesses b correctly, and 0 otherwise. If the
oracle of APRF is PRF, the view of A is identical to its view in H0, and if the oracle is a truly
random function, its view is identical to the one in H1. Hence µ-indistinguishability of PRF
implies

|Pr[H0 = 1]− Pr[H1 = 1]| ≤ O(µ(λ)).

Next, we define for k ∈ {0, . . . , `} the hybrid H2,k to be identical to H1 except that oi0,j for
j ≤ k is produced by the simulator Sim from µ-simulatability of partial decryptions, where Sim

is given i0, all secret keys except ski0 , ĉt
(j), and fj(v0) = fj(v1). Then, H2,0 is identical to H1

and since the statistical distance between the oi0,j in different hybrids is bounded by O(µ(λ)),
we have

∀k ∈ [`] |Pr[H2,k−1 = 1]− Pr[H2,k = 1]| ≤ O(µ(λ)).

Finally let H3 be identical to H2,` except that BFshare encrypts ⊥ instead of ssi0 to obtain
cti0 . Consider the attacker Asem against the semantic security of MFHE that is given params, a
public key pk∗, and an encryption ct∗ of either ssi0 or ⊥, and then emulates H2,` or H3 by using
pk∗ as pki0 and instead of encrypting ssi0 or ⊥, it uses its input ct∗. Note that this can be done
without ski0 since it is only used in the scheme to compute {oi0,j}j and these are simulated in
both hybrids without ski0 . Finally let Asem output 1 if A guesses b correctly, and 0 otherwise.
We then have that the advantage of Asem is bounded by O(µ(λ)) and thus,

|Pr[H3 = 1]− Pr[H2,` = 1]| ≤ O(µ(λ)).

Note that by the property of the additive sharing, the view of A in H3 is independent of vb
and thus independent of b. Hence, Pr[H3 = 1] = 1/2. Combined with the results above, this
yields Pr[H0 = 1] ≤ 1/2 +O(` · µ) and concludes the proof.

5.2 Construction of FE for NC1

For any fixed logarithmic function Dep(λ) = O(log λ), we construct a family of FE schemes
{FEN,S,Dep} for computing the class of NC1 circuits C with depth Dep = Dep(λ), arbitrary
polynomial input length N = N(λ), and size S = S(λ). We will show that our schemes are
sublinearly compact, and satisfies 1-key fully-selective indistinguishability security. Our scheme
will make use of the following building blocks w.r.t. α ∈ (0, 1/2), ε2 ∈ (0, 1), and µ = 2−o(λ

ε2 ).

• A polynomial-stretch (poly(λ)S1−α,poly(λ)S)-PRG PRG with µ-indistinguishability. Im-
portantly, it has constant locality ` = O(1), and the function PRG = (P,G) is specified by
a predicate P : {0, 1}` → {0, 1} and an input-output dependency graph G, such that,

∀i, PRGi(seed) = P (seedG(i)).

Moreover, all input nodes in the graph have degree bounded by o(S1−α).
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• A (O(λε2), λω(1)µ)-bit-fixing homomorphic sharing BF = (BFsetup,BFshare,BFeval,BFdec).

• The AIK randomized encoding [AIK04] RE = (REnc,REval) whose encoding algorithm for
any function f , REnc(f, x ; r) has locality 1 in input bits and locality 3 in the random bits.
The AIK randomized encoding are unconditionally and perfectly secure.

• Our special-purpose FE scheme DFEN
′,S′ = (DFE.Setup,DFE.Enc,DFE.KeyGen,DFE.Dec)

for computing degree D polynomials with appropriate input length N ′ and size S′ set below,
that is special-purpose (1− α)-sublinearly compact and special-purpose O(µ)-simulation
secure.

We now describe our FE scheme FEN,S for NC1 computation. We in-line the analysis of its
correctness and (1− α)-sublinear compactness in italic font.

• FE.Setup(1λ): Generate a pair of DFE keys (Dmpk,Dmsk) ← DFE.Setup(1λ, pp), using
public parameter pp = (p2, p3, · · · , pD, s2, · · · sD, npad), where D is a fixed constant set
below, pD = 2, and sD = O(1) is a fixed constant set below. The other parameters
are set as in Section 4. (In particular, pd is the HE ciphertext space modulus when the
message space has modulus pd+1, and pD < · · · < p3 < poly(λ) � p2, sd = poly(λ)sd+1,
and npad = poly(s2).) Generate a CRS for the bit-fixing homomorphic sharing scheme
crs← BFsetup(1λ).

Output mpk = (Dmpk, crs), and msk = (Dmsk, crs).

• FE.KeyGen(msk, C): Input circuit C has input-length N , size S, and depth Dep. For
convenience, we assume that C has exactly S output bits, and every output bit is computed
by Ci with some fixed polynomial size s(λ) = poly(λ)4.

– Generate a polynomial f as follows:

∗ Divide the output bits of C into M = S1−α (assume for convenience that M
divides S) consecutive chunks I1, · · · , IM , where chunk Ij includes outputs bits
(j − 1)S/M + 1, · · · , jS/M . For every j ∈ [m], let CIj (v) = {Ck}k∈Ij denote
collection of circuits that computes output bits in chunk Ij .
∗ For every j ∈ [M ] and i ∈ [λ], let Dj

i be the circuit that on input the i’th share
xji of v, homomorphically evaluates CIj

Dj
i (x

j
i ) = BFeval(crs, xji , i, CIj ) = oji .

Since BFeval performs homomorphic evaluation of each Ci separately, the com-
ponent size of Dj

i is poly(λ, s). Moreover the size of each input share xji is also
bounded by poly(λ, s).
∗ Choose a random permutation π : [λ]× [M ]× [φ]→ [λMφ]. For every j ∈ [M ]

and i ∈ [λ], let f ji be the following function

f ji (xji , seed) = REnc(Dj
i , x

j
i ; PRG

Πji
(seed)) .

4If not, one can always use garbled circuits to turn C into another circuit where every output bit is computable
in size poly(λ).
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Encoding Dj
i , x

j
i takes time poly(λ, s)S/M = poly(λ)S/M and hence uses at

most φ = poly(λ)S/M random coins. PRG
Πji

(seed) contains φ PRG output bits
at locations {π(i, j, k)}k∈[φ] determined by the random permutation π. Overall,
|PRG(seed)| = poly(λ, s)S = poly(λ)S and |seed| = poly(λ)S1−α.

Finally, set

f({xj = {xji}i∈[λ]}j∈[M ], seed) := {f ji (xji , seed)}j,i

The input length and size of f is N ′ = |{xji}|+|seed| = poly(λ, s)λM+poly(λ)S1−α =

poly(λ)S1−α and S′ = |f ji |λM = poly(λ)S. Since REnc has constant locality 1 + 3`,
where ` is the locality of PRG, f also has constant locality (and hence constant degree);
let D be this locality, and sD the constant component-size of f .
Remark 5.3. Let FN be the distribution of f . We observe that FN is special-purpose
(as defined in Section 4.2.2), that is, f is defined by a fixed collection of predicate {gi}
and an input-output dependency graph Gπ sampled from some distribution G. To see
this, recall that every output bit i of PRG is computed using the same predicate P on
a subset of seeds G(i). Thus, f ji can be written as

f ji (xji , seed) = REnc(Dj
i , x

j
i ; {P (seedG(π(i,j,k)))}k∈[φ] )

This means the collection of predicates {gi} depends on Dj
i , P , and REnc, and the

input-output dependency graph Gπ depends on the random permutation π, and the
dependency graph G associated with PRG and that associated with REnc. As PRG,
REnc have constant locality, so is f .

– Generate a DFE secret key of f , Dsk← DFE.KeyGen(Dmsk, f)

Output sk = Dsk.

• FE.Enc(mpk, v): On input mpk = (Dmpk, crs) and v ∈ {0, 1}λ, do:

– For every j ∈ [M ], share v using BF, xj = {xji}i∈[λ] ← BFshare(crs, v, 1s, 1Dep).
– Sample a random seed seed of length poly(λ)S1−α.
– Encrypt X = ({xj}j , seed) using DFE, Dct← DFE.Enc(Dmpk, X).

Output ct = Dct.

(Sublinear Compactness Analysis: It follows from the special-purpose (1 − α)-sublinear
compactness of DFE that |Dct| = poly(λ)(N ′ + S′1−α) = poly(λ)S1−α. Therefore, FE is
(1− α)-sublinearly compact.)

