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Abstract. In this work we first define semi-commutative (invertible) masking structures which present a simple
abstraction to capture the various examples of protocol design that are based on exponentiation-only style operations
(such as discrete logarithm and isogeny based cryptography). We discuss two possible instantiations of our structure:
The first is based on commutative group actions and captures both the action of exponentiation in the discrete
logarithm setting and also the action of the class group of commutative endomorphism rings of elliptic curves, in
the style of the CSIDH key-exchange protocol; the second is based on the semi-commutative action of isogenies
of supersingular elliptic curves, in the style of the SIDH key-exchange protocol. We then design two oblivious
transfer protocols using this structure and prove that they securely UC-realise the standard OT-functionality in the
Random-Oracle-hybrid model against passive adversaries with static corruptions. This paper thus introduces the
first oblivious transfer protocol based on supersingular isogenies that is proven secure in the UC framework.

1 Introduction

Oblivious Transfer (OT) is a fundamental cryptographic building block, originally proposed by
Rabin in 1981, [Rab81]. OT protocols can be used to create various other high level cryptographic
protocols, and have even been shown to be complete for general multi-party computation [Kil88].
In its most basic form, OT is often presented in terms of so-called 1-out-of-2 OT, as first introduced
by Even, Goldreich and Lempel [EGL82]. Here, a sender has two messages m0 and m1, whilst a
receiver has a choice bit c ∈ {0, 1} which allows him to obtain mc. At the end of the protocol the
sender learns nothing about the bit c, and the receiver learns nothing about m1−c.

In considering the state-of-the-art in post-quantum OT protocols we need to understand the
various models that are used and the types of OT protocols which are enabled.

There are three types of OT: In the first the two messages m0 and m1 can only be selected
from the set {0, 1}, this is so-called bit-OT. In the second type the two messages can be arbitrary
messages selected by the sender, but of the same length, leading to so-called string-OT. Finally, we
have a variant of string-OT, but where the messages are purely random strings of the same length
over which the sender has no control, so called random-OT. It is easy to build string-OT from
random-OT using an encryption algorithm, and in addition random-OT can be used as a building
block in many multi-party computation protocols [NNOB12].

Secondly, one has to consider the overall assumptions; whether the construction assumes the
Random Oracle Model (ROM), or a Common Reference String (CRS), or has no such assumption.
As well as the underlying hard problem on which security is based, for example CDH or DDH in
abelian groups, or Quadratic Residuosity (QR) for RSA-style groups, Learning Parity with Noise
(LPN) or Learning with Errors (LWE) for lattice based constructions, or McEliece style problems



for coding theory constructions, or supersingular isogeny (SSI) problems for isogeny based sys-
tems.

The third consideration is about the security model. Here protocols can be proved secure in a
game-based setting, or a simulation based setting with the latter being divided into those proofs
which only provide stand-alone security, and those which provide full Universal Composability
(UC) security. The adversaries can be assumed to be fully adaptive (they can decide to corrupt the
sender or receiver as the protocol is running), or static (they must choose which party to corrupt
at the start). In addition models can capture passive adversaries (which follow the protocol), or
malicious ones (which can deviate from the protocol execution). Another efficiency consideration
is how many rounds of communication each protocol requires.

Many efficient OT protocols have been built out of discrete logarithm based protocols; see for
example the early influential work of Naor and Pinkas [NP01]. The current most efficient and most
secure protocols are the DDH and DCR-based constructions of [PVW08] and the CDH-based con-
struction of [BDD+17] which achieves roughly the same computational complexity. Also, the con-
struction of [BDD+17] supersedes the well-known protocol of Chou and Orlandi [CO15a] whose
proof has been showed to be flawed [Orl18]. A discussion from the original authors regarding these
shortcomings has been added in [CO15b, Section 1.1].

However, any future quantum computer would enable efficient breaking of security of these dis-
crete logarithm based variants. With that threat in mind, both the works of [PVW08] and [BDD+17]
were shown to benefit from generalisations to post-quantum variants based on LWE, LPN and
McEliece). Also, further lattice based constructions have recently been given in [BD18,Zen18].
However, one would clearly not want to rely on a single assumption to ensure security and there
has also been much work into other hard computational problems. One such alternative problem
is that of isogeny computation on elliptic curves. Research on protocols based on isogenies has
already led to the realisation of key exchange protocols, zero-knowledge proofs and identification
protocols [DFJP14,CLM+18].

1.1 Our Contribution

In the traditional discrete logarithm setting, for a given group G, not only can elements be expo-
nentiated – as in the Diffie-Hellman (DH) key exchange with ga, gb and gab – but they can also
be multiplied together – with ga · gb = ga+b. This ability to compose group elements grants more
flexibility to protocol designers and enables the realisation of simple and efficient protocols such
as Schnorr’s zero-knowledge proof of knowledge (ZKPoK) [Sch90]. However, the mathematical
structures that are attractive for post-quantum cryptography do not possess as much structure,
which is in part why they are conjectured to be more resistant to quantum algorithms.

We first of all focus on a “exponentiation-only” framework to remove the additional freedom of
the second operation (i.e. the group multiplication in the discrete logarithm setting). An additional
challenge of the setting of the Supersingular Isogeny Diffie-Hellman ( SIDH) key exchange, first
proposed by De Feo et al. [DFJP14], is that the commutativity of the “exponentiation” operation
no longer holds in general. The protocol proposed by De Feo, Jao and Plût works around this at
the cost of heavy notation and mathematical mechanisms.
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Our first contribution is therefore the definition of a new structure called a semi-commutative
invertible masking scheme which captures the absence of full commutativity in this new setting,
within a framework that is notationally simple and intuitive. We also proceed to show that these
schemes can be realised both from the traditional discrete logarithm setting and also from the more
recent elliptic curve isogeny setting, both ordinary and supersingular. Furthermore, we discuss the
computational problems that we introduce and show that they are in fact very close to the existing
problems in the litterature for the respective settings.

Our second contribution is two OT protocols constructed from our new semi-commutative
invertible masking scheme. Both protocols achieve UC security against passive adversaries with
static corruptions in the ROM. The first protocol is inspired by the Shamir 3-pass key transport
protocol which we modify to satisfy the requirements of oblivious transfer using only two passes.
The second protocol is an adaptation of the key-exchange based protocol of Chou and Orlandi
[CO15a] to the “exponentiation-only” setting.

While it would be fairly simple to modify our protocols to achieve game-based active security,
it is not clear how to achieve active security in the UC-model. Following the blueprint of previous
works [BPRS17,BDD+17] leads to new difficulties due to the lack of a rich algebraic structure of
our semi-commutative construction, resulting in (potentially) extra rounds of communications. We
leave investigation of actively secure variants to future work.

Related work. In addition to the works in other settings mentioned above, there has been only
one other very recent work in building post-quantum secure OT protocols from isogenies on elliptic
curves [BOB18] that emerged concurrently to ours. This work only proves security in the stand-
alone model and it provides no framework with which to derive new protocols. In Table 1 we
summarize the current state-of-the-art in both the pre- and post-quantum settings.

Reference Type Set-up Comm. Security Assumptions
[CO15a] string ROM 2 rds game-based gap-DH

[BDD+17] string ROM 3 rds UC, malicious, adaptive CDH, LPN,
McEliece

[BPRS17] string ROM 2 rds GUC, malicious, adaptive DDH
[PVW08] bit CRS 2 rds UC, malicious, static DDH, DCR, QR,

Regev (LWE)
[BD18] string 2 rds game-based LWE
[Zen18] string 6 rds stand-alone, malicious, static LWE

[BOB18] string 3 rds stand-alone, passive, static SSI-DDH,
SSI-CDH

This work string ROM 3 rds UC, passive, static CDH, CSIDH
This work string ROM 2 rds UC, passive, static CDH, CSIDH

Table 1: State-of-the-art OT protocols in the pre- and post-quantum settings.
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1.2 Paper Overview

After a short preliminaries in Section 2, we present in Section 3 our abstraction of semi-commutative
invertible masking scheme. As we do so, we illustrate the construction using the standard discrete
logarithm setting, so as to fix ideas for the reader. In Section 4 we show how our abstraction can
be instantiated from group actions. This includes not only the traditional discrete logarithm con-
struction, but also the construction from hard homogeneous spaces, [CLM+18,Cou06]. In Section
5 we show how to instantiate our abstraction using isogenies between supersingular elliptic curves
and discuss how its security relates to the computational problems that arise from the SIDH key-
exchange setting.

Then in Section 6 we present two protocols which utilizes this abstraction to generalise from
two discrete logarithm based OT protocols. In the first one we present a protocol derived from
the Shamir-3-Pass key transport scheme, and one protocol derived from the Chou and Orlandi
methodology for constructing OT from the Diffie-Hellmen key agreement protocol.

2 Preliminaries

We denote by λ the computational security parameter. We say that a function f : N → N is
negligible if for every positive polynomial p(·) and all sufficiently large λ it holds that f(λ) < 1

p(λ)
.

The function f is noticeable (or non-negligible) if there exists a positive polynomial p(·) such that
for all sufficiently large λ it holds that f(λ) ≥ 1

p(λ)
. We denote by a $←− A the uniform sampling of

a from a set A, and
c
≈ and

s
≈ computational and statistical indistinguishability, respectively.

We denote by E = {(KGenE ,Enc,Dec), (KE ,ME , CE)} a symmetric encryption scheme, where
KE ,ME , CE are the key-space, message-space and ciphertext-space, respectively. We refer the
reader to Appendix A for the precise definitions that we require.

Universal Composability We prove security of our protocols in the universal composability (UC)
framework [Can01], with static passive corruptions. In particular, we will prove that our protocols
UC-realize the OT functionality FOT in the FRO-hybrid model, where the OT functionality is
presented in Figure 1 and the random oracle (RO) functionality is described in Figure 2 We refer
to Appendix B for a general overview of the UC framework.

Functionality FOT

PARAMETER: n length of the bit-strings

– Upon receiving (PS , sid,m0,m1) from PS , check if a (sid, c) was previously stored. If yes, send mc to PR; if not, store
(sid,m0,m1) and continue to run.

– Upon receiving (PR, sid, c) from PR, check if a (sid,m0,m1) was previously stored. If yes, send mc to PR; if not, store
(sid, c) and continue to run.

Fig. 1: Oblivious transfer functionality
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Functionality FRO

The functionality is parametrized by a domainD and rangeR. It keeps a list L of pairs of values, which is initially empty and
proceeds as follows:

– Upon receiving a value (sid,m),m ∈ D, if there is a pair (m, ĥ), ĥ ∈ R, in the list L, set h = ĥ. Otherwise choose
h

$←− R and store the pair (m,h) in L.
– Reply to the activating machine with (sid, h).

Fig. 2: Random oracle functionality

3 Semi-Commutative Masking

In this section we define our abstraction of semi-commutative invertible masking structure. This
is a structure which enables us to discuss a number of protocols in three different settings; a tra-
ditional discrete logarithm style setting, the setting of hard homogeneous spaces related to class
groups of the endomorphism ring of elliptic curves (as used in [CLM+18]), and the case of su-
persingular isogenies (as used in [DFJP14]). This abstraction will allow us to define succintly our
protocols, without needing to worry about implementation details. It may also allow other authors
to find new applications of supersingular isogenies by abstracting existing discrete logarithm based
protocols. To help fix ideas in the reader’s mind we will illustrate the abstraction by looking at the
specialisation to discrete logarithms in a finite field Fp such that q = (p− 1)/2 is prime and g is an
element of order q.

