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Abstract. We define semi-commutative invertible masking structures which aim to capture the methodology of
exponentiation-only protocol design (such as discrete logarithm and isogeny-based cryptography). We discuss two
instantiations: the first is based on commutative group actions and captures both the action of exponentiation in
the discrete logarithm setting and the action of the class group of commutative endomorphism rings of elliptic
curves, in the style of the CSIDH key-exchange protocol; the second is based on the semi-commutative action of
isogenies of supersingular elliptic curves, in the style of the SIDH key-exchange protocol. We then construct two
oblivious transfer protocols using this new structure and prove that these UC-securely realise the oblivious transfer
functionality in the random-oracle-hybrid model against passive adversaries with static corruptions. Moreover, by
starting from one of these two protocols and using the compiler introduced by Döttling et al. (Eurocrypt 2020), we
achieve the first fully UC-secure two-round OT protocol based on supersingular isogenies.

1 Introduction

Since its beginnings, isogeny-based cryptography has progressed in several directions. First, that
of protocol design, where primitives such as key-exchange and identification protocols [JD11,
DFJP14, FTTY19] or signature schemes [GPS17], have already been constructed. Secondly, in the
understanding of the concrete security of the computational assumptions [GPST16]. Finally, in the
implementation methods for such protocols [CLN16, AJK+16, FLOR18].

Whilst development of discrete-logarithm-based protocols has been rich, in terms of number
of primitives, in the context of isogeny-based systems there has been less success. One reason
is that the subtleties of isogeny-based primitives can be counter-intuitive (and even dangerous
when misunderstood [Gal19]). In particular, as noted in [JD11, DFJP14], isogeny-based systems
lack the commutative property which is often exploited in discrete-logarithm-based cryptography.
Furthermore, the space of computational problems and their precise formulation is still shifting.

Supersingular isogeny-based protocols have attracted increasing attention mainly for their po-
tential for post-quantum cryptography. In this direction some recent works [Vit19, BDGM19a,
BOB18] have proposed oblivious transfer (OT) protocols based on the hardness of supersingular
isogeny problems. OT, originally introduced by Rabin in 1982 [Rab81], is a fundamental primitive
that has been proved complete for both two-party and multi-party computation, and has been used
as building block in many efficient protocols [NNOB12, KOS16, WRK17]. Due to earlier interest



in lattice-based and code-based cryptography, there have already been post-quantum OT protocols
[PVW08, BDD+17, BD18] based on the LWE, LPN and McEliece assumptions.

As well as underlying security assumptions, when we consider the state-of-the art in post-
quantum OT protocols we also need to take into account different factors, such as the security
model and round complexity. Indeed, one of the most desiderable properties, is having OT proto-
cols with high security guarantees and only two rounds of communication. However, this is very
hard to achieve and especially in the malicious setting, when one of the parties involved in the
computation can arbitrarily deviate from the protocol. Indeed two-round OT with simulation based
security is impossible in the plain model [GO94], and we need to rely on setup assumptions such
as a CRS or a random oracle.

Our contribution. We consider a new approach for studying isogeny-based constructions by
defining a new general framework for exponentiation-only protocols. We then apply this new struc-
ture and describe two simple oblivious transfer protocols with high security guarantees and mini-
mal round complexity, indeed we provide the first fully UC-secure two-round OT protocol based
on supersingular isogenies.

Semi-commutative masking. We define new structures called semi-commutative invertible masking
schemes to capture the exponentiation-only restriction of isogeny-based protocols and help draw
out parallels with discrete-logarithm-based protocols. These also capture the absence of full com-
mutativity in supersingular isogenies within a framework that is notationally simpler. We show
that these structures can also be realised in the discrete logarithm-based setting and in the setting
of class group actions on endomorphism rings [CLM+18]. Moreover, we define generic computa-
tional problems for our structure and show that these correspond closely to the existing problems in
the literature. The combination of our new structure together with instantiation-independent com-
putational problems enables a clearer protocol design methodology. Furthermore, we believe that
the hardness assumptions that we present can be extended to ones where more elements are given
as a challenge (for example as used in pairing-based crypto). Such extended assumptions may en-
able the generic construction of schemes and protocols with richer functionalities as they have in
the discrete-logarithm setting.

Isogeny-based oblivious transfer. We illustrate the advantage of our framework with two OT proto-
cols constructed from our masking schemes. The first protocol is inspired by the Shamir 3-pass key
transport protocol which we modify to satisfy the requirements of OT using only two passes. The
second protocol is an adaptation of the key-exchange based protocol of Chou and Orlandi [CO15a]
to the “exponentiation-only” setting. We also show a second construction which is an adaptation
of the key-exchange based protocol of Chou and Orlandi [CO15a] to the “exponentiation-only”
setting. Notably, our new structure allows us to provide a single proof of security for each protocol
which is then valid for different instantiations of the masking scheme.

UC-secure isogeny-based two-round OT. These constructions only provide a two-round passively
secure protocol, however we also show how to obtain a two-round maliciously secure protocol.
The known methods for maliciously-secure OT are either based on zero-knowledge proofs or on

2



“lossy” encryption schemes [PVW08], which we don’t know how to instantiate using isogeny-
based constructions and/or without increasing the round complexity. In [DGH+20], Döttling et al.
introduced a general compiler to transform a rather weak and simple two-round elementary-OT
(eOT), to a fully UC-secure two-round OT, providing also two instantiations: one based on the
Computational Diffie-Hellman (CDH) problem and one on the Learning Parity with Noise (LPN)
problem. We show (in Appendix 8) that our first protocol satisfies the security requirements of
this compiler, establishing the feasibility of two-round UC-secure OT based on semi-commutative
masking, and more in particular on supersingular isogenies assumptions. In fact, we achieve the
stronger notion of search-OT (sOT) security which means that Döttling et al’s expensive transfor-
mation from eOT to sOT is not required for our protocol. To do so, we introduce a new problem
for our masking scheme, called ParallelDouble (Definition 8.3), that is comparable to the one-more
static CDH problem (where the adversary has access to both a challenger and a helper oracle and
has to solve one more challenge than it was helped on).

Related work. Since De Feo and Jao’s work [JD11, DFJP14], others have explored different
directions of supersingular isogenies [CLN16, AJK+16, GPST16, GPS17, FLOR18, FTTY19,
CLM+18, SGP19, AJJS19, FTY19]. However, to the best of our knowledge, our work is the first
to present a framework for “exponentiation-based” protocols which unifies supersingular isogenies
with previous constructions and also provides a separation between protocol design and analysis
of computational assumptions. While we only present an OT protocol is this work, we believe that
most of the works stated above can be formulated within our framework.

Recent works, concurrent and posterior to ours, have also proposed OT protocols based on
supersingular isogenies [Vit19, BOB18, BDGM19b]. The first describes an instantiation which is
comparable to ours, especially regarding the computation of inverses and the question of the Weil
pairing. It also proposes two protocols inspired by the same exponentiation-based approach and
constructed from the same key-exchange and key-transport mechanisms. However, thanks to our
new structure, our protocols better refine and separate the required computations. Our first protocol
fixes the two elements it requires for all instances, thus reducing the exchange to two flows – the
best that can be hoped for, and the maximum allowed for Döttling et al.’s transformation to achieve
UC security – instead of three, and it shifts the burden of computing the inverse to the Receiver.
This reduces communication further and allows for only one inverse computation to be required.
Our second protocol separates the transmission of key material and choice material from the Sender
to the Receiver. This permits the Sender to contribute to the final encryption key which is closer
in spirit to the original key-exchange protocol. Vitse [Vit19] also proposes an instantiation of her
protocols from Kummer varieties; we leave it to further work to establish whether this could yield
a new instantiation of our masking structure. Note, the works [BOB18, Vit19] only prove security
in the stand-alone and game-based models respectively, as opposed to our proofs in the UC model
and there is no extension to malicious security.

Following the blueprint of previous works [BPRS17, BDD+17], Branco et al. [BDGM19b]
achieve active security for OT at the cost of three additional rounds of communication. However,
this requires the addition of a new mechanism which diverges from the “exponentiation-only”
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Data: E , λ ∈ N
Result: win ∈ {0, 1}

1 k
$←− KGenE(1

λ);
2 (m0,m1), st← A(1λ) such that m0,m1 ∈ME ;

3 b
$←− {0, 1};

4 e← Enc(k,mb);
5 b̃← A(1λ, st, e);
6 if b̃ = b, then return win = 1 else return win

$←− {0, 1};

Fig. 1: The IND-CPAA,E security experiment

methodology. Furthermore, the security of their isogeny-based mechanism relies on assumptions
that were only recently proposed [BOB18] and have not yet been studied at length.

2 Preliminaries

We denote by λ the computational security parameter. We say that a function f : N → N is
negligible, respectively noticeable (or non-negligible), if for every positive polynomial p(·) and all
sufficiently large n it holds that f(n) < 1

p(n)
, respectively f(n) ≥ 1

p(n)
. We denote by a $←− A the

uniform sampling of a from a set A, and computational and statistical indistinguishability by
c
≈

and
s
≈ respectively.

2.1 Symmetric Encryption

We recall the syntax of a symmetric encryption scheme and the definition of IND-CPA security.

Definition 2.1 (Symmetric encryption scheme). A symmetric encryption scheme is a triple of
probabilistic polynomial -time algorithms E := (KGenE(·), Enc(·, ·), Dec(·, ·)) together with a
triple of sets (KE ,ME , CE). The key generation algorithm KGenE(1

λ) takes as input a security
parameter 1λ and outputs a uniformly distributed key k $←− KE . The encryption algorithm Enc(k,m)
takes as input a key k ∈ KE and a message m ∈ ME and outputs a ciphertext c ∈ CE . The
decryption algorithm Dec(k, c) takes as input a key k ∈ KE and a ciphertext c ∈ CE and outputs
a message m′ ∈ ME or a failure message ⊥. For correctness, we require that ∀m ∈ ME ,∀ k ∈
KE ,Dec(k,Enc(k,m)) = m.

Definition 2.2 (IND-CPA security). Let E = (KGenE ,Enc,Dec), together with KE ,ME , CE be
a symmetric encryption scheme. For an arbitrary adversary A, we define the IND-CPAA,E(λ)
experiment in Figure 1. We then say that E is IND-CPA-secure if for all PPT adversaries A, it
holds that ∣∣∣∣Pr [IND-CPAA,E(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ).
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3 UC Security

We present here a semi-formal overview of the universally composable (UC) model of security
established by Canetti [Can01]. Protocols that aim to achieve security in this model are defined
in three steps. First, the protocol and its execution in the presence of an adversary are formalized,
this represents the real-life model which we also call the real world. Next, an ideal process for
executing the task is defined; its role is to act as a trusted party by separately receiving the input
of each party, honestly computing the result of the protocol internally and returning the output
assigned to each party. In this ideal world, the parties do not communicate with one another but
instead solely rely on the ideal functionality to provide them with their output. Finally, we say that
the protocol in question UC-realizes the ideal functionality if running the protocol is equivalent to
emulating the ideal functionality. We provide a brief discussion with additional formal details for
the case of semi-honest adversaries with static corruptions.