• FE.Dec(sk, ct) : On input sk = Dsk and ct = Dct, do

– Decrypt DFE ciphertext and secret key [z]T = DFE.Dec(Dsk,Dct).
(Correctness analysis: It follows from the special-purpose correctness of DFE that

DFE.Dec(Dsk,Dct) = [z]T =

f(X) +
∑

3≤β≤D
pβYβ


T

,

where every Yβ is (B+B)npad-bounded, and z is bounded by B = 1+(
∑

3≤β≤D pβ)(B+
B)npad = poly(λ).)
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– For every z′ ∈ [−B,B] ∩ Z, test whether [z]T = [z′]T . If the test succeeds with z′,
output bit y = z′ mod p3 mod p4 · · · mod pD; otherwise, output ⊥.
(Correctness analysis, continued: we have that

y = f(X) = {yji = f ji (xji , seed)}j,i ,
yji = REnc(Dj

i , x
j
i ; PRGπ(j,i)(seed)) .

)
– Parse y = {yji }, for every j ∈ [M ] and i ∈ [λ], decode yji using REval to obtain
oji = REval(yji ).

(Correctness analysis, continued: By the correctness of <, we have that

oji = REval(yji ) = Dj
i (x

j
i ) = BFeval(crs, xji , i, CIj ) = oji .

)
– For every j ∈ [M ], decode the output shares {oji}i∈[λ] to obtain the actual output
uj = BFdec(crs, {oji}, CIj ).
(Correctness analysis, continued: By the correctness of BF, we have that uj = CIj (v).
This concludes the correctness analysis.)

Output u = {uj}.

Next, we show that FE satisfies 1-key fully-selective indistinguishability-security.

Theorem 5.4. For any µ and ε2 such that µ = 2−o(λ
ε2 ). Assume that PRG satisfies µ-

indistinguishability, BF satisfies (O(λε2), λω(1)µ)-bit-fixing security, DFEN
′,S′ satisfies O(µ)-

special-purpose simulation security. Then, FEN,S,Dep above satisfies O(µ)-Full-Sel-Ind-security.

Proof. Fix any NC1 circuit {C}λ with input-length N , size S, depth Dep, component-size s, any
pair of inputs {v0, v1}λ s.t. C(v0) = C(v1), it suffices to show that for any efficient adversary A,
the following probability is bounded by 1/2 +O(µ) for sufficiently large λ and µ = µ(λ).

Pr


b← {0, 1}

(mpk,msk)← FE.Setup(1λ, pp)
sk← FE.KeyGen(msk, C)
ct← FE.Enc(mpk, vb)

: A(mpk, sk, ct) = b

 ≤ 1

2
+O(µ) .

We prove the above via a sequence of hybrids that gradually change the distribution of viewA =
(mpk, sk, ct) and argue that in the final hybrid, A cannot guess b with probability larger than the
above bound.

Hybrid H0: This hybrid generates viewA honestly as above, and additionally outputs X en-
crypted by DFE.

Real =


b← {0, 1}

(mpk,msk)← FE.Setup(1λ, pp)
sk← FE.KeyGen(msk, f)
ct← FE.Enc(mpk, vb)

: {xj}, viewA = (mpk, sk, ct)


λ
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By construction of DFE,

mpk = (Dmpk, crs), sk = Dsk(f), ct = Dct(X), X = ({xj}, seed) ,

where every xj is a random and independent sharing of vb.

Consider the distribution {FN} of f , and the distribution inp(R) for sampling X, where
inp is the identity function (and hence has locality 1) and R samples X honestly as in the
FE.Enc algorithm. It follows from the special-purpose simulation security of DFE that there
exist correlated random variables (XK ,K, st) sampled by DDSim, and an efficient simulator
DSim, such that, Real is O(µ)-indistinguishable to the following H1 = Ideal distribution.

Hybrid H1: This hybrid samples viewA using the simulator of DFE as follows:

Ideal =


f ← FN ,

(XK ,K, st)← DDSim,
X̄ ← R|XK ,K ,

:

{x̄j}, viewA = DSim
(
(XK ,K, st), f, y = f(X̄)

) }
λ
,

where
X̄ = ({x̄j}, seed), yji = REnc(Dj

i , x̄
j
i ; PRGπ(j,i)(seed)) ,

where with probability 1−O(µ), |K| ≤ O(λε2).5

Fix any f and any (XK ,K, st) in the support of DDSim. Since in R, variables in seed
and {xj} are sampled independently and randomly, it is also the case in the conditional
distribution. Formally,

R|XK ,K =
(
{x̄} ← Dx|xKx ,Kx

)
×
(

seed← U|seedKseed
,Kseed

)
,

Dx : b← {0, 1}, (x = {xj ← BFshare(crs, vb, 1
s, 1Dep)} , output x ,

where Kx and Kseed are the indexes of variables in {xj} and seed that are fixed in K.

This means seed is uniformly random at locations in ¬Kseed, and fixed to seedKseed
at

locations in Kseed. Recall that PRG is has constant locality ` and every output bit PRGi is
computed by P (seedG(i)) where G is the input-output dependency graph. Let Kprg be the
set of indexes of PRG output bits that depends on seed bits in Kseed, that is,

Kprg = G−1(Kseed) := {l : G(l) ∩Kseed 6= ∅ }

Since seed¬Kseed
is uniformly random, we have by the security PRG that PRG¬Kprg(seed)

is µ-indistinguishable to random. That is,

PRG¬Kprg(seed) ≈µ U .

On the other hand, the distribution of output bits PRGKprg(seed) may not be random.

5Applying the special-purpose simulation security of DFE directly would imply the indistinguishability of Real
and Ideal where the distributions output the entire X and X̄. Since they contain {xj} and {x̄j} respectively, H0

and H1 are also indistinguishable.
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Furthermore, recall that the (i, j)’th randomized encoding yji is computed using PRG
output bits with indexes Πj

i = {π(i, j, k)}k∈[φ]. Let Kre denote the set of (i, j) s.t. yji
depends on PRGKprg(seed), that is,

Kre :=
{

(i, j) : Πj
i ∩Kprg 6= ∅

}
Observe that Kre = Kre(Kseed) can be computed efficiently from Kseed.

All randomized encodings yji with (i, j) 6∈ Kre uses coins computed from truly random seed
bits; call them the good encodings, and ones in Kre the bad encodings. By the security of
RE, the good encodings are perfectly simulatable using the corresponding outputs:{ {

yji = REnc(Dj
i , x̄

j
i ; PRGπ(j,i)(seed))

}
(i,j)∈¬Kre

}
{ {

ỹji ← RSim(ōji = Dj
i (x̄

j
i ))
}

(i,j)∈¬Kre

}
.

where the output ōji is the output share obtained by homomorphically evaluating circuit
CIj on input share x̄ji . Therefore, H1 is O(µ)-indistinguishable to the following hybrid H2.

Hybrid H2: This hybrid samples viewA identically to H1, except that randomized encodings at
location Kre are now simulated.

f ← FN ,
(XK ,K, st)← DDSim(f)

X̄ ← R|XK ,K
:

{x̄j}, viewA = DSim

(
(XK ,K, st), f, y

′ =

{
yji (i, j) ∈ Kre

ỹji (i, j) ∈ ¬Kre

) }
λ

,

where

X̄ = ({x̄j}, seed),

{
yji = REnc(Dj

i , x̄
j
i ; PRGπ(j,i)(seed))

ỹji ← RSim(ōji = Dj
i (x̄

j
i )).

Next, we argue that bad encodings in Kre are well spread around among different chunks
of randomized encodings yj = {y′ji}i that depend on the same sharing xj = {xji}.

Lemma 5.5. Let f and K be sampled from FN and DDSim(f), and let Kre = Kre(Kseed)
as in H2. It holds that there exists a constant c0 such that for any µ = 2−o(λ

ε2 ),

Pr
[
∃j,

∣∣∣{(i, j)}i∈[λ] ∩ Kre(Kseed)
∣∣∣ ≥ c0 · λε2

]
≤ O(µ) .

Proof. Recall that (see Remark 5.3) FN is a special-purpose distribution — f sampled
from FN has constant locality D, and depends on a fixed collection of predicates and a
input-output dependency graph Gπ from a distribution, where Gπ is parameterized by a
random permutation π : [λ]× [M ]× [φ].

It follows from the property of DDSim as shown in Lemma 4.6 that there exists a random
variable K representing a subset of output bits of f , such that, i) K is correlated with
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(f [Gπ], (rK ,K, st), ii) it is independent of Gπ and hence π, and iii) the set of fixed seed
bits satisfies Kseed ⊆ Gπ(K), and |K| = O(λε2) with probability 1 − O(µ). Therefore, it
suffices to show that

Pr
[
∃j,

∣∣∣{(i, j)}i∈[λ] ∩ Kre(Gπ(K))
∣∣∣ ≥ c0 · λε2

]
≤ O(µ) .