A masking structure M is defined over a set X . Each element x ∈ X may have multiple
representations, and we define Rx to be the set of representations of an element x ∈ X . We denote
the set of all such sets by RX = {Rx}x∈X . The sets of representatives are assumed to be disjoint,
i.e.

∀x, x′ ∈ X s.t. x 6= x′ : Rx ∩Rx′ = ∅,

and we define R = ∪x∈XRx to be the total set of representatives. For example, if we take X =
〈g〉 ⊂ F∗p, then the usual choice for R is, for every x ∈ X , to let Rx = {x}, but one could also take
a redundant representation with two elements per x ∈ X by letting Rx = {x, x + p} as has been
done for side-channel protection [Wal99].

A mask is a function µ : R −→ R, and a masking set M is a set of such functions. In our
discrete logarithm analogue we can think of M as a set indexed by elements in Z∗q which gives an
explicit exponentiation algorithm on the set of representatives of the group elements X .

A masking function µ ∈M is said to be invertible if

∀µ ∈M, ∀x ∈ X, ∀r ∈ Rx, ∃µ−1 ∈M : µ−1(µ(r)) ∈ Rx.

Note, we do not require that the inverse gives the same representative back, only that it gives a
representative in the same set. If all elements µ ∈ M are invertible, then we say that the masking
set M is invertible. In our discrete logarithm example if µ corresponds to the map g 7→ ga on some
set of group representatives, then µ−1 corresponds to the map g 7→ g1/a.

An invertible masking structureM for a setX is then a collection of sets of representativeRX ,
along with a collection of invertible masking sets [Mi]

n
i=1, and we writeM = {X,RX , [Mi]

n
i=1}.
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Such an invertible masking structure is said to be semi-commutative if

∀i 6= j, ∀µ ∈Mi, ∀µ′ ∈Mj, ∀r ∈ R : µ(µ′(r)) ∈ Rx ⇐⇒ µ′(µ(r)) ∈ Rx,

for the same set Rx. In our discrete logarithm setting, letting M being the set of exponentiation
maps considered earlier, it is easy to see that M = {X,RX , [M,M ]} is a semi-commutative
invertible masking structure.

3.1 Problems and Properties
We now present a distinguishing experiment and several computational problems for such masking
structures. The security of our protocols will be proven to hold under the assumption that some of
these are hard, and the precise security level will then be established when this generic structure is
instantiated from concrete constructions in Sections 4 and 5.

Definition 3.1 (IND-Mask security). Given a semi-commutative invertible masking structureM =
{X,RX , [Mi]}, we define the IND-MaskA,M experiment in Figure 3 for an arbitrary adversaryA.

Data:M = {X,RX , [Mi]}, λ ∈ N
Result: win ∈ {0, 1}

1 r, µ0, µ1, i, st← A(1λ) such that r ∈ R, i ∈ [n], µ0, µ1 ∈Mj , j 6= i;
2 r0 ← µ0(r), r1 ← µ1(r);

3 b
$←− {0, 1};

4 µ
$←−Mi;

5 r ← µ(rb);
6 b̃← A(1λ, st, r);
7 if b̃ = b, then return win = 1 else return win

$←− {0, 1};

Fig. 3: The IND-MaskA,M security experiment

We then say thatM is IND-Mask-secure if for all PPT adversaries A, it holds that∣∣∣∣Pr [IND-MaskA,M(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(1λ).

We see that in the discrete logarithm setting, when Rx = {x}, the exponentiation map (·)a for a
random a induces a random premutation of the group elements. Therefore for a secret a and given
two group elements g0, g1, the distribution of gab is perfectly uniform, independently of b. This
shows that such anM is perfectly IND-Mask-secure.

Note 3.1. In some settings (but not in the discrete logarithm one), it may be possible to distinguish
the action of two masks that belong to separate masking sets. It is also possible that this difference
is preserved under the action of a mask from a third masking set. Therefore, if an adversary was
able to submit arbitrary r0 and r1 to the IND-Mask experiment, it could ensure that the difference
between them is preserved by the action of µ and hence win the experiment with certainty. By
forcing A to submit a single r ∈ R and two maps µ0, µ1 belonging to the same masking set Mj ,
the experiment prevents that strategy.
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As well as the above hiding property of random masks, we will also make reference to the
following hard problems for semi-commutative invertible masking structures:

Definition 3.2. Given a semi-commutative invertible masking structureM = {X,RX , [Mi]}, we
define the following computational problems:

1. Demask: Given (i, r, rx) with the promise that rx = µx(r) for a uniformly random µx
$←− Mi,

return µx.
2. Parallel: Given (i, j, r, rx, ry) with the promise that i 6= j and that rx = µx(r) and ry = µy(r)

for uniformly random µx
$←−Mi, µy

$←−Mj , return z ∈ X such that µx(ry) ∈ Rz.
3. ParallelInv: Given (i, j, r, rx, ry) with the promise that i 6= j and that rx = µx(r) and ry =

µy(r) for uniformly random µx
$←−Mi, µy

$←−Mj , return z ∈ X such that µ−1x (ry) ∈ Rz.
4. ParallelEither: Given (i, j, r, rx, ry) with the promise that i 6= j and that rx = µx(r) and ry =

µy(r) for uniformly random µx
$←− Mi, µy

$←− Mj , return z ∈ X such that either µx(ry) ∈ Rz

or µ−1x (ry) ∈ Rz.
5. ParallelBoth: Given (i, j, r, rx0 , rx1 , ry) with the promise that i 6= j and that rxb = µb(r), b ∈
{0, 1} and ry = µy(r) for uniformly random µb

$←− Mi, µy
$←− Mj , return z ∈ X such that

either µ−11−b(µb(ry)) ∈ Rz or µ−1b (µ1−b(ry)) ∈ Rz.

If we want to make explicit the given masking structure M to which the (say) Demask problem
refers, then we write DemaskM.

To motivate these problems we consider them in the context of the discrete logarithm setting, where
we take our masking structure as before to have Rx = {x} and to have each Mi to be identical to
the set of exponentiation maps indexed by Z∗q .

– It is easy to see that the Demask problem is, given (g, h) with the promise that h = ga for a
random a, to return a. This is exactly the discrete logarithm problem (DLP).

– Similarly, the Parallel problem is, given (g, ga, gb) for random a, b, to return ga·b which is exactly
the computational Diffie-Hellman (CDH) problem. The name “Parallel” is derived from the
representation shown in Figure 4a of the problem where the challenge is to compute the parallel
operation.

– In the discrete logarithm setting, the ParallelInv problem is to compute gb/a given (g, ga, gb).
We show here that in this setting it is equivalent to the Parallel problem. Given a challenge
(g, ga, gb) for Parallel, we let (ga, g, gb) be a challenge for ParallelInv. We rewrite this as
(h, ha

′
, hb

′
) with h = ga, a′ = 1/a and b′ = b/a. As a and b are uniformly random, so are

a′ and b′ and hence our ParallelInv solver returns

hb
′/a′ = ha·b/a = (ga)b = ga·b

which is exactly the solution to the Parallel challenge that was given. A similar reduction shows
that the ParallelInv problem can be solved using an oracle for the Parallel problem.
We note that this reduction does not immediately hold in the abstract case, due to the unspec-
ified relation between r and µ−1(µ(r)), but it can nonetheless be shown to hold for different
instantiations.
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– The ParallelEither problem is an instance where both the solutions to the Parallel and to the
ParallelInv problems, for the same challenge, are accepted. Whilst it is immediate that the
ParallelEither problem is at most as hard as any of the other two, a formal reduction to show
the reverse implication does not appear to be as trivial. We conjecture that in most settings, and
in the discrete logarithm setting in particular, allowing for two possible answers which are both
hard to compute on their own does not significantly decrease the hardness of the ParallelEither
problem.

– The solution of the ParallelBoth problem can be seen as a combination of both Parallel and
ParallelInv solutions together with the choice of the ParallelEither problem as is shown Figure
4c. Indeed, one can first use a Parallel oracle to compute µb(ry) for either b ∈ {0, 1} and then
use a ParallelInv oracle to compute µ−11−b(µb(ry)) which shows that ParallelBoth is at most as
hard as those two problems. Similarly to the ParallelEither problem, we conjecture that in most
settings the ParallelBoth will not be significantly easier as it requires solutions which are both
hard to compute.

g

ga

gb

(gb)a

(a) The Parallel problem.

g

ga

gb

(gb)1/a

(b) The ParallelInv problem.

g

ga0ga1

gb (gb)a0/a1(gb)a1/a0

(c) The ParallelBoth problem.

Fig. 4: Representations of computational problems.
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4 Instantiation from one-way group actions

We now present a generalisation of the discrete logarithm setting instantiation of our new semi-
commutative masking structure. Specifically, we show that hard homogeneous spaces, as given in
[CLM+18], and which are based on Couveignes’s original definition [Cou06], are an example of
semi-commutative invertible masking schemes. This forms a direct generalisation of the discrete
logarithm setting, which has already been discussed in Section 3. However, it also includes the
action, via isogenies, of the class group of the ring of Fp-rational endomorphisms of supersingular
isogenies over Fp on the isomorphism classes of such curves.

4.1 One-way group actions

Before succinctly presenting the two realisations discussed above, we give a summarized definition
of hard homogeneous spaces and formally instantiate a semi-commutative masking structure from
such spaces. Throughout this section, we letG be a finite commutative group with identity element
e and we denote the group action of G on a set X with the operator ∗ as follows:

∗ : G×X → X

g ∗ x 7→ x.

Definition 4.1 (Hard (efficient) homogeneous space). A homogeneous space X for G is a finite
set X on which G acts freely and transitively. This implies that for any g ∈ G different from e,
the permutation of X induced by the action of g has no fixed points; i.e. for given x, y ∈ X , there
exists a unique g ∈ G such that y = g ∗ x.

The space X is efficient if the following tasks are computationally easy (i.e. polynomial-time):

– Evaluation of the group operation, inversion and equality testing of elements of G,
– Sampling a random element from G with (close to) uniform distribution,
– Deciding membership and equality of a representation of elements of X ,
– Evaluation of the action of a group element g ∈ G on a set element x ∈ X;

The space X is hard if the following tasks are computationally hard (i.e. not polynomial-time):

– Given x, y ∈ X , return g ∈ G such that y = g ∗ x; this is the analogue of the DLP for the
group action.

– Given x, y, z ∈ X such that y = g ∗ x, return g ∗ z; this is the analogue of the CDH for the
group action.

We now instantiate a masking structure and show that it realises our definition of a semi-commutative
invertible masking structure.

Definition 4.2 (Masking structure from homogeneous space). Given a space X for G we define
a masking structureMX,G = {X,RX , [G,G]} for X as follows:

– The X in the structure is exactly the set X from of space.
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– We let Rx = {x} for each x ∈ X and therefore have R = X .
– The masking tuple [G,G] consists of two identical copies of the group G that acts on X .