In the real world, the parties involved in the execution of a protocol Π perform their own com-
putation and communicate with one another when required to do so. Also present in the execution
model is an adversary A which not only observes the messages exchanged but is also responsible
for their delivery. This implies that it can choose to deliver them in the wrong order or to not deliver
them at all. We however assume that communication is authenticated and thatA can therefore only
deliver messages that were previously sent, without modifying them, and that it cannot deliver the
same message more than once.

The final entity present in this execution model is the environment Z which represents all
of the events happening on the network at the time of the protocol execution. This environment
is responsible for deciding the inputs and receiving the outputs of all the parties executing the
protocol; this communication takes place outside of the view of A but we note that A still learns
the inputs and outputs of corrupt parties as it is able to read their internal state. Furthermore, Z
interacts with A throughout the execution of the protocol Π .

In the ideal world, the parties instead interact with an ideal functionality F in a simple way:
they pass their private inputs to F and wait for it to return their assigned output. There is also an
adversary S which is responsible for the delivery of messages. As we assume that the functionality
is a trusted third party, this adversary cannot observe the content of the messages. Finally, the same
environment Z is present in the ideal world. Z also prescribes the inputs and observes the outputs
of all parties and may interact with S throughout the execution of the ideal process.

In the static corruptions strategy, the adversary (A or S) may choose, at the beginning of the
execution only, to corrupt one or more parties in the protocol. After the execution begins, it is not
allowed to corrupt new parties.

We also formalize semi-honest adversarial behaviour, also called honest-but-curious, by saying
that the adversary may not send messages on behalf of corrupt parties. Instead, it is given read
access to all of their internal state which includes their private input and output as well as their
internal computations. In the real world, this forces A to follow the protocol honestly and in the
ideal world, it restricts S to simply forwarding messages between parties and the functionality.

In addition to these two model of computation, the UC-framework also considers the G-hybrid
model where the parties in both real and ideal world have access to a copy of the ideal functionality
G. In the real world, this is an independent trusted party that executes the functionality honestly.
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In the ideal world, S executes an internal copy of the functionality G and only interacts with F.
Particularly, the random oracle model (ROM) of classical models of cryptography is modelled
here using a FRO functionality as shown in Figure 3 and by proving the security of protocol in the
FRO-hybrid model.

To then prove that a protocol Π securely UC-realizes an ideal functionality F, one must show
that, for every adversary A interacting with Π in the real world, there exists an adversary S (often
called the simulator) interacting with F in the ideal world such that no environment Z should be
able to distinguish if it is interacting with A or with S.

In other words, for every A, one needs to design an S which is capable of simulating the view
ofA (which includes the transcript of the protocol and the internal state of the corrupt parties) such
that no Z can distinguish the simulation from a real execution. In this work, we restrict all of the
entities A,S,Z to PPT algorithms.

Malicious behaviour. A much stronger form of security allows the adversary A in the real world
to behave arbitrarily, or maliciously and thus not follow the protocol specification. In this setting,
the corrupt parties are removed from the execution environment (in both real and ideal world) and
the adversary A is directly responsible for generating their messages in the execution of Π . In the
ideal world, this implies that S has to engage with the functionality F on behalf of the corrupt
parties.

In the proof of simulation, S is then able to run an internal black-box copy ofA and is required
to detect if A deviates from the protocol and extract from this the inputs to the functionality that
will yield the correct outputs for the honest parties, as otherwise the environment would detect
that it is interacting with the ideal adversary S. This notion is significantly harder to achieve as it
essentially guarantees that no real world adversary, even if it deviates arbitrarily from the protocol,
is capable of extracting more information than is revealed by the ideal functionality.

Security statement. We then say that the protocolΠ securely realises the functionalityF in the G-
hybrid model, if for every adversary A, there exists a simulator S such that for every environment
Z ,

HYBRIDGΠ,A,Z
c
≈ IDEALF,S,Z ,

where
c
≈ denotes computational indistinguishability, HYBRIDGΠ,A,Z denotes the output of Z in

an execution of the real protocol with the adversary A controlling the corrupted parties, and
IDEALF,S,Z denotes the output of Z in the ideal execution, where the simulator S plays the role
of the honest parties in Π against an internal A and interacts as the corrupt parties with the func-
tionality F.

UC security of OT protocols. In particular, we prove that our protocol UC-realize the OT func-
tionality FOT in the FRO-hybrid model, where FOT and FRO are presented in Figures 2 and 3.
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Functionality FOT

PARAMETER: n length of the bit-strings

– Upon receiving (PS , sid,m0,m1) from PS , check if a (sid, c) was previously stored. If yes, send mc to PR; if not, store
(sid,m0,m1) and continue to run.

– Upon receiving (PR, sid, c) from PR, check if a (sid,m0,m1) was previously stored. If yes, send mc to PR; if not, store
(sid, c) and continue to run.

Fig. 2: Oblivious transfer functionality

Functionality FRO

The functionality is parametrized by a domainD and rangeR. It keeps a list L of pairs of values, which is initially empty and
proceeds as follows:

– Upon receiving a value (sid,m),m ∈ D, if there is a pair (m, ĥ), ĥ ∈ R, in the list L, set h = ĥ. Otherwise choose
h

$←− R and store the pair (m,h) in L.
– Reply to the activating machine with (sid, h).

Fig. 3: Random oracle functionality

4 Semi-Commutative Invertible Masking Structures

We first formally define our new masking structures and discuss some computational problems that
arise in this setting. To help fix ideas we illustrate our masking structures with the case of discrete
logarithms in a finite field Fp, where q = (p− 1)/2 is prime and g ∈ Fp is an element of order q.

4.1 Masking Structure

A masking structureM is defined over a set X . Each element x ∈ X may have multiple repre-
sentations, and we define Rx to be the set of representations of an element x ∈ X . (We require
that it be efficient to recover x from any representation in Rx.) We denote the set of all such sets
by RX = {Rx}x∈X . The sets of representatives are assumed to be disjoint, i.e. ∀x, x′ ∈ X s.t. x 6=
x′, Rx ∩ Rx′ = ∅, and we define R = ∪x∈XRx to be the set of all representatives. For example, if
we take X = 〈g〉 ⊂ F∗p, then the usual choice for R is to let Rx = {x} for every x ∈ X; but one
could also take a redundant representation with two elements letting Rx = {x, x+ p}.

A mask is a function µ : R −→ R, and a masking set M is a set of such functions. In the
discrete logarithm case, a natural candidate for M is a set indexed by elements in Z∗q which each
give an explicit exponentiation algorithm on the set of representatives of the group elements X . A
masking function µ ∈M is said to be invertible if

∀x ∈ X, ∀r ∈ Rx, ∃µ−1 ∈M : µ−1(µ(r)) ∈ Rx. (1)

Note, we only require that µ−1 outputs a representative in the same set Rx. If all elements µ ∈ M
are invertible, then we say that the masking set M is invertible. In the discrete logarithm case, if µ
corresponds to the map g 7→ ga, then µ−1 corresponds to the map g 7→ g1/a.
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Data:M = {X,RX , [Mi]
n
i=1}, λ ∈ N

Result: win ∈ {0, 1}
1 r, µ0, µ1, i, st← A(1λ) such that r ∈ R, i ∈ [n], µ0, µ1 ∈Mj , j 6= i;
2 r0 ← µ0(r), r1 ← µ1(r);

3 b
$←− {0, 1};

4 µ
$←−Mi;

5 r̃ ← µ(rb);
6 b̃← A(1λ, st, r̃);
7 if b̃ = b, then return win = 1 else return win

$←− {0, 1};

Fig. 4: The IND-MaskA,M security experiment

An invertible masking structureM for a setX is then a collection of sets of representativeRX ,
along with a collection of invertible masking sets [Mi]

n
i=1, and we writeM = {X,RX , [Mi]

n
i=1}.

Such an invertible masking structure is said to be semi-commutative if

∀i 6= j, ∀µ ∈Mi, ∀µ′ ∈Mj, ∀r ∈ R, µ(µ′(r)) ∈ Rx ⇐⇒ µ′(µ(r)) ∈ Rx. (2)

In the discrete logarithm case, with M a set of exponentiation functions,M = {X,RX , [M,M ]}
is straightforwardly semi-commutative.

4.2 Problems and Properties

We now present a distinguishing experiment and computational problems for masking structures.
The precise security level of these depends from concrete instantiations and reductions to specific
computational problems.

Definition 4.1 (IND-Mask security). We define the IND-MaskA,M experiment in Figure 4 for
a masking structure M = {X,RX , [Mi]

n
i=1}, and an arbitrary adversary A. We say that M is

IND-Mask-secure if for all PPT adversaries A, it holds that∣∣∣∣Pr [IND-MaskA,M(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ).

In the discrete logarithm setting, when Rx = {x}, the map g 7→ ga for random a ∈ Z∗q induces
a random permutation of the group elements. Therefore for a secret a and two group elements
g0, g1, the distribution of gab is perfectly uniform, independently of b. This shows that such anM
is perfectly IND-Mask-secure.

Note 4.1. In some settings (but not in the discrete logarithm one), it may be possible to distinguish
the action of two masks that belong to separate masking sets. It is also possible that this difference
is preserved under the action of a mask from a third masking set. Therefore, if an adversary was
able to submit arbitrary r0 and r1 to the IND-Mask experiment, it could ensure that the difference
between them is preserved by the action of the randomly sampled µ and hence win the experiment
with certainty. By forcing A to submit a single r ∈ R and two maps µ0, µ1 belonging to the same
masking set Mj , the experiment prevents that strategy.
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We also define to the following hard problems for semi-commutative invertible masking structures:

Definition 4.2. Given a masking structureM = {X,RX , [Mi]
n
i=1}, we define the following com-

putational problems:

1. Demask: Given (i, r, rx) with the promise that rx = µx(r) for a uniformly random µx
$←− Mi,

return µx.
2. Parallel: Given (i, j, r, rx, ry) with the promise that i 6= j and that rx = µx(r) and ry = µy(r)

for uniformly random µx
$←−Mi, µy

$←−Mj , return z ∈ X such that µx(ry) ∈ Rz.
3. ParallelInv: Given (i, j, r, rx, ry) with the promise that i 6= j and that rx = µx(r) and ry =

µy(r) for uniformly random µx
$←−Mi, µy

$←−Mj , return z ∈ X such that µ−1x (ry) ∈ Rz.
4. ParallelEither: Given (i, j, r, rx, ry) with the promise that i 6= j and that rx = µx(r) and ry =

µy(r) for uniformly random µx
$←− Mi, µy

$←− Mj , return z ∈ X such that either µx(ry) ∈ Rz

or µ−1x (ry) ∈ Rz.
5. ParallelBoth: Given (i, j, r, rx0 , rx1 , ry) with the promise that i 6= j and that rxb = µb(r), b ∈
{0, 1} and ry = µy(r) for uniformly random µb

$←− Mi, µy
$←− Mj , return z ∈ X such that

either µ−11−b(µb(ry)) ∈ Rz or µ−1b (µ1−b(ry)) ∈ Rz.

To make explicit the given structure M to which the (say) Demask problem refers, we write
DemaskM. The name “Parallel” is inspired by a similar problem defined by Couveignes [Cou06].

We motivate these problems in the context of the discrete logarithm setting, where we take our
masking structure as before to have Rx = {x} and to have each Mi to be identical to the set of
exponentiation maps indexed by Z∗q . We give a graphical intuition of these problems in Figure 5.