J = Gπ(K) is the collection of seed bits that output bits K in f depends on; by construction
of f , J = G(π(K′)) for some subset K′ (determined by the dependency graph of REnc),
with |K′| = O(|K|). Recall that Kre(J) includes all (i, j) s.t., encoding yji depends on seed
bits in J , that is, all (i, j), s.t. G(Πj

i = {π(i, j, k)}k∈[φ]) ∩ J 6= ∅. Let G−1 ◦G(i) represent
the set of two-hop neighbors of node i in graph G. The above inequality is equivalent to
the following:

Pr
[
∃j,

∣∣∣π ({(i, j, k)}i∈[λ],k∈[φ]

)
∩
(
G−1 ◦G

(
π(K′)

))∣∣∣ ≥ c0 · λε2
]

≤ 2−Ω(λε2 ) +O(µ) = O(µ) .

where the last equality follows from µ = 2−o(λ
ε2 ).

By our assumption on PRG, the input-output dependency graph G of PRG has n =
poly(λ)S1−α input nodes,m = poly(λ)S output nodes, and every output nodes has constant
degree `. Furthermore, the degrees of the input nodes are bounded by `′ < o(S1−α). The
set {(i, j, k)}i∈[λ],k∈[φ] has size t = poly(λ)Sα and K′ has size s = O(λε2) with probability
1−O(µ). Importantly, both sets are independent of the random permutation π. Thus, we
can set the constant c0 such that c0 ·λε2 − s ≥ λε2 . Furthermore, we have s``′t ≤ m− s− t
for sufficiently large S (relative to λ) and α < 1/2 with probability 1−O(µ). Hence, the
inequality follows immediately from the following claim.

Claim 1. Let G be a bipartite graph with n input nodes and m output nodes, where the
degrees of the input and output nodes are bounded by `′ and `, respectively. Let J,J ⊆ [m]
be sets of size t and s, respectively, such that s ≤ t and s``′t ≤ m−s− t , and let B ≥ s+ 2.
We then have over the choice of a random permutation π over the output nodes (i.e.,
π : [m]→ [m]),

Pr
π

[∣∣π(J) ∩
(
G−1 ◦G (π(J ))

)∣∣ ≥ B ]
≤ exp

(
−B − s− 1

3

)
.

Proof. Since π(J ) ⊆ G−1 ◦G (π(J )), we have π(J ∩J ) ⊆ π(J)∩
(
G−1 ◦G (π(J ))

)
for all

π. We therefore need to bound the probability of∣∣π(J \ J ) ∩
(
G−1 ◦G (π(J ))

)∣∣ ≥ B − |J ∩ J |.
The random experiment can equivalently be described as follows: First, assign to each j ∈ J
a random, distinct j′ ∈ [m]. Let J ′ be the set of all these j′, and let Ĵ := G−1 ◦G(J ′).
Then, assign to each v ∈ J \ J a random, distinct v′ ∈ [m] \ J ′. Since

∣∣Ĵ ∣∣ ≤ s``′,
the probability that the first of these v′ is in Ĵ is at most s``′

m−s . The second v′ is then
chosen from a set of size m − s − 1 since it must be different from the first v′. Hence,
the probability that it is in Ĵ is at most s``′

m−s−1 . Using |J \ J | ≤ t, this implies that the
probability of any v′ landing in Ĵ is at most s``′

m−s−t . While the assignments of the v′ are not
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independent (because they must be distinct), whether they are in Ĵ or not only depends
on previous outcomes in the sense that the probability gets smaller if previous v′ are in
Ĵ (since less elements in Ĵ are available). One can therefore define independent random
variables X1, . . . , X|J\J |, where each Xi is 1 with probability s``′

m−s−t , and 0 otherwise, such
that the probability of Xi = 1 upper bounds the probability of the ith v′ being in Ĵ . This
shows that

Pr
π

[∣∣π(J \ J ) ∩
(
G−1 ◦G (π(J ))

)∣∣ ≥ B − |J ∩ J |]
≤ Pr

[
X1 + . . .+X|J\J | ≥ B − |J ∩ J |

]
≤ Pr

[
X1 + . . .+X|J\J | ≥ B − s

]
.

Note that the expected value of X1 + . . . + X|J\J | is ν := s``′

m−s−t · |J \ J | ≤
s``′t
m−s−t ≤ 1.

Let δ := B−s
ν − 1. Since ν ≤ 1 and B ≥ s+ 2, we have δ ≥ 1. Hence, the Chernoff bound

implies

Pr
[
X1 + . . .+X|J\J | ≥ B − s

]
= Pr

[
X1 + . . .+X|J\J | ≥ (1 + δ)ν

]
≤ exp(−δν/3).

Again using ν ≤ 1, we obtain δν = B − s− ν ≥ B − s− 1, which concludes the proof of
the claim.

This also concludes the proof of Lemma 5.5.

We are now ready to argue that for any PPT adversary A, over the choice of ({x̄j}, viewA)
from H2, the probability that A seeing viewA can predict which input vb is shared in {x̄j}
is at most O(µ).

Claim 2. For every PPT adversary A,

Pr
[
({x̄j}, viewA)← H2 : b← A(view) ∧ x̄1 shares vb

]
≤ 1/2 +O(µ)

Proof. Fix any f and any (XK ,K, st) in the support of DDSim(f) such that |K| = O(λε2)
and Lemma 5.5 holds. Such f and (XK ,K, st) account for an 1−O(µ) fraction.

Conditioned on them being sampled, H2 further samples R|XK ,K , which samplesM sharing
{x̄j} of vb for a randomly chosen bit b, conditioned on a few O(λε2) fixed bits contained
in XK . Observe that the inputs to DSim depend only on output shares {ōji}(i,j)6∈Kre

and
input shares {x̄ji}(i,j)∈Kre

(all other information is independent of x̄). Since |K| = O(λε2)
and Lemma 5.5 holds, for every sharing x̄j , at most O(λε2) bits of it are fixed, and at most
O(λε2) shares x̄ji are revealed to DSim. Therefore, it follows from the (O(λε2), λω(1)µ)-bit-
fixing security of BF (and the fact that there are at most a polynomial number of sharing
of BF) that, the probability that A receiving the output of DSim can predict b is at most
1/2 + µ. This conclude the claim.

Finally, it follows from the fact that H0 and H2 are O(µ)-indistinguishable, we conclude that A
receiving the real view as generated in H0 = Real can only predict b with probability 1/2 +O(µ).

Pr
[
({xj}, viewA)← Real : b← A(view) ∧ x1 shares vb

]
≤ 1/2 +O(µ)

This concludes the proof of the theorem.
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6 Construction of Candidate PFG

6.1 Properties of (Flawed-)Smudging Distributions

6.1.1 Preservation Under Addition of Independent Value

We show that if the distribution of X is (flawed-)smudging and Y is independent from X, then
the distribution of X + Y is (flawed-)smudging.

Lemma 6.1. Let ` and B be positive integers, let ε ∈ [0, 1], and let X be a random variable
over Z` with (B, ε)-smudging distribution. Further let Y be a random variable over Z` such that
X and Y are independent. Then, the distribution of X + Y is (B, ε)-smudging.

Proof. Since adding an independent random variable cannot increase the statistical distance, we
have for all e ∈ [−B,B]` ∩Z`,

δ(X + Y,X + Y + e) ≤ δ(X,X + e) ≤ ε.

Hence, the distribution of X + Y is (B, ε)-smudging.

Lemma 6.2. Let ` and m be positive integers and let X and V be distributions over Z` and
Zm, respectively. Further let for i ∈ [`], Φi ⊆ [m], let Ei : Z|φi| → Z be functions, and let E be
as in Definition 3.4. Further let X be a random variable with distribution X and let Y be an
independent random variable. Assume that X is (K,µ)-flawed-smudging for (E,V). Then, the
distribution of X + Y is (K,µ)-flawed-smudging for (E,V).

Proof. By assumption, there are randomized predicates
{

BADi : Z`+1 → {0, 1}
}
i∈[`]

such that
D1 and D2 as defined in Definition 3.4 are identical and |bad|1 ≤ K with probability at least 1−µ.
Now define BAD′i for the distribution ofX+Y as follows: Given Ei(VΦi) andX+Y , sampleX ′ and
Y ′ with marginal distributions equal to the distributions of X and Y , respectively, conditioned on
X ′+Y ′ = X+Y , and return BADi(Ei(VΦi), X

′). Let bad′ =
(
bad′i ← BAD′i(Ei(VΦi), X+Y )

)
i∈[`]

and let V ′ ← V|VΦbad′
,Φbad′ . Since X and X ′ have the same distribution and D1 and D2 are equal,

we also have that
(
V,E(V ) +X ′,bad′

)
and

(
V
′
, E(V ) +X ′, bad′

)
have the same distribution.