Lemma 4.1. Let X be an efficient homogeneous space for a commutative group G, then the mask-
ing structureMX,G = {X,RX , [G,G]} of Definition 4.2 is a semi-commutative masking structure.

Proof. First we see that all the elements of MX,G are well-defined and that so is the masking
action of µ ∈ G : R −→ R where

µ : r 7→ µ ∗ r

Next, we have that by definition of a group action, the masking of any r ∈ R by any µ ∈ Mi

for all i is indeed invertible. Also, since every Mi is a copy of the group G, the commutativity of
G induces the semi-commutativity ofMX,G. Finally, the properties of an efficient homogeneous
space imply the efficiency of the operations required for a semi-commmutative masking structure.

ut

We see here that this notion of a group action is stronger than our semi-commutative structure
since any mask is in fact able to commute with any other. However the advantage of our weaker
structure will become apparent in Section 5 with the next instantiation from supersingular isogenies
over Fp2 .

Note 4.1. Before we discuss the instantiation of the computational problems, we briefly note that
the two requirements for the hardness of a homogeneous space correspond exactly to the Demask
and Parallel problems for a semi- commutative masking structure.

Also, we have that the Parallel and ParallelInv problems are equivalent as it suffices to swap
the first two elements of a challenge (x, y, z) for one problem to obtain a challenge (y, x, z) for
the other which yields the same solution. Finally we have that ParallelEither is at most as hard as
Parallel or ParallelInv. Hence we have

ParallelEitherMX,G <P ParallelMX,G ∼=P ParallelInvMX,G .

We also note that MX,G is perfectly IND-Mask-secure since the action by a uniformly random
element in G induces a perfect randomization of any element in X .

4.2 Discrete logarithm setting

The traditional Diffie-Hellman (DH) setting presented in Section 3 is a straightforward realisation
of the hard homogeneous space presented in the previous section. Indeed, for any finite abelian
group 〈g〉 of prime order in which the computational Diffie–Hellman problem is hard, we can let
X be the set 〈g〉 and G be the set of exponentiation maps.

4.3 Class group of the endomorphism ring of supersingular elliptic curves over Fp

The second realisation of hard homogeneous spaces we present is a summary of the recent work by
Castryck et al. [CLM+18], we refer the reader to the full paper for a precise discussion. The work
of Castryck et al. builds upon the Couveignes-Rostovstev-Stolbunov scheme of [Cou06,RS06]
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where the public key space is the set of Fq-isomorphism classes of ordinary elliptic curves over Fq
whose endomorphism ring is a given order O in an imaginary quadratic field and whose trace of
Frobenius has prescribed sign. The key ideas of the scheme of Courveignes et al. is that the ideal
class group cl(O) acts freely and transitively on that set, and that this class group is commutative
which allows for a natural key exchange protocol.

However, and despite recent improvements [FKS18,Kie17], the scheme of Couveignes et al. is
inefficient for the following reason. In order to decompose the action of an element of cl(O) into
several smaller actions that are quicker to compute, De Feo-Kieffer-Smith [FKS18] had the idea to
chose p ≡ −1 mod ` for several small odd primes `. They then searched for an ordinary elliptic
curve E/Fp such that #E(Fp) ≡ 0 modulo as many `’s as possible. This would ensure that `O
decomposes as the product of two prime ideals l and l̄ for which the action of the ideal classes [l]
and [̄l] can be computed efficiently. If this works for sufficiently many `’s, then a generic element
of cl(O) can be written as a product of small integral powers of such [l] and the class group action
can be computed efficiently. However, finding a curve E/Fp such that #E(Fp) ≡ 0 is hard and
they only manage to obtain practical solutions for 7 different values of `.

In order to increase the efficiency of this methodology, Castryck et al. adapt it to make use
of supersingular elliptic curves defined over a prime field Fp. Instead of the full ring of endo-
morphisms of such curves, which is not commutative, they consider the subring of Fp-rational
endomorphisms which is again an order O in an imaginary quadratic field. As before, the ideal
class group cl(O) acts via isogenies on the set of Fp-isomorphism classes of elliptic curves with
Fp-rational endomorphism ring equal to O, we denote this set by Ep(O). Furthermore, contrary to
the ordinary case, this action only has a single orbit.

The reason why this yields an increase in efficiency is that, in the supersingular case, #E(Fp) =
p+ 1 and hence #E(Fp) ≡ 0 modulo all primes ` | p+ 1 used in building p. This allows for many
more values of ` to be used which in turn reduces the integral powers of each [l] that appear in the
decomposition of generic elements in cl(O). Concretely, Castryck et al. use 74 small odd primes in
their implementation for which they heuristically expect that each element in cl(O) can be written
as [l1]

e1 [l2]
e2 · · · [l74]e74 with each ei ∈ {−5, . . . , 5}. In contrast, for a class group of equivalent

256-bit size, using 7 small primes for the same approach would require exponents in the range of
236 which leads to much slower computations.

Lemma 4.2. For a fixed prime field Fp and appropriate order O of an imaginary quadratic field,
let X = Ep(O), and let G = cl(O). Then X is an efficient homogeneous space for G.

Proof. As stated in the discussion above, we have that G acts freely and transitively on X and
furthermore it inherits the commutative structure of O and therefore this is a well-defined homo-
geneous space.

Also, due to the decomposition into classes of small prime ideals with small integral exponents
the evaluation of the group operation, inversion, equality and sampling, as well as the action of
a group element on a set element x are all efficient. Furthermore, since X can be represented as
the set of Montgomery coefficients of the Fp-isomorphism classes, equality of elements of X is
efficient as well. ut

As in the previous setting, the Demask and Parallel problems for the semi- commutative mask-
ing structure MX,G induced by the homogeneous space of Lemma 4.2 immediately translate to
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analogues of the DLP and CDH in the class group action setting; and so does our prior discussion
on the equivalence of ParallelInv and Parallel and on the hardness of ParallelEither. The classical
and post-quantum security of the DLP analogue in this setting was already succinctly discussed
in [CLM+18, Section 7] and was addressed in greater detail in the very recent work of [BS18]
which provides a finer estimation of the required security parameters. We leave the analysis of the
security of the CDH analogue for further work.

5 Instantiation from supersingular isogenies over Fp2

In Section 4 above, the commutative property of G gives stronger algebraic properties to the in-
duced masking structure than the weaker semi-commutativity which we require. Furthermore, the
first realisation presented in Section 4.2 also possesses a group structure on the set X which is
compatible with the action of G. This additional structure on X plays a key role in the design
of several protocols as it enables increased flexibility, such as the OT protocol of Chou and Or-
landi [CO15a], but it also leads to increased attack vectors such as Pohlig-Hellman-style attacks.
The second realisation of Section 4.3 does not possess such a structure on X compatible with the
action G which eliminates that attack vector. However the commutative property of G itself still
enables the Demask problem forMX,G to be presented as an instance of the abelian shift problem
for which a sub-exponential quantum algorithm with time complexity of Lp[1/2] is known to exist
[CJS14].

In an effort to avoid this sub-exponential quantum attack vector, De Feo, Jao and Plût [DFJP14]
consider the use of supersingular elliptic curves over an extension of Fp whose full endomorphism
ring is an order in a quaternion algebra and therefore non-commutative. In this section we summa-
rize this approach succinctly, construct a semi- commutative masking structure from this setting
and discuss the hardness of the induced problems.

5.1 Supersingular isogenies over Fp2

Preliminaries. Let E1 and E2 be elliptic curves defined over a finite field Fq. An isogeny φ :
E1 → E2 over Fq is a non-constant rational map over Fq which is also a group homomorphism
from E1(Fq) to E2(Fq). For the isogenies that we consider, we identify their degrees with the size
of their kernels. Two curves E1, E2 are said to be isogenous over Fq if there exists an isogeny
φ : E1 → E2 over Fq which holds if and only if #E1(Fq) = #E2(Fq). A set of elliptic curves over
Fq that are all isogenous to one another is called an isogeny class.

An endomorphism over Fq of an elliptic curve E is a particular isogeny E → E over Fqm for
some m. The set of endomorphisms of E together with the zero map, denoted End(E), forms a
ring under the following operations

φ⊕ ϕ : P 7→ φ(P ) + ϕ(P ) and φ⊗ ϕ : P 7→ φ(ϕ(P )).

The full ring End(E) is isomorphic to either an order in a quaternion algebra, in which case we say
that E is supersingular, or to an order in an imaginary quadratic field, in which case we say that
E is ordinary. Curves that are in the same isogeny class are either all supersingular or all ordinary.
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Here we focus on the supersingular case. All supersingular curves are defined over the field Fp2
for a prime p and for every prime ` - p there exist ` + 1 isogenies, up to isomorphism, of degree `
originating from any given supersingular curve.

Given a curve E and a subgroup Φ of E(Fp2) there is, up to isomorphism, a unique isogeny
E → E ′ having kernel Φ and we therefore identify E ′ with the notation E/Φ:

∀Φ < E(Fp2), ∃!φ : E −→ E/Φ.

Particularly, we will work with subgroups of the torsion group E[m] for m ∈ N which is the group
of Fp2-points of E whose order divides m. Whilst it is inefficient to specify a whole subgroup to
specify an isogeny, in the special case of kernels generated by Fp2-rational points, one can specify a
generator of the kernel to allow for a short representation and efficient computation of an isogeny.

Semi-commutativity. To fix ideas, and introduce some semi-commutativity to this setting despite
the non-commutativity of End(E), we recap on how isogenies can be used to construct the SIDH
key-exchange protocol. We generalise slightly the presentation of [DFJP14] and discuss the case
where Fq is fixed to be Fp2 where p is a prime of the form `e11 `

e2
2 · · · `enn · f ± 1 for n small primes

`1, . . . , `n and a small cofactor f .
Since we have that `i - p for all i, there is a curve E/Fp2 in each isomorphism class such that

the torsion group E[`eii ] is isomorphic to (Z/`eii Z) × (Z/`eii Z). This implies that E[`eii ] contains
`ei−1i (`i + 1) cyclic subgroups of order `eii (which each define a different isogeny).

In the setting of key exchange, a party generates a secret key by selecting a random point Ki of
order `eii on a common curve E and computes a public key by computing the unique isogeny with
kernel 〈Ki〉 and publishing the domain curve E/〈Ki〉. The computation of this isogeny is efficient
due to its very smooth degree. The issue here is that the structure of End(E) no longer allows for
the composition of arbitrary isogenies to commute and an analogue of the (ga)b = (gb)a equality is
not immediate. However, with isogenies of co-prime degrees some commutative structure can still
be achieved.

To solve this, in addition to the curve E, the parties agree on bases {Pi, Qi} for each of the
torsion groups E[`eii ]. The semi-commutative structure then comes from the fact that applying an
isogeny of degree `eii preserves the torsion groups E[`

ej
j ] for j 6= i since every point in E[`

ej
j ] has

order co-prime to `eii . Therefore, alongside publishing the domain curve E/〈Ki〉 for their secret
isogeny φi, parties also publish {{φi(Pj), φi(Qj)}j 6=i}, the images under φi of the bases for the
other torsion groups. By expressing their secret kernel Kj = [αj]Pj + [βj]Qj in the bases of the
initial torsion groups and applying these coefficients to the images {φi(Pj), φi(Qj)}, the other
party is then able to compute an isogeny ϕj : E/〈Ki〉 → E/〈Ki, Kj〉 which can be considered
equivalent to the isogeny φj : E → E/〈Kj〉.