– The Demask problem is, given (g, h) with the promise that h = ga for a random a, to return a.
This is the discrete logarithm problem (DLP).

– Similarly, the Parallel problem is, given (g, ga, gb) for random a, b, to return ga·b which is the
computational Diffie-Hellman (CDH) problem.

– In the discrete logarithm setting, the ParallelInv problem is to compute gb/a given (g, ga, gb).
We show that this is equivalent to the Parallel problem. We note that this does not immediately
hold in the abstract case, due to the absence of relation between r and µ−1(µ(r)), but it can
nonetheless be shown to hold for different instantiations.

– The ParallelEither problem is an instance where both the solutions to the Parallel and to the
ParallelInv problems, for the same challenge, are accepted. Whilst it is immediate that the
ParallelEither problem is at most as hard as any of the other two, a formal reduction to show
the reverse implication does not appear to be as trivial. We conjecture that in most settings, and
in the discrete logarithm setting in particular, allowing for two possible answers which are both
hard to compute on their own does not significantly decrease the hardness of the ParallelEither
problem.

– The solution of the ParallelBoth problem can be seen as a combination of both Parallel and
ParallelInv solutions together with the choice of the ParallelEither problem as is shown in Fig-
ure 5c.
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ga

gb

(gb)a

(a) The Parallel problem.

g

ga

gb

(gb)1/a

(b) The ParallelInv problem.

g

ga0ga1

gb (gb)a0/a1(gb)a1/a0

(c) The ParallelBoth problem.

Fig. 5: Representations of computational problems.

Indeed, one can first use a Parallel oracle to compute µb(ry) for either b ∈ {0, 1} and then use a
ParallelInv oracle to compute µ−11−b(µb(ry)) which shows that ParallelBoth is at most as hard as
those two problems. Similarly to the ParallelEither problem, we conjecture that in most settings
the ParallelBoth will not be significantly easier as it requires solutions which are both hard to
compute.

5 Instantiation From One-way Group Actions

We now present a generalisation of the discrete logarithm setting instantiation of our new semi-
commutative masking structure. Specifically, we show that hard homogeneous spaces, as given in
[CLM+18], and which are based on Couveignes’s original definition [Cou06], are an example of
such structures. This is also the case for the action, via isogenies, of the class group of the ring of
Fp-rational endomorphisms of supersingular isogenies over Fp on the isomorphism classes of such
curves.

5.1 One-way Group Actions

We first give a summarized definition of hard homogeneous spaces and formally instantiate a semi-
commutative masking structure from such spaces. Throughout this section, we let G be a finite
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commutative group with identity element e and we denote the group action of G on a set X with
the operator ∗ defined as: ∗ : G×X → X , with g ∗ x 7→ y.

Definition 5.1 (Hard (efficient) homogeneous space). A homogeneous space X for G is a finite
set X on which G acts freely and transitively. This implies that for any g ∈ G different from e,
the permutation of X induced by the action of g has no fixed points; i.e. for given x, y ∈ X , there
exists a unique g ∈ G such that y = g ∗ x. The space X is efficient if the following tasks are
computationally easy (i.e. polynomial-time):

– evaluation of the group operation, inversion and equality testing of elements of G;
– sampling a random element from G with (close to) uniform distribution;
– deciding membership and equality of a representation of elements of X;
– evaluation of the action of a group element g ∈ G on a set element x ∈ X .

The space X is hard if the following tasks are computationally hard (i.e. not polynomial-time):

– Given x, y ∈ X , return g ∈ G such that y = g ∗ x; this is the analogue of the DLP for the
group action.

– Given x, y, z ∈ X such that y = g ∗ x, return g ∗ z; this is the analogue of the CDH for the
group action.

We then instantiate a masking structure and show that it realises our definition of a semi-
commutative invertible masking structure.

Definition 5.2 (Masking structure from homogeneous space). Given a homogeneous space X
for G we define a masking structureMX,G = {X,RX , [G,G]} for X as follows:

– We let Rx = {x} for each x ∈ X and therefore have R = X .
– The masking tuple [G,G] consists of two identical copies of the group G that acts on X .

Lemma 5.1. Let X be an efficient homogeneous space for a commutative group G, then the mask-
ing structureMX,G = {X,RX , [G,G]} of Definition 5.2 is a semi-commutative masking structure.

Proof. First we see that all the elements ofMX,G are well-defined and that so is the masking action
of µ ∈ G : R −→ R where µ : r 7→ µ ∗ r. Next, we have that by definition of a group action,
the masking of any r ∈ R by any µ ∈ Mi for all i is indeed invertible. Also, since every Mi is a
copy of the group G, the commutativity of G induces the semi-commutativity ofMX,G. Finally,
the properties of an efficient homogeneous space imply the efficiency of the operations required
for a semi-commutative masking structure. ut

We see here that this notion of a group action is stronger than our semi-commutative structure
since any mask is in fact able to commute with any other. However the advantage of our weaker
structure will become apparent in Section 6 with the next instantiation from supersingular isogenies
over Fp2 .
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Note 5.1. Before we discuss the instantiation of the computational problems, we briefly note that
the two requirements for the hardness of a homogeneous space correspond exactly to the Demask
and Parallel problems for a semi- commutative masking structure. Also, we have that the Parallel
and ParallelInv problems are equivalent as it suffices to swap the first two elements of a challenge
(x, y, z) for one problem to obtain a challenge (y, x, z) for the other which yields the same solution.
Finally we have that ParallelEither is at most as hard as Parallel or ParallelInv. Hence we have

ParallelEitherMX,G <P ParallelMX,G ∼=P ParallelInvMX,G .

We also note that MX,G is perfectly IND-Mask-secure since the action by a uniformly random
element in G induces a perfect randomization of any element in X .

5.2 Discrete Logarithm Setting

The traditional Diffie-Hellman (DH) setting presented in Section 4 is a straightforward realisation
of the hard homogeneous space presented in the previous section. Indeed, for any finite abelian
group 〈g〉 of prime order in which the computational Diffie–Hellman problem is hard, we can let
X be the set 〈g〉 and G be the set of exponentiation maps.

5.3 Class Group of the Endomorphism Ring of Supersingular Elliptic Curves over Prime
Fields

The second realisation of hard homogeneous spaces we present is a summary of the recent work by
Castryck et al. [CLM+18]. This work builds upon the Couveignes-Rostovstev-Stolbunov scheme
of [Cou06, RS06] where the public key space is the set of Fq-isomorphism classes of ordinary
elliptic curves over Fq whose endomorphism ring is a given order O in an imaginary quadratic
field and whose trace of Frobenius has prescribed sign. The key ideas of the scheme of Couveignes
et al. is that the ideal class group cl(O) acts freely and transitively on that set, and that this class
group is commutative which allows for a natural key exchange protocol.

However, and despite recent improvements [FKS18, Kie17], the scheme of Couveignes et al.
is inefficient for the following reason. In order to decompose the action of an element of cl(O) into
several smaller actions that are quicker to compute, De Feo-Kieffer-Smith [FKS18] had the idea to
chose p ≡ −1 mod ` for several small odd primes `. They then searched for an ordinary elliptic
curve E/Fp such that #E(Fp) ≡ 0 modulo as many `’s as possible. This would ensure that `O
decomposes as the product of two prime ideals l and l̄ for which the action of the ideal classes [l]
and [̄l] can be computed efficiently. If this works for sufficiently many `’s, then a generic element
of cl(O) can be written as a product of small integral powers of such [l] and the class group action
can be computed efficiently. However, finding a curve E/Fp such that #E(Fp) ≡ 0 is hard and
they only manage to obtain practical solutions for 7 different values of `.

In order to increase the efficiency of this methodology, Castryck et al. adapt it to make use
of supersingular elliptic curves defined over a prime field Fp. Instead of the full ring of endo-
morphisms of such curves, which is not commutative, they consider the subring of Fp-rational
endomorphisms which is again an order O in an imaginary quadratic field. As before, the ideal
class group cl(O) acts via isogenies on the set of Fp-isomorphism classes of elliptic curves with
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Fp-rational endomorphism ring equal to O, we denote this set by Ep(O). Furthermore, contrary to
the ordinary case, this action only has a single orbit.

The reason why this yields an increase in efficiency is that, in the supersingular case, #E(Fp) =
p+ 1 and hence #E(Fp) ≡ 0 modulo all primes ` | p+ 1 used in building p. This allows for many
more values of ` to be used which in turn reduces the integral powers of each [l] that appear in the
decomposition of generic elements in cl(O). Concretely, Castryck et al. use 74 small odd primes in
their implementation for which they heuristically expect that each element in cl(O) can be written
as [l1]

e1 [l2]
e2 · · · [l74]e74 with each ei ∈ {−5, . . . , 5}. In contrast, for a class group of equivalent

256-bit size, using 7 small primes for the same approach would require exponents in the range of
236 which leads to much slower computations.

Lemma 5.2. For a fixed prime field Fp and appropriate order O of an imaginary quadratic field,
let X = Ep(O), and let G = cl(O). Then X is an efficient homogeneous space for G.

Proof. As stated in the discussion above, we have that G acts freely and transitively on X and
furthermore it inherits the commutative structure ofO and therefore this is a well-defined homoge-
neous space. Also, due to the decomposition into classes of small prime ideals with small integral
exponents the evaluation of the group operation, inversion, equality and sampling, as well as the
action of a group element on a set element x are all efficient. Furthermore, since X can be repre-
sented as the set of Montgomery coefficients of the Fp-isomorphism classes, equality of elements
of X is efficient as well. ut

As in the previous setting, the Demask and Parallel problems for the semi- commutative mask-
ing structure MX,G induced by the homogeneous space of Lemma 5.2 immediately translate to
analogues of the DLP and CDH in the class group action setting; and so does our prior discussion
on the equivalence of ParallelInv and Parallel and on the hardness of ParallelEither. The classical
and post-quantum security of the DLP analogue in this setting was already succinctly discussed
in [CLM+18, Section 7] and was addressed in greater detail in the very recent work of [BS18]
which provides a finer estimation of the required security parameters. We leave the analysis of the
security of the CDH analogue for further work.

6 Instantiation From Supersingular Isogenies

To avoid a sub-exponential quantum attack vector [CJS14], De Feo, Jao and Plût [DFJP14] con-
sider the use of supersingular elliptic curves over the extension field Fp2 whose full endomorphism
ring is an order in a quaternion algebra and therefore non-commutative. In this section we sum-
marize this approach succinctly, construct a semi-commutative masking structure from this setting
and discuss the hardness of the induced problems.

6.1 Supersingular Isogenies over the Extension Field

Preliminaries. Let E1 and E2 be elliptic curves defined over a finite field Fq. An isogeny φ :
E1 → E2 over Fq is a non-constant rational map over Fq which is also a group homomorphism
from E1(Fq) to E2(Fq). For the isogenies that we consider, we identify their degrees with the size
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of their kernels. Two curves E1, E2 are said to be isogenous over Fq if there exists an isogeny
φ : E1 → E2 over Fq; this holds if and only if #E1(Fq) = #E2(Fq). A set of elliptic curves over
Fq that are all isogenous to one another is called an isogeny class.