Note that Y ′ is independent of
(
V,E(V ) + X ′, bad′

)
and

(
V
′
, E(V ) + X ′, bad′

)
, since it only

depends on X ′ given X + Y , and nothing depends on X + Y beyond depending on X ′. Hence,(
V,E(V ) +X ′+Y ′,bad′

)
and

(
V
′
, E(V ) +X ′+Y ′,bad′

)
also have the same distribution. Using

X ′ + Y ′ = X + Y , we obtain that D′1 and D′2 defined as in Definition 3.4 for X + Y and BAD′

are equal. Furthermore, bad and bad′ are equally distributed, which implies that |bad′|1 ≤ K
with probability at least 1− µ. Thus, the distribution of X + Y is (K,µ)-flawed-smudging for
(E,V).

6.1.2 Mixtures of (Flawed-)Smudging Distributions

We next show that the probabilistic mixture of several (flawed-)smudging distributions is also
(flawed-)smudging.

Lemma 6.3. Let `, B, and k be positive integers, and let for i ∈ [k], εi ∈ [0, 1], and let Xi

be a random variable over Z` with (B, εi)-smudging distribution. Further let α1, . . . , αk ∈ [0, 1]
such that

∑k
i=1 αi = 1, and define the random variable X with Pr[X = x] =

∑k
i=1 αi Pr[Xi = x].

Then, the distribution of X is
(
B,
∑k

i=1 αiεi
)
-smudging.
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Proof. Let e ∈ [−B,B]` ∩Z`. We then have

δ(X,X + e) =
1

2

∑
x∈Z`

∣∣Pr[X = x]− Pr[X + e = x]
∣∣

≤ 1

2

∑
x∈Z`

k∑
i=1

αi ·
∣∣Pr[Xi = x]− Pr[Xi + e = x]

∣∣
=

k∑
i=1

αi · δ(Xi, Xi + e).

Since δ(Xi, Xi + e) ≤ εi, the claim follows.

Lemma 6.4. Let `, m, and k be positive integers, let V be a distribution over Zm, and let E
be as in Definition 3.4. Let for i ∈ [k], µi ∈ [0, 1], and let Xi be a random variable over Z`

with (K,µi)-flawed-smudging distribution for (E,V). Further let α1, . . . , αk ∈ [0, 1] such that∑k
i=1 αi = 1, and define the random variable X with Pr[X = x] =

∑k
i=1 αi Pr[Xi = x]. Then,

the distribution of X is
(
K,
∑k

i=1 αiµi
)
-flawed-smudging for (E,V).

Proof. By assumption, there are randomized predicates
{

BAD
(i)
j : Z`+1 → {0, 1}

}
j∈[`]

for i ∈ [k]

such that D(i)
1 and D(i)

2 as defined in Definition 3.4 for Xi are identical and |bad(i)|1 ≤ K
with probability at least 1− µi. Now define BAD′j for the distribution of X as follows: Given
Ej(VΦj ) and X, sample (X ′1, . . . , X

′
k, A) conditioned on X ′A = X, where X ′i is distributed as

Xi for i ∈ [k] and Pr[A = i] = αi. Then output BAD
(A)
j (Ej(VΦj ), X

′
A). Let bad′ =

(
bad′j ←

BAD′j(Ej(VΦj ), X)
)
j∈[`]

and let V ′ ← V|VΦbad′
,Φbad′ and V

(i) ← V|VΦ
bad(i)

,Φ
bad(i)

.
We have for all t

Pr
[(
V
′
, E(V ) +X ′A,bad′

)
= t
]

=
k∑
i=1

Pr[A = i] · Pr
[(
V
′
, E(V ) +X ′A,bad′

)
= t

∣∣ A = i
]

=

k∑
i=1

Pr[A = i] · Pr
[(
V

(i)
, E(V ) +Xi,bad(i)

)
= t
]

=

k∑
i=1

Pr[A = i] · Pr
[(
V,E(V ) +Xi,bad(i)

)
= t
]

= Pr
[(
V,E(V ) +X,bad′

)
= t
]
.

This established the desired equality of distributions.
Using that the distribution of bad′ conditioned on A = i equals the distribution of bad(i), we

obtain

Pr
[
|bad′|1 ≤ K

]
=

k∑
i=1

Pr[A = i] · Pr
[
|bad(i)|1 ≤ K

]
≥

k∑
i=1

αi · (1− µi) = 1−
k∑
i=1

αi · µi.

6.1.3 Smudging and Independence Implies Flawed-Smudging

We want to show that if several mutually independent random variables each have a smudging
distribution, then their joint distribution is flawed-smudging. To this end, we first prove a
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technical lemma. Our starting point is the known fact that for two random variables X and X ′,
one can define events BAD and BAD′ such that the probability of these events equals δ(X,X ′)
and the distribution of X conditioned on ¬BAD is equal to the distribution of X ′ conditioned
on ¬BAD′ [MPR07]. We are interested in the following related statement, for which the bad
event can be defined similarly: Assume X and E are random variables over Z such that E
is B-bounded and δ(X,X + e) is “small” for all e in the support of E. Then, there exists an
event BAD with “small” probability such that if BAD does not occur, then E does not depend
on X + E and the fact that BAD does not occur.

The high-level idea is to define the event BAD such that for all y ∈ Z, Pr[X + E =
y ∧ ¬BAD] = mine{Pr[X + e = y]}. This means that given X + E = y, the probability of BAD
gets larger the greater the gap between the probabilities of X + e = y for different values of e is.

The following lemma generalizes this in two ways: First, we consider several Xi and Ei.
Secondly, the Ei are functions of several Vj , which can be correlated. We then define events BADi

for each Xi +Ei and get the statement that intuitively says: If Vj is not used in the computation
of any Ei for which BADi occurs, then Vj does not depend on any Xi + Ei.

Lemma 6.5. Let m, ` ∈ N and let X1, . . . , X`, V1, . . . , Vm be random variables over Z such that
the `+1 random variables X1, . . . , X`, and (V1, . . . , Vm) are mutually independent.6 Further let for
i ∈ [`], Φi ⊆ [m], let Ei : Z|Φi| → Z be functions, let Fi := Ei

(
(Vj)j∈Φi

)
, and let Fi be the support

of Fi with |Fi| <∞. For I ⊆ [`], let ΦI :=
⋃
i∈I Φi. Then, there exist events BAD1, . . . ,BAD`

with BADi = BADi(Fi, Xi) such that for all y1, . . . , y` ∈ Z, v1, . . . , vm ∈ Z, and for all I ⊆ [`],

(i) Pr
[∧

i∈[m]\ΦI Vi = vi
∣∣ ∧

i∈[`]Xi+Fi = yi∧
∧
i∈ΦI

Vi = vi∧
∧
i∈I BADi∧

∧
i∈[`]\I ¬BADi

]
=

Pr
[∧

i∈[m]\ΦI Vi = vi
∣∣ ∧

i∈ΦI
Vi = vi

]
,

(ii) Pr
[∧

i∈I BADi

]
≤
∏
i∈I 4 ·

∑
fi∈Fi δ(Xi, Xi + fi).

Proof. We define BADi for Fi = fi and Xi = xi as

Pr[BADi(fi, xi) = 1] := 1− min
f ′i∈Fi

{
Pr(Xi + f ′i = xi + fi)

Pr(Xi = xi)

}
.

Note that this is a valid probability since minf ′i∈Fi{Pr(Xi+f
′
i = xi+fi)} ≤ Pr(Xi = xi). We then

have for y1, . . . , y` ∈ Z and v1, . . . , vm ∈ Z with Pr
[∧

j∈[`]Xj + Fj = yj ∧
∧
j∈[m] Vj = vj

]
> 0,

Pr

[
BADi

∣∣∣∣∣ ∧
j∈[`]

Xj + Fj = yj ∧
∧
j∈[m]

Vj = vj

]
= 1− min

fi∈Fi

{
Pr(Xi + fi = yi)

Pr(Xi + Ei
(
(vj)j∈Φi

)
= yi)

}
,

where the BADi are sampled independently given
∧
j∈[`]Xj + Fj = yj ∧

∧
j∈[m] Vj = vj .

Now fix y1, . . . , y` ∈ Z, v1, . . . vm ∈ Z, and I ⊆ [`]. We then have using the independence of
6But, V1, . . . , Vm need not be independent.
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the Xi and the conditional independence of the BADi,

Pr
[∧

i∈[`]Xi + Fi = yi ∧
∧
i∈[m] Vi = vi ∧

∧
i∈I BADi ∧

∧
i∈[`]\I ¬BADi

]
= Pr

[ ∧
i∈[m]

Vi = vi

]
·
∏
i∈[`]

Pr[Xi + Ei
(
(vj)j∈Φi

)
= yi] ·

∏
i∈[`]\I

min
fi∈Fi

{
Pr(Xi + fi = yi)

Pr(Xi + Ei
(
(vj)j∈Φi

)
= yi)

}

·
∏
i∈I

(
1− min

fi∈Fi

{
Pr(Xi + fi = yi)

Pr(Xi + Ei
(
(vj)j∈Φi

)
= yi)

})

= Pr

[ ∧
i∈[m]

Vi = vi

]
·
∏
i∈I

Pr[Xi + Ei
(
(vj)j∈Φi

)
= yi] ·

∏
i∈[`]\I

min
fi∈Fi

{Pr(Xi + fi = yi)}

·
∏
i∈I

(
1− min

fi∈Fi

{
Pr(Xi + fi = yi)

Pr(Xi + Ei
(
(vj)j∈Φi

)
= yi)

})
.