Whilst the two resulting curves E/〈Ki, Kj〉 and E/〈Kj, Ki〉 may not be identical, they will
be isomorphic, as the kernel 〈Ki, Kj〉 defines a unique isogeny up to isomorphism, and the parties
can then take the j-invariants of their respective curves as an identical shared value.

The Weil pairing. As we now include points and their images under secret isogenies in our
protocols, we recall here the notion of the Weil pairing which can be a vector for distinguishing
attacks.
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For any integer m ∈ N, we let ζm = {u | um = 1} ⊂ F∗p2 . For any curve E defined over Fp2 ,
the Weil pairing is a map em evaluated on pairs of points,

em : E[m]× E[m] −→ ζm,

that satisfies the following relation:

em(φ(P ), φ(Q)) = em(P,Q)degφ

where φ : E → E ′ is any isogeny.

5.2 Masking structure.

To start defining a semi-commutative masking structure, we fix p = `e11 `
e2
2 · · · `enn · f ± 1 as above.

In this setting, there are five supersingular isogeny classes and we let X denote the set of all j-
invariants that belong to the biggest of the five classes.

Representatives. For each j-invariant x ∈ X , there is a canonical choice of curve Ex as described
in [AJK+16, Section 3.1] and [GPS17, Section 2.4]. For each Ex we take the appropriate twist of
the curve to ensure that they all belong to the same isogeny class. We then define the set Rx of
representatives to be the set of tuples (Ex, {{Pi, Qi}i∈[n]}) where Ex is the canonical curve for x
or an appropriate twist and {Pi, Qi} is a basis of the torsion group Ex[`eii ] as in Section 5.1. For a
given curve and torsion order, there exist a deterministic and efficient algorithm Basis(E, i) as is
shown in [AJK+16, Section 3.2], and for each torsion order, we fix a global value qi ∈ ζ`eii such that
for any curve E, the value of the Weil pairing evaluated on the basis points output by Basis(E, i) is
equal to qi. This will be used to derive new torsion points when required, but these are still free to
be modified under the action of isogenies. Hence for each x, there will be a unique choice of Ex
but many choices of bases of torsion groups that originate from the deterministic one.

In our protocols, when a shared common element x ∈ X is required together with a represen-
tative r ∈ Rx, then the parties should agree on a j-invariant and then derive the curve and all the
basis points in the deterministic way described above.

Masking sets. We first observe that for any Ki = [αi]Pi + [βi]Qi on a curve E, the point [λ]Ki,
for λ ∈ (Z/`eii Z)∗, generates the same subgroup of E[`eii ]. By defining the equivalence relation∼R
by

(α, β) ∼R (α′, β′) ⇐⇒ ∃λ ∈ (Z/`eii Z)∗ s.t. (α′, β′) = (λα, λβ),

we can then identify any such kernel Ki with the equivalence class of (αi, βi) which we denote
[αi : βi]. We recall that the projective line P1(Z/`eii Z) is the set of equivalence classes [αi : βi]
such that the ideal 〈αi, βi〉 is the whole of Z/`eii Z.

Since Ki has exact order `eii , at least one of αi and βi must not be divisible by `i and hence
the ideal of the ring Z/`eii Z generated by αi, βi is always the unit ideal, i.e. the whole of Z/`eii Z.
This implies that all the possible choices for Ki can be exactly identified with the points on the
projective line P1(Z/`eii Z). We therefore define n masking sets [Mi]i∈[n] where each Mi is the
projective line Pi := P1(Z/`eii Z).
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Masking action. Computing the result of a mask µ(r) ∈ Ry on a representative r ∈ Rx then
consists in computing one of its representatives Ki in Ex[`eii ] and the isogeny φi : Ex → Ex/〈Ki〉.
Note that the curve Ex/〈Ki〉 with j-invariant y ∈ X may not be the same curve as the canonical
choice Ey. However they will be isomorphic over Fp2 due to the appropriate choice of twist in the
definition of our set Ry and the isomorphism χ : Ex/〈Ki〉 −→ Ey will be easy to compute.

To be able to compose isogenies in a semi-commutative way, computing µ(r) also requires
computing the images of {{Pj, Qj}} for j 6= i first under φi and then under the isomorphism χ to
obtain bases of the torsion groups of Ey. It also requires generating a new basis for Ey[`eii ] using
the Basis(E, i) algorithm.

Inverting the mask. Since our masking sets Mi are no longer derived from a group, we do not
have an immediate instantiation of an inverse operation. However, for every isogeny φ : E → E ′

of degree `, there is a unique dual isogeny φ̂ : E ′ → E also of degree ` such that the composition
is the multiplication-by-` map: φ̂ ◦φ = [`] : E → E. Whilst not a perfect inverse operation, in this
setting the multiplication-by- `eii map preserves the structure of the `ejj -torsion groups for all j 6= i
and that is all we require for semi-commutativity to hold.

Hence, given a kernel generator Ki ∈ E[`eii ] for some curve E, one can compute a generator of
the image φi(E[`eii ]) < E ′[`eii ] of the torsion group, under the isogeny φi defined by Ki composed
with an appropriate isomorphism, to obtain K̂i ∈ E/〈Ki〉 which is a generator of the kernel of the
unique dual isogeny φ̂i.

Given a mask µ ∈ Mi = Pi and elements r and r′ = µ(r) with r′ = (E ′, {{Pi, Qi}i∈[n]}),
computing the inverse µ−1 amounts to computing a point K̂i as above and expressing it as (α̂i, β̂i)
in the deterministically generated basis for E ′[`eii ] which can be done efficiently as is shown in
[AJK+16]. This then allows us to define µ−1 uniquely as [α̂i : β̂i] ∈ Pi, given µ and r.

We note that this dependency of µ−1 on µ and r is consistent with the definition of the inverse
of a mask as stated in Section 3 and discussed in the presentation of the construction of the protocol
Π1

OT.

Masking structure. We are then able to formally define a masking structure in this setting.

Definition 5.1 (Masking structure from supersingular isogenies). Given a prime p defining the
finite field Fp2 as above, we define the masking structure Mp = {X,RX , [Mi]i∈[n]} where the
individual components are defined as above.

Lemma 5.1. The masking structureMp of Definition 5.1 is a semi- commutative masking struc-
ture.

Proof. First we see that the elements ofMp together with the action of any µ ∈ Mi on any r are
well-defined. Since the composition of any isogeny with its dual results in an endomorphism of the
starting curve, our method of inverting a given mask yields the same j-invariant regardless of the
starting r or masking index i.

The semi-commutative property of our structure follows from the semi- commutative property
of isogenies of co-prime degrees when the appropriate images of the bases of the torsion groups
are revealed which they are in our computation of an arbitrary mask action.
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The required efficiency of the computations forMp follows from the comments above regard-
ing the computation of isogenies of smooth degrees and expression of points in arbitrary torsion
bases. Equality in X and Mi and membership in X are immediate to check. ut

5.3 Computational problems

Due to its recent introduction and the relatively complec mathematics involved, the problem land-
scape of the SIDH setting is still currently undergoing intense study from the community. Urbanik
and Jao [UJ18] have proposed a detailed presentation and study of the analogues of the dLog and
CDH problems that arise from the SIDH key-exchange of De Feo, Jao and Plût [DFJP14]. Gal-
braith and Vercauteren also have written a survey of these problems [GV17], with a stronger focus
on the mathematics of isogenies of elliptic curves.

Here we frame Urbanik and Jao’s discussion of these problems in [UJ18, Section 4] in our
setting that uses n distinct small primes `i. Whilst we give a very general presentation, in practice
our OT schemes only require n = 3 (contrasted with n = 2 in the case of the SIDH key-exchange)
which constitutes only a small extension of the original setting.

The isogeny problem. In its simplest form, the intuition behind the security of isogeny-based
cryptography is that it is hard to compute a hidden isogeny, up to isomorphism, when given only
the initial and final j-invariants. The general isogeny problem can be stated as follows.

Definition 5.2 (General isogeny problem [GV17, Definition 1]). Given j-invariants j, j′ ∈ Fp2 ,
return an isogeny φ : E −→ E ′ (if it exists), where j(E) = j and j(E ′) = j′.

Given that the elements of X in the masking structureMp are the supersingular j-invariants of
Fp2 and that the elements of the masking setsMi can be uniquely identified with isogenies between
isomorphism classes, it would first seem that the Demask problem forMp can be instantiated as
the general isogeny problem of Definition 5.2. To recover some commutative structure, however,
we have to reveal the images of the bases of the torsion points. This constitutes significantly more
information and therefore is conjectured to be an easier problem to solve.

Additional information. This has led to the definition in the literature of a specific SIDH problem.
Here we merge the definitions of [GV17] and [UJ18] for the case of n = 2 small primes in the
composition of p.

Definition 5.3 (2-i-isogeny problem [GV17, Def. 2][UJ18, Prob. 4.1]). Let (E,P1, Q1, P2, Q2)
be such that E/Fp2 is a supersingular curve and Pj, Qj is a basis for E[`

ej
j ] for j ∈ {1, 2}. Let E ′

be such that there is an isogeny φ : E −→ E ′ of degree `eii . Let P ′j , Q
′
j be the images under φ of

Pj, Qj for j 6= i. The 2-i-isogeny problem, given (E,P1, Q1, P2, Q2, E
′, P ′j , Q

′
j), is to determine

an isogeny φ̃ : E −→ E ′ of degree `eii such that P ′j = φ̃(Pj) and Q′j = φ̃(Qj).

This definition leads to the following natural generalisation which we show corresponds exactly to
the computational problem that we need.
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Definition 5.4 (n-i-isogeny problem). Let (E, {Pj, Qj}nj=1) be such thatE/Fp2 is a supersingular
curve and Pj, Qj is a basis for E[`

ej
j ] for j ∈ [n]. Let E ′ be such that there is an isogeny φ : E −→

E ′ of degree `eii . Let {P ′j , Q′j} be the images under φ of {Pj, Qj} for j 6= i. The n-i-isogeny
problem, given (E, {Pj, Qj}nj=1, E

′, {P ′j , Q′j}j 6=i), is to determine an isogeny φ̃ : E −→ E ′ of
degree `eii such that P ′j = φ̃(Pj) and Q′j = φ̃(Qj) for all j 6= i.

Lemma 5.2. Let p = `e11 `
e2
2 · · · `enn ·f ±1 be a prime and letMp be a masking structure as defined

in Definition 5.1. Then the Demask problem forMp is an instance of the n-i-isogeny problem.

Proof. The specification of i in (i, r, rx) together with the random mask µx satisfies the promise
of existence of an isogeny φ of degree `eii . Also, By definition of Rx for each x ∈ X forMp, the
representative rx contains exactly the information of the curve E ′ together with the images of the
appropriate torsion points.