An endomorphism over Fq of an elliptic curve E is a particular isogeny E → E over Fqm for
some m. The set of endomorphisms of E together with the zero map, denoted End(E), forms a
ring under the addition, φ ⊕ ϕ : P 7→ φ(P ) + ϕ(P ), and multiplication, φ ⊗ ϕ : P 7→ φ(ϕ(P )),
operations. The full ring End(E) is isomorphic to either an order in a quaternion algebra, in which
case we say that E is supersingular, or to an order in an imaginary quadratic field, in which case
we say that E is ordinary. Curves that are in the same isogeny class are either all supersingular or
all ordinary. Here we focus on the supersingular case. All supersingular curves can be defined over
the field Fp2 for a prime p and for every prime ` - p there exist `+ 1 isogenies, up to isomorphism,
of degree ` originating from any given supersingular curve.

Given a curve E and a subgroup K of E there is, up to isomorphism, a unique isogeny φ :
E → E ′ having kernel K and we therefore identify E ′ with the notation E/φ. Particularly, we
will work with subgroups of the torsion group E[m] for m ∈ N which is the group of points of
E whose order divides m. When we also have that m2 divides #E(Fp2), we can always represent
cyclic kernels by generators defined over Fp2 .

Semi-commutativity. We introduce the notion of semi-commutativity present in this setting; the
same notion is behind the SIDH key-exchange protocol [DFJP14] and we generalise it here. We
discuss the case where Fq is fixed to be Fp2 where p is a prime of the form `e11 `

e2
2 · · · `enn · f ± 1 for

n small primes `1, . . . , `n and a small cofactor f . By construction, in each isomorphism class there
is a curve E/Fp2 such that the torsion group E[`eii ] contains `ei−1i (`i + 1) cyclic subgroups of order
`eii (which each define a different isogeny).

To compute and publish a curve resulting from a secret isogeny, a party generates a secret key
by selecting a random pointKi of order `eii on a curveE and computes a public curve by computing
the unique isogeny with kernel 〈Ki〉 and publishing the domain curve E/〈Ki〉. The issue here is
that the structure of End(E) no longer allows for arbitrary isogenies to commute and an analogue
of the (ga)b = (gb)a equality is not immediate. However, with isogenies of co-prime degrees some
commutative structure remains.

To solve this, in addition to the curve E, the parties agree on bases {Pi, Qi} for each of the
torsion groups E[`eii ]. The semi-commutative structure then emerges since applying an isogeny of
degree `eii preserves the torsion groups E[`

ej
j ] for j 6= i. Therefore, alongside publishing E/〈Ki〉

for their secret isogeny φi, parties also publish {{φi(Pj), φi(Qj)}j 6=i}, the images under φi of the
bases for the other torsion groups. By expressing their secret kernel as Kj = [αj]Pj + [βj]Qj and
applying αj , βj to {φi(Pj), φi(Qj)}, the other party can then compute an isogeny ϕj : E/〈Ki〉 →
E/〈Ki, Kj〉 which is “parallel” to the isogeny φj : E → E/〈Kj〉 in the sense of Figure 5a.

Whilst the two resulting curves E/〈Ki, Kj〉 and E/〈Kj, Ki〉 may not be identical, they will be
isomorphic, and the parties can then take the j-invariants of their respective curves as an identical
shared value.
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The Weil pairing. We recall here the notion of the Weil pairing. For any integer m ∈ N, we let
ζm = {u | um = 1} ⊂ F∗p2 . For any curve E/Fp2 , the Weil pairing is a map em : E[m]×E[m] −→
ζm, that satisfies em(φ(P ), φ(Q)) = em(P,Q)deg(φ), where φ : E → E ′ is any isogeny.

6.2 Masking Structure

To define a semi-commutative masking structure, we fix p = `e11 `
e2
2 · · · `enn · f ± 1 as above. In this

setting, there are five supersingular isogeny classes and we let X denote one of the two classes
with curves E/Fp2 with trace t = p2 +1−#E(Fp2) ∈ {−2p, 2p}; these two classes are the largest
of the five [AAM18].

Representatives. For each j-invariant x ∈ X , there is a canonical choice of curve Ex [Sil86]. For
each Ex we take the appropriate twist of the curve such that they belong to the same isogeny class.
We define the set Rx of representatives as the set of tuples (Ex, {{Pi, Qi}i∈[n]}) where {Pi, Qi} is
a basis of the torsion group Ex[`eii ] as above.

For a given curve and torsion order, there exists a deterministic and efficient algorithm Basis(E, i)
which outputs a basis {Pi, Qi} ⊂ Ex[`

ei
i ] [AJK+16, Section 3.2]; for each torsion order, we fix a

generator qi ∈ ζ`eii such that for any curve E, em(Pi, Qi) = qi for {Pi, Qi} ← Basis(E, i). This
will be used to derive new torsion points when required, but these are still free to be modified under
the action of isogenies. Hence for each x, there will be a unique choice of Ex but many choices of
bases of torsion groups that originate from the deterministic one.

Masking sets. We first observe that for any Ki = [αi]Pi + [βi]Qi on E, the point [m]Ki, for
m ∈ (Z/`eii Z)∗, generates the same subgroup of E[`eii ]. By defining the equivalence relation ∼R
by

(α, β) ∼R (α′, β′) ⇐⇒ ∃m ∈ (Z/`eii Z)∗ s.t. (α′, β′) = (mα,mβ),

we can then identify any such Ki with the equivalence class of (αi, βi) which we denote [αi : βi].
We recall that the projective line P1(Z/`eii Z) is the set of equivalence classes [αi : βi] such that
gcd(αi, βi) = 1.

Since Ki has exact order `eii , at least one of αi and βi must not be divisible by `i and hence
the ideal of the ring Z/`eii Z generated by αi, βi is always the unit ideal, i.e. the whole of Z/`eii Z.
This implies that all the possible choices for Ki can be exactly identified with the points on the
projective line P1(Z/`eii Z). We therefore define n masking sets [Mi]i∈[n] where each Mi is the
projective line Pi := P1(Z/`eii Z).

Masking action. Computing the result of a mask µ(r) ∈ Ry on a representative r ∈ Rx then
consists in computing one of its representatives Ki in Ex[`eii ] and the isogeny φi : Ex → Ex/〈Ki〉.
Note that the curve Ex/〈Ki〉 with j-invariant y ∈ X may not be the same curve as the canonical
choice Ey. However they will be isomorphic over Fp2 , due to the appropriate choice of twist in the
definition of our set Ry, and the isomorphism χ : Ex/〈Ki〉 −→ Ey will be easy to compute.

To be able to compose isogenies in a semi-commutative way, computing µ(r) also requires
computing the images of {{Pj, Qj}} for j 6= i first under φi and then under the isomorphism χ to
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obtain bases of the torsion groups of Ey. It also requires generating a new basis for Ey[`eii ] using
the Basis(Ey, i) algorithm.

The output of the computation of the mask µ(r) is therefore the curve Ey
χ
' Ex/〈Ki〉 together

with the basis points {{χ ◦ φi(Pj), χ ◦ φi(Qj)}} for j 6= i and the output of Basis(Ey, i).

Inverting the mask. Since our masking sets Mi do not derive from a group structure, we do not
have an immediate instantiation of an inverse operation. However, for every isogeny φ : E → E ′

of degree `, there is a unique dual isogeny φ̂ : E ′ → E also of degree ` such that the composition
is the multiplication-by-` map: φ̂ ◦φ = [`] : E → E. Whilst not a perfect inverse operation, in this
setting the multiplication-by-`eii map preserves the structure of the `ejj -torsion groups for all j 6= i
and that is all we require for semi-commutativity to hold.

Hence, given a kernel generator Ki ∈ E[`eii ] for some curve E, one can compute a generator of
the image φi(E[`eii ]) ⊂ E ′[`eii ] of the `eii -torsion group under the isogeny φ̃i defined by Ki and an
appropriate isomorphism, to obtain K̂i ∈ E/〈Ki〉 which is a generator of the kernel of the unique
dual isogeny φ̂i.

Given a mask µ ∈ Mi = Pi and elements r and r′ = µ(r) with r′ = (E ′, {{Pj, Qj}j∈[n]}),
computing the inverse µ−1 amounts to computing a point K̂i as above and expressing it as (α̂i, β̂i)
in the deterministically generated basis for E ′[`eii ] which can be done efficiently as is shown in
[AJK+16]. This then allows us to define µ−1 uniquely as [α̂i : β̂i] ∈ Pi, given µ and r. We note
that the dependency of µ−1 on µ and r is consistent with the definition of the inverse of a mask as
stated in Section 4.

Masking structure. We formally define a masking structure in this setting.

Definition 6.1 (Masking structure from supersingular isogenies). Let p be a prime defining the
finite field Fp2 as above, we define the masking structure Mp = {X,RX , [Mi]i∈[n]} where the
individual components are defined as above.

Lemma 6.1. The masking structureMp of Definition 6.1 is semi-commutative.

Proof. First we see that the elements ofMp together with the action of any µ ∈ Mi on any r are
well-defined. Then, since the composition of any isogeny with its dual results in an endomorphism
of the starting curve, our method of inverting a given mask yields the same j-invariant regardless
of the starting r or masking index i. Also, the semi-commutative property of our structure follows
from the semi-commutative property of isogenies of co-prime degrees. Finally, the required effi-
ciency of the computations forMp follows from the comments above regarding the computation
of isogenies of smooth degrees and expression of points in arbitrary torsion bases. Equality in X
and Mi and membership in X are immediate to check. ut

6.3 Computational Problems

The problem landscape of the SIDH setting is still currently undergoing intense study from the
community. Urbanik and Jao [UJ18] have proposed a detailed presentation and study of the ana-
logues of the discrete logarithm and CDH problems that arise from the SIDH key-exchange of
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De Feo, Jao and Plût [DFJP14]. Galbraith and Vercauteren also have written a survey of these
problems [GV18], with a stronger focus on the mathematics of isogenies of elliptic curves.

Here we frame Urbanik and Jao’s discussion of these problems in [UJ18, Section 4] in our
setting that uses n distinct small primes `i. Whilst we give a very general presentation, in practice
the OT scheme presented in this paper will only require n = 2, as in the case of the SIDH key-
exchange. Our second OT protocol will require n = 3, which constitutes only a small extension of
the original setting.

The isogeny problem. In its simplest form, the intuition behind the security of isogeny-based
cryptography is that it is hard to compute a hidden isogeny, up to isomorphism, when given only
the initial and final j-invariants. The general isogeny problem can be stated as follows.

Definition 6.2 (General isogeny problem [GV18, Definition 1]). Given j-invariants j, j′ ∈ Fp2 ,
return an isogeny φ : E −→ E ′ (if it exists), where j(E) = j and j(E ′) = j′.

Given that the elements of X in the masking structureMp are the supersingular j-invariants of
Fp2 and that the elements of the masking setsMi can be uniquely identified with isogenies between
isomorphism classes, it would first seem that the Demask problem forMp can be instantiated as
the general isogeny problem of Definition 6.2. To recover some commutative structure, however,
we have to reveal the images of the bases of the torsion points. This constitutes significantly more
information and therefore is conjectured to be an easier problem to solve [GPS17, Pet17, GV18,
KMP+20].

Additional information. This has led to the definition in the literature of a specific SIDH problem.
Here we merge the definitions of [GV18] and [UJ18] for the case of n = 2 small primes in the
composition of p.