(5)

Note that by definition of ΦI , Ei
(
(vj)j∈Φi

)
for i ∈ I does not depend on vj for j ∈ [m] \ ΦI .

Hence,

Pr

[∧
i∈[`]

Xi + Fi = yi ∧
∧
i∈ΦI

Vi = vi ∧
∧
i∈I

BADi ∧
∧

i∈[`]\I

¬BADi

]

=
∑
vi∈Z

i∈[m]\ΦI

Pr

[∧
i∈[`]

Xi + Fi = yi ∧
∧
i∈[m]

Vi = vi ∧
∧
i∈I

BADi ∧
∧

i∈[`]\I

¬BADi

]

= Pr

[ ∧
i∈ΦI

Vi = vi

]
·
∏
i∈I

Pr[Xi + Ei
(
(vj)j∈Φi

)
= yi] ·

∏
i∈[`]\I

min
fi∈Fi

{Pr(Xi + fi = yi)}

·
∏
i∈I

(
1− min

fi∈Fi

{
Pr(Xi + fi = yi)

Pr(Xi + Ei
(
(vj)j∈Φi

)
= yi)

})
.

(6)

Dividing equation (5) by equation (6) yields

Pr
[∧

i∈[m]\ΦI Vi = vi
∣∣ ∧

i∈[`]Xi + Fi = yi ∧
∧
i∈ΦI

Vi = vi ∧
∧
i∈I BADi ∧

∧
i∈[`]\I ¬BADi

]
= Pr

[∧
i∈[m]\ΦI Vi = vi

∣∣ ∧
i∈ΦI

Vi = vi
]
,

and concludes the proof of the first claim of the lemma.
To prove (ii), note that

∧
i∈I BADi only depends on Xi for i ∈ I and Vj for j ∈ ΦI . Together
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with the independence of the Xi, this yields that Pr
[∧

i∈I BADi

]
equals

∑
yi∈Z
i∈I

∑
vi∈Z
i∈ΦI

Pr

[∧
i∈I

Xi + Fi = yi ∧
∧
i∈ΦI

Vi = vi

]
· Pr

[∧
i∈I

BADi

∣∣∣∣∣ ∧
i∈I

Xi + Fi = yi ∧
∧
i∈ΦI

Vi = vi

]

=
∑
yi∈Z
i∈I

∑
vi∈Z
i∈ΦI

Pr

[∧
i∈I

Xi + Fi = yi ∧
∧
i∈ΦI

Vi = vi

]
·
∏
i∈I

(
1− min

fi∈Fi

{
Pr(Xi + fi = yi)

Pr(Xi + Ei
(
(vj)j∈Φi

)
= yi)

})

=
∑
yi∈Z
i∈I

∑
vi∈Z
i∈ΦI

Pr

[ ∧
i∈ΦI

Vi = vi

]
·
∏
i∈I

(
Pr(Xi + Ei

(
(vj)j∈Φi

)
= yi)− min

fi∈Fi

{
Pr(Xi + fi = yi)

})

≤
∑
yi∈Z
i∈I

∑
vi∈Z
i∈ΦI

Pr

[ ∧
i∈ΦI

Vi = vi

]
·
∏
i∈I

(
max
fi∈Fi

Pr(Xi + fi = yi)− min
fi∈Fi

{
Pr(Xi + fi = yi)

})
.

Since the term in the product over i ∈ I does not depend on vi, we obtain

Pr

[∧
i∈I

BADi

]
≤
∑
yi∈Z
i∈I

∏
i∈I

(
max
fi∈Fi

Pr(Xi + fi = yi)− min
fi∈Fi

{
Pr(Xi + fi = yi)

})

=
∏
i∈I

∑
yi∈Z

(
max
fi∈Fi

Pr(Xi + fi = yi)− min
fi∈Fi

{
Pr(Xi + fi = yi)

})

≤
∏
i∈I

∑
yi∈Z

(∣∣∣∣max
fi∈Fi

Pr(Xi + fi = yi)− Pr[Xi = yi]

∣∣∣∣
+

∣∣∣∣Pr[Xi = yi]− min
fi∈Fi

{
Pr(Xi + fi = yi)

}∣∣∣∣).
Since

∣∣maxfi∈Fi Pr(Xi + fi = yi)− Pr[Xi = yi]
∣∣ and ∣∣Pr[Xi = yi]−minfi∈Fi

{
Pr(Xi + fi = yi)

}∣∣
are both upper bounded by

∑
fi∈Fi |Pr[Xi = yi]− Pr(Xi + fi = yi)|, we have

Pr

[∧
i∈I

BADi

]
≤
∏
i∈I

2 ·
∑

fi∈Fi,yi∈Z
|Pr[Xi = yi]− Pr(Xi + fi = yi)|

=
∏
i∈I

4 ·
∑
fi∈Fi

δ(Xi, Xi + fi).

Using this lemma, we can now show the following result.

Proposition 6.6. Let ` and K be positive integers and let X be a distribution over Z` such
that for (X1, . . . , X`)

$← X , X1, . . . , X` are mutually independent and the distribution of each Xi

is (B, ε)-smudging for ε ≤ K+1
22`·(2B+1) . Further let µ = 2

(11`·(2B+1)ε
K+1

)K+1. Then, X is (K,µ)-
flawed-smudging for B-bounded distributions.

Proof. Let m be a positive integer and let for i ∈ [`], Φi ⊆ [m], and let Ei : Z|Φi| → Z be
functions. For I ⊆ [`], let ΦI :=

⋃
i∈I Φi and let E : Zm → Z` be as in Definition 3.4. Let V be a
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distribution over Zm such that E(V) is B-bounded. Further let BAD be the events guaranteed
by Lemma 6.5, let V , X, and V be random variables sampled as in Definition 3.4, and let D1,
D2 be the distributions from Definition 3.4. Finally let I ⊆ [`], y ∈ Z`, and v ∈ Zm. Then,

Pr[V = v ∧ E(V ) +X = y ∧ BAD = I]

= Pr
[∧

i∈ΦI
Vi = vi ∧ E(V ) +X = y ∧ BAD = I

]
· Pr
[∧

i∈[m]\ΦI Vi = vi
∣∣ ∧

i∈ΦI
Vi = vi ∧ E(V ) +X = y ∧ BAD = I

]
= Pr

[∧
i∈ΦI

Vi = vi ∧ E(V ) +X = y ∧ BAD = I
]
· Pr
[∧

i∈[m]\ΦI Vi = vi
∣∣ ∧

i∈ΦI
Vi = vi

]
,

(7)

where the last equality follows from Lemma 6.5. Now let Z :=
∧
i∈ΦI

Vi = vi ∧ BAD = I. Then,

Pr
[∧

i∈[m]\ΦI V i = vi ∧ E(V ) +X = y ∧ Z
]

= Pr
[∧

i∈[m]\ΦI V i = vi
∣∣ E(V ) +X = y ∧ Z

]
· Pr
[
E(V ) +X = y ∧ Z

]
.

Note that we have by definition of V that

Pr
[∧

i∈[m]\ΦI V i = vi
∣∣ E(V ) +X = y ∧ Z

]
= Pr

[∧
i∈[m]\ΦI Vi = vi

∣∣ ∧
i∈ΦI

Vi = vi
]
.

Hence,

Pr
[∧

i∈[m]\ΦI V i = vi ∧ E(V ) +X = y ∧ Z
]

= Pr
[∧

i∈[m]\ΦI Vi = vi
∣∣ ∧

i∈ΦI
Vi = vi

]
· Pr
[
E(V ) +X = y ∧ Z

]
.

Dividing this equation by Pr[Z] yields

Pr
[∧

i∈[m]\ΦI V i = vi ∧ E(V ) +X = y
∣∣ Z]

= Pr
[∧

i∈[m]\ΦI Vi = vi
∣∣ ∧

i∈ΦI
Vi = vi

]
· Pr
[
E(V ) +X = y

∣∣ Z]. (8)

We finally obtain

Pr[V = v ∧ E(V ) +X = y ∧ BAD = I]

(7)
= Pr[Z] · Pr

[
E(V ) +X = y

∣∣ Z] · Pr
[∧

i∈[m]\ΦI Vi = vi
∣∣ ∧

i∈ΦI
Vi = vi

]
(8)
= Pr[Z] · Pr

[∧
i∈[m]\ΦI V i = vi ∧ E(V ) +X = y

∣∣ Z]
= Pr

[∧
i∈[m]\ΦI V i = vi ∧

∧
i∈ΦI

Vi = vi ∧ E(V ) +X = y ∧ BAD = I
]
.