We note that rx does not contain additional information as the basis points ofE ′[`eii ] are derived
deterministically from E ′. ut

Computational SIDH. The isogeny problems defined above can be viewed as the analogues of
the discrete logarithm problem of computing an unknown exponent in the general case and in the
specific SIDH setting. This naturally leads to an analogue of the CDH problem which is defined as
follows in the case of n = 2.

Definition 5.5 (2-computational SIDH problem [UJ18, Problem 4.3]). LetE,EA, EB be super-
singular curves such that there exist isogenies φA : E −→ EA and φB : E −→ EB with kernels
KA and KB and degrees `e11 and `e22 respectively. Let P1, Q1 and P2, Q2 be bases of E[`e11 ] and
E[`e22 ] respectively, and let P ′1 = φB(P1), Q′1 = φB(Q1) and P ′2 = φA(P2), Q′2 = φA(Q2) be the
images of the basis under the isogeny of coprime degree. The 2-computational SIDH problem is,
given (E,P1, Q1, P2, Q2, EA, P

′
2, Q

′
2, EB, P

′
1, Q

′
1), to identify the isomorphism class of the curve

E/〈KA, KB〉.

Note 5.1. We abbreviate the previous problem as 2-CSIDH and stress that it has no relation to the
CSIDH scheme of [CLM+18].

This problem can also be generalised in a natural way to the following which then yields the
appropriate instantiation for our structure.

Definition 5.6 (n-i, j-computational SIDH problem). Let E,EA, EB be supersingular curves
such that there exist isogenies φA : E −→ EA and φB : E −→ EB with kernels KA and KB and
degrees `eii and `ejj respectively with i 6= j. Let {Pk, Qk} be bases of E[`ekk ], for k ∈ [n], and let
PA
k = φA(Pk), QA

k = φA(Qk), for k 6= i, and PB
k = φB(Pk), QB

k = φB(Qk), for k 6= j be the im-
ages of the bases under the isogeny of coprime degree. The n-i, j-computational SIDH problem is,
given (E, {Pk, Qk}k∈[n], EA, {PA

k , Q
A
k }k 6=i, EB, {PB

k , Q
B
k }k 6=j), to identify the isomorphism class

of the curve E/〈KA, KB〉.

Lemma 5.3. Let p = `e11 `
e2
2 · · · `enn ·f ±1 be a prime and letMp be a masking structure as defined

in Definition 5.1. Then the Parallel problem forMp is an instance of the n-i, j-CSIDH problem.
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Proof. As for Lemma 5.2, the specification (i, j, r, rx, ry) of the Parallel problem forMp satisfies
the promise of existence of the two isogenies of coprime degrees and contains all the required
information on the images of the torsion bases. Also, the goals of the problems agree since the
solution to the Parallel problem for Mp requires z ∈ X which is exactly the j-invariant which
identifies the isomorphism class uniquely. Again, rx and ry do not contain additional information
since the bases for the ith and jth torsion groups are computed deterministically. ut

Inverse CSIDH problem. Regarding the ParallelInv problem forMp, we do not have an immedi-
ate reduction to the Parallel problem as we had for the previous instantiation. Nonetheless we are
still able to prove an equivalence between the two.

Lemma 5.4. Let p = `e11 `
e2
2 · · · `enn ·f ±1 be a prime and letMp be a masking structure as defined

in Definition 5.1. Then the ParallelInv problem for Mp is equivalent to the Parallel problem for
Mp.

Proof. We show that the ParallelInv problem forMp can be solved using an oracle for the Parallel
problem forMp. The converse implication holds by a symmetric argument.

With (i, j, r, rx, ry) we are given the promise that there exists a mask µx ∈ Mi such that
rx = µx(r) and therefore that there exists a mask µ−1x ∈ Mi, by definition of Mp. However, it
is not guaranteed by the definition of a semi-commutative masking structure that µ−1x (µx(r)) = r,
and therefore we cannot simply submit (i, j, rx, r, ry) to the Parallel oracle as we might not be
satisfying the promise regarding the images of the points.

Instead we will compute an alternative r′ that does satisfy this promise. Leaving aside the detail
of the additional computation of isomorphisms to ensure that all points belong to the canonical
choice of curve for the moment, and letting φx : E −→ Ex denote the isogeny specified by µx,
we can identify µ−1x with the dual isogeny φ̂x as described in Section 5.2. Since the composition of
φx with its dual results in the multiplication-by-`eii map on E, we are able to compute the images
under µ−1x of the basis points P x

k , Q
x
k as [`eii ]Pk, [`

ei
i ]Qk, for k 6= i, without knowledge of µx.

As we know that the choice of E is canonical for each j-invariant, we use the same E for r′ as
is given in r. Also, the basis points of E[`eii ] in r′ are expected to be those deterministically fixed
for E so we can compute them without knowledge of µx as well.

This shows that we can compute all the elements of r′ such that they satisfy the appropriate
promise for the Parallel problem with the additional relation that the hidden isogeny of degree `eii
between rx and r′ is exactly µ−1x , up to isomorphism, for µx as uniquely fixed by r and rx.

Since we are only interested in a correct result of j-invariant from the Parallel solver, we do not
need to address further the isomorphims of curves used to ensure the canonical choice of curve.
By submitting the tuple (i, j, rx, r

′, ry) to the Parallel oracle, we can obtain the desired solution to
the given ParallelInv challenge. ut

In this setting, we similarly conjecture that the hardness of the ParallelEither and ParallelBoth
problems is comparable to that of the Parallel and ParallelInv problems as no additional information
is revealed and only similarly hard-to-compute solutions are required.
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Decisional SIDH. Galbraith and Vercauteren also fomalise a decisional variant of the SIDH prob-
lem in the case of n = 2.

Definition 5.7 (2-i-decisional SIDH problem [GV17, Definition 3]).
Let (E,P1, Q1, P2, Q2) be such that E/Fp2 is a supersingular curve and Pj, Qj is a basis for

E[`
ej
j ] for j ∈ {1, 2}. Let E ′ be an elliptic curve and let P ′j , Q

′
j ∈ E ′[`

ej
j ] for j 6= i. Let 0 < d < ei.

The 2-i-decisional SIDH problem is, given (E,P1, Q1, P2, Q2, E
′, P ′j , Q

′
j, d) for j 6= i, to determine

if there exists an isogeny φ : E → E ′ of degree `di such that φ(Pj) = P ′j and φ(Qj) = Q′j .

As for the computational problems, we can generalise the above problem to our setting.

Definition 5.8 (n-i-decisional SIDH problem).
Let (E, {Pj, Qj}j∈[n]) be such that E/Fp2 is a supersingular curve and Pj, Qj is a basis for

E[`
ej
j ] for j ∈ [n]. Let E ′ be an elliptic curve and let P ′j , Q

′
j ∈ E ′[`

ej
j ] for j 6= i. Let 0 < d < ei.

The n-i-decisional SIDH problem is, given (E, {Pj, Qj}j∈[n], E ′, {P ′j , Q′j}j 6=i, d), to determine if
there exists an isogeny φ : E → E ′ of degree `di such that φ(Pj) = P ′j and φ(Qj) = Q′j for j 6= i.

Whilst we do not have an equivalence between the IND-Mask experiment and the n-i-DSIDH as
presented above, we see that an oracle for the latter with d = ei is sufficient to obtain a noticeable
advantage against the former. Also, it would seem that our IND-Mask experiment corresponds
to a worst case of the n-i-DSIDH as it uses a maximal degree of d = ei. Given the state of the
art in cryptanalysis for these problems, we conjecture that the IND-Mask problem forMp is not
significantly easier than the n-i-DISDH for the same parameters.

As hinted at in Note 3.1, the Weil pairing is in fact a useful tool against the IND-Mask experi-
ment. Indeed, if the adversary had free control over the values r0 and r1 of the experiment, it could
give two representatives whose basis points of the same torsion group evaluated to different values
under the Weil pairing. This difference would be preserved under the secret masking action of the
experiment and this would enable it to win trivially. Restricting the adversary’s input to be a single
representative r and two masks that determine r0 and r1 and preserve the values of Weil pairing on
the points of r thus prevents this strategy.

5.4 Security analysis

As mentioned above, one of the main advantage of the SIDH approach as opposed to the hard
homoegneous space approach (including CSIDH) is that no subexponential attack is known on the
SIDH protocol, even using a quantum computer. On the other hand in SIDH protocol, the action of
the secret isogeny on a large torsion subgroup is made public. A recent paper [Pet17] has shown
how to exploit this additional information to break “overstretched” variants of the SIDH protocol.

More precisely, let N1 ≈ pα be the degree of the isogeny to compute, and let N2 ≈ pβ be the
order of torsion points images revealed in the protocol. The original SIDH protocol uses α ≈ β ≈
1
2
, but [Pet17] describes a generalization to any coprime, powersmooth values N1, N2. Under some

parameter restrictions and heuristic assumptions, the best attack in [Pet17] computes the isogeny
in polynomial time assuming 1

4
β > α > 1. Another attack removes the restriction that α > 1 but

it requires β = O(α2).
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In our instantiation above, for any i one can fix N1 = `eii and N2 =
∏

j 6=i `
ej
j . We also have

N1N2|(p ± 1) so the first attack in [Pet17] does not apply. The second attack, however, applies
whenever n is larger than O(ei log `i). At the moment this is the only constraint on the parameters
that is implied by the techniques of [Pet17].

One may fear that the attacks in [Pet17] will get improved over time, leading to further re-
strictions on n. We note that n = 3 is sufficient to instantiate Protocols Π1

OT and Π2
OT. Moreover

the first protocol could even be instantiated with n = 2 (see Note 6.1). We note that n = 2 in
our construction corresponds to the SIDH protocol parameters, so our semi-commutative masking
construction with n = 2 will remain secure as long as SIDH remains secure.

6 Oblivious Transfer Protocols

In this section, we present several OT protocols constructed from a semi-commutative masking
structureM as presented in Section 3. We formally prove their UC security for passive adversaries
with static corruptions in theFRO-hybrid model under the assumption thatM is IND-Mask-secure
and that the ParallelEitherM and ParallelBothM problems are hard.

6.1 First Construction

Motivation. For our first OT protocol based on general semi-commutative invertible masking
schemes we take as inspiration the two-party Shamir three-pass protocol for secure message trans-
mission as shown in Figure 5a, sometimes called the Massey-Omura encryption scheme. This
scheme corresponds to the “masking diagram” given in Figure 5b. In this protocol, Alice’s input is
a message g together with a secret mask a whilst Bob’s input is another secret mask b. To transmit
g, Alice first sends a masked ga to Bob who replies with his own masked gab. Now Alice undoes
her mask, as the inverse exponentiation commutes with Bob’s, and replies with gab/a = gb. Since
Bob knows his own mask b, he inverts it and recovers g. When viewed as a key transport protocol
the element g is seen as Alice’s input key which is transmitted to Bob.

(g)a

Alice (g, a) Bob (b)

ga

(ga)b

gab

(gab)1/a

gb

(gb)1/b = g

(a) Sketch of protocol flows

g

ga gab

gb

(b) Masking diagram

Fig. 5: The Shamir three-pass protocol
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This protocol can be modified to yield an OT protocol as shown in Figure 6. This protocol can
be seen as being based on a key transport protocol which is expanded to achieve the requirements
of oblivious transfer. In contrast, our second construction will later take a key agreement protocol
and turn it into an OT protocol.