Definition 6.3 (2-i-isogeny problem [GV18, Def. 2][UJ18, Prob. 4.1]). Let (E,P1, Q1, P2, Q2)
be such that E/Fp2 is a supersingular curve and Pj, Qj is a basis for E[`

ej
j ] for j ∈ {1, 2}. Let E ′

be such that there is an isogeny φ : E −→ E ′ of degree `eii . Let P ′j , Q
′
j be the images under φ of

Pj, Qj for j 6= i. The 2-i-isogeny problem, for i ∈ {1, 2}, is, given (E,P1, Q1, P2, Q2, E
′, P ′j , Q

′
j),

to determine an isogeny φ̃ : E −→ E ′ of degree `eii such that P ′j = φ̃(Pj) and Q′j = φ̃(Qj).

This definition leads to the following natural generalisation which we show corresponds exactly to
the computational problem that we need.

Definition 6.4 (n-i-isogeny problem). Let (E, {Pj, Qj}nj=1) be a tuple such that E/Fp2 is a su-
persingular curve and Pj, Qj is a basis for E[`

ej
j ] for j ∈ [n]. Let E ′ be such that there is an

isogeny φ : E −→ E ′ of degree `eii . Let {P ′j , Q′j} be the images under φ of {Pj, Qj} for j 6= i.
The n-i-isogeny problem, for i ∈ [n], is, given (E, {Pj, Qj}nj=1, E

′, {P ′j , Q′j}j 6=i), to determine an
isogeny φ̃ : E −→ E ′ of degree `eii such that P ′j = φ̃(Pj) and Q′j = φ̃(Qj) for all j 6= i.

Lemma 6.2. Let p = `e11 `
e2
2 · · · `enn ·f ±1 be a prime and letMp be a masking structure as defined

in Definition 6.1. Then the Demask problem forMp is an instance of the n-i-isogeny problem.
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Proof. The specification of i in (i, r, rx) together with the random mask µx satisfies the promise
of existence of an isogeny φ of degree `eii . Also, By definition of Rx for each x ∈ X for Mp,
the representative rx contains exactly the information of the curve E ′ together with the images of
the appropriate torsion points. We note that rx does not contain additional information as the basis
points of E ′[`eii ] are derived deterministically from E ′. ut

Computational SIDH. The isogeny problems defined above can be viewed as the analogues of
the discrete logarithm problem of computing an unknown exponent in the general case and in the
specific SIDH setting. This naturally leads to an analogue of the CDH problem which is defined as
follows in the case of n = 2.

Definition 6.5 (2-computational SIDH problem [UJ18, Problem 4.3]). LetE,EA, EB be super-
singular curves such that there exist isogenies φA : E −→ EA and φB : E −→ EB with kernels
KA and KB and degrees `e11 and `e22 respectively. Let P1, Q1 and P2, Q2 be bases of E[`e11 ] and
E[`e22 ] respectively, and let P ′1 = φB(P1), Q′1 = φB(Q1) and P ′2 = φA(P2), Q′2 = φA(Q2) be the
images of the bases under the isogeny of coprime degree. The 2-computational SIDH problem is,
given (E,P1, Q1, P2, Q2, EA, P

′
2, Q

′
2, EB, P

′
1, Q

′
1), to identify the isomorphism class of the curve

E/〈KA, KB〉.

This problem can also be generalised in a natural way to the following which then yields the
appropriate instantiation for our structure.

Definition 6.6 (n-i, j-computational SIDH problem). Let E,EA, EB be supersingular curves
such that there exist isogenies φA : E −→ EA and φB : E −→ EB with kernels KA and KB and
degrees `eii and `ejj respectively with i 6= j. Let {Pk, Qk} be bases of E[`ekk ], for k ∈ [n], and let
PA
k = φA(Pk), QA

k = φA(Qk), for k 6= i, and PB
k = φB(Pk), QB

k = φB(Qk), for k 6= j be the
images of the bases under the isogeny of coprime degree. The n-i, j-computational SIDH problem,
for i, j ∈ [n], is, given (E, {Pk, Qk}k∈[n], EA, {PA

k , Q
A
k }k 6=i, EB, {PB

k , Q
B
k }k 6=j), to identify the

isomorphism class of the curve E/〈KA, KB〉.

Lemma 6.3. Let p = `e11 `
e2
2 · · · `enn ·f ±1 be a prime and letMp be a masking structure as defined

in Definition 6.1. Then the Parallel problem forMp is an instance of the n-i, j-CSIDH problem.

Proof. As for Lemma 6.2, the specification (i, j, r, rx, ry) of the Parallel problem forMp satisfies
the promise of existence of the two isogenies of coprime degrees and contains all the required
information on the images of the torsion bases. Also, the goals of the problems agree since the
solution to the Parallel problem for Mp requires z ∈ X which is exactly the j-invariant which
identifies the isomorphism class uniquely. Again, rx and ry do not contain additional information
since the bases for the ith and jth torsion groups are computed deterministically. ut

Regarding the ParallelInv problem forMp, we do not have an immediate reduction to the Parallel
problemas we had for the previous instantiation. To follow the same proof strategy as for masking
structures from homogeneous spaces one would have to swap r and rx to submit a challenge to the
oracle for the ParallelInv problem. The map from rx to r would then be the inverse of the one from
r to rx but the map from rx to ry would no longer satisfy the promise of the ParallelInv problem.
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We nonetheless conjecture that, as they are very similar, the hardness of the ParallelInv problem is
close to that of the Parallel problem. We similarly conjecture that the hardness of the ParallelEither
and ParallelBoth problems is comparable to that of the Parallel and ParallelInv problems as no
additional information is revealed and only similarly hard-to-compute solutions are required.

Decisional SIDH. Galbraith and Vercauteren also formalise a decisional variant of the SIDH
problem in the case of n = 2.

Definition 6.7 (2-i-decisional SIDH problem [GV18, Definition 3]).
Let (E,P1, Q1, P2, Q2) be such thatE/Fp2 is a supersingular curve and Pj, Qj is a basis forE[`

ej
j ]

for j ∈ {1, 2}. Let E ′ be an elliptic curve and let P ′j , Q
′
j ∈ E ′[`

ej
j ] for j 6= i. Let 0 < d < ei. The

2-i-decisional SIDH problem is, given (E,P1, Q1, P2, Q2, E
′, P ′j , Q

′
j, d) for j 6= i, to determine if

there exists an isogeny φ : E → E ′ of degree `di such that φ(Pj) = P ′j and φ(Qj) = Q′j .

As for the computational problems, we can generalise the above problem to our setting.

Definition 6.8 (n-i-decisional SIDH problem). Let (E, {Pj, Qj}j∈[n]) be such that E/Fp2 is a
supersingular curve and Pj, Qj is a basis for E[`

ej
j ] for j ∈ [n]. Let E ′ be an elliptic curve and

let P ′j , Q
′
j ∈ E ′[`

ej
j ] for j 6= i. Let 0 < d < ei. The n-i-decisional SIDH problem is, given

(E, {Pj, Qj}j∈[n], E ′, {P ′j , Q′j}j 6=i, d), to determine if there exists an isogeny φ : E → E ′ of degree
`di such that φ(Pj) = P ′j and φ(Qj) = Q′j for j 6= i.

Whilst we do not have an equivalence between the IND-Mask experiment and the n-i-DSIDH as
presented above, we see that an oracle for the latter with d = ei is sufficient to obtain a noticeable
advantage against the former. Also, it would seem that our IND-Mask experiment corresponds
to a worst case of the n-i-DSIDH as it uses a maximal degree of d = ei. Given the state of the
art in cryptanalysis for these problems, we conjecture that the IND-Mask problem forMp is not
significantly easier than the n-i-DISDH for the same parameters.

As hinted at in Note 4.1, the Weil pairing is in fact a useful tool against the IND-Mask experi-
ment. Indeed, if the adversary had free control over the values r0 and r1 of the experiment, it could
give two representatives whose basis points of the same torsion group evaluated to different values
under the Weil pairing. This difference would be preserved under the secret masking action of the
experiment and this would enable it to win trivially. Restricting the adversary’s input to be a single
representative r and two masks that determine r0 and r1 and preserve the values of Weil pairing on
the points of r thus prevents this strategy.

Security analysis. As mentioned above, one of the main advantage of the SIDH approach as
opposed to the hard homogeneous space approach (including CSIDH) is that no sub-exponential
attack is known on the SIDH protocol, even using a quantum computer. On the other hand in the
SIDH protocol, the action of the secret isogeny on a large torsion subgroup is revealed. A paper
by Petit [Pet17] and a recent follow-up work by Kutas et al. [KMP+20] show how to exploit this
additional information to break variants of the SIDH protocol with unbalanced parameters or weak
starting curves.
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CDH1(G = 〈g〉)

1 : a
$←− Z∗q

2 : b
$←− Z∗q

3 : output (g, ga, gb)

(a) Traditional CDH.

CDH2(G = 〈g〉)

1 : h
$←− G

2 : a
$←− Z∗q

3 : b
$←− Z∗q

4 : output (h, ha, hb)

(b) Random base CDH.

CDH3(G = 〈g〉)

1 : h
$←− G

2 : a
$←− Z∗q

3 : i
$←− G

4 : output (h, ha, i)

(c) Single promise CDH.

Fig. 6: Three versions of the CDH challenge creation.

More precisely, let N1 ≈ pα be the degree of the isogeny to compute, and let N2 ≈ pβ be
the order of torsion points images revealed in the protocol. The original SIDH protocol uses α ≈
β ≈ 1

2
, but [Pet17] and [KMP+20] describe a generalization to any coprime, power-smooth values

N1, N2. Under some parameter restrictions and heuristic assumptions, the best attack in [KMP+20]
computes the isogeny in polynomial time assuming β > 2α > 2 or β > 3α > 3/2. Also, allowing
for arbitrarily large β − α gives an attack for α + β ≈ 1. Furthermore, Kutas et al. show an attack
requiring only β > 2α (with no lower bound on α) when the protocol uses a weak starting curve.

In our instantiation above, for any i one can fix α = ei log `i and N2 =
∑

j 6=i ej log `j . We also
have α + β ≤ 1 so the first attack in [Pet17] and its improvement in [KMP+20] does not apply
if the starting curve is not weak. The second attack of [Pet17], however, applies whenever n is
larger than O(ei log `i) for some i. The second one from [KMP+20] applies if any starting curve
is weak. The notion of weak however depends on p, α and β so choosing correct parameters (as
those chosen in SIDH are) prevents this from happening.

One may fear that these attacks will get improved over time, leading to further restrictions on n.
We note that n = 3 is sufficient to instantiate Protocols Π1

OT and Π2
OT. Moreover the first protocol

could even be instantiated with n = 2 (see Note 7.1). We note also that n = 2 in our construction
corresponds to the SIDH protocol parameters, so our semi-commutative masking construction with
n = 2 will remain secure as long as SIDH remains secure.