Since V i = Vi for i ∈ ΦI if BAD = I, this implies that the distributions D1 and D2 are equal.
By Lemma 6.5 (ii), we have for all I ⊆ [`], Pr

[∧
i∈I BADi

]
≤
∏
i∈I 4 ·

∑
fi∈Fi δ(Xi, Xi + fi).

By our assumptions on X and E(V), we have δ(Xi, Xi + fi) ≤ ε for all fi ∈ Fi and |Fi| ≤ 2B+ 1.
Thus, Pr

[∧
i∈I BADi

]
≤ (4(2B + 1)ε)|I|. We therefore have

Pr[|BAD|1 > K] =
∑̀

k=K+1

Pr[|BAD|1 = k]

≤
∑̀

k=K+1

∑
I⊆[`]
|I|=k

Pr

[∧
i∈I

BADi

]
≤

∑̀
k=K+1

∑
I⊆[`]
|I|=k

(4(2B + 1)ε)k.
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There are
(
`
k

)
subsets I ⊆ [`] of size k. Using the bound

(
`
k

)
≤
(
`e
k

)k, where e is Euler’s constant,
we obtain

Pr[|BAD|1 > K] ≤
∑̀

k=K+1

(
`e · 4(2B + 1)ε

k

)k
<

∑̀
k=K+1

(
11` · (2B + 1)ε

K + 1

)k
.

Let α := 11`·(2B+1)ε
K+1 . Since ε ≤ K+1

22`·(2B+1) by assumption, we have α ≤ 1/2. Using the formula∑n
k=0 α

k = 1−αn
1−α for the first n terms of the geometric series, we then have

Pr[|BAD|1 > K] <
∑̀
k=0

αk −
K∑
k=0

αk =
αK+1 − α`+1

1− α
≤ 2αK+1.

Hence, the probability that |BAD|1 ≤ K is at least 1− 2αK+1 = 1− µ. Altogether, we conclude
that X is (K,µ)-flawed-smudging for B-bounded distributions.

6.2 Candidate Construction

6.2.1 Definitions

We next provide a candidate PFG. First, we define the following three distributions:

Definition 6.7. For even n ∈ N and for all C ∈ N, let Sn,C be the distribution of S defined as

S : Zn → Z, (x1, . . . , xn) 7→
n/2∑
i=1

αixσ(2i−1)xσ(2i) +

n∑
i=1

βixi + γ,

where α1, . . . , αn/2, β1, . . . , βn, and γ are independent and distributed uniformly over {−C, . . . , C},
and σ is chosen independently and uniformly from the set of permutations of {1, . . . , n}.

Definition 6.8. For n ∈ N and for all C ∈ N, letMQn,C be the distribution of MQ defined as

MQ: Zn → Z, (x1, . . . , xn) 7→
∑

1≤i≤j≤n
αi,jxixj +

n∑
i=1

βixi + γ,

where for 1 ≤ i ≤ j ≤ n, αi,j , βi, and γ are independent and distributed uniformly over
{−C, . . . , C}.

Definition 6.9. For B1, B2 ∈ N with B1 ≤ B2, let XB1,B2 be the distribution that with
probability 1/2 samples uniformly from {−B1, . . . , B1} and with probability 1/2 samples uniformly
form {−B2, . . . , B2}. That is, if X is sampled from XB1,B2 , then

∀x ∈ Z Pr(X = x) =


1
2 ·

1
2B1+1 + 1

2 ·
1

2B2+1 , |x| ≤ B1,
1
2 ·

1
2B2+1 , B1 < |x| ≤ B2,

0, |x| > B2.

Using the above distributions, we next define our candidate construction. It basically samples
from these distributions and sets the generator to be the sum of S and MQ. The seed for S is
sampled from XB1,B2 , and the seed for MQ is uniform.
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Definition 6.10. Let n, n′, and m be polynomials, where n(λ) is even for all λ ∈ N. Fur-
ther let C ∈ N be a constant, let B1, B2 be nonconstant polynomials with B1(λ) ≤ B2(λ),
and let B′ and C ′ be polynomials for all λ ∈ N. We then define our candidate (n + n′,m)-
PFG CPFGn,n

′,m,B1,B2,B′,C,C′

λ for λ ∈ N as follows: CPFGn,n
′,m,B1,B2,B′,C,C′

λ samples a func-

tion PFG: Zn(λ)+n′(λ) → Zm(λ) by sampling Si
$← Sn(λ),C , MQi

$← MQn′(λ),C′(λ) for i ∈
{1, . . . ,m(λ)}, and setting

PFG
(
(xi)i∈[n(λ)], (x

′
i)i∈[n′(λ)]

)
=
(
Sj
(
(xi)i∈[n(λ)]

)
+ MQj

(
(x′i)i∈[n′(λ)]

))
j∈[m(λ)]

.

Moreover, let Dseed be the distribution that samples x1, . . . , xn(λ) from XB1(λ),B2(λ), samples
x′1, . . . , x

′
n′(λ) uniformly from {−B′(λ), . . . , B′(λ)}, and outputs

(
x1, . . . , xn(λ), x

′
1, . . . , x

′
n′(λ)

)
.

Efficiency of our candidate is clear. We prove in the next section that it is also (K,µ)-
pseudo-flawed-smudging for B-bounded distributions, for an appropriate choice of parameters, if
the following assumption holds:

Assumption 6.11. Let n, n′,m,B1, B2, B
′, C, and C ′ be as in Definition 6.10. The assump-

tion is that for λ ∈ N, there exist distributions DS(λ), D′(λ) such that DS(λ) is the joint
distribution of mutually independent Y1, . . . , Ym(λ), where the distribution of each Yi equals
Sn(λ),C

(
(XB1(λ),B2(λ))

n(λ)
)
, and the following ensembles are µ-indistinguishable:{

(PFG,Dseed)
$← CPFGn,n

′,m,B1,B2,B′,C,C′

λ ; seed
$← Dseed : (PFG,PFG(seed))

}
λ∈N

,{
(PFG,Dseed)

$← CPFGn,n
′,m,B1,B2,B′,C,C′

λ ;Y
$← DS(λ);Z

$← D′(λ) : (PFG, Y + Z)
}
λ∈N

.

The intuition is as follows: We show that Sn(λ),C

(
(XB1(λ),B2(λ))

n(λ)
)
is smudging (see Corol-

lary 6.17). By Proposition 6.6, we get that if all components are sampled independently from
that distribution, the resulting distribution is flawed-smudging. This is preserved when adding
independent values by Lemma 6.2. The addition is supposed to make uncovering dependencies
between the components harder, which is formalized by Assumption 6.11.

6.2.2 Flawed-Smudging Property of Candidate

We first need to prove some lemmata.

Lemma 6.12. Let B ∈ N, c1, c2 ∈ Z \ {0} such that gcd(c1, c2) = 1, and let X1, X2 be
independent and uniformly distributed over {−B, . . . , B}. Then,

∀z, e ∈ Z |Pr(c1X1 + c2X2 = z)− Pr(c1X1 + c2X2 = z − e)| ≤ 1

(2B + 1)2
·
(
|e|
|c1c2|

+ 2

)
.

Proof. Let z ∈ Z. Since X1 and X2 are independent, we have

Pr(c1X1 + c2X2 = z) =
∑
y∈Z

Pr(c1X1 = y) · Pr(c2X2 = z − y).

Note that we have for i ∈ {0, 1} and t ∈ Z, Pr(ciXi = t) = 1
2B+1 if t ∈ ci · {−B, . . . , B} and

Pr(ciXi = t) = 0 otherwise. Therefore,

Pr(c1X1 + c2X2 = z) =
1

(2B + 1)2
·
∣∣{y ∈ c1 · {−B, . . . , B}

∣∣ z − y ∈ c2 · {−B, . . . , B}
}︸ ︷︷ ︸

=:D

∣∣.
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Let di := |ci| ·B for i ∈ {1, 2}. We then have D = c1Z ∩ [−d1, d1] ∩ (c2Z+ z) ∩ [−d2 + z, d2 + z].
Because c1 and c2 are coprime, the Chinese remainder theorem implies that there exists some
y0 ∈ N such that y0 < c1c2 and c1Z ∩ (c2Z + z) = y0 + c1c2Z. Hence, D = (y0 + c2c2Z) ∩
[−d1, d1] ∩ [−d2 + z, d2 + z]. As an intersection of two intervals, [−d1, d1] ∩ [−d2 + z, d2 + z] is
an interval and therefore contains at least

⌊
`

c1c2

⌋
integers congruent to y0 modulo c1c2, and at

most
⌈

`
c1c2

⌉
of these, for ` := |[−d1, d1] ∩ [−d2 + z, d2 + z] ∩Z|. We can therefore conclude that

for all z ∈ Z,

Pr(c1X1 + c2X2 = z) ∈
{

1

(2B + 1)2
·
(
|[−d1, d1] ∩ [−d2 + z, d2 + z] ∩Z|

c1c2
+ r

) ∣∣∣∣ r ∈ [−1, 1]

}
.