(g0)
a, (g1)

a

Alice (g0, g1; a) Bob (c; b)

ga0 , g
a
1

(gac )
b

gabc

(gabc )1/a

gbc

(gbc )
1/b = gc

(a) Sketch of protocol flows

gc

gac gabc

gbcg1−c

ga1−c

(b) Masking diagram

Fig. 6: Sketch of the OT protocol derived from the Shamir three-pass protocol

In the OT protocol Alice, acting like the Sender, now has two inputs g0 and g1 and masks both
using her secret mask a to send ga0 , ga1 to Bob, the Receiver. In addition to his mask b, Bob now
also has a choice bit c ∈ {0, 1} and he uses both to reply to Alice with (gac )b. They then continue
as before until Bob recovers gc. Whilst the security of the Shamir three-pass protocol holds against
external adversaries due to the masking of the message, the OT protocol also needs to provide
security guarantees against internal adversaries, namely Alice or Bob. The intuition for security in
this case is that the mask a cannot be deduced from either ga0 or ga1 and therefore the first message
hides both of Alice’s inputs from Bob. Also when Bob applies his own mask to one of the two
messages, this hides his input bit c from Alice who doesn’t know b.

The problem with this protocol for general semi-commutative masking schemes is that Alice
needs to be able to invert the mask 1/a on gabc without knowing gc. Whilst this is easy in the discrete
logarithm case, it is not in general possible for semi-commutative masking schemes. This is due to
the subtle fact that in the definition of the inverse of a mask,

∀µ ∈M, ∀x ∈ X, ∀r ∈ Rx, ∃µ−1 ∈M : µ−1(µ(r)) ∈ Rx,

the µ−1 is specified after µ and r and may therefore depend on µ(r). Whilst such an µ−1 is required
to exist for all r ∈ Rx for a given µ and x, if may be different for each value of r or x. Therefore in a
general semi-commutative masking scheme, the 1/a mask may be different depending on whether
it needs to be applied to ga0 or ga1 . As the aim of the protocol is to hide which of these two values
was chosen by Bob, Alice lacks some information to compute her un-masking properly.

We thus modify the OT protocol so as to remove the need to apply the inverse mask on an
unknown base. In our new (discrete logarithm based) variant, the elements g0 and g1 are common
to both parties. Rather using her mask a to send ga0 , g

a
1 to Bob (the Receiver), Alice (the Sender)
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does not go first. Instead, Bob first communicates his masked choice gbc, and then Alice applies her
mask a and replies with gabc . At that moment, she also computes ga0 , g

a
1 internally. She then uses

these internal values as the inputs to a hash function to derive two symmetric keys k0 and k1. Those
are used to encrypt Alice’s actual OT inputs m0 and m1 as two ciphertexts e0 and e1 which she
sends alongside gabc . This allows Bob to recover gac and hence decrypt ec to recover mc.

As she no longer communicates one of g0 or g1 to Bob since these are now common to both of
them, this is no longer exactly a message transport protocol. Instead, it can be seen as a randomness
transport protocol where Alice communicates her random mask a applied to Bob’s choice gc. As
g0 and g1 are now established once and re-used for every instance of the protocol, this allows the
flows to have only two pass rather than three. Figure 7 abstracts the symmetric encryption and only
shows the flows and the masking diagram that leads to Bob receiving the value gac .

Alice (g0, g1; a) Bob (g0, g1; c; b)

(gc)
b

gbc

(g0)
a, (g1)

a, (gbc )
a

gabc

(gabc )1/b = gac

(a) Sketch of protocol flows

gc

gac gabc

gbcg1−c

ga1−c

(b) Masking diagram.

Fig. 7: Sketch of the final Shamir three-pass OT protocol

Construction. We can now formally define our first OT protocol from semi-commutative invert-
ible masking schemes, as the new variant of Figure 7 can be instantiated in such a setting. A formal
description of the protocol Π1

OT is given in Figure 8.
LetM = {X,RX , [MA,MB,MC ]} be a semi-commutative masking structure with three masking
sets; let E = {(KGenE ,Enc,Dec), (KE ,ME , CE)} be a symmetric encryption scheme and let FRO

be an instance of the RO ideal functionality with domain D = X and range R = KE . We assume
that random sampling from masking sets Mi, i ∈ {A,B,C}, evaluation of masks, evaluation of
Enc, Dec, and inversion in Mi are all efficient operations for the masking structureM and for the
symmetric encryption scheme E .

As we said before, the idea of the protocol is that both the sender, PS , and receiver, PR, have
as common input arbitrary elements x0 6= x1 ∈ X along with representations r0 ∈ Rx0 , r1 ∈ Rx1 .
In the first pass, PR takes a random mask β ∈ MB and sends rβc = β(rc) to PS , where c is its
choice bit. In the second pass, PS samples a random mask α ∈ MA and computes rα0 = α(r0)
and rα1 = α(r1). These elements uniquely determine xαb ∈ X, b ∈ {0, 1}. Thus the sender can
compute two private keys kb, b ∈ {0, 1}, by invoking twice the random oracle functionality FRO

on input xαb , and encrypt its input messages m0,m1 accordingly. PS then sends the ciphertexts
eb ← Enc(kb,mb), b ∈ {0, 1}, and rαβc = α(rβc ) to PR. The receiver has now all the information
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Protocol Π1
OT

PARAMETER: length n of the PS’s input strings.
SENDER’S INPUT: m0,m1 ∈ME .
RECEIVER’S INPUT: c ∈ {0, 1}.
COMMON INPUTS: Arbitrary x0 6= x1 ∈ X together with r0 ∈ Rx0 , r1 ∈ Rx1 are shared and re-used for every instance of
the protocol; an instance of the random oracle ideal functionality FRO : {0, 1}λ → KE .

Receiver 1
– Sample β $←−MB uniformly at random.
– Compute rβc := β(rc) and β−1 ∈MB .
– Send rβc to PS .

Sender 1
– Sample α $←−MA and compute rαb := α(rb) ∈ Rxα

b
, b ∈ {0, 1}

– For b ∈ {0, 1}, call FRO twice on input xαb obtaining kb, and compute eb ← Enc(kb,mb)
– Compute rαβc := α(rβc )
– Send (rαβc , e0, e1) to PR.

Receiver 2
– Compute rαc := β−1(rαβc ) and kR := FRO(xα) where rαc ∈ Rxαc .
– Return mc := Dec(kR, ec).

Fig. 8: The protocol Π1
OT for realizing FOT from semi-commutative masking.

needed to recover the message mc corresponding to its choice bit: it can apply the inverse β−1 to
rαβc using the semi-commutativity ofM, so that

β−1(rαβc ) = β−1(α(rβc )) = β−1(α(β(rc))) ∈ Rxαc ,

and recover kc = FRO(xαc ). This easily implies correctness of the scheme. Security is given by the
following theorem.

Theorem 6.1. The protocol Π1
OT of Figure 8 securely UC-realizes the functionality FOT of Figure

1 in the FRO-hybrid model for semi-honest adversaries and static corruptions, under the assump-
tion that E is IND-CPA-secure, thatM is IND-Mask-secure and that the ParallelEitherM problem
is hard.

Proof. We prove that there exists a PPT simulator S, with access to an ideal functionality FOT,
which simulates the adversary’s view. We divide the proof according to the selection of the corrupt
parties.

Corrupt receiver and corrupt sender. As both parties are corrupt, the simulator S may read their
inputs from their internal state and use those to create a perfect simulation of the transcript and
of the parties’ internal states. It presents this simulation to its internal copy of A, together with an
perfect simulation of FRO, with which it is then able to perfectly answer Z’s queries by forwarding
them to A and returning the responses. Since it knows all of the inputs, it forwards them to FOT at
the right moment to ensure that the dummy corrupt parties return the correct output to Z .

Corrupt receiver and honest sender. We formally describe the simulator SR∗ in Figure 9.
We show that for every semi-honest adversary A who corrupts PR and any environment Z ,

HYBRIDFRO
Π1

OT,A,Z
c
≈ IDEALFOT,SR∗ ,Z ,
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Simulator SR∗

– Throughout the execution, SR∗ simulates the FRO by answering every new query with a random value from KE and
maintaining a list of past queries to answer repeated queries consistenly. As in the previous case, it presents the simulated
transcript and corrupt receiver state as computed below to A and uses it to answer queries from Z .

– When Z activates the corrupt Receiver, its private input c is visible by SR∗ which can then compute rβc to perfectly
simulate Receiver 1.

– To simulate Sender 1, SR∗ samples α $←−MA and computes rαβc honestly.
Since mc appears on the corrupt Receiver’s output tape, the simulator computes kc and ec as prescribed by the protocol.
However, since SR∗ does not learn the honest input m1−c, it samples k1−c

$←− KE at random and sets e1−c ←
Enc(k1−c,m) for an arbitrary m ∈ME .

– If Z queries either FRO(x
α
c ) before activating Sender 2, then SR∗ aborts the simulation by returning ⊥ to Z .

– Finally, SR∗ finishes the protocol as prescribed.

Fig. 9: The simulator SR∗ of Theorem 6.1

by proceeding via a sequence of hybrid simulators.
We begin with a hybrid H0 which knows the inputs of the honest sender. As it learns the input

c of the corrupt receiver as soon as it is activated by Z , it is able to present a perfect simulation of
the protocol.

The second hybrid H1 samples k1−c
$←− KE at random. Instead, FRO(xα1−c) will be set to a

random value if it is queried during the execution.

Claim. Any environment Z that can distinguish the simulations ofH1 andH0 can be used to solve
the ParallelEither problem forM. Such an environment is capable of distinguishing if and only if
it queries FRO(xα1−σ). Let A be an adversary for which Z distinguishes between H0 and H1 with
some advantage ε, we use this to build a reduction B against the ParallelEither problem for M
which proceeds as follows.
Upon receiving a challenge (C,A, r, rx, ry), C 6= A, rx = (r) and ry = α(r), B simulates an
execution of the protocol with Z as follows:

– First set r0 := r and r1 := rx, and set rαc := ry.
– Set the keys and ciphertexts asH1 does and simulate Receiver 1 honestly.
– Since B does not know the α ∈ MA such that ry = α(r), it cannot compute rαβc = α(rβc )

honestly. Instead, it sets rαβc = β(ry). This can be done do since it is simulating the internal
value β. This remains consistent with the protocol as we still have that β−1(rαβc ) ∈ Ry and
ry = (rαc ) ∈ Ry, as set at the beginning of B.

– If c = 0, then r1−c = γ(rc) and therefore γ(rαc ) = γ(ry) ∈ Rxα1−c
. If instead c = 1, then

rα1−c = γ−1(rαc ) = γ−1(ry).
Therefore we see that, independently of c, if Z queries FRO(xα1−c), then one of the solutions to
the ParallelEither problem is present on the list of past queries.

When Z terminates, B therefore returns a random entry on the list of random oracle queries. If Z
has advantage ε in distinguishing betweenH1 andH0, B then has an advantage ε/qH in solving the
ParallelEither problem, where qH denotes the number of queries toFRO made during the execution.