6.4 Different Formulations of the CDH Problem

In Figure 6, we present three subtly different versions of the CDH problem, simplified to their
challenge creation and written using group exponentiation notation. The first formulation, in Fig-
ure 6a, reflects the original definition of the CDH problem where the first element of the tuple
(g, ga, gb) is always the pre-defined generator g. This formulation differs from our definition of the
Parallel problem as the r element of our challenge tuple (i, r, rx, ry) does not have to be any pre-
defined value. Instead our formulation is aligned on the second version, presented in Figure 6b.
This then allows for the equivalence between the Parallel and ParallelInv problems to be proven
formally in the setting of homogeneous spaces. Indeed we can construct a tuple (i, j, r′, r′x, r

′
y),

with r′ = rx, r
′
x = r and r′y = ry, where the promise of a map in Mi between r′ and r′x is satisfied

because of the inverse, and the promise of a map inMj taking r′ to r′y holds because, in this setting,
there necessarily exists a map between any two elements.
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Alice (g0, [g1], a) Bob ([c], b)

(g0)
a, [(g1)

a]
ga0 , [g

a
1 ]

(ga[c])
b

gab[c]

(gab[c] )
1/a

gb[c]
(gb[c])

1/b

(a) The Shamir three-pass protocol and its OT variant

Alice (g0, g1; a) Bob (g0, g1; c; b)

(gc)
b

gbc

ga0 , g
a
1 , g

ba
c

gabc
(gabc )1/b

(b) Sketch of final OT protocol flows

Fig. 7: Sketch of the Shamir three-pass OT protocol and the final variant

However, the second implication does not hold in the setting of supersingular isogenies. Indeed,
swapping r and rx results in a isogeny of degree `eii ·`

ej
j between the curves in r′x and r′y as opposed

to an isogeny of degree `ejj as promised by the problem.
Formulating the CDH challenge differently and removing the promise between r and ry, as pre-

sented in Figure 6c, would enable a formal reduction to be built between the Parallel and ParallelInv
problems in this less structured setting. We note that the CDH2 and CDH3 formulations are in fact
equivalent in our first setting of homogeneous spaces.

Changing our definitions to allow for this reduction to be proven would however cause the
computational problems to be further removed from their usage in practice. Indeed, the messages
exchanged in protocols constructed in this setting typically satisfy the promises of our problems as
they currently stand and we therefore chose not to modify our definitions.

7 Two Oblivious Transfer Protocols from Semi-Commutative Masking

7.1 First Construction - A 2-round OT Protocol

In this section we construct an OT protocol from a semi-commutative masking structureM. We
prove its UC security for passive adversaries with static corruptions in the FRO-hybrid model as-
suming thatM is IND-Mask-secure and that the ParallelEitherM problem is hard.

Motivation. Our OT protocol is inspired by the two-party Shamir three-pass protocol for secure
message transmission shown in Figure 7a (ignoring the elements in square brackets), also known
as the Massey-Omura encryption scheme. Here, Alice’s input is a message g together with a secret
mask a and Bob’s input is another secret mask b. To transmit g, Alice first sends ga to Bob who
replies by masking it as gab. Now Alice removes her mask and replies with gab/a = gb to Bob who
then inverts b and recovers g. This protocol can be modified to yield an OT protocol by including
the elements in square brackets; this was proposed by Wu et al. [WZW03].

Alice, acting as Sender, now has two inputs g0 and g1 and masks both with a to send ga0 , ga1
to Bob, the Receiver. In addition to his mask b, Bob now also has a choice bit c ∈ {0, 1} and he
replies to Alice with (gac )b. They then continue as before until Bob recovers gc. The intuition for
security is that the mask a cannot be deduced from either ga0 or ga1 and therefore the first message
hides both of Alice’s inputs from Bob. Also when Bob applies his own mask to one of the two
messages, this hides his input bit c from Alice who doesn’t know b.
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Protocol Π1
OT

PARAMETER: length n of the PS’s input strings.
SENDER’S INPUT: m0,m1 ∈ME .
RECEIVER’S INPUT: c ∈ {0, 1}.
COMMON INPUTS: Arbitrary x0 6= x1 ∈ X together with r0 ∈ Rx0 , r1 ∈ Rx1 are shared and re-used for every instance of
the protocol; an instance of the random oracle ideal functionality FRO : {0, 1}λ → KE .

OT1 (Receiver 1)
– Sample β $←−MB uniformly at random.
– Compute rβc := β(rc) and β−1 ∈MB .
– Send rβc to PS .

OT2 (Sender 1)
– Sample α $←−MA and compute rαb := α(rb) ∈ Rxα

b
, b ∈ {0, 1}

– For b ∈ {0, 1}, call FRO twice on input xαb obtaining kb, and compute eb ← Enc(kb,mb)
– Compute rαβc := α(rβc )
– Send (rαβc , e0, e1) to PR.

OT3 (Receiver 2)
– Compute rαc := β−1(rαβc ) and kR := FRO(x

α
c ) where rαc ∈ Rxαc .

– Return mc := Dec(kR, ec).

Fig. 8: The protocol Π1
OT for realizing FOT from semi-commutative masking.

We remove the need to apply the inverse mask 1/a to gabc since Alice’s ignorance of c makes
this impossible for general semi-commutative masking schemes due to the definition of inverse
masks. In our new (discrete logarithm based) variant, the elements g0 and g1 are common to both
parties. Rather than using a to send ga0 , g

a
1 to Bob (the Receiver), Alice (the Sender) does not go

first. Instead, Bob first communicates his masked choice gbc, and then Alice applies her mask a and
replies with gabc . At that moment, she also computes ga0 , g

a
1 internally. She then uses these internal

values to derive two symmetric keys k0 and k1. Those are used to encrypt Alice’s actual OT inputs
m0 and m1 as two ciphertexts e0 and e1 which she sends alongside gabc . This allows Bob to recover
gac and hence decrypt ec to recover mc. As g0 and g1 are now established once and re-used for every
instance of the protocol, this allows the flows to have only two passes rather than three. Figure 7b
abstracts the symmetric encryption and only shows the flows that lead to Bob receiving the value
gac .

Construction. We now formally define our OT protocol from semi-commutative invertible masking
schemes. Let M = {X,RX , [MA,MB,MC ]} be an SCM structure with three masking sets; let
E = {(KGenE ,Enc,Dec), (KE ,ME , CE)} be a symmetric encryption scheme and let FRO be an
instance of the RO ideal functionality with domain D = X and range R = KE . We assume
that random sampling from masking sets Mi, i ∈ {A,B,C}, evaluation of masks, evaluation of
Enc, Dec, and inversion in Mi are all efficient operations for the masking structureM and for the
symmetric encryption scheme E . The protocol Π1

OT is formally defined in Figure 8.
As described above, the idea of the protocol is that both the sender, PS , and receiver, PR, have

as common input arbitrary elements x0 6= x1 ∈ X along with representations r0 ∈ Rx0 , r1 ∈ Rx1 .
In the first pass, PR takes a random mask β ∈ MB and sends rβc = β(rc) to PS , where c is its
choice bit. In the second pass, PS samples a random mask α ∈ MA and computes rα0 = α(r0)
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Simulator SR∗

– Throughout the execution, SR∗ simulates the FRO by answering every new query with a random value from KE and
maintaining a list of past queries to answer repeated queries consistently. As in the previous case, it presents the simulated
transcript and corrupt receiver state as computed below to A and uses it to answer queries from Z .

– When Z activates the corrupt Receiver, its private input c is visible by SR∗ which can then compute rβc to perfectly
simulate Receiver 1.

– To simulate Sender 1, SR∗ samples α $←−MA and computes rαβc honestly.
Since mc appears on the corrupt Receiver’s output tape, the simulator computes kc and ec as prescribed by the protocol.
However, since SR∗ does not learn the honest input m1−c, it samples k1−c

$←− KE at random and sets e1−c ←
Enc(k1−c,m) for an arbitrary m ∈ME .

– If Z queries either FRO(x
α
c ) before activating Sender 1, then SR∗ aborts the simulation by returning ⊥ to Z .

– Finally, SR∗ finishes the protocol as prescribed.

Fig. 9: The simulator SR∗ of Theorem 7.1

and rα1 = α(r1). These elements uniquely determine xαb ∈ X, b ∈ {0, 1}. Thus the sender can
compute two private keys kb, b ∈ {0, 1} (by invoking twice the random oracle functionality FRO

on input xαb ) and encrypt its input messages m0,m1 accordingly. PS then sends the ciphertexts
eb ← Enc(kb,mb), b ∈ {0, 1}, and rαβc = α(rβc ) to PR. The receiver has now all the information
needed to recover the message mc corresponding to its choice bit: it can apply the inverse β−1 to
rαβc using the semi-commutativity ofM, so that

β−1(rαβc ) = β−1(α(rβc )) = β−1(α(β(rc))) ∈ Rxαc ,

and recover kc = FRO(xαc ). This easily implies correctness of the scheme. Security is given by the
following theorem.

Theorem 7.1. The protocol Π1
OT of Figure 8 securely UC-realizes the functionality FOT of Figure

2 in the FRO-hybrid model for semi-honest adversaries and static corruptions, under the assump-
tion that E is IND-CPA-secure, thatM is IND-Mask-secure and that the ParallelEitherM problem
is hard.

Proof. We prove that there exists a PPT simulator S, with access to an ideal functionality FOT,
which simulates the adversary’s view. We divide the proof according to the selection of the corrupt
parties.
Corrupt receiver and corrupt sender. As both parties are corrupt, the simulator S may read their
inputs from their internal state and use those to create a perfect simulation of the transcript and
of the parties’ internal states. It presents this simulation to its internal copy of A, together with a
perfect simulation of FRO, with which it is then able to perfectly answer Z’s queries by forwarding
them to A and returning the responses. Since it knows all of the inputs, it forwards them to FOT at
the right moment to ensure that the dummy corrupt parties return the correct output to Z .
Corrupt receiver and honest sender. We formally describe the simulator SR∗ in Figure 9. We
show that for every semi-honest adversary A who corrupts PR and any environment Z , we have
that HYBRIDFRO

Π1
OT,A,Z

c
≈ IDEALFOT,SR∗ ,Z , by proceeding via a sequence of hybrid simulators.

We begin with a hybrid H0 which knows the inputs of the honest sender. As it learns the input
c of the corrupt receiver as soon as it is activated by Z , it is able to present a perfect simulation of
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the protocol. The second hybridH1 samples k1−c
$←− KE at random. Instead, FRO(xα1−c) will be set

to a random value if it is queried during the execution.

Claim. Any environment Z that can distinguish the simulations ofH1 andH0 can be used to solve
the ParallelEither problem for M. Such an environment is capable of distinguishing if and only
if it queries FRO(xα1−σ). Let A be an adversary for which Z distinguishes between H0 and H1

with some advantage ε, we use this to build a reduction B against the ParallelEither problem for
M which proceeds as follows. Upon receiving a challenge (C,A, r, rx, ry), C 6= A, rx = (r) and
ry = α(r), B simulates an execution with Z as follows:

– First set r0 := r and r1 := rx, and set rαc := ry.
– Set the keys and ciphertexts asH1 does and simulate Receiver 1 honestly.
– Since B does not know the α ∈ MA such that ry = α(r), it cannot compute rαβc = α(rβc )

honestly. Instead, it sets rαβc = β(ry). This can be done since it is simulating the internal
value β. This remains consistent with the protocol as we still have that β−1(rαβc ) ∈ Ry and
ry = (rαc ) ∈ Ry, as set at the beginning of B.