Now let e ∈ Z. Note that the number of integers in [−d1, d1] ∩ [−d2 + z, d2 + z] and in
[−d1, d1] ∩ [−d2 + z − e, d2 + z − e] differ by at most |e|. This implies that Pr(c1X1 + c2X2 = z)

and Pr(c1X1 + c2X2 = z − e) differ by at most 1
(2B+1)2 ·

(
|e|
|c1c2| + 2

)
.

Lemma 6.13. Let B ∈ N, c1, c2 ∈ Z such that gcd(c1, c2) = 1, and let X1, X2 be independent
and uniformly distributed over {−B, . . . , B}. Further let e ∈ Z, |e| ≤ 2B + 1. Then,

δ(c1X1 + c2X2, c1X1 + c2X2 + e) ≤ 2|e|+ |c1|+ |c2|+ 2

2B + 1
.

Proof. By definition, we have

δ(c1X1 + c2X2, c1X1 + c2X2 + e) =
1

2

∑
z∈Z
|Pr(c1X1 + c2X2 = z)− Pr(c1X1 + c2X2 + e = z)|.

If c1 = 0, then gcd(c1, c2) = 1 implies c2 ∈ {−1, 1}. In this case,

δ(c2X2, c2X2 + e) =
1

2
· 1

2B + 1
· |{z ∈ Z | (z ∈ {−B, . . . , B} ∧ z /∈ {−B + e, . . . , B + e})

∨ (z /∈ {−B, . . . , B} ∧ z ∈ {−B + e, . . . , B + e})|

=
1

2
· 1

2B + 1
· 2|e| ≤ 2|e|+ |c1|+ |c2|+ 2

2B + 1
.

Hence, the claim of the lemma holds for c1 = 0. Analogously, it holds for c2 = 0.
Now assume that c1 6= 0 6= c2. Note that for all z with |z| > (|c1| + |c2|)B + |e|, we have

Pr(c1X1 + c2X2 = z) = 0 and Pr(c1X1 + c2X2 + e = z) = 0. That is, there are at most
2(|c1| + |c2|)B + 2|e| + 1 values of z for which these probabilities can differ. Moreover, by
Lemma 6.12, they differ by at most 1

(2B+1)2 ·
(
|e|
|c1c2| + 2

)
. The statistical distance is thus at most

1

2
·
(
2(|c1|+ |c2|)B + 2|e|+ 1

)
· 1

(2B + 1)2
·
(
|e|
|c1c2|

+ 2

)
=

1

2
· 1

(2B + 1)2
·
(

2|e|(|c1|+ |c2|)B + 2|e|2 + |e|
|c1c2|

+ 4(|c1|+ |c2|)B + 4|e|+ 2

)
.

Since |c1|+ |c2| ≤ 2 ·max{|c1|, |c2|} and |c1|, |c2| ≥ 1, we have |c1|+|c2||c1c2| ≤ 2. This implies

δ(c1X1 + c2X2, c1X1 + c2X2 + e) ≤ 1

(2B + 1)2
· 4|e|B + 2|e|2 + |e|+ 4(|c1|+ |c2|)B + 4|e|+ 2

2

=
1

(2B + 1)2

(
|e|(2B + 1) + |e|2 + 3

2 |e|+ 2(|c1|+ |c2|)B + 1
)
.
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Because for all 0 < b ≤ a, a
b −

a+1
b+1 = ab+a−ab−b

b(b+1) ≥ 0, we have 2(|c1|+|c2|)B+1
2B+1 ≤ 2(|c1|+|c2|)B

2B =

|c1|+ |c2|. Using |e| ≤ 2B + 1, we further have |e|
2B+1 ≤ 1. This yields

δ(c1X1 + c2X2, c1X1 + c2X2 + e) ≤
|e|+ |e|+ 3

2 + |c1|+ |c2|
2B + 1

≤ 2|e|+ |c1|+ |c2|+ 2

2B + 1
.

Lemma 6.14. Let C ∈ N \ {0} and let X,Y be independent and distributed uniformly over
{−C, . . . , C}. Then,

Pr(gcd(X,Y ) = 1) ≥ 13

22
.

Proof. Let X ′, Y ′ be independent and distributed uniformly over {0, . . . , C}. By a result of
Fontein and Wocjan [FW14, Proposition 3.1], we have

Pr(gcd(X ′, Y ′) = 1) ≥ 13

22
. (9)

Note that X and Y are coprime if and only if |X| and |Y | are coprime. The distributions of |X|
and |Y | are not uniform because 0 has smaller probability than all other numbers. Since 0 is
only coprime to 1, and all numbers are coprime to 1, decreasing the probability of 0 can only
increase the probability of the numbers being coprime. Hence,

Pr(gcd(X,Y ) = 1) = Pr(gcd(|X|, |Y |) = 1) ≥ Pr(gcd(X ′, Y ′) = 1) ≥ 13

22
.

Lemma 6.15. Let α1, β1, α2, β2 ∈ Z such that gcd(α1, β1) = gcd(α2, β2) = 1. We then have
for all sufficiently large B ∈ N and independent X1, X2 that are distributed uniformly over
{−B, . . . , B},

Pr(gcd(α1X1 + β1, α2X2 + β2) = 1) ≥ 1

2
.

Proof. If αi = 0 for some i ∈ {0, 1}, then gcd(αi, βi) = 1 implies βi = 1 and therefore
Pr(gcd(α1X1 + β1, α2X2 + β2) = 1) = 1 in this case. Assume now that α1 6= 0 6= α2. Then,
α1X1 + β1 and α2X2 + β2 are nonconstant polynomials and we have by [CS87, equation 5.1, see
also Theorem 4.1]7

lim
N→∞

1

N2
·
∣∣{(x1, x2) ∈ {1, . . . , N}2

∣∣ gcd(α1X1 + β1, α2X2 + β2) = 1
}∣∣ =

1

ζ(2)

∏
p|α1α2
p prime

1

1− 1
p2

,

where ζ is the Riemann zeta function. Since 1
1− 1

p2
≥ 1 for all primes p, the above limit is at least

1
ζ(2) = 6

π2 > 0.6. This implies that for all sufficiently large B,

Pr(gcd(α1X1 + β1, α2X2 + β2) = 1 | X1 > 0 ∧X2 > 0) ≥ 0.6.

For Xi < 0, we have αiXi + βi = −αi(−Xi) + βi and similarly for X2 < 0. Therefore, we can
also lower bound the probability by 0.6 for negative values of X1 and X2. Moreover, we have for
B ≥ 6 that Pr(X1 6= 0 ∧X2 6= 0) =

(
2B

2B+1

)2 ≥ 5
6 . Hence, we obtain for all sufficiently large B

Pr(gcd(α1X1 + β1, α2X2 + β2) = 1)

≥ Pr(gcd(α1X1 + β1, α2X2 + β2) = 1 | X1 6= 0 ∧X2 6= 0) · Pr(X1 6= 0 ∧X2 6= 0)

≥ 0.6 · 5

6
=

1

2
.

7Note that equation 5.1 in [CS87] contains
∑
p|α1α2

instead of
∏
p|α1α2

, which is a typo.
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Using the above lemmata, we can now prove that if S is chosen from Sn,C , it will with high
probability be “good” and for all (fixed) “good” S and small values of e ∈ Z, S(X1, . . . , Xn) and
S(X1, . . . , Xn) + e are statistically close, where X1, . . . , Xn are sampled from XB1,B2 .

Proposition 6.16. Let C ∈ N \ {0}. We then have for all even n ∈ N, for all sufficiently
large B1 ∈ N and all B2 ≥ B1, for S chosen from Sn,C , that with probability (over the choice
of S) of at least 1− 2−n/141, it is the case that for X1, . . . , Xn chosen independently from XB1,B2

(and now fixed S) and for all e ∈ Z with |e| ≤ 2B2 + 1,

δ(S(X), S(X) + e) ≤ 2|e|+ 2C · (B1 + 1) + 2

2B2 + 1
+

(
31

32

)n/16

,

where X := (X1, . . . , Xn).

Proof. Note that

S(X) =

n/2∑
i=1

((
αiXσ(2i−1) + βσ(2i)

)
·Xσ(2i) + βσ(2i−1)Xσ(2i−1)

)
+ γ.