The final hybrid H2 replaces m1−c by an arbitrary m ∈ ME in the computation of e1−c. This
removes the last occurence of m1−c in the simulator and we have thatH2 is identical to the original
SR∗ .
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Claim. Any environment Z that can distinguish between a simulation of H2 and of H1 with ad-
vantage ε can be used to break the IND-CPA property of E with advantage at least ε.
We can build an adversary against the IND-CPA property of E by querying the challenger for a
ciphertext of either m or m1−c. This reduction emulates either H2 or H1 perfectly as k1−c is not
accessible to Z and therefore not required byH2 orH1 at any point.

Under the assumption that E is IND-CPA-secure and that the ParallelEither problem is hard for
M, we have that the simulation generated by SR∗ is indistinguishable from a real world execution,
for any environment Z . This concludes the proof that HYBRIDFRO

Π1
OT,A,Z

c
≈ IDEALFOT,SR∗ ,Z .

Honest receiver and corrupt sender. We formally describe the simulator SS∗ in Figure 10

Simulator SS∗

– SS∗ simulates FRO consistently and presents the state and transcript computed as follows to an internal copy of A to
reply to the queries from Z .

– As it does not know the c of the honest receiver, SS∗ proceeds by setting c = 0 internally which remains out of the view
of A. It then samples β $←−MB and sets rβc = β(r0) consistently.

– As it knows the inputs m0, m1 of the corrupt Sender, SS∗ computes Sender 2 consistently with zβ using the correct
plaintexts.

– Finally, SS∗ finishes the protocol as prescribed.

Fig. 10: The simulator SS∗ of Theorem 6.1

We show that for every semi-honest adversaryA who corrupts PS and any environment Z , it holds
that

HYBRIDFRO
Π1

OT,A,Z
c
≈ IDEALFOT,SS∗ ,Z .

The simulation of SS∗ is not a perfect simulation of a real world execution only if the honest
receiver had actually received input c = 1 from Z . In that case, any environment that can distin-
guish between a simulation of SS∗ and the real world with advantage ε can be used to break the
IND-Mask security ofM with advantage at least ε. We build a reduction B against the IND-Mask
experiment as follows.
It first selects an arbitrary r as well as two masks γ0, γ1 ∈ MC and sends (r, γ0, γ1, B) to the
IND-Mask experiment. Upon receiving r̃, B then begins the distinguishing experiment with Z by
setting r0 = γ0(r), r1 = γ1(r) and returning rβc = r̃ to the adversary when Z activates Receiver 1.
Not knowing β is not a problem for the simulation as the receiver is honest and therefore B does
not need to simulate its state to A.
This is a perfect simulation of either the real world or of SS∗ as either r1 or r0 is used by the
IND-Mask experiment in the computation of rβc . Thus if Z distinguishes between the two, then B
can distinguish the hidden bit of the IND-Mask experiment.

Honest receiver and honest sender. In this final case, the simulator S chooses arbitrary inputs
m0 = m1 = m ∈ ME and c = 1 and simulates a transcript to A using those. If an environment Z
is capable of distinguishing this simulation from a real execution of the protocol then this implies
that is is able to extract information regarding the arbitrary inputs used by S. However the previous
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two cases show that, even with the additional information of the corrupted party’s internal state,
any environment is not able to identify a simulation that does not have any information the honest
party’s inputs. By combining techniques from both cases above, we can therefore show that the
simulation of S is indistinguishable from a real world execution under the assumption that S is
IND-CPA-secure, thatM is IND-Mask-secure and that the ParallelEitherM problem is hard.

This completes the proof that for any A there exists a S such that, for any Z ,

HYBRIDFRO
Π1

OT,A,Z
c
≈ IDEALFOT,S,Z .

�

Note 6.1. We remark that protocol Π1
OT only requires the third masking set MC as a proof artefact

and that only two set would be sufficient to execute the protocol.

6.2 Second Construction

Motivation. We now describe our second OT protocol based on semi-commutative masking. This
construction is inspired by the OT protocol of Chou and Orlandi [CO15a] in the sense that is uses
an underlying key exchange mechanism and transforms it to acheive the requirements of oblivious
transfer, which differs from the key transport-based approach of our first protocol in Section 6.1.

We note that the several problems that have emerged with the protocol of Chou and Orlandi
[CO15b, Section 1.1] only arise when considering active adversaries. As we only prove security
against passive adversaries, we do not address these problems here.

Again we motivate the proposed OT protocol in the case of semi-commutative invertible mask-
ing schemes by looking at the discrete logarithm variant first. Here Alice’s inputs are two messages
m0,m1 and an ephemeral mask awhilst Bob’s is another mask b together with his choice c. To agree
on the key under which the selected message will be encrypted, Alice sends a masked ga to Bob
who derives the decryption key gab. However Bob cannot simply reply with his masked gb since
Alice would then not know which of m0 or m1 to encrypt under the shared key (and Bob telling
her would void any privacy guarantees for himself). Instead, Alice also communicates two random
masks gd0 and gd1 to allow Bob to make a selection.

By masking (gdc)b with the same b as he uses to derive the key, Bob obliviously communicates
his choice and his mask to Alice which is then able to derive two keys (by unmasking db and
then adding her mask a) of which only one will be equal to the exchanged key gab. We sketch the
protocol flows in Figure 11.

The protocol is intuitively secure as Alice cannot deduce the mask b from Bob’s message and
Bob cannot deduce the key k1−c as it is not able to recover d−1b from Alice’s first message.

Construction. Formally, let M = {X,RX , [MA,MB,MC ]} be a semi-commutative masking
structure; let E = {(KGenE ,Enc,Dec), (KE ,ME , CE)} be a symmetric encryption scheme and let
FRO be an instance of the RO ideal functionality with domain D = X and range R = KE . We
formally describe the protocol Π2

OT in Figure 12.
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ga, gd0 , gd1

Alice (g; a, d0, d1) Bob (c; b)

ga, gd0 , gd1

kR = (ga)b
(gdc)b

kb = (gdcb)a/db
{mb}kb

(a) Sketch of protocol flows

g

ga
(ga)b = (gdcb)a/dc

gdc

(gdc)b

(b) Masking diagram.

Fig. 11: Sketch of the OT protocol derived from the key agreement protocol.

Protocol Π2
OT

PARAMETER: length n of the Sender’s input strings.
SENDER’S INPUT: m0,m1 ∈ME .
RECEIVER’S INPUT: c ∈ {0, 1}.
COMMON INPUTS: An arbitrary x ∈ X together with r ∈ Rx is shared and re-used for every instance of the protocol; an
instance of the random oracle ideal functionality FRO : {0, 1}λ → KE .

Sender 1
– Sample α $←−MA, γb

$←−MC , b ∈ {0, 1}, at random, and compute rα := α(r), rb := γb(r) and γ−1
b ∈MC .

– Send (rα, r0, r1) to PR
Receiver 1

– Sample β $←−MB uniformly at random.
– Compute rβc := β(rc).
– Compute kc := FRO(x

αβ) where β(rα) ∈ Rxαβ .
– Send rβc to PS .

Sender 2
– For b ∈ {0, 1}, compute kb := FRO(xb) where α(γ−1

b (rβc )) ∈ Rxb .
– For b ∈ {0, 1}, compute eb ← Enc(kb,mb).
– Send (e0, e1) to PR.

Receiver 2 Return mc := Dec(kc, ec).

Fig. 12: The protocol Π2
OT for realizing FOT from semi-commutative masking.

Protocol Π2
OT makes use of random sampling from Mi, evaluation of masks, evaluation of H ,

evaluation of Enc, Dec, as well as membership and equality testing in X and CE and inversion
in Mi. All these operations are assumed to be efficient for the masking structure M and for the
symmetric scheme E . BecauseM = {X,RX [MA,MB,MC ]} is semi-commutative, we see that

α(γ−1b (rβc )) = α(γ−1b (β(γc(r)))) ∈ Rxαβ ⇐⇒ b = c

which shows that, if both parties execute the protocol honestly, kR = kc and hence PR recovers the
correct message mc.

Theorem 6.2. The protocolΠ2
OT of Figure 12 securely UC-realizes the functionalityFOT of Figure

1 in the FRO-hybrid model for semi-honest adversaries and static corruptions, under the assump-
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tion that E is IND-CPA-secure, thatM is IND-Mask-secure and that the ParallelBothM problem
is hard.

Proof. We prove that there exists a PPT simulator S, with access to an ideal functionality FOT,
which simulates the adversary’s view. We divide the proof according to the selection of the corrupt
parties.

Corrupt receiver and corrupt sender. As both parties are corrupt, the simulator S may read their
inputs from their internal state and use those to create a perfect simulation of the transcript and
of the parties’ internal states. It presents this simulation to its internal copy of A, together with an
perfect simulation of FRO, with which it is then able to perfectly answer Z’s queries by forwarding
them to A and returning the responses. Since it knows all of the inputs, it forwards them to FOT at
the right moment to ensure that the dummy corrupt parties return the correct output to Z .

Corrupt receiver and honest sender. We formally describe the simulator SR∗ in Figure 13.

Simulator SR∗

– SR∗ simulates FRO consistently and presents the state and transcript computed as follows to an internal copy of A to
reply to the queries from Z .

– When Z activates the honest Sender, SR∗ computes Sender 1 honestly to send (rα, r0, r1) to A.
– When Z activates the corrupt Receiver, its private input c is visible by SR∗ which can then compute rβc to perfectly

simulate Receiver 1.
– To simulate Sender 2, since mc appears on the corrupt Receiver’s output tape, the simulator computes kc and ec as pre-

scribed by the protocol.
However, since SR∗ does not learn the honest input m1−c, it samples k1−c

$←− KE at random and sets e1−c ←
Enc(k1−c,m) for an arbitrary m ∈ME .

– If Z queries either FRO(x
α
b ) before activating Sender 2, then SR∗ aborts the simulation by returning ⊥ to Z .

– Finally, SR∗ finishes the protocol as prescribed.

Fig. 13: The simulator SR∗ of Theorem 6.2

We show that for every semi-honest adversaryA who corrupts PR and any environment Z , it holds
that

HYBRIDFRO
Π2

OT,A,Z
c
≈ IDEALFOT,SR∗ ,Z ,

by proceeding via a sequence of hybrid simulators, going from the real execution to the ideal
execution, defined as follows.

The first hybridH0 knows the inputs of the honest sender and is therefore able to compute e1−c
honestly using the correct random oracle query to obtain the key. This is then a perfect simulation
of a real-world execution.

The second hybrid H1 samples k1−c
$←− KE at random and does not query the random oracle

on x1−c where α(γ−11−c(r
β
c )) ∈ Rx1−c .

Claim. Any environment Z that distinguishes an interaction with H1 from one with H0 with ad-
vantage ε can be used to solve the ParallelBoth problem forM with advantage at least ε/qH where
qH denotes the number of queries made byZ to the random oracle. Such an environment is capable
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of distinguishing if and only if it submits the query for k1−c to the random oracle. We use this to
build a reduction B agains the ParallelBoth problem forM which proceeds as follows.

Upon receiving a challenge (C,A, r, rx0 , rx1 , ry), B first sets zα := ry and zi := rxi to simulate
Sender 1 and then samples β $←−MB to compute Receiver 1 perfectly upon activation of P ∗R which
reveals c.