– If c = 0, then r1−c = γ(rc) and therefore γ(rαc ) = γ(ry) ∈ Rxα1−c
. If instead c = 1, then

rα1−c = γ−1(rαc ) = γ−1(ry).
Therefore we see that, independently of c, if Z queries FRO(xα1−c), then one of the solutions to
the ParallelEither problem is present on the list of past queries.

When Z terminates, B therefore returns a random entry on the list of random oracle queries. If Z
has advantage ε in distinguishing betweenH1 andH0, B then has an advantage ε/qH in solving the
ParallelEither problem, where qH denotes the number of queries toFRO made during the execution.

The final hybrid H2 replaces m1−c by an arbitrary m ∈ ME in the computation of e1−c. This
removes the last occurrence of m1−c in the simulator and we have thatH2 is identical to the original
SR∗ .

Claim. Any environment Z that can distinguish between a simulation of H2 and of H1 with ad-
vantage ε can be used to break the IND-CPA property of E with advantage at least ε.

We can build an adversary against the IND-CPA property of E by querying the challenger for
a ciphertext of either m or m1−c. This reduction emulates either H2 or H1 perfectly as k1−c is not
accessible to Z and therefore not required byH2 orH1 at any point.

Under the assumption that E is IND-CPA-secure and that the ParallelEither problem is hard for
M, we have that the simulation generated by SR∗ is indistinguishable from a real world execution,
for any environment Z . This concludes the proof that HYBRIDFRO

Π1
OT,A,Z

c
≈ IDEALFOT,SR∗ ,Z .

Honest receiver and corrupt sender. We formally describe the simulator SS∗ in Figure 10 We
show that for every semi-honest adversary A who corrupts PS and any environment Z , it holds
that HYBRIDFRO

Π1
OT,A,Z

c
≈ IDEALFOT,SS∗ ,Z .

The simulation of SS∗ is not a perfect simulation of a real world execution only if the honest
receiver had actually received input c = 1 from Z . In that case, any environment that can distin-
guish between a simulation of SS∗ and the real world with advantage ε can be used to break the
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Simulator SS∗

– SS∗ simulates FRO consistently and presents the state and transcript computed as follows to an internal copy of A to
reply to the queries from Z .

– As it does not know the c of the honest receiver, SS∗ proceeds by setting c = 0 internally which remains out of the view
of A. It then samples β $←−MB and sets rβc = β(r0) consistently.

– As it knows the inputs m0, m1 of the corrupt Sender, SS∗ computes Sender 1 consistently with rβc using the correct
plaintexts.

– Finally, SS∗ finishes the protocol as prescribed.

Fig. 10: The simulator SS∗ of Theorem 7.1

IND-Mask security ofM with advantage at least ε. We build a reduction B against the IND-Mask
experiment as follows.

The reduction first selects an arbitrary r as well as two masks γ0, γ1 ∈MC and sends (r, γ0, γ1, B)
to the IND-Mask experiment. Upon receiving r̃, B then begins the distinguishing experiment with
Z by setting r0 = γ0(r), r1 = γ1(r) and returning rβc = r̃ to the adversary when Z activates Re-
ceiver 1. Not knowing β is not a problem for the simulation as the receiver is honest and therefore
B does not need to simulate its state to A. This is a perfect simulation of either the real world or
of SS∗ as either r1 or r0 is used by the IND-Mask experiment in the computation of rβc . Thus if Z
distinguishes between the two, then B can distinguish the hidden bit of the IND-Mask experiment.
Honest receiver and honest sender. In this final case, the simulator S chooses arbitrary inputs
m0 = m1 = m ∈ ME and c = 1 and simulates a transcript to A. If an environment Z is capable
of distinguishing this simulation from a real execution of the protocol then this implies that is is
able to extract information regarding the arbitrary inputs used by S . However the previous two
cases show that, even with the additional information of the corrupted party’s internal state, any
environment is not able to identify a simulation that does not have any information on the honest
party’s inputs. By combining techniques from both cases above, we can therefore show that the
simulation of S is indistinguishable from a real world execution under the assumption that S is
IND-CPA-secure, thatM is IND-Mask-secure and that the ParallelEitherM problem is hard.

This completes the proof that for anyA there exists a S such that, for anyZ , HYBRIDFRO
Π1

OT,A,Z
c
≈

IDEALFOT,S,Z . ut

Note 7.1. Protocol Π1
OT only requires the third masking set MC as a proof artefact and that only

two sets would be sufficient to execute the protocol.

7.2 Second Construction - OT from Key-Exchange

Motivation Our second OT protocol is inspired by the OT protocol of Chou and Orlandi [CO15a]
in that it uses an underlying key exchange mechanism and then transforms it to achieve oblivious
transfer. The problems that have emerged in their construction [CO15b, Section 1.1] do not arise
when considering passive adversaries so we do not address them here.

Again we motivate our proposed OT protocol by looking at the discrete logarithm variant.
Here, Alice’s inputs are two messages m0,m1 and an ephemeral mask a and Bob’s is another
mask b together with his choice c. To agree on the key under which the selected message will
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Alice (g; a, d0, d1) Bob (c; b)

ga, gd0 , gd1

ga, gd0 , gd1 kR = (ga)b
(gdc)b

kb = (gdcb)a/db

{mb}kb

Fig. 11: Sketch of the OT protocol derived from the key agreement protocol.

Protocol Π2
OT

PARAMETER: length n of the Sender’s input strings.
SENDER’S INPUT: m0,m1 ∈ME .
RECEIVER’S INPUT: c ∈ {0, 1}.
COMMON INPUTS: An arbitrary x ∈ X together with r ∈ Rx is shared and re-used for every instance of the protocol; an
instance of the random oracle ideal functionality FRO : {0, 1}λ → KE .

Sender 1
– Sample α $←−MA, γb

$←−MC , b ∈ {0, 1}, at random, and compute rα := α(r), rb := γb(r) and γ−1
b ∈MC .

– Send (rα, r0, r1) to PR
Receiver 1

– Sample β $←−MB uniformly at random.
– Compute rβc := β(rc).
– Compute kc := FRO(x

αβ) where β(rα) ∈ Rxαβ .
– Send rβc to PS .

Sender 2
– For b ∈ {0, 1}, compute kb := FRO(xb) where α(γ−1

b (rβc )) ∈ Rxb .
– For b ∈ {0, 1}, compute eb ← Enc(kb,mb).
– Send (e0, e1) to PR.

Receiver 2 Return mc := Dec(kc, ec).

Fig. 12: The protocol Π2
OT for realizing FOT from semi-commutative masking.

be encrypted, Alice sends ga to Bob who derives the decryption key gab. But Bob cannot simply
reply with gb, since Alice would then not know which of m0 or m1 to encrypt. Instead, Alice
communicates two random masks gd0 and gd1 to allow Bob to make a selection. By masking (gdc)b

with the same b as he uses to derive the key, Bob obliviously communicates his choice and his
mask to Alice which is then able to derive two keys (by unmasking db and then adding her mask a)
of which only one will be share with Bob. We sketch the protocol flows in Figure 11. The protocol
is intuitively secure as Alice cannot deduce b from Bob’s message and Bob cannot deduce the key
k1−c as he is not able to recover d−1b from Alice’s first message.

Construction. We now formally define our second OT protocol from semi-commutative invertible
masking schemes. LetM = {X,RX , [MA,MB,MC ]} be a semi-commutative masking structure;
let E = {(KGenE ,Enc,Dec), (KE ,ME , CE)} be a symmetric encryption scheme and let FRO be
an instance of the RO ideal functionality with domain D = X and range R = KE . We formally
describe the protocol Π2

OT in Figure 12. Protocol Π2
OT makes use of random sampling from Mi,
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Simulator SR∗

– SR∗ simulates FRO consistently and presents the state and transcript computed as follows to an internal copy of A to
reply to the queries from Z .

– When Z activates the honest Sender, SR∗ computes Sender 1 honestly to send (rα, r0, r1) to A.
– When Z activates the corrupt Receiver, its private input c is visible by SR∗ which can then compute rβc to perfectly

simulate Receiver 1.
– To simulate Sender 2, since mc appears on the corrupt Receiver’s output tape, the simulator computes kc and ec as pre-

scribed by the protocol.
However, since SR∗ does not learn the honest input m1−c, it samples k1−c

$←− KE at random and sets e1−c ←
Enc(k1−c,m) for an arbitrary m ∈ME .

– If Z queries either FRO(xb) before activating Receiver 1, then SR∗ aborts the simulation by returning ⊥ to Z .
– Finally, SR∗ finishes the protocol as prescribed.

Fig. 13: The simulator SR∗ of Theorem 7.2

evaluation of masks, evaluation of H , evaluation of Enc, Dec, as well as membership and equality
testing in X and CE and inversion in Mi. All these operations are assumed to be efficient for the
masking structure M and for the symmetric scheme E . Because M = {X,RX [MA,MB,MC ]}
is semi-commutative, we see that α(γ−1b (rβc )) = α(γ−1b (β(γc(r)))) ∈ Rxαβ if and only if b = c.
This shows that, if both parties execute the protocol honestly, kR = kc and hence PR recovers the
correct message mc.

Theorem 7.2. The protocolΠ2
OT of Figure 12 securely UC-realizes the functionalityFOT of Figure

2 in the FRO-hybrid model for semi-honest adversaries and static corruptions, under the assump-
tion that E is IND-CPA-secure, thatM is IND-Mask-secure and that the ParallelBothM problem
is hard.

Proof. We prove that there exists a PPT simulator S, with access to an ideal functionality FOT,
which simulates the adversary’s view. We divide the proof according to the selection of the corrupt
parties.
Corrupt receiver and corrupt sender. As both parties are corrupt, the simulator S may read their
inputs from their internal state and use those to create a perfect simulation of the transcript and
of the parties’ internal states. It presents this simulation to its internal copy of A, together with an
perfect simulation of FRO, with which it is then able to perfectly answer Z’s queries by forwarding
them to A and returning the responses. Since it knows all of the inputs, it forwards them to FOT at
the right moment to ensure that the dummy corrupt parties return the correct output to Z .
Corrupt receiver and honest sender. We formally describe the simulator SR∗ in Figure 13. We
show that for every semi-honest adversary A who corrupts PR and any environment Z , it holds
that

HYBRIDFRO
Π2

OT,A,Z
c
≈ IDEALFOT,SR∗ ,Z ,

by proceeding via a sequence of hybrid simulators, going from the real execution to the ideal
execution, defined as follows.

The first hybridH0 knows the inputs of the honest sender and is therefore able to compute e1−c
honestly using the correct random oracle query to obtain the key. This is then a perfect simulation
of a real-world execution.
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The second hybrid H1 samples k1−c
$←− KE at random and does not query the random oracle

on x1−c where α(γ−11−c(r
β
c )) ∈ Rx1−c .

Claim. Any environment Z that distinguishes an interaction with H1 from one with H0 with ad-
vantage ε can be used to solve the ParallelBoth problem forM with advantage at least ε/qH where
qH denotes the number of queries made byZ to the random oracle. Such an environment is capable
of distinguishing if and only if it submits the query for k1−c to the random oracle. We use this to
build a reduction B against the ParallelBoth problem forM which proceeds as follows.

Upon receiving a challenge (C,A, r, rx0 , rx1 , ry), B first sets zα := ry and zi := rxi to simulate
Sender 1 and then samples β $←−MB to compute Receiver 1 perfectly upon activation of P ∗R which
reveals c.