For i ∈ {1, . . . , n/2}, let Ei be the event that gcd
(
αi, βσ(2i)

)
= 1. By Lemma 6.14, we have

Pr(Ei) ≥ 13
22 . Since these events are independent, we further have Pr(E2i−1∩E2i) ≥ 132

222 . Now let
for i ∈ {1, . . . , n/4}, Gi be the random variable that is 1 if E2i−1 ∩ E2i occurs, and 0 otherwise.
Let pG := Pr(G1 = 1) = . . . = Pr(Gn/4 = 1) ≥ 132

222 . We then have by the Chernoff-Hoeffding
bound for all ε > 0

Pr

(
n/4∑
i=1

Gi ≤
(

132

222
− ε
)
n

4

)
≤ Pr

(
n/4∑
i=1

Gi ≤ (pG − ε)
n

4

)
≤ exp

(
−2ε2 · n

4

)
.

In particular, we obtain for ε = 12
121

Pr

(
n/4∑
i=1

Gi ≤
n

16

)
≤ exp

(
−2
( 12

121

)2
· n

4

)
= exp

(
− 72

14641
n

)
< 2−n/141.

Let
IS :=

{
i ∈ 2 · {1, . . . n/4}

∣∣ gcd
(
αi−1, βσ(2(i−1))

)
= gcd

(
αi, βσ(2i)

)
= 1
}
.

The result above then implies that Pr(|IS | ≥ n/16) ≥ 1− 2−n/141.
Now assume S is chosen (and fixed) such that |IS | ≥ n/16. For i ∈ IS , let G′i be the event

that

(i) |Xσ(2(i−1)−1)| ≤ B1 and |Xσ(2i−1)| ≤ B1,

(ii) Xσ(2(i−1)) and Xσ(2i) are distributed uniformly over {−B2, . . . , B2}, and
(iii) αi−1Xσ(2(i−1)−1) + βσ(2(i−1)) and αiXσ(2i−1) + βσ(2i) are coprime.

Note that conditions (i) and (ii) are satisfied with probability at least 1/4 each by definition of
the distribution XB1,B2 , and condition (iii) is satisfied with probability at least 1/2 for sufficiently
large B1 by Lemma 6.15. We thus have for sufficiently large B1 and for all i ∈ IS

Pr(G′i) ≥
1

32
. (10)
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If we fix Xσ(2(i−1)−1) = xσ(2(i−1)−1) and Xσ(2i−1) = xσ(2i−1) and assume G′i, then S(X) is of
the form

c1Xσ(2(i−1)) + c2Xσ(2i) + Y,

for some constants c1, c2 with gcd(c1, c2) = 1 and |c1|, |c2| ≤ C · (B1 + 1), and some Y that is
independent from Xσ(2(i−1)) and Xσ(2i). Since Y and c1Xσ(2(i−1)) + c2Xσ(2i) are independent,
the statistical distance of S(X) and S(X) + e for e ∈ Z can in this case be upper bounded by the
statistical distance of c1Xσ(2(i−1)) + c2Xσ(2i) and c1Xσ(2(i−1)) + c2Xσ(2i) + e. By Lemma 6.13,
this can in turn be upper bounded by

2|e|+ 2C · (B1 + 1) + 2

2B2 + 1
.

For i ∈ IS , let Fi,x,x′ be the event that Xσ(2i−3) = x ∧Xσ(2i−1) = x′ for x, x′ ∈ Z. Then, the
statistical distance of S(X) conditioned on G′i and S(X) + e conditioned on G′i is

1

2

∑
z∈Z

∣∣Pr(S(X) = z | G′i)− Pr(S(X) + e = z | G′i)
∣∣

=
1

2

∑
z∈Z

∣∣∣∣∣ ∑
x,x′∈Z

Pr(G′i∩Fi,x,x′ )6=0

Pr(Fi,x,x′) ·
(
Pr(S(X) = z | G′i ∩ Fi,x,x′)− Pr(S(X) + e = z | G′i ∩ Fi,x,x′)

)∣∣∣∣∣
≤

∑
x,x′∈Z

Pr(G′i∩Fi,x,x′ ) 6=0

Pr(Fi,x,x′) ·
1

2

∑
z∈Z

∣∣Pr(S(X) = z | G′i ∩ Fi,x,x′)− Pr(S(X) + e = z | G′i ∩ Fi,x,x′)
∣∣

︸ ︷︷ ︸
≤ 2|e|+2C·(B1+1)+2

2B2+1

≤ 2|e|+ 2C · (B1 + 1) + 2

2B2 + 1
.

Overall, we get using equation (10) and |IS | ≥ n/16,

δ(S(X), S(X) + e) ≤ 2|e|+ 2C · (B1 + 1) + 2

2B2 + 1
+ Pr(∀i ∈ IS ¬G′i)

≤ 2|e|+ 2C · (B1 + 1) + 2

2B2 + 1
+

(
31

32

)n/16

.

Corollary 6.17. Let C ∈ N \ {0}. We then have for all even n ∈ N, for all sufficiently
large B1 ∈ N and all B2 ≥ B1, for S chosen from Sn,C , and X1, . . . , Xn chosen independently
from XB1,B2 , that the distribution of S(X1, . . . , Xn) is (B, ε)-smudging for all B ≤ 2B2 + 1 and

ε =
2B + 2C · (B1 + 1) + 2

2B2 + 1
+ 2 ·

(
31

32

)n/16

.

Proof. Let e ∈ Z, |e| ≤ B, and let ε′ := 2|e|+2C·(B1+1)+2
2B2+1 +

(
31
32

)n/16. Further let G be the set of
all sG with δ(sG(X), sG(X) + e) ≤ ε′ and let G be the set of all other s. By Proposition 6.16, we
have Pr

[
S ∈ G

]
≤ 2−n/141. Therefore,

δ(S(X), S(X) + e) =
∑
s∈G

Pr[S = s] · δ(s(X), s(X) + e) +
∑
s∈G

Pr[S = s] · δ(s(X), s(X) + e)

≤ Pr[S ∈ G] · ε′ + Pr[S ∈ G]

≤ ε′ + 2−n/141.

53



Since |e| ≤ B and
(

1
2

)n/141 ≤
(

31
32

)n/16, we have ε′ + 2−n/141 ≤ ε, which concludes the proof.

Putting our results together, we obtain the main result of this section:

Theorem 6.18. Let n, n′,m,B1, B2, B
′, C, and C ′ be as in Definition 6.10. Then, Assump-

tion 6.11 implies that CPFGn,n
′,m,B1,B2,B′,C,C′

λ is (K,µ′)-pseudo-flawed-smudging for B-bounded
distributions, where µ′ = 2

(11n·(2B+1)ε
K+1

)K+1 and ε = 2B+2C·(B1+1)+2
2B2+1 + 2 ·

(
31
32

)n/16, if ε ≤
K+1

22n·(2B+1) and B ≤ 2B2 + 1.

Proof. Let DS(λ), D′(λ) be the distributions that exist by Assumption 6.11. Then, DS(λ) is
the joint distribution of mutually independent Y1, . . . , Ym(λ), where the distribution of each Yi
equals Sn(λ),C

(
(XB1(λ),B2(λ))

n(λ)
)
. By Corollary 6.17, we have for all sufficiently large λ that

the distributions of each Yi are (B, ε)-smudging. Then by Proposition 6.6, DS(λ) is (K,µ′)-
flawed-smudging for B-bounded distributions. By Lemma 6.2, the distribution of the sum of
samples from DS(λ) and D′(λ) are (K,µ′)-flawed-smudging for B-bounded distributions. The
µ-indistinguishability guaranteed by Assumption 6.11 finally implies the claim.

Remark 6.19. Note that the distributionMQn,C and the distribution of its part of the seed is
only relevant for Assumption 6.11, but not for the proof of Theorem 6.18. One can therefore
replace these distributions by all other distributions for which Assumption 6.11 is satisfied.

6.2.3 Choice of Parameters

For the construction of our FE scheme for constant degree polynomials in Section 4, we need an
(S1−α, S)-PFG that is (K,µ)-flawed-smudging for B-bounded distributions with K = λε2 and
subexponentially small µ. To satisfy this, we can take our candidate CPFGn,n

′,m,B1,B2,B′,C,C′

λ

and set the parameters as follows: Set n = dS1−α/2e, n′ = S1−α − n, and m = S. Further set
B1, B′, C, and C ′ arbitrarily, and set

B2 ≥ Ω(nB2 + nBB1).

Theorem 6.18 then implies that under Assumption 6.11, our candidate is (K,µ)-flawed-smudging
for B-bounded distributions, for

µ = O

(
1

K + 1

)K+1

= O
((
λ−ε2

)(λε2 )
)
.
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