Since it now does not know the α ∈MA such that rα = α(r), B computes kc from β(rα) which
it can do as it knows β and which yields the correct xαβ as the masks commute. For the other key,
it sets k1−c

$←− KE as S1 would. It then returns the ciphertexts encrypting m0,m1 under these keys.
When Z terminates, B selects a random entry on the list of random oracle queries and applies

β−1. The un-selected key k1−c is the hash of the element of X represented by α(γ−11−c(β(γc(r))))
where γi ∈ MC is such that rxi = γi(r). So by applying β−1, B obtains exactly a representative
one of the solutions to the ParallelBoth problem as long as it selected the correct entry on the hash
list. If Z has advantage ε in distinguishing between H1 and H0, B then has an advantage ε/qH in
solving the ParallelBoth problem.

The final hybrid H2 replaces m1−c by an arbitrary m ∈ ME in the computation of e1−c. This
removes the last occurrence of m1−c in the simulator and we have thatH2 is identical to SR∗ .

Claim. Any environment Z that can distinguish between a simulation of H2 and of H1 with ad-
vantage ε can be used to break the IND-CPA property of E with advantage at least ε.
We can build an adversary against the IND-CPA property of E by querying the challenger for a
ciphertext of either m or m1−c. This reduction emulates either H2 or H1 perfectly as k1−c is not
accessible to Z and therefore not required by S2 or S1 at any point.

Under the assumption that E is IND-CPA-secure and that the ParallelBoth problem is hard for
M, we have that the simulation generated by SR∗ is indistinguishable from a real world execution,
for any environment Z . This concludes the proof that HYBRIDFRO

Π2
OT,A,Z

c
≈ IDEALFOT,SR∗ ,Z .

Honest receiver and corrupt sender. We formally describe the simulator SS∗ in Figure 14.

Simulator SS∗

– SS∗ simulates FRO consistently and presents the state and transcript computed as follows to an internal copy of A to
reply to the queries from Z .

– When Z activates the corrupt sender, SS∗ computes Sender 1 honestly to send (rα, r0, r1) to A.
– As it does not know the c of the honest receiver, SS∗ proceeds by setting c = 0 internally which remains out of the view

of A. It then samples β $←−MB and sets rβ0 = β(r0) consistently. It also computes k0 accordingly.
– As it knows the inputs m0, m1 of the corrupt Sender, SS∗ computes Sender 2 consistently with rβc using the correct

plaintexts.
– Finally, SS∗ finishes the protocol as prescribed.

Fig. 14: The simulator SS∗ of Theorem 6.2

We show that for every semi-honest adversaryA who corrupts PS and any environment Z , it holds
that

HYBRIDFRO
Π2

OT,A,Z
c
≈ IDEALFOT,SS∗ ,Z .
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The simulation of SS∗ is not a perfect simulation of a real world execution only if the honest
receiver had actually received input c = 1 from Z . In that case, any environment that can distin-
guish between a simulation of SS∗ and the real world with advantage ε can be used to break the
IND-Mask security ofM with advantage at least ε. We build a reduction B against the IND-Mask
experiment as follows.
It first simulates Sender 1 as prescribed by the protocol and sends (r, γ0, γ1, B) to the IND-Mask
experiment. Upon receiving r̃, B then returns rβc = r̃ to the adversary when Z activates Receiver
1. Not knowing β is not a problem for the simulation as the receiver is honest and therefore B does
not need to simulate its state to A.
This is a perfect simulation of either the real world or of SS∗ as either r1 or r0 is used by the
IND-Mask experiment in the computation of rβc . Thus if Z distinguishes between the two, then B
can distinguish the hidden bit of the IND-Mask experiment.

Honest receiver and honest sender. In this final case, the simulator S chooses arbitrary inputs
m0 = m1 = m ∈ ME and c = 1 and simulates a transcript to A using those. If an environment Z
is capable of distinguishing this simulations from a real execution of the protocol then this implies
that is is able to extract information regarding the arbitrary inputs used by S. However the previous
two cases show that, even with the additional information of the corrupted party’s internal state,
any environment is not able to identify a simulation that does not have any information the honest
party’s inputs. By combining techniques from both cases above, we can therefore show that the
simulation of S is indistinguishable from a real world execution under the assumption that S is
IND-CPA-secure, thatM is IND-Mask-secure and that the ParallelBothM problem is hard.

This completes the proof that for any A there exists a S such that, for any Z ,

HYBRIDFRO
Π2

OT,A,Z
c
≈ IDEALFOT,S,Z .
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A Symmetric encryption

We recall the syntax of a symmetric encryption scheme and the definition of IND-CPA security.

Definition A.1 (Symmetric encryption scheme). A symmetric encryption scheme is a triple of
probabilistic polynomial -time (PPT) algorithms E := (KGenE(·),Enc(·, ·), Dec(·, ·)) together with
a triple of sets (KE ,ME , CE). The key generation algorithm KGenE(1

λ) takes as input a security
parameter 1λ and outputs a uniformly distributed key k $←− KE . The encryption algorithm Enc(k,m)
takes as input a key k ∈ KE and a message m ∈ ME and outputs a ciphertext c ∈ CE . The
decryption algorithm Dec(k, c) takes as input a key k ∈ KE and a ciphertext c ∈ CE and outputs
a message m′ ∈ ME or a failure message ⊥. For correctness, we require that ∀m ∈ ME ,∀ k ∈
KE ,Dec(k,Enc(k,m)) = m.

Definition A.2 (IND-CPA security).
Let E = (KGenE ,Enc,Dec), together with KE ,ME , CE be a symmetric encryption scheme. For

an arbitrary adversary A, we define the IND-CPAA,E(λ) experiment in Figure 15.

Data: E , λ ∈ N
Result: win ∈ {0, 1}

1 k
$←− KGenE(1

λ);
2 (m0,m1), st← A(1λ) such that m0,m1 ∈ME ;

3 b
$←− {0, 1};

4 e← Enc(k,mb);
5 b̃← A(1λ, st, e);
6 if b̃ = b, then return win = 1 else return win

$←− {0, 1};

Fig. 15: The IND-CPAA,E security experiment

We then say that E is IND-CPA-secure if for all PPT adversaries A, it holds that∣∣∣∣Pr [IND-CPAA,E(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(1λ).
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B UC security

We present a semi-formal overview of the universally composable (UC) model of security estab-
lished by Canetti [Can01]. Protocols that aim to achieve security in this model are defined in three
steps. First, the protocol and its execution in the presence of an adversary are formalized, this rep-
resents the real-life model which we also call the real world. Next, an ideal process for executing
the task is defined; its role is to act as a trusted party by separately receiving the input of each
party, honestly computing the result of the protocol internally and returning the output assigned to
each party. In this ideal world, the parties do not communicate with one another but instead solely
rely on the ideal functionality to provide them with their output. Finally, we say that the protocol
in question UC-realizes the ideal functionality if running the protocol is equivalent to emulating
the ideal functionality. We provide a brief discussion with additional formal details for the case of
semi-honest adversaries with static corruptions.

In the real world, the parties involved in the execution of a protocol Π perform their own com-
putation and communicate with one another when required to do so. Also present in the execution
model is an adversary A which not only observes the messages exchanged but is also responsible
for their delivery. This implies that it can choose to deliver them in the wrong order or to not deliver
them at all. We however assume that communication is authenticated and thatA can therefore only
deliver messages that were previously sent, without modifying them, and that it cannot deliver the
same message more than once.

The final entity present in this execution model is the environment Z which represents all
of the events happening on the network at the time of the protocol execution. This environment
is responsible for deciding the inputs and receiving the outputs of all the parties executing the
protocol; this communication takes place outside of the view of A but we note that A still learns
the inputs and outputs of corrupt parties as it is able to read their internal state. Furthermore, Z
interacts with A throughout the execution of the protocol Π .

In the ideal world, the parties instead interact with an ideal functionality F in a simple way:
they pass their private inputs to F and wait for it to return their assigned output. There is also an
adversary S which is responsible for the delivery of messages. As we assume that the functionality
is a trusted third party, this adversary cannot observe the content of the messages. Finally, the same
environment Z is present in the ideal world. Z also prescribes the inputs and observes the outputs
of all parties and may interact with S throughout the execution of the ideal process.

In the static corruptions strategy, the adversary (A or S) may choose, at the beginning of the
execution only, to corrupt one or more parties in the protocol. After the execution begins, it is not
allowed to corrupt new parties.

We also formalize semi-honest adversarial behaviour, also called honest-but-curious, by saying
that the adversary may not send messages on behalf of corrupt parties. Instead, it is given read
access to all of their internal state which includes their private input and output as well as their
internal computations. In the real world, this forces A to follow the protocol honestly and in the
ideal world, it restricts S to simply forwarding messages between parties and the functionality.

In addition to these two model of computation, the UC-framework also considers the G-hybrid
model where the parties in both real and ideal world have access to a copy of the ideal functionality
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G. In the real world, this is an independent trusted party that executes the functionality honestly.
In the ideal world, S executes an internal copy of the functionality G and only interacts with F.
Particularly, the random oracle model (ROM) of classical models of cryptography is modelled
here using a FRO functionality as shown in Figure 2 and by proving the security of protocol in the
FRO-hybrid model.

To then prove that a protocol Π securely UC-realizes an ideal functionality F, one must show
that, for every adversary A interacting with Π in the real world, there exists an adversary S (often
called the simulator) interacting with F in the ideal world such that no environment Z should be
able to distinguish if it is interacting with A or with S.

In other words, for every A, one needs to design an S which is capable of simulating the view
of A (which includes the transcript of the protocol and the interal state of the corrupt parties) such
that no Z can distinguish the simulation from a real execution.

In this work, we restrict all of the entities A,S,Z to PPT algorithms.

Malicious behaviour. A much stronger form of security allows the adversary A in the real world
to behave arbitrarily, or maliciously and thus not follow the protocol specification. In this setting,
the corrupt parties are removed from the execution environment (in both real and ideal world) and
the adversary A is directly responsible for generating their messages in the execution of Π . In the
ideal world, this implies that S has to engage with the functionality F on behalf of the corrupt
parties.

In the proof of simulation, S is then able to run an internal black-box copy ofA and is required
to detect if A deviates from the protocol and extract from this the inputs to the functionality that
will yield the correct outputs for the honest parties, as otherwise the environment would detect
that it is interacting with the ideal adversary S. This notion is significantly harder to achieve as it
essentially guarantees that no real world adversary, even if it deviates arbitrarily from the protocol,
is capable of extracting more information than is revealed by the ideal functionality.

Summing up, we say that the protocol Π securely realises the functionality F in the G-hybrid
model, if for every adversary A, there exists a simulator S such that for every environment Z ,

HYBRIDGΠ,A,Z
c
≈ IDEALF,S,Z ,

where
c
≈ is the standard notation of computational indistinguishability, HYBRIDGΠ,A,Z denotes the

output of Z in an execution of the real protocol with the adversary A controlling the corrupted
parties, and IDEALF,S,Z denotes the output of Z in the ideal execution, where the simulator S
plays the role of the honest parties in Π against an internal A and interacts as the corrupt parties
with the functionality F.
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