Since it now does not know the α ∈MA such that rα = α(r), B computes kc from β(rα) which
it can do as it knows β and which yields the correct xαβ as the masks commute. For the other key,
it sets k1−c

$←− KE as S1 would. It then returns the ciphertexts encrypting m0,m1 under these keys.
When Z terminates, B selects a random entry on the list of random oracle queries and applies

β−1. The un-selected key k1−c is the hash of the element of X represented by α(γ−11−c(β(γc(r))))
where γi ∈ MC is such that rxi = γi(r). So by applying β−1, B obtains exactly a representative
one of the solutions to the ParallelBoth problem as long as it selected the correct entry on the hash
list. If Z has advantage ε in distinguishing between H1 and H0, B then has an advantage ε/qH in
solving the ParallelBoth problem.

The final hybrid H2 replaces m1−c by an arbitrary m ∈ ME in the computation of e1−c. This
removes the last occurrence of m1−c in the simulator and we have thatH2 is identical to SR∗ .

Claim. Any environment Z that can distinguish between a simulation of H2 and of H1 with ad-
vantage ε can be used to break the IND-CPA property of E with advantage at least ε.
We can build an adversary against the IND-CPA property of E by querying the challenger for a
ciphertext of either m or m1−c. This reduction emulates either H2 or H1 perfectly as k1−c is not
accessible to Z and therefore not required by S2 or S1 at any point.

Under the assumption that E is IND-CPA-secure and that the ParallelBoth problem is hard for
M, we have that the simulation generated by SR∗ is indistinguishable from a real world execution,
for any environment Z . This concludes the proof that HYBRIDFRO

Π2
OT,A,Z

c
≈ IDEALFOT,SR∗ ,Z .

Honest receiver and corrupt sender. We formally describe the simulator SS∗ in Figure 14. We
show that for every semi-honest adversary A who corrupts PS and any environment Z , it holds
that

HYBRIDFRO
Π2

OT,A,Z
c
≈ IDEALFOT,SS∗ ,Z .

The simulation of SS∗ is not a perfect simulation of a real world execution only if the honest
receiver had actually received input c = 1 from Z . In that case, any environment that can dis-
tinguish between a simulation of SS∗ and the real world with advantage ε can be used to break
the IND-Mask security of M with advantage at least ε. We build a reduction B against the
IND-Mask experiment as follows. It first simulates Sender 1 as prescribed by the protocol and
sends (r, γ0, γ1, B) to the IND-Mask experiment. Upon receiving r̃, B then returns rβc = r̃ to the
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Simulator SS∗

– SS∗ simulates FRO consistently and presents the state and transcript computed as follows to an internal copy of A to
reply to the queries from Z .

– When Z activates the corrupt sender, SS∗ computes Sender 1 honestly to send (rα, r0, r1) to A.
– As it does not know the c of the honest receiver, SS∗ proceeds by setting c = 0 internally which remains out of the view

of A. It then samples β $←−MB and sets rβ0 = β(r0) consistently. It also computes k0 accordingly.
– As it knows the inputs m0, m1 of the corrupt Sender, SS∗ computes Sender 2 consistently with rβc using the correct

plaintexts.
– Finally, SS∗ finishes the protocol as prescribed.

Fig. 14: The simulator SS∗ of Theorem 7.2

adversary when Z activates Receiver 1. Not knowing β is not a problem for the simulation as the
receiver is honest and therefore B does not need to simulate its state to A. This is a perfect simu-
lation of either the real world or of SS∗ as either r1 or r0 is used by the IND-Mask experiment in
the computation of rβc . Thus if Z distinguishes between the two, then B can distinguish the hidden
bit of the IND-Mask experiment.
Honest receiver and honest sender. In this final case, the simulator S chooses arbitrary inputs
m0 = m1 = m ∈ ME and c = 1 and simulates a transcript to A using those. If an environment Z
is capable of distinguishing this simulation from a real execution of the protocol then this implies
that is is able to extract information regarding the arbitrary inputs used by S. However the previous
two cases show that, even with the additional information of the corrupted party’s internal state,
any environment is not able to identify a simulation that does not have any information the honest
party’s inputs. By combining techniques from both cases above, we can therefore show that the
simulation of S is indistinguishable from a real world execution under the assumption that S is
IND-CPA-secure, thatM is IND-Mask-secure and that the ParallelBothM problem is hard.
This completes the proof that for any A there exists a S such that, for any Z ,

HYBRIDFRO
Π2

OT,A,Z
c
≈ IDEALFOT,S,Z .

ut

8 Active Secure Two-round OT from Commutative Masking

We now show how to compile our 2-round OT protocol Π1
OT, described in Section 7.1, to a 2-

round maliciously UC-secure protocol using the generic transformations introduced by Döttling et
al. [DGH+20].

8.1 Additional OT Security Notions

A 2-round OT protocol with public setup consists of four algorithms (Setup,OT1,OT2,OT3) such
that:

– Setup(1λ) generates a public input pin.
– OT1(pin, c), where c ∈ {0, 1} is the PR choice bit, outputs (st, ot PR)
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– OT2(pin, ot PR,m0,m1), where m0,m1 are the sender’s input messages, outputs ot PS
– OT3(st, ot PS) outputs mc

First we need to recall some security notions [DGH+20] for the receiver PR and the sender PS .
The first definition states that PS should not learn anything about PR’s choice bit c.

Definition 8.1 (Receiver’s indistinguishability security). For every PPT adversary A:

|Pr[A(pin,OT1(pin, 0)) = 1]− Pr[A(pin,OT1(pin, 1)) = 1]| = negl(λ),

where pin is the public output of the setup phase.

The next definition concerns the security of the sender; it states that PR cannot compute both
secret values y0 and y1 used by OT2 to protect m0 and m1, but not necessarily in the same experi-
ment.

Definition 8.2 (Sender’s search security). Let A = (A1,A2) be an adversary where A2 outputs
a string y∗. Consider the following experiment Exppin,ρ,wsOT (A), indexed by a pin, random coins ρ ∈
{0, 1}λ and a bit w ∈ {0, 1}.

1. Run (ot PR, st)← A1(1
λ, pin; ρ).

2. Compute (ot PS, y0, y1)
$←− OT2(pin, ot PR).

3. Run y∗ ← A2(st, ot PS, w) and output 1 iff y∗ = yw.

We say that A breaks a scheme’s Sender’s search (sOT) security if there exists a non-negligible
function ε such that

Pr
pin,ρ

[Pr[Exppin,ρ,0sOT (A) = 1] > ε and Pr[Exppin,ρ,1sOT (A) = 1] > ε] > ε,

where pin
$←− Setup and ρ $←− {0, 1}λ.

8.2 Two rounds OT with Active UC-Security

We provide an intermediary result which enables us to use the general compiler from [DGH+20]
to get an actively secure 2-round OT protocol starting from Π1

OT. First we introduce and discuss a
new security assumption derived from the Parallel problem but more suited to active adversaries.
Then we show that our protocol satisfies the security notions of Definitions 8.1 and 8.2. Finally,
by applying the general transformations from sOT to UC OT described in [DGH+20], we obtain
a fully UC-secure two-round OT protocol. We note that we are able to remove the random oracle
from our protocol to achieve sOT security; therefore the resulting OT protocol requires only the
CRS. We define our new computational problem as follows.

Definition 8.3 (ParallelDouble). Given (i, j, r, rx0 , rx1 , ry) with the promise that i 6= j and that
rxb = µxb(r), b ∈ {0, 1} and ry = µy(r) for random µxb

$←− Mi and µy
$←− Mj , and given a

one-time access to an oracleOy which, when given r ∈ R returns µy(r), compute z0, z1 ∈ X such
that both µxb(ry) ∈ Rzb .
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The instantiation of this problem in the discrete logarithm case is, when given (g, ga, gb, gc) and a
one-time access to an exponentiation-by-c oracle, to return both gac and gbc. For practical efficiency,
it is also desirable that ga and gb remain constant across multiple instances of the ParallelDouble
problem, with only gc being randomly sampled in each instance. This version of the problem is
similar to the one-more static CDH problem where an adversary has to successfully compute one
more CDH challenge than it was able to ask from a helper oracle [BMV08].

Security of theΠ1
OT protocol. We then prove that protocolΠ1

OT achieves Receiver’s indistinguisha-
bility and Sender’s search security.

Proposition 8.1. The protocol Π1
OT in Figure 8 satisfies computational receiver’s indistinguisha-

bility security and sender’s sOT security under the assumption thatM is IND-Mask-secure and
that the ParallelDoubleM problem is hard.

Proof. Receiver’s indistinguishability follows from the IND-Mask-security assumption. By setting
the public inputs r0 and r1 in Π1

OT as they are computed in the IND-Mask experiment, the random
mask µ is distributed in the same way as the mask β in OT1. Therefore if an adversary breaks the
receiver’s indistinguishability forΠ1

OT, this can be reduced to a solution to the IND-Mask problem.

Sender’s search security. To prove sOT security for Π1
OT we assume the existence of an adversary

A = (A1,A2) and a non-negligible ε such that

Pr
pin,ρ

[Pr[Exppin,ρ,0sOT (A) = 1] > ε and Pr[Exppin,ρ,1sOT (A) = 1] > ε] > ε,

and we build a reduction B that is given a ParallelDouble challenge (i, j, r, rx0 , rx1 , ry) with access
to an oracle Oy (Definition 8.3). Instead of running Setup to generate r0 and r1, B sets r0 ← rx0
and r1 ← rx1; also B samples ρ $←− {0, 1}λ. As this ensures that pin is distributed identically to the
output of Setup, pin and ρ are good for A with probability at least ε.

AfterB runsA1, which outputs (ot PR, st), it queries the oracle to obtain ot PS,0 ← Oy(ot PR).
It also computes ot PS,1 ← µ(ot PS,0) for a random µ ∈ Mk with i 6= k 6= j; it also computes
µ−1. Then, for w ∈ {0, 1}, B runs y∗w ← A2(st, ot PS,w, w) and updates y∗1 ← µ−1(y∗1). Finally B
returns y∗0 and the updated y∗1 as the ParallelDouble answer.

Since Pr[Exppin,ρ,0sOT (A) = 1] > ε and Pr[Exppin,ρ,1sOT (A) = 1] > ε, with probability ε2, A2 is suc-
cessful for both inputs (st, ot PS,0, 0) and (st, ot PS,1, 1) as the two messages are made independent
by B’s addition of µ. If this happens, then y∗0 is exactly one of the answers, and the update of y∗1
by B removes the extra mask µ and means that y∗1 is then the other answer to the ParallelDouble
problem. Hence B is successful with probability at least ε3.

Theorem 8.1. Under the assumption thatM is IND-Mask-secure and that the ParallelDoubleM

problem is hard, there exists a 2-round UC-secure OT protocol constructed from Π1
OT.

Proof. This follows from the transformations and results of [DGH+20, Theorems 8, 9, 11, 12, 14,
19 and 21].

Corollary 8.1. By instantiating the semi-commutative masking scheme, there exists an actively
secure 2-round OT protocol based on supersingular isogenies.

31



This corollary gives the first UC-secure OT based on supersingular isogenies requiring only
two rounds of communication.
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