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Abstract. In this paper, we give a no-signaling linear probabilistically checkable proof (PCP)
system for polynomial-time deterministic computation, i.e., a PCP system for P such that (1)
the PCP oracle is a linear function and (2) the soundness holds against any (computational) no-
signaling cheating prover, who is allowed to answer each query according to a distribution that
depends on the entire query set in a certain way. To the best of our knowledge, our construction
is the first PCP system that satisfies these two properties simultaneously.
As an application of our PCP system, we obtain a 2-message scheme for delegating computation
by using a known transformation. Compared with existing 2-message delegation schemes based
on standard cryptographic assumptions, our scheme requires preprocessing but has a simpler
structure and makes use of different (possibly cheaper) standard cryptographic primitives, namely
additive/multiplicative homomorphic encryption schemes.

1 Introduction
Linear PCP. Probabilistically checkable proofs, or PCPs, are proof systems with which one can
probabilistically verify the correctness of statements with bounded soundness error by reading only a
few bits of proof strings. A central result about PCPs are the PCP theorem [AS98, ALM+98], which
states that every NP statement has a PCP system such that the proof string is polynomially long and
the verification requires only a constant number of bits of the proof string (the soundness error is a
small constant and can be reduced by repetition).

An important application of PCPs to Cryptography is succinct argument systems, i.e., argument
systems that have very small communication complexity and fast verification time. A famous example
of such argument systems is that of Kilian [Kil92], which proves an NP statement by using PCPs as
follows.
1. The prover first generates a polynomially long PCP proof for the statement (this is possible thanks

to the PCP theorem) and succinctly commits to it by using Merkle’s tree-hashing technique.
2. The verifier queries a few bits of the PCP proof just like the PCP verifier.
3. The prover reveals the queried bits by appropriately opening the commitment using the local open-

ing property of Merkle’s tree-hashing.
This argument system of Kilian has communication complexity and verification time that depend on
the classical NP verification time only logarithmically; that is, a proof for the membership of an
instance x in an NP language L has communication complexity and verification time poly(λ + |x| +
log t), where λ is the security parameter, t is the time to evaluate the NP relation of L on x, and poly
is a polynomial that is independent of L. Kilian’s technique was later extended to obtain succinct non-
interactive argument systems (SNARGs) forNP in the random oracle model [Mic00] as well as in the
standard model with non-falsifiable assumptions (such as the existence of extractable hash functions),
e.g., [BCC+17, DFH12].1

1 Actually, SNARGs in the standard model require the existence of common reference strings, and some constructions of
them further require that the verifier has some private information about the common reference strings.
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Recently, the studies of succinct argument systems have been boosted by the use of a specific
type of PCPs called linear PCPs, which are PCPs such that the honest proofs are linear functions
(i.e., the honest proof strings are the truth tables of linear functions).2 (The proof strings of linear
PCPs are exponentially long in general, but each bit of the proof strings can be computed efficiently
by evaluating the underlying linear functions.) A nice property of linear PCPs is that they often have
much simpler structures than the polynomially long PCPs; as a result, the use of linear PCPs often
lead to simpler constructions of succinct argument systems. The use of linear PCPs in the context
of succinct argument systems was initiated by Ishai, Kushilevitz, and Ostrovsky [IKO07], who used
them for constructing an argument system for NP with a laconic prover (i.e., a prover that sends to
the verifier only short messages). Subsequently, several works obtain practical implementations of the
argument system of Ishai et al. [SBW11, SMBW12, SVP+12, SBV+13, VSBW13], whereas others
extended the technique of Ishai et al. for the use for SNARGs and obtained practical implementations
of preprocessing SNARGs (i.e., SNARGs that require expensive (but reusable) preprocessing setups)
[BCI+13, BCG+13, BCTV14].

No-signaling PCP. Very recently, Kalai, Raz, and Rothblum [KRR13, KRR14] found that PCPs with
a stronger soundness guarantee, called soundness against no-signaling provers, are useful for con-
structing 2-message succinct argument systems under standard assumptions. Concretely, Kalai et al.
[KRR13, KRR14] first constructed no-signaling PCPs (i.e., PCPs that are sound against no-signaling
provers) for deterministic computation, and next showed that their no-signaling PCPs can be used to
obtain 2-message succinct argument systems for deterministic computation under the assumptions of
the existence of quasi-polynomially secure fully homomorphic encryption schemes or (2-message,
polylogarithmic-communication, single-server) private information retrieval schemes. The succinct
argument systems of Kalai et al. differ from prior ones in that they can handle only deterministic com-
putation but require just two messages and is proven secure under standard assumptions. (In contrast,
the argument system of Kilian and prior SNARG systems can handle non-deterministic computation
but the former requires four messages and the latter are proven secure only in ideal models such as the
random oracle model or under non-falsifiable knowledge-type assumptions.)

As observed by Kalai et al. [KRR13, KRR14], 2-message succinct argument systems have a direct
application in delegating computation [GKR08] (or verifiable computation [GGP10]). Specifically,
consider a setting where there exist a computationally weak client and a computationally powerful
server, and the client wants to delegate a heavy computation to the server. Given a 2-message suc-
cinct argument system, the client can delegate the computation to the server in such a way that it can
verify the correctness of the server’s computation very efficiently (i.e., much faster than doing the
computation from scratch).

After the results of Kalai et al. [KRR13, KRR14], no-signaling PCPs and their applications to del-
egation schemes have been extensively studied. Kalai and Paneth [KP16] extend the results of Kalai
et al. [KRR14] and obtain a delegation scheme for deterministic RAM computation, and Brakerski,
Holmgren, and Kalai [BHK17] further extend it so that the scheme is adaptively sound (i.e., sound even
when the statement is chosen after the verifier’s message) and in addition can be based on polynomi-
ally hard standard cryptographic assumptions. Paneth and Rothblum [PR17] give an adaptively sound
delegation scheme for deterministic RAM computation with public verifiability (i.e., with a property
that not only the verifier but also anyone can verify proofs) albeit with the use of a new cryptographic

2 In general, soundness is required to hold against any (possibly non-linear) functions; linear PCPs with this notion of
soundness is sometimes called “strong linear PCPs” [BCI+13].
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assumption. Badrinarayanan, Kalai, Khurana, Sahai, and Wichs [BKK+18] give an adaptively sound
delegation scheme for low-space non-deterministic computation (i.e., non-deterministic computation
whose space complexity is much smaller than time complexity) under sub-exponentially hard crypto-
graphic assumptions.

Kalai et al. [KRR13, KRR14] and the abovementioned subsequent works on delegation schemes
use no-signaling PCPs with polynomial length. As a result, compared with the delegation schemes
that can be obtained from, e.g., the preprocessing SNARGs based on linear PCPs [BCI+13, BCG+13,
BCTV14], their delegation schemes have complex structures.

1.1 Our Results

In this paper, we study the problem of constructing no-signaling linear PCPs, i.e., linear PCPs that
are sound against no-signaling provers. Our main motivation is to obtain a PCP that inherits good
properties from both of linear PCPs and no-signaling PCPs. Thus, our goal is to obtain a no-signaling
linear PCP that can be used to obtain a 2-message delegation scheme that is secure under standard
cryptographic assumptions (like those that are based on no-signaling PCPs) and has a simple structure
(like those that are based on linear PCPs).

Main Result: No-signaling linear PCP forP. The main result of this paper is an unconditional con-
struction of no-signaling linear PCPs for polynomial-time deterministic computation. We focus our
attention on PCPs that proves correctness of arithmetic circuit computation, so our construction han-
dles statements of the form (C, x, y), where C is a polynomial-size arithmetic circuit and the statement
to be proven is “C(x) = y holds.”

Theorem (informal). There exists a no-signaling linear PCP for the correctness of polynomial-size
arithmetic circuit computation. The proof generation algorithm runs in time poly(|C|), the verifier
query algorithm runs in time poly(λ + |C|), and the verifier decision algorithm runs in time poly(λ +
|x| + |y|).

A formal statement of this theorem is given as Theorem 1 in Section 4. To the best of our knowledge,
our construction is the first linear PCP that is sound against no-signaling provers. (See Section 1.3 for
concurrent independent works.)

Our no-signaling linear PCP inherits simplicity from existing linear PCPs. Indeed, the proof string
of our PCP is identical with that of the well-known linear PCP of Arora, Lund, Motwani, Sudan, and
Szegedy [ALM+98]. Regarding the verifier, we added slight modifications to that of Arora et al. to
simplify the analysis; however, we do not think that these modifications are fundamental.

The analysis of our PCP is, at a very high level, a combination of the analysis of the linear PCP of
Arora et al. [ALM+98] and that of the no-signaling PCP of Kalai et al. [KRR14]. A difficulty comes
from the fact that the analysis of the no-signaling PCP of Kalai et al. partly rely on the specific con-
struction of their PCP (which is based on the PCP of Babai, Fortnow, Levin, and Szegedy [BFLS91]),
and we overcome this difficulty by modifying the analysis of the no-signaling PCP of Kalai et al. ap-
propriately by borrowing techniques from the analysis of the linear PCP of Arora et al. Along the way,
we also modify the analysis of Kalai et al. so that, unlike the analysis of Kalai et al., our analysis does
not require that the statement is represented by an “augmented layered circuit” and only requires that
it is represented by a layered circuit,3 so our PCP can work on smaller and simpler circuits; we think

3 Our analysis does not require the space complexity of the computation to be bounded either.
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that this modification may be of independent interest. (The downside of this modification is that the
analysis of no-signaling soundness becomes a little more complex. Specifically, we cannot use the
notion of local-assignment generators [PR17] to analyze no-signaling soundness in a modular way.)
A more detailed overview of our analysis is given in Section 3.

Application: Delegation scheme for P in the preprocessing model. As an application of our no-
signaling linear PCP, we construct a 2-message delegation scheme for polynomial-time deterministic
computation under standard cryptographic assumptions. Just like previous linear-PCP–based dele-
gation schemes and succinct arguments (such as that of Bitansky et al. [BCI+13]), our delegation
scheme works in the preprocessing model, so our scheme uses expensive offline setups that can be
used for proving multiple statements. When the statement is (C, x, y), the running time of the client is
poly(λ+ |C|) in the offline phase and is poly(λ+ |x|+ |y|) in the online phase. Our delegation scheme is
adaptively secure in the sense that the input x can be chosen in the online phase, and is “designated-
verifier type” in the sense that the verification requires a secret key. We obtain our delegation scheme
by applying the transformation of Kalai et al. [KRR13, KRR14] on our no-signaling liner PCP. (The
transformation of Kalai et al., which is closely related to those of Biehl, Meyer, and Wetzel [BMW98]
and Aiello, Bhatt, Ostrovsky, and Rajagopalan [ABOR00], transforms a no-signaling PCP to a 2-
message delegation scheme.)

Compared with the existing 2-message delegation schemes based on polynomially long no-
signaling PCPs (such as that of Kalai et al. [KRR14]), our scheme requires preprocessing, but has
a simple structure and uses different (possibly cheaper) tools thanks to the use of linear PCPs. Con-
cretely, thanks to the use of linear PCPs, we can avoid the use of fully homomorphic encryption
schemes or 2-message private information retrieval schemes, and can instead use additive homomor-
phic encryption schemes over prime-order fields (such as that of Goldwasser and Micali [GM84]) or
multiplicative homomorphic encryption schemes over prime-order bilinear groups (such as the DLIN-
based linear encryption scheme of Boneh, Boyen, and Shacham [BBS04]).

1.2 Prior Works

Delegation scheme. Delegation schemes (and verifiable computation schemes) have been extensively
studied in literature. Other than those that we mentioned above, existing results that are related to ours
are the following. (We focus our attention on non-interactive or 2-message delegation schemes for all
deterministic or non-deterministic polynomial-time computation.)
Delegation schemes for non-deterministic computation. The existing constructions of (prepro-
cessing) SNARGs, such as [Gro10, Lip12, DFH12, BC12, GGPR13, BCI+13, BCCT13, Lip13,
DFGK14, Gro16, BISW17, BCC+17], can be directly used to obtain delegation schemes forNP, and
some of them can be used even to obtain publicly verifiable ones. Additionally, it was shown recently
that an interactive variant of PCPs, called interactive oracle proofs, can also be used to obtain dele-
gation schemes forNP [BCS16]. The security of these delegation schemes holds under non-standard
assumptions (e.g., knowledge assumptions) or in ideal models (e.g., the generic group model and the
random oracle model). Compared with these schemes, our scheme works only for P and requires pre-
processing, but can be proven secure in the standard model under a standard assumption (namely the
existence of homomorphic encryption schemes).
Delegation schemes for deterministic computation. Other than the abovementioned recent
works that obtain delegation schemes for P without preprocessing by using no-signaling PCPs (i.e.,
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Kalai et al. [KRR13, KRR14] and the subsequent works), there are plenty of works that obtain dele-
gation schemes for P without using PCPs. Specifically, some works obtain schemes with preprocess-
ing by using fully homomorphic encryption or attribute-based encryption schemes [GGP10, CKV10,
PRV12], and others obtain schemes without preprocessing by using multi-linear maps or indistin-
guishability obfuscators (e.g., [BGL+15, CHJV15, CH16, CCHR16, KLW15, CCC+16, ACC+16]).
Compared with these schemes, our scheme requires preprocessing but only uses relatively simple
building blocks (namely a linear PCP and a homomorphic encryption scheme).

1.3 Concurrent Works

In independent concurrent works, Holmgren and Rothblum [HR18] and Chiesa, Manohar, and Shinkar
[CMS18a] also observe that one can obtain no-signaling PCPs forPwithout relying on the “augmented
circuit” technique of Kalai et al. [KRR14]. The technique by Holmgren and Rothblum works when the
underlying PCP is that of Babai et al. [BFLS91] (as in the work of Kalai et al. [KRR14]) and the one
by Chiesa et al. works when the underlying PCP is that of Arora et al. [ALM+98] (as in this paper).

The work of Chiesa et al. [CMS18a] actually has many other similarities with our work, and in
particular their work also shows that the linear PCP of Arora et al. [ALM+98] is sound against no-
signaling cheating provers. We remark however that there are also a few differences between their work
and our work, such as:

– Chiesa et al. achieve constant soundness error with constant query complexity while we focus on
achieving negligible soundness error and did not try to optimize the query complexity (currently,
our analysis requires polynomial query complexity4).

– Chiesa et al. prove soundness against cheating provers that are no-signaling in a strong sense
(namely, “perfect no-signaling”) while we prove soundness even against those that are no-signaling
in a weak sense (namely, “computational no-signaling”).

– The analysis of Chiesa et al. uses the equivalence between no-signaling functions and quasi-
distributions5 over functions while ours does not use this equivalence. (The equivalence be-
tween no-signaling functions and quasi-distributions was shown by Chiesa, Manohar, and Shinkar
[CMS18b] relying on Fourier analytic techniques.)

Remark 1. Chiesa et al. [CMS18a] use the term “no-signaling linear PCPs” in a different meaning
from us. Specifically, Chiesa et al. use it to refer to PCPs such that honest proofs are linear functions and
the soundness holds against no-signaling cheating provers that are equivalent with quasi-distributions
over linear functions, while we use it to refer to PCPs such that honest proofs are linear functions and
the soundness holds against any no-signaling cheating provers (which are not necessarily equivalent
with quasi-distributions over linear functions).

1.4 Outline

In Section 2, we introduce notations and definitions that we use in the subsequent sections. In Section 3,
we give an overview of our no-signaling linear PCP. In Section 4, we formally describe our no-signaling
linear PCP. In Section 5 to Section 9, we analyze the no-signaling soundness of our PCP. In Section 10,
we describe the application to delegation schemes.

4 It is likely that the query complexity of our PCP can be reduced to polylogarithmic, but we have not verified it formally.
5 Quasi-distributions are a generalized notion of probability distributions and allow negative probabilities.

5



2 Preliminaries

In this section, we introduce notations and definitions that we use in the subsequent sections.

2.1 Basic Notations

We denote the security parameter by λ. Let N be the set of all natural numbers. For any k ∈ N, let
[k] def
= {1, . . . , k}.
We denote a vector in a bold shape (e.g., v). For a vector v = (v1, . . . , vλ) and a set S ⊆ [λ], let

v|S
def
= {vi}i∈S . Similarly, for a function f : D → R and a set S ⊆ D, let f |S

def
= { f (i)}i∈S . For two

vectors u = (u1, . . . , uλ), v = (v1, . . . , vλ) of the same length (where each element is a field element),
let ⟨u, v⟩ def

=
∑

i∈[λ] uivi denote their inner product and u⊗v def
= (uiv j)i, j∈[λ] denote their tensor product.6

For a set S , we denote by s ← S a process of obtaining an element s ∈ S by a uniform sampling
from S . Similarly, for any probabilistic algorithm Algo, we denote by y← Algo a process of obtaining
an output y by an execution of Algo with uniform randomness. For an event E and a probabilistic
process P, we denote Pr [E | P] the probability of E occuring over the randomness of P.

2.2 Circuits

All circuits in this paper are arithmetic circuits over finite fields of prime orders, and they have addition
and multiplication gates with fan-in 2. We assume without loss of generality that they are “layered,”
i.e., the gates in a circuit can be partitioned into layers such that (1) the first layer consists of the input
gates and the last layer consists of the output gates, and (2) the gates in the i-th layer have children in
the (i − 1)-th layer.

Given a circuit C, we use F to denote the underlying finite field, N to denote the number of the
wires,7 n to denote the number of the input gates, and m to denote the number of the output gates.
We assume that the first n wires of C are those that takes the values of the input gates and the last
m ones are those that takes the value of the output gates. (Formally, F,N, n,m should be written as,
e.g., FC ,NC , nC ,mC since they depend on the circuit C. However, to simplify the notations, we avoid
expressing this dependence.) When we consider a circuit family {Cλ}λ∈N, it is implicitly assumed that
the size of each Cλ is bounded by poly(λ).

2.3 Probabilistically Checkable Proofs (PCPs)

Roughly speaking, probabilistically checkable proofs (PCPs) are proof systems with which one can
probabilistically verify the correctness of statements by reading only a few bits of the proof strings. A
formal definition is given below.

Remark 2 (On the definition that we use). For convenience, we give a definition that is tailored to our
purpose. Specifically, our definition differs from the standard one in the following way.

1. We require that the soundness error is negligible in the security parameter.
6 In this paper, the tensor product of two vectors are viewed as a vector (with an appropriate ordering of the elements)

rather than a matrix.
7 We assume that for any gate with fan-out more than one, all the output wires from that gate share the same index i ∈ [N].
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2. We only consider proofs for the correctness of deterministic arithmetic circuit computation, i.e.,
membership proofs for the following language.

{(C, x, y) | C is an arithmetic circuit s.t. C(x) = y} .

3. We implicitly require that PCP systems satisfy two auxiliary properties (which almost all existing
constructions satisfy), namely relatively efficient oracle construction and non-adaptive verifier
[BG09].

4. We assume that the verifier’s queries depend only on the circuit C and do not depend on the input x
and the output y. (This assumption will be useful later when we define adaptive soundness against
no-signaling cheating provers.) ^

Definition 1 (PCPs for correctness of arithmetic circuit computation). A probabilistically check-
able proof (PCP) system for the correctness of arithmetic circuit computation consists of a pair of ppt
Turing machines V = (V0,V1) (called verifier) and a ppt Turing machine P (called prover) that satisfy
the following.

– Syntax. For every arithmetic circuit C, there exist
• finite sets DC and ΣC (called proof domain and proof alphabet) and
• a polynomial κV (called query complexity of V)

such that for every input x of C, the output y B C(x), and every security parameter λ ∈ N,
• P(C, x) outputs a function π : DC → ΣC (called proof),
• V0(1λ,C) outputs a string stV ∈ {0, 1}∗ (called state) and a set Q ⊂ DC of size κV (λ) (called

queries), and
• V1(stV , x, y, π|Q) outputs a bit b ∈ {0, 1}.

– Completeness. For every arithmetic circuit C, every input x of C, the output y B C(x), and every
security parameter λ ∈ N,

Pr
[
V1(stV , x, y, π|Q) = 1

∣∣∣∣∣∣ π← P(C, x)
(Q, stV )← V0(1λ,C)

]
= 1 .

– Soundness. For any circuit family {Cλ}λ∈N and any probabilistic Turing machine P∗ (called cheat-
ing prover), there exists a negligible function negl such that for every security parameter λ ∈ N,

Pr
[
V1(stV , x, y, π∗|Q) = 1 ∧Cλ(x) , y

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ)

]
≤ negl(λ) .

^

A PCP system is said to be linear if it satisfies an additional property that the proof is a linear
function.

Definition 2 (Linear PCPs). Let (P,V) be any PCP system and {DC}C be its proof domains. Then,
(P,V) is said to be linear if for every arithmetic circuit C and input x of C,

Pr

 ∧
u,v∈DC

π(u) + π(v) = π(u + v)

∣∣∣∣∣∣∣∣ π← P(C, x)

 = 1 .
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2.4 No-signaling PCPs

No-signaling PCPs [KRR13, KRR14] are PCP systems that guarantee soundness against a stronger
class of cheating provers called no-signaling cheating provers. The main difference between no-
signaling cheating provers and normal cheating provers in that, while a normal cheating prover is
required to output a PCP proof π∗ before seeing queries Q, a no-signaling cheating prover is allowed
to output π∗ after seeing Q. There is however a restriction on the distribution of π∗; roughly speak-
ing, it is required that for any (not too large) sets Q,Q′ such that Q′ ⊂ Q, the distribution of π∗|Q′
when the queries are Q should be indistinguishable from the distribution of it when the queries are
Q′. The formal definition is given below. (The following definition is the “computational” variant of
the definition, which is given by Brakerski et al. [BHK17].)

Definition 3 (No-signaling cheating prover). Let (P,V) be any PCP system, {DC}C and {ΣC}C be the
proof domains and proof alphabets of (P,V), {Cλ}λ∈N be any circuit family, and P∗ be any probabilistic
Turing machine with the following syntax.

– Given the security parameter λ ∈ N, the circuit Cλ, and a set of queries Q ⊂ DCλ as input, P∗

outputs an input x of Cλ, an output y of Cλ, and a partial function π∗ : Q → ΣCλ . (Note that π∗
can be viewed as a PCP proof whose domain is restricted to Q.)

Then, for any polynomial κmax, P∗ is said to be a κmax-wise (computational) no-signaling cheating
prover if for any ppt Turing machine D, there exists a negligible function negl such that for every
λ ∈ N, every Q,Q′ ⊂ DCλ such that Q′ ⊂ Q and |Q| ≤ κmax(λ), and every z ∈ {0, 1}poly(λ),∣∣∣∣∣∣∣Pr

[
D(Cλ, x, y, π∗|Q′ , z) = 1

∣∣∣ (x, y, π∗)← P∗(1λ,Cλ,Q)
]

− Pr
[
D(Cλ, x, y, π∗, z) = 1

∣∣∣ (x, y, π∗)← P∗(1λ,Cλ,Q′)
] ∣∣∣∣∣∣∣ ≤ negl(λ) .

^

Now, we define no-signaling PCPs as the PCP systems that satisfy soundness according to the
following definition.

Definition 4 (Soundness against no-signaling cheating provers). Let (P,V) be any PCP system
and κmax be any polynomial. Then, (P,V) is said to be sound against κmax-wise (computational) no-
signaling cheating provers if for any circuit family {Cλ}λ∈N and κmax-wise no-signaling cheating prover
P∗, there exists a negligible function negl such that for every λ ∈ N,

Pr
[
V1(stV , x, y, π∗) = 1 ∧Cλ(x) , y

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≤ negl(λ) .

^

3 Technical Overview

In this section, we give an overview of our no-signaling linear PCP system. Recall that our focus is on
PCP systems for the correctness of arithmetic computation, which are PCP systems that take as input
a tuple (C, x, y) and prove that C(x) = y holds. We focus on arithmetic circuits over prime-order fields.
Given a circuit C, we use F to denote the underlying finite field, N to denote the number of the wires,8

8 We assume that for any gate with fan-out more than one, all the output wires from that gate share the same index i ∈ [N].
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n to denote the number of the input gates, and m to denote the number of the output gates. We assume
that the first n wires are the wires that takes the values of the input gates and the last m ones are those
that takes the value of the output gates. In this overview we focus on circuits with output length 1 (i.e.,
m = 1).

3.1 Preliminary: Linear PCP of Arora et al. [ALM+98]

The construction and analysis of our PCP system is based on the linear PCP system of Arora et al.
[ALM+98] (ALMSS linear PCP in short), so let us start by recalling it. We describe only the construc-
tion of ALMSS linear PCP below; good explanations of the analysis of ALMSS linear PCP can be
found in, e.g., the textbook by Arora and Barak [AB09, Chapter 11.5].

Main tool: Walsh–Hadamard code. The main tool of ALMSS linear PCP system is Walsh–
Hadamard code. Recall that Walsh–Hadamard code maps a string v ∈ Fℓ to the linear function
WHv : x 7→ ⟨v, x⟩. A useful property of Walsh–Hadamard code is that errors on codewords can
be easily “self-corrected.” In particular, if a function f is (1 − δ)-close to a linear function f̂ (i.e., if
there exists a linear function f̂ such that Pr[ f (r) = f̂ (r) | r ← Fℓ] ≥ 1 − δ), we can evaluate f̂ on any
point x ∈ Fℓ with error probability 2δ though the following simple probabilistic procedure.

Algorithm Self-Correct f (x):
Choose random r ∈ Fℓ and output f (x + r) − f (r).

Construction of ALMSS linear PCP. On input (C, x), the prover P computes the PCP proof as
follows. First, P computes y B C(x) and then obtains the following system of quadratic equations over
F, which is designed so that it is satisfiable if and only if C(x) = y. Intuitively, the system has variables
that represent the wire values of C, and the equations in the system guarantee that (1) the correct input
values x = (x1, . . . , xn) are assigned on the input gates, (2) each gate is correctly computed, and (3)
the claimed output value y is assigned on the output gate. Formally, the system of equations is defined
as follows.

– The variables are z = (z1, . . . , zN).
– For each i ∈ {1, . . . , n}, the system has the equation zi = xi.
– For each i, j, k ∈ [N], the system has zi + z j − zk = 0 if C has an addition gate with input wire i, j

and output wire k, and has zi · z j − zk = 0 if C has a multiplication gate with input wire i, j and
output wire k.

– The system has the equation zN = y.

Let us denote this system of quadratic equations by Ψ = {Ψi(z) = ci}i∈[M], where M is the number
of the equations. Then, P obtains the satisfying assignment w = (w1, . . . ,wN) of Ψ through the wire
values of C on x, and outputs the two linear functions π f (v) B ⟨v,w⟩ and πg(v′) B ⟨v′,w ⊗ w⟩ as the
PCP proof.9 (In short, the PCP proof is Walsh–Hadamard encodings of w and w ⊗ w.)

Next, on input (C, x, y), the verifier V verifies the PCP proof as follows. First, V obtains the system
of equations Ψ = {Ψi(z) = ci}i∈[M]. Then, V applies the following three tests on the PCP proof λ times
in parallel.

9 Formally, P outputs a single linear function (with which the verifier can evaluate both π f and πg) as the PCP proof, but
in this overview we simply think that the prover outputs two linear function as the PCP proof.
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1. (Linearity Test.) Choose random points r1, r2 ∈ FN and r′1, r
′
2 ∈ FN2 and check π f (r1) + π f (r2) ?

=

π f (r1 + r2) and πg(r′1) + πg(r′2) ?
= πg(r′1 + r′2).

2. (Tensor-Product Test.) Choose two random points r1, r2 ∈ FN , run ar1 ← Self-Correctπ f (r1),
ar2 ← Self-Correctπ f (r2), ar1⊗r2 ← Self-Correctπg(r1 ⊗ r2), and check ar1ar2

?
= ar1⊗r2 .

3. (SAT Test.) Choose a random point σ = (σ1, . . . , σM) ∈ FM, compute a quadratic function
Ψσ(z) B

∑M
i=1 σiΨi(z), run aψσ ← Self-Correctπ f (ψσ), aψ′σ ← Self-Correctπg(ψ′σ) for the co-

efficient vectors ψσ,ψ′σ such that ⟨ψσ, z⟩+ ⟨ψ′σ, z⊗ z⟩ = Ψσ(z), and check aψσ + aψ′σ
?
= cσ, where

cσ B
∑M

i=1 σici.

Comment: Roughly speaking, Linearity Test guarantees that π f , πg are close to some linear
functions f̂ , ĝ, Tensor-Product Test guarantees that f̂ , ĝ are Welsh–Hadamard encodings of
w̃, w̃ ⊗ w̃ for some w̃ ∈ FN , and SAT Test guarantees that w̃ is the satisfying assignment of
Ψ , which implies that Ψ is satisfiable and thus the statement is true. (In Tensor-Product Test
and SAT Test, Self-Correct is used so that, if π f , πg are indeed close to some linear functions
f̂ , ĝ, the verifier can evaluate f̂ , ĝ through π f , πg with high probability.) We refer the readers
to [AB09, Chapter 11.5] for details of the analysis of ALMSS linear PCP.

V accepts the proof if it passes these three tests in all the λ parallel trials. It can be verified by inspection
that, as required in Definition 1, the verifier can be decomposed into V0 and V1, where V0 samples
queries to the tests and V1 verifies the answers from the PCP proof. (Note that V0 can sample all
queries before knowing x and y since the coefficient vectors ψσ,ψ′σ in SAT Test can be computed
from C.)

3.2 Construction of Our No-signaling Linear PCP

The construction of our PCP system, (P,V), is essentially identical with that of ALMSS linear PCP.
There is a slight difference in the verifier algorithm (in our PCP system, Self-Correct samples many
candidates of the self-corrected values and takes the majority), but we ignore this difference in this
overview. It can be verified by inspection that the running time of P is poly(|C|), the running time of
V0 is poly(λ + |C|), and the running time of V1 is poly(λ + |x| + |y|).

3.3 Analysis of Our PCP

Our goal is to show that our PCP system (P,V) is sound against κmax-wise no-signaling cheating provers
for sufficiently large polynomial κmax. That is, our goal is to show that for every circuit family {Cλ}λ∈N
and every κmax-wise no-signaling cheating prover P∗, we have

Pr
[
V1(stV , x, y, π∗) = 1
∧ Cλ(x) , y

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≤ negl(λ) (1)

for every λ ∈ N.
Toward this goal, for any sufficiently large κmax and any κmax-wise no-signaling cheating prover

P∗, we assume that we have

Pr
[
V1(stV , x, y, π∗) = 1

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≥ 1

poly(λ)
(2)
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for infinitely many λ ∈ N (let Λ be the set of those λ’s) and show that we have

Pr
[
Cλ(x) , y

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≤ negl(λ) (3)

for every sufficiently large λ ∈ Λ. Clearly, showing Equation (3) while assuming Equation (2) is suf-
ficient for showing Equation (1) (this is because it implies that for every polynomial poly, either we
have V1(stV , x, y, π∗) = 1 with probability at most 1/poly(λ) or we have Cλ(x) , y with probability at
most 1/poly(λ) for each sufficiently large λ ∈ N).

To explain the overall structure of our analysis, we first show Equation (3) while assuming the
following (very strong) simplifying assumptions instead of Equation (2).

Simplifying Assumption 1. P∗ convinces the verifier V with overwhelming probability. That is, we
have

Pr
[
V1(stV , x, y, π∗) = 1

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≥ 1 − negl(λ) (4)

for infinitely many λ ∈ N. (In what follows, we override the definition of Λ and let it be the set of these
λ’s.) ^

Simplifying Assumption 2. P∗ creates a proof that passes each of Linearity Test, Tensor-Product Test,
and SAT Test on any points with overwhelming probability. That is, for every sufficiently large λ ∈ Λ,
we have the following. (We assume without loss of generality that P∗ always outputs a PCP proof
π∗ = (π∗f , π

∗
g) that consists of two functions π∗f and π∗g.)

– (Linearity of π∗f .) For every u, v ∈ FN ,

Pr
π∗f (u) + π∗f (v)
= π∗f (u + v)

∣∣∣∣∣∣ (x, y, π∗)← P∗(1λ,Cλ, {u, v, u + v})
 ≥ 1 − negl(λ) , (5)

– (Linearity of π∗g.) For every u, v ∈ FN2 ,

Pr
[
π∗g(u) + π∗g(v)
= π∗g(u + v)

∣∣∣∣∣∣ (x, y, π∗)← P∗(1λ,Cλ, {u, v, u + v})
]
≥ 1 − negl(λ) , (6)

– (Tensor-Product Consistency of π∗f , π∗g.) For every u, v ∈ FN ,

Pr
[
π∗f (u)π∗f (v)
= π∗g(u ⊗ v)

∣∣∣∣∣∣ (x, y, π∗)← P∗(1λ,Cλ, {u, v,u ⊗ v})
]
≥ 1 − negl(λ) , (7)

– (SAT Consistency of π∗f , π∗g.) For every σ ∈ FM,

Pr
[
π∗f (ψσ) + π∗g(ψ′σ)
= cσ

∣∣∣∣∣∣ (x, y, π∗)← P∗(1λ,Cλ, {ψσ,ψ′σ})
]
≥ 1 − negl(λ) . (8)

^
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At the end of this subsection, we explain how we remove these simplifying assumptions in the actual
analysis.

Under the above two simplifying assumptions, we obtain Equation (3) as follows. Notice that if
the statement is true and the PCP proof is correctly generated, then the first part of PCP proof, π f (v) =
⟨v,w⟩, is the linear function whose coefficient vector is the satisfying assignment w of the system of
equations Ψ = {Ψi(z) = ci}i∈[M], so we can recover the satisfying assignment on any variable zi by
appropriately evaluating π f . (Concretely, given π f , we can obtain the satisfying assignment on zi by
evaluating π f on ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ FN , where only the i-th element of ei is 1). Now, we first
observe that we can obtain Equation (3) by showing that the “cheating assignment” that we recover
from the cheating prover P∗ is “correct” in the following two ways.

1. The assignment on zN (which represents the value of the output gate) is equal to the claimed output
value. That is, for every sufficiently large λ ∈ Λ,

Pr
[
π∗f (eN) = y

∣∣∣∣ (x, y, π∗)← P∗(1λ,Cλ, {eN})
]
≥ 1 − negl(λ) . (9)

2. The assignment on zN is equal to the actual output value. That is, for every sufficiently large λ ∈ Λ,

Pr
[
π∗f (eN) = Cλ(x)

∣∣∣∣ (x, y, π∗)← P∗(1λ,Cλ, {eN})
]
≥ 1 − negl(λ) . (10)

Indeed, given Equations (9) and (10), we can easily obtain Equation (3) as follows: first, we obtain

Pr
[
Cλ(x) = y

∣∣∣ (x, y, π∗)← P∗(1λ,Cλ, {eN})
]
≥ 1 − negl(λ)

by applying the union bound on Equations (9) and (10); then, we obtain Equation (3) by using the no-
signaling property of P∗ to argue that the probability of Cλ(x) = y holding decreases only negligibly
when the queries to P∗ are changed from {eN} to {eN} ∪ Q and from {eN} ∪ Q to Q.10 (Notice that the
distinguisher in the no-signaling game can check Cλ(x) ?

= y efficiently.) Therefore, to conclude the
analysis (under the simplifying assumptions), it remains to prove Equations (9) and (10).

Step 1. Showing consistency with the claimed computation. First, we explain how we obtain Equa-
tion (9) under the simplifying assumptions on P∗.

To obtain Equation (9), we prove a stronger claim on the cheating assignment. Recall that from
the construction of Ψ = {Ψi(z) = ci}i∈[M], each equation of Ψ is defined with at most three variables,
and in particular each equation Ψi(z) = ci can be written as

∑
j∈{α,β,γ} d jz j +

∑
j,k∈{α,β,γ} d j,kz jzk = ci for

some α, β, γ ∈ [N] (α < β < γ), d j ∈ {−1, 0, 1} ( j ∈ {α, β, γ}), and d j,k ∈ {−1, 0, 1} ( j, k ∈ {α, β, γ}).
Then, we consider the following claim.

1′. (Consistency with Claimed Computation) For any equation Ψi(z) = ci of Ψ , which can be
written as ∑

j∈{α,β,γ}
d jz j +

∑
j,k∈{α,β,γ}

d j,kz jzk = ci ,

10 We assume κmax(λ) ≥ κV (λ) + 1, where κV is the query complexity of V ,
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the cheating assignment on zα, zβ, zγ is a satisfying assignment of this equation. That is, for every
sufficiently large λ ∈ Λ and every i ∈ [M], we have

Pr
[
Consisti(Cλ, x, y, π∗)

∣∣∣ (x, y, π∗)← P∗(1λ,Cλ, {eα, eβ, eγ})
]

≥ 1 − negl(λ) , (11)

where Consisti(Cλ, x, y, π∗) is the event that we have∑
j∈{α,β,γ}

d jπ
∗
f (e j) +

∑
j,k∈{α,β,γ}

d j,kπ
∗
f (e j)π∗f (ek) = ci .

Clearly, this claim implies Equation (9) since Ψ has the equation zN = y.
Hence, we focus on showing the stronger claim that Equation (11) holds. Fix any sufficiently large

λ ∈ Λ and any i ∈ [M]. First, since the cheating PCP proof passes SAT Test on any points (Equation
(8) of Simplifying Assumption 2), we have

Pr
[
π∗f (ψei) + π

∗
g(ψ′ei

) = cei

∣∣∣∣ (x, y, π∗)← P∗(1λ,Cλ, {ψei ,ψ
′
ei
})

]
≥ 1 − negl(λ) , (12)

where ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ FM . Second, since we have ψei =
∑

j∈{α,β,γ} d je j, ψ′ei
=∑

j,k∈{α,β,γ} d j,ke j ⊗ ek, and cei = ci from the definitions, Equation (12) implies Equation (11) if we
have the following three items with overwhelming probability.11

– π∗f (
∑

j∈{α,β,γ} d je j) =
∑

j∈{α,β,γ} d jπ
∗
f (e j).

– π∗g(
∑

j,k∈{α,β,γ} d j,ke j ⊗ ek) =
∑

j,k∈{α,β,γ} d j,kπ
∗
g(e j ⊗ ek).

– π∗g(e j ⊗ ek) = π∗f (e j)π∗f (ek) for every j, k ∈ {α, β, γ}.

Now, we obtain Equation (11) since these three items indeed hold with overwhelming probability due
to Simplifying Assumption 2. (We use generalized versions of Equations (5) and (6) for the first two,
and use Equation (7) for the third one.)

Step 2. Showing consistency with the actual computation. Next, we explain how we obtain Equation
(10) under the simplifying assumptions on P∗.

Without loss of generality, we assume that arithmetic circuits are “layered,” i.e., the gates in a
circuit can be partitioned into layers such that (1) the first layer consists of the input gates and the last
layer consists of the output gate, and (2) the gates in the i-th layer have children in the (i − 1)-th layer.

The overall strategy is to prove Equation (10) by induction on the layers. For any circuit Cλ, let us
use the following notations.

– ℓmax is the number of the layers, and Ni is the number of the wires in layer i (i.e., the number of
the wires from the gates in layer i). We assume that the numbering of the wires are consistent with
the numbering of the layers, i.e., the first N1 wires are those that are in the first layer, the next N2
wires are those that are in the second layer, etc.

11 Formally, to use the union bound, we need to argue that every probability that we consider in this proof does not change
non-negligibly when we obtain π∗ by querying {eα, eβ, eγ}∪{e j⊗ek} j,k∈{α,β,γ}∪{ψei ,ψ

′
ei
} to P∗. Fortunately, every probability

indeed does not change non-negligibly because of the no-signaling property of P∗.
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– D1, . . . ,Dℓmax are subset of FN such that for every ℓ ∈ [ℓmax],

Dℓ B {v = (v1, . . . , vN) | vi = 0 for ∀i < {N≤ℓ−1 + 1, . . . ,N≤ℓ−1 + Nℓ}} ,

where N≤ℓ−1 B
∑

i∈[ℓ−1] Ni. Notice that when the first part of the correct PCP proof, π f (v) = ⟨v,w⟩,
is evaluated on vℓ ∈ Dℓ, it returns a linear combination of the correct wire values of layer ℓ.

Now, to prove Equation (10), we show that the following three claims holds for every sufficiently large
λ ∈ Λ.

1. The cheating PCP proof is equal to the correct PCP proof on random λ points in D1. That is,

Pr
U1,π∗

 ∧
u∈U1

π∗f (u) = π f (u)

 ≥ 1 − negl(λ) , (13)

where the probability is taken over u1,i ← D1 (i ∈ [λ]), U1 B {u1,i}i∈[λ], and (x, y, π∗) ←
P∗(1λ,Cλ,U1), and π f is the correct PCP proof that is generated by π B P(Cλ, x).

2. For every ℓ ∈ [ℓmax], if the cheating PCP proof is equal to the correct PCP proof on random λ
points in Dℓ, they are also equal on any point in Dℓ. That is, for any v ∈ Dℓ,

Pr
Uℓ,π∗

π∗f (v) = π f (v)

∣∣∣∣∣∣∣∣
∧

u∈Uℓ
π∗f (u) = π f (u)

 ≥ 1 − negl(λ) , (14)

where the probability is taken over uℓ,i ← Dℓ (i ∈ [λ]), Uℓ B {uℓ,i}i∈[λ], and (x, y, π∗) ←
P∗(1λ,Cλ, {v} ∪ Uℓ).

3. For every ℓ ∈ [ℓmax − 1], if the cheating PCP proof is equal to the correct PCP proof on random λ
points in Dℓ, they are also equal on random λ points in Dℓ+1. That is,

Pr
Uℓ,Uℓ+1,π∗

 ∧
u∈Uℓ+1

π∗f (u) = π f (u)

∣∣∣∣∣∣∣∣
∧

u∈Uℓ
π∗f (u) = π f (u)

 ≥ 1 − negl(λ) , (15)

where the probability is taken over uℓ,i ← Dℓ (i ∈ [λ]), uℓ+1,i ← Dℓ+1 (i ∈ [λ]), Uℓ B {uℓ,i}i∈[λ],
Uℓ+1 B {uℓ+1,i}i∈[λ], and (x, y, π∗)← P∗(1λ,Cλ,Uℓ ∪ Uℓ+1).

Observe that we can indeed obtain Equation (10) from the above three claims since Equation (14)
implies that we can obtain Equation (10) by just showing

Pr
Uℓmax ,π

∗

 ∧
u∈Uℓmax

π∗f (u) = π f (u)

 ≥ 1 − negl(λ)

(this is because we have π f (eN) = wN = Cλ(x) from the construction of our PCP), and we can obtain
this inequation by repeatedly using Equation (15) on top of Equation (13).12 Thus, what remain to
prove are Equations (13), (14), (15).
12 Formally, we need to argue that the probabilities in these inequations do not change non-negligibly when we change the

queries to P∗, which we can show by relying on the no-signaling property of P∗. A key point is that the number of the
queries to P∗ can be bounded by a fixed polynomial in λ.
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1. To obtain Equation (13), we first use the linearity of the cheating PCP proof (Equations (5) of
Simplifying Assumption 2) to argue that, since any v ∈ D1 can be written as a linear combination
of e1, . . . , en ∈ FN (recall that we have N1 = n), we can obtain Equation (13) by just showing that
for every i ∈ [n] we have π∗f (ei) = π f (ei) with overwhelming probability. Then, we observe that,
since we have π f (ei) = wi = xi for every i ∈ [n] from the construction of our PCP, it suffices to
show that for every i ∈ [n] we have π∗f (ei) = xi with overwhelming probability, which we already
showed as the consistency with the claimed computation (Equation (11) in Step 1).

2. To obtain Equation (14), we consider a mental experiment where Uℓ = {uℓ,i}i∈[λ] is sampled as
follows: for each i ∈ [λ], choose random ri ∈ Dℓ and bi ∈ {0, 1} and then define uℓ,i by uℓ,i B ri

if bi = 0 and by uℓ,i B v + ri if bi = 1. Since each uℓ,i is still uniformly distributed, it suffices to
show Equation (14) w.r.t. this mental experiment; in addition, due to the no-signaling property of
P∗, we can further change the experiment so that π∗ is obtained by (x, y, π∗) ← P∗(1λ,Cλ, {v} ∪
{ri, v + rℓ,i}i∈[λ]). Now, we obtain Equation (14) by observing the following.
(a) Equation (14) is implied by

Pr
Uℓ,π∗

π∗f (v) , π f (v) ∧
∧

u∈Uℓ
π∗f (u) = π f (u)


 ≤ negl(λ) . (16)

(We assume that ∧u∈Uℓπ
∗
f (u) = π f (u) holds with high probability, which is indeed the case in

our situation.)
(b) We can obtain Equation (16) by combining the following two observations. First, we have
π∗f (v) , π f (v) only when we have π∗f (v + ri) , π f (v + ri) or π∗f (ri) , π f (ri) for every i ∈ [λ]
(this is because we have π∗f (v) = π∗f (v + ri) − π∗f (ri) for every i ∈ [λ] from the linearity of the
cheating PCP proof 13 (Equation (5) of Simplifying Assumption 2)). Second, when we have
π∗f (v + ri) , π f (v + ri) or π∗f (ri) , π f (ri) for every i ∈ [λ], we have ∧u∈Uℓπ

∗
f (u) = π f (u) with

probability at most 2−λ since each uℓ,i is defined by taking either ri or v + ri randomly.
3. To obtain Equation (15), we first use the linearity of the cheating PCP proof (Equations (5) of

Simplifying Assumption 2) and the union bound to argue, just like when we show Equation (13),
that we can obtain Equation (15) by just showing that for every k ∈ {N≤ℓ + 1, . . . ,N≤ℓ + Nℓ+1}
we have π∗f (ek) = π f (ek) with overwhelming probability (where the probability is conditioned
on

∧
u∈Uℓ π

∗
f (u) = π f (u)). Let us focus, for simplicity, on the case that k is the output wire of a

multiplication gate in the (ℓ + 1)-th layer, where the input wires are i and j in the ℓ-th layer. Then,
we observe that we have π∗f (ek) = π f (ek) if we have

π∗f (ek) = π∗f (ei)π∗f (e j) and π∗f (ei) = π f (ei) ∧ π∗f (e j) = π f (e j)

(this is because these two items imply that π∗f (ek) = π∗f (ei)π∗f (e j) = π f (ei)π f (e j) = π f (ek), where
the last equality holds since π f (ei), π f (e j), π f (ek) are the satisfying assignment on zi, z j, zk of Ψ ,
which has the equation ziz j− zk = 0). Finally, we observe that the first item holds with overwhelm-
ing probability since the cheating proof is consistent with the claimed computation (Equation (11)
in Step 1) and that the second item holds with overwhelming probability due to Equation (14) and
the union bound (both probabilities are conditioned on

∧
u∈Uℓ π

∗
f (u) = π f (u)).

13 Indeed, if we have π∗f (v + ri) = π f (v + ri) and π∗f (ri) = π f (ri) for any i ∈ [λ], we have π∗f (v) = π∗f (v + ri) − π∗f (ri) =
π f (v + ri) − π f (ri) = π f (v).
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How to remove the simplifying assumptions. In the actual analysis, we remove Simplifying As-
sumption 1 in the same way as previous works (such as [KRR14, BHK17]), namely by considering
a “relaxed verifier” that accepts a PCP proof even when the proof fails to pass a small number of the
tests. (Concretely, we consider a verifier that accepts a proof as long as the proof passes the three tests
in at least λ−µ trials, where µ = Θ(log2 λ).) We use the same argument as the previous works to show
that if a cheating prover fools the original verifier with non-negligible probability, there exists another
cheating prover that fools the relaxed verifier with overwhelming probability.

As for Simplifying Assumption 2, we remove it by considering the self-corrected version of the
cheating proof, i.e., the proof that is obtained by applying Self-Correct on the cheating proof π∗. Our
key observation is that an existing analysis of Linearity Test can be naturally extended so that it works
even in the no-signaling PCP setting as long as we change the goal to showing that the self-corrected
cheating proof passes Linearity Test on any points. (In the standard PCP setting, the goal of Linearity
Test is to guarantee that the cheating proof is close to a linear function.) Once we show that the self-
corrected cheating proof passes Linearity Test on any points, it is relatively easy to show that it also
passes Tensor-Product Test and SAT Test on any points.

3.4 Comparison with Previous Analysis.

The high level structure of our analysis (under the abovementioned simplifying assumptions) is the
same as the analysis of previous non-linear no-signaling PCPs, namely those of Kalai et al. [KRR14]
and the subsequent works. Specifically, like these works, we show Cλ(x) = y by showing that we have
π∗(eN) = y and π∗(eN) = Cλ(x) simultaneously, and show π∗(eN) = Cλ(x) by induction on layers of
Cλ. (In the latter part, we in particular follow the presentation by Paneth and Rothblum [PR17].)

A notable difference between our analysis and the previous one (other than the differences due to
the use of linear PCPs rather than polynomially long PCP) is that our analysis does not require that
the statement is represented as an “augmented layered circuit,” and only requires that it is represented
as a layered circuit. More concretely, while the previous analysis requires that each layer of the circuit
is augmented with an additional circuit that computes a low-degree extension of the wire values of
the layer and then applies low-degree tests on the low-degree extension, our analysis does not require
such augmentation and only requires that the circuit is layered. At a high level, we do not require this
augmentation since in the induction for showing π∗(eN) = Cλ(x) (Step 2 in the previous subsection),
we show that the cheating PCP proof is equal to the correct proof rather than just showing that the wire
values that are recovered from the cheating PCP proof are equal to the correct ones. (That is, we do
not require the augmentation of the circuit since we consider a stronger claim in the induction, which
allows us to use a stronger assumption in the inductive step).

4 Construction of Our No-signaling Linear PCP for P

In this section, we describe our no-signaling linear PCP system (P,V) for the correctness of arithmetic-
circuit computation. Let C : Fn → Fm be an arithmetic circuit over a finite field F of prime order, and
x = (x1, . . . , xn) ∈ Fn be an input to C. Recall that we use N to denote the number of wires in C and
assume that the first n wires are the those that takes the values of the input gates and the last m ones
are those that takes the value of the output gates.
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4.1 PCP Prover P

Given (C, x) as input, the PCP prover P first computes y B C(x) and then obtains the following
system of quadratic equations over F, which is designed so that it is satisfiable if and only if C(x) = y.
Intuitively, the system has variables that represent the wire values of C, and the equations in the system
guarantee that (1) the correct input values x = (x1, . . . , xn) are assigned on the input gates, (2) each
gate is correctly computed, and (3) the claimed output values y = (y1, . . . , ym) are assigned on the
output gates. Formally, the system of equations is defined as follows.

– The variables are z = (z1, . . . , zN).
– For each i ∈ {1, . . . , n}, the system has the equation zi = xi.
– For each i, j, k ∈ [N], the system has zi + z j − zk = 0 if the circuit C has an addition gate with input

wire i, j and output wire k, and has ziz j − zk = 0 if C has a multiplication gate with input wire i, j
and output wire k.

– For each i ∈ {1, . . . ,m}, the system has the equation zN−m+i = yi.

Let M denote the number of the equations in the system Ψ . Let the system be denoted by

Ψ =


Ψ1(z) = c1

...

ΨM(z) = cM

,

where each ci is an element in F. For each i ∈ [M], let ψi ∈ FN and ψ′i ∈ FN2 be the coefficient vectors
such that

Ψi(z) = ⟨ψi, z⟩ + ⟨ψ′i, z ⊗ z⟩ . (17)

Let w = (w1, . . . ,wN) be the satisfying assignment of Ψ . Let f : FN → F and g : FN2 → F be the
linear functions that are defined by f (v) B ⟨v,w⟩ and g(v′) B ⟨v′,w ⊗ w⟩. Then, the PCP prover P
outputs the following linear function π : FN+N2 → F as the PCP proof.

π(v) B f (v1) + g(v2) for ∀v = (v1, v2) ∈ FN+N2
, where v1 ∈ FN , v2 ∈ FN2

.

Remark 3. For simplicity, in what follows we usually think that P outputs two linear functions π f B f
and πg B g as the PCP proof. This is without loss of generality since the verifier can evaluate f and g
given access to π. ^

4.2 PCP Verifier V

Given (C, x, y) as input, the PCP verifier V first computes the system Ψ in the same way as the PCP
prover P. Next, given oracle access to the PCP proof π f and πg, the PCP verifier does the following
tests λ times in parallel, and accepts the proof if all the tests in all the λ trials are accepted.

– Linearity Test. Choose random points r1, r2 ∈ FN and r′1, r
′
2 ∈ FN2 , and check the following.

π f (r1) + π f (r2) ?
= π f (r1 + r2) and πg(r′1) + πg(r′2) ?

= πg(r′1 + r′2) .

– Tensor-Product Test. Let Self-Correctπ be the following algorithm.
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Algorithm Self-Correctπ(v ∈ FN ∪ FN2
).

1. Choose λ random points rv,1, . . . , rv,λ from FN if v ∈ FN and choose them from FN2 if
v ∈ FN2 .

2. For each i ∈ [λ], let

a(i)
v B

π f (v + rv,i) − π f (rv,i) if v ∈ FN

πg(v + rv,i) − πg(rv,i) if v ∈ FN2 .

3. Let

av B majority
(
a(1)

v , . . . , a
(λ)
v

)
.

4. Output av.
Then, in Tensor-Product Test, choose two random points r1, r2 ∈ FN , run

ar1 ← Self-Correctπ(r1) ,

ar2 ← Self-Correctπ(r2) ,

ar1⊗r2 ← Self-Correctπ(r1 ⊗ r2) ,

and check the following.

ar1ar2

?
= ar1⊗r2 .

– SAT Test. Choose a random point σ = (σ1, . . . , σM) ∈ FM and define a quadratic function Ψσ :
FN → F as

Ψσ(z) B
M∑

i=1

σiΨi(z) .

Let ψσ ∈ FN and ψ′σ ∈ FN2 be the coefficient vectors such that

Ψσ(z) = ⟨ψσ, z⟩ + ⟨ψ′σ, z ⊗ z⟩ . (18)

Let cσ B
∑M

i=1 σici.
Then, in SAT Test, run

aψσ ← Self-Correctπ(ψσ) ,

aψ′σ ← Self-Correctπ(ψ′σ)

and check the following.

aψσ + aψ′σ
?
= cσ .

We remark that, formally, V = (V0,V1) is a pair of two algorithms as required by Definition 1,
where V0(1λ,C) outputs a set of queries Q for the above tests along with its internal state stV , and
V1(stV , x, y, π|Q) performs the above tests given the answers π|Q from the PCP proof. The internal
state stV that V0 outputs is (σin,σout), where

σin B (σ1, . . . , σn) ∈ Fn and σout B (σM−m+1, . . . , σM) ∈ Fm ,
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where it is assumed that the first n equations in Ψ (i.e., the equations {Ψi(z) = ci}i∈[n]) are those that
are associated with the input gates (i.e., {zi = xi}i∈[n]) and the last m equations in Ψ (i.e.the equations
{ΨM−m+i(z) = cM−m+i}i∈[m]) are those that are associated with the output gates (i.e., {zM−m+i = yi}i∈[n]).
Note that V0(1λ,C) can indeed choose all the queries in parallel (without knowing the input x and
the output y) since each of the queries is chosen independently of the results of other queries and in
addition the coefficient vectors of the equations of Ψ (i.e., {ψi,ψ

′
i}i∈M) can be computed from the

circuit C in SAT Test. Also, note that V1(stV , x, y, π|Q) can indeed perform the test (without knowing
the circuit C) since cσ = ⟨σin, x⟩ + ⟨σout, y⟩ can be computed from stV in SAT Test.

Remark 4 (Query Complexity.). By inspection, one can see that that the query complexity of V is
κV (λ) def

= λ(10λ + 6). ^

Remark 5 (Efficiency.). By inspection, one can see that the running time of P is poly(|C|), the running
time of V0 is poly(λ + |C|), and the running time of V1 is poly(λ + |x| + |y|). ^

4.3 Security
In Section 5 to Section 9, we prove the following theorem, which states the no-signaling soundness of
our PCP system.
Theorem 1 (No-signaling Soundness of (P,V)). Let (P,V) be the PCP system in Sections 4.1 and
4.2, {Cλ}λ∈N be any circuit family, and κmax be any polynomial such that κmax(λ) ≥ 2λ · max(8λ +
3,mλ) + κV (λ), where mλ is the output length of Cλ and κV is the query complexity of (P,V). Then,
for any κmax-wise (computational) no-signaling cheating prover P∗, there exists a negligible function
negl such that for every λ ∈ N,

Pr
[
V1(stV , x, y, π∗) = 1 ∧Cλ(x) , y

∣∣∣∣∣∣ (Q, stV )← V(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≤ negl(λ) .

Outline of the proof of Theorem 1. In Section 5, we introduce a “relaxed verifier” such that if a
cheating prover fools the original verifier with non-negligible probability, there exists another cheating
prover that fools the relaxed verifier with overwhelming probability. In Section 6, we show that if a
cheating verifier convinces the relaxed verifier with overwhelming probability, we can obtain a “self-
corrected PCP proof” from the cheating prover such that it satisfies several useful properties that we
use in the rest of the proof (namely, the ability to pass Linearity Test, Tensor-Product Test, and SAT
Test on any points). In Section 7, we show that if a cheating verifier convinces the relaxed verifier with
overwhelming probability, the self-corrected PCP proof matches the claimed computation, i.e., the
assignment that we can obtain from the self-corrected PCP proof on any small number of variables of
Ψ is a (locally) satisfying assignment. In Section 8, we show that if a cheating verifier convinces the
relaxed verifier with overwhelming probability, the self-corrected PCP proof matches the correct PCP
proof. In Section 9, we conclude the proof by combining what is shown in the preceding four sections.

5 Analysis of Our PCP: Step 1 (Relaxed Verifier)

In this section, we introduce a “relaxed verifier” Ṽ for our PCP system. The relaxed verifier has a
property that, roughly speaking, if a no-signaling cheating prover fools the original verifier with non-
negligible probability, there exists another no-signaling cheating prover that fools the relaxed veri-
fier with over-whelming probability. Given this property, in later sections we show the no-signaling
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soundness of our PCP system by showing that any no-signaling cheating prover cannot fool the relaxed
verifier with overwhelming probability.

5.1 Construction

Recall that the original PCP verifier V , described in Section 4.2, makes λ sets of tests (where each set
consists of Linearity Test, Tensor-Product Test, and SAT Test) and accepts the proof if all the tests in
all the λ sets succeed.

The relaxed verifier Ṽ makes λ sets of tests in the same way as the real PCP verifier does, but
accepts the proof even when the tests in at most µ sets fail (that is, accepts the proof if the tests in
at least λ − µ sets succeed), where µ = Θ(log2 λ) is a parameter.14 We remark that, just like the real
verifier V = (V0,V1), the relaxed verifier Ṽ is actually a pair of algorithms, (Ṽ0, Ṽ1), where Ṽ0 makes
queries and Ṽ1 performs test. From the construction, Ṽ0 is identical with V0.

5.2 Analysis

Lemma 1. Let κmax be any polynomial such that κmax(λ) ≥ 2κV (λ), where κV is the query complexity
of (P,V). Then, for any circuit family {Cλ}λ∈N, if there exists a κmax-wise no-signaling prover P∗ and a
constant c > 0 such that

Pr
[
V1(stV , x, y, π∗) = 1 ∧Cλ(x) , y

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≥ λ−c (19)

holds for infinitely many λ ∈ N, there exists a (κmax−κV )-wise no-signaling prover P̃∗ and a negligible
function negl such that

Pr
[
Ṽ1(stV , x, y, π∗) = 1 ∧Cλ(x) , y

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P̃∗(1λ,Cλ,Q)

]
≥ 1 − negl(λ) (20)

holds for infinitely many λ ∈ N.

We remark that Brakerski et al. [BHK17] prove essentially the same lemma as Lemma 1 (see Lemma 1
of the full version of their paper [BHK16]). Below, we give a proof of Lemma 1 just for completeness.
Since we only use the statement of Lemma 1 in the subsequent sections, the readers can skip the rest
of this section if they believe that Lemma 1 holds.

Proof. Fix any polynomial κmax such that κmax(λ) ≥ 2κV (λ), any circuit family {Cλ}λ∈N, any κmax-wise
no-signaling cheating prover P∗, and any constant c > 0, and assume that Equation (19) holds.

From P∗, we obtain the relaxed cheating prover P̃∗ as follows.

– On input (1λ,Cλ,Q), the relaxed cheating prover P̃∗ first samples

(Qi, stV,i)← V0(1λ,Cλ) and (xi, yi, π
∗
i )← P∗(1λ,Cλ,Q ∪ Qi)

for i = 1, . . . , λc+1. Then, P̃∗ finds the first i∗ ∈ {1, . . . , λc+1} such that V1(stV,i∗ , (π∗i∗)|Qi∗ ) = 1 ∧
Cλ(xi∗) , yi∗ and outputs (xi∗ , yi∗ , (π∗i∗)|Q) if such i∗ exists, and outputs ⊥ otherwise.

14 Actually, µ can be any function in ω(log λ) as long as µ is sufficiently smaller than λ.
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Claim 1 (Overwhelming success probability). There exists a negligible function negl such that for
infinitely many λ ∈ N,

Pr
[
Ṽ1(stV , x, y, π∗) = 1 ∧Cλ(x) , y

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P̃∗(1λ,Cλ,Q)

]
≥ 1 − negl(λ) . (21)

Proof. First, we show that P̃∗ outputs ⊥ with negligible probability. Recall that P̃∗ outputs ⊥ if there
does not exist i∗ such that V1(stV,i∗ , (π∗i∗)|Qi∗ ) = 1∧Cλ(xi∗) , yi∗ . Since P∗ is 2κV -wise no-signaling, it
holds that for infinitely many λ ∈ N and every Q such that |Q| = κV (λ),

Pr
[
V1(stV,i, (π∗i )|Qi) = 1 ∧Cλ(xi) , yi

∣∣∣∣∣∣ (Qi, stV,i)← V0(1λ,Cλ)
(xi, yi, π

∗
i )← P∗(1λ,Cλ,Q ∪ Qi)

]
≥ Pr

[
V1(stV,i, π∗i ) = 1 ∧Cλ(xi) , yi

∣∣∣∣∣∣ (Qi, stV,i)← V0(1λ,Cλ)
(xi, yi, π

∗
i )← P∗(1λ,Cλ,Qi)

]
− 1

2
λ−c

≥ 1
2
λ−c (from Equation (19)) (22)

Therefore, the probability that no i∗ exists is bounded by (1 − λ−c/2)λ
c+1 , which is negligible.

Next, we show that under the condition that P̃∗ does not output ⊥, P̃∗ convinces Ṽ except with
negligible probability. From the construction of P̃∗, it suffices to show that for any Cλ, we have

Pr
Q,Q′,π∗

[
Ṽ1(stV , x, y, π∗|Q) = 0 ∧ V1(st′V , π

∗|Q′) = 1
]
≤ negl(λ) , (23)

where the probability is taken over the following sampling of Q,Q′, π∗.

1. (Q, stV )← V0(1λ,Cλ).
2. (Q′, st′V )← V0(1λ,Cλ).
3. (x, y, π∗)← P∗(1λ,Cλ,Q ∪ Q′).

Hence, we focus on showing Equation (23). Recall that each of Q,Q′ is queries for λ sets of the tests
by V . We consider a mental experiment where, instead of sampling Q and Q′ separately, we sample
queries for 2λ sets of the tests simultaneously, denoted by Q̂, and then define Q,Q′ by randomly parti-
tioning Q̂ into two after querying Q̂ to P∗. Clearly, the distributions of Q,Q′ in this mental experiment
is the same as those in the original experiment. Let BAD be the event that at least µ sets of queries in
Q̂ are rejecting in the mental experiment, where we say a set of queries is rejecting if any test in the
set of the tests that corresponds to those queries fails. (Recall that µ is the parameter of the relaxed
verifier Ṽ and we have µ = Θ(log2 λ).) Now, we have

Pr
Q̂,Q,Q′,π∗

[
Ṽ1(stV , x, y, π∗|Q) = 0 ∧ V1(st′V , π

∗|Q′) = 1 ∧ ¬BAD
]
= 0

since Ṽ1(stV , x, y, π∗|Q) = 0 cannot occur unless BAD occurs. Therefore, we have

Pr
Q̂,Q,Q′,π∗

[
Ṽ1(stV , x, y, π∗|Q) = 0 ∧ V1(st′V , π

∗|Q′) = 1
]

= Pr
Q̂,Q,Q′,π∗

[
Ṽ1(stV , x, y, π∗|Q) = 0 ∧ V1(st′V , π

∗|Q′) = 1 ∧ BAD
]

≤ Pr
Q̂,Q,Q′,π∗

[
V1(st′V , π

∗|Q′) = 1 ∧ BAD
]

≤
(
1 − µ

2λ

)λ
= negl(λ)
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where the last inequality holds since when BAD occurs, we have V1(st′V , π
∗|Q′) = 1 only when all the

rejecting sets of queries are picked for Q when partitioning Q̂ to Q and Q′.
By combining what we show in the above two paragraphs, we obtain Equation (21). This concludes

the proof of Claim 1. ⊓⊔

Claim 2 (No-signaling property). P̃∗ is (κmax − κV )-wise no-signaling.

Proof. We need to show that for any ppt distinguisher DNS, there exists a negligible function negl
such that for every λ ∈ N, every W,W′ such that W′ ⊂ W and |W | ≤ κmax(λ), and every z ∈ {0, 1}poly(λ),∣∣∣∣∣∣∣Pr

[
DNS(Cλ, x, y, π∗|W′ , z) = 1

∣∣∣ (x, y, π∗)← P∗(1λ,Cλ,W)
]

− Pr
[
DNS(Cλ, x, y, π∗, z) = 1

∣∣∣ (x, y, π∗)← P∗(1λ,Cλ,W′)
] ∣∣∣∣∣∣∣ ≤ negl(λ) .

From the construction of P̃∗, toward this end it suffices to show that for any ppt distinguisher D,
there exists a negligible function negl such that for every λ ∈ N, every W,W′ such that W′ ⊂ W and
|W | ≤ κmax(λ), and every z ∈ {0, 1}poly(λ),∣∣∣∣∣∣∣∣∣∣∣

Pr
[
D(ν) = 1

∣∣∣∣∣∣ (Qi, stV,i)← V0(1λ,Cλ) for ∀i ∈ [λc+1]
(xi, yi, π

∗
i )← P∗(1λ,Cλ,Wλ ∪ Qi) for ∀i ∈ [λc+1]

]
−Pr

[
D(ν′) = 1

∣∣∣∣∣∣ (Qi, stV,i)← V0(1λ,Cλ) for ∀i ∈ [λc+1]
(xi, yi, π

∗
i )← P∗(1λ,Cλ,W′λ ∪ Qi) for ∀i ∈ [λc+1]

]
∣∣∣∣∣∣∣∣∣∣∣ ≤ negl(λ) , (24)

where

ν B (Cλ,Wλ,W′λ, {Qi, stV,i, xi, yi, (π∗i )|W′λ∪Qi}i∈[λc+1], z) ,

ν′ B (Cλ,Wλ,W′λ, {Qi, stV,i, xi, yi, π
∗
i }i∈[λc+1], z) .

(This is because given ν or ν′, the distinguisherD can emulate the output of P̃∗.) Equation (24) can be
shown easily by using a hybrid argument since the κmax-wise no-signaling property of P∗ guarantees
that for any ppt distinguisher Di, there exists a negligible function negl such that for every λ ∈ N,
every W,W′ such that W′ ⊂ W and |W | ≤ κmax(λ), and every z ∈ {0, 1}poly(λ),∣∣∣∣∣∣∣∣∣∣∣

Pr
[
Di(νi) = 1

∣∣∣∣∣∣ (Qi, stV,i)← V0(1λ,Cλ)
(xi, yi, π

∗
i )← P∗(1λ,Cλ,Wλ ∪ Qi)

]
−Pr

[
Di(ν′i) = 1

∣∣∣∣∣∣ (Qi, stV,i)← V0(1λ,Cλ)
(xi, yi, π

∗
i )← P∗(1λ,Cλ,W′λ ∪ Qi)

]
∣∣∣∣∣∣∣∣∣∣∣ ≤ negl(λ) ,

where

νi B (Cλ,Wλ,W′λ,Qi, stV,i, xi, yi, (π∗i )|W′λ∪Qi , z) ,

ν′i B (Cλ,Wλ,W′λ,Qi, stV,i, xi, yi, π
∗
i , z) .

This concludes the proof of Claim 2. ⊓⊔

From Claim 1 and Claim 2, Lemma 1 follows. ⊓⊔

22



6 Analysis of Our PCP: Step 2 (Self-Corrected Proof)

In this section, we introduce a “self-correction” procedure with the following property: given any suc-
cessful no-signaling cheating prover against the relaxed verifier, the self-correction procedure outputs
a no-signaling proof that satisfies several important properties that the correct proof satisfies, such as
the ability to pass Linearity Test on any points.

6.1 Self-Correction Procedure Self-Correct

For every security parameter λ ∈ N, circuit C, cheating prover P∗, and queries Q ⊂ FN ∪ FN2 , we
consider the following self-correction procedure.

Algorithm Self-CorrectP
∗
(1λ,C,Q).

1. For each v ∈ Q, choose λ random points rv,1, . . . , rv,λ from FN if v ∈ FN and choose them from
FN2 if v ∈ FN2 .

2. Run (x, y, π∗)← P∗(1λ,C,Q′), where Q′ = {rv,i, v + rv,i}v∈Q,i∈[λ].
3. For each i ∈ [λ], define a function π̃(i) : Q→ F by

π̃(i)(v) B π∗(v + rv,i) − π∗(rv,i) for ∀v ∈ Q .

4. Define a function π̃ : Q→ F by

π̃(v) B majority
(
π̃(1)(v), . . . , π̃(λ)(v)

)
for ∀v ∈ Q .

Let π̃ f be the function that is obtained by restricting the domain of π̃ to Q ∩ FN , and π̃g be the
function that is obtained by restricting the domain of π̃ to Q ∩ FN2 .

5. Output (x, y, π̃).

6.2 Basic Properties of Self-Correct

In this subsection, we observe two basic properties of Self-Correct. First, we observe that Self-Correct
is no-signaling in the following sense.

Lemma 2 (No-signaling property of Self-Correct). Let κmax be any polynomial, {Cλ}λ∈N be any
circuit family, and P∗ be any κ′max-wise no-signaling cheating prover, where κ′max(λ) def

= 2λ · κmax(λ).
Then, for any ppt Turing machine D, there exists a negligible function negl such that for every

λ ∈ N, every Q,Q′ such that Q′ ⊂ Q and |Q| ≤ κmax(λ), and every z ∈ {0, 1}λ,∣∣∣∣∣∣∣Pr
[
D(Cλ, x, y, π∗|Q′ , z) = 1

∣∣∣ (x, y, π∗)← Self-CorrectP
∗
(1λ,Cλ,Q)

]
−Pr

[
D(Cλ, x, y, π∗, z) = 1

∣∣∣ (x, y, π∗)← Self-CorrectP
∗
(1λ,Cλ,Q′)

] ∣∣∣∣∣∣∣ ≤ negl(λ) .

Proof. Since Self-Correct, on input Q, makes only 2λ|Q| queries to P∗, this lemma follows directly
from the construction of Self-Correct and the κ′max-wise no-signaling property of P∗. ⊓⊔

Next, we observe that Self-Correct outputs a statement that is indistinguishable from the one by P∗.
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Lemma 3 (Statement Indistinguishability of Self-Correct). Let κmax be any polynomial, {Cλ}λ∈N be
any circuit family, and P∗ be any κmax-wise no-signaling cheating prover. Then, two distributions,{

(Cλ, x, y)
∣∣∣ (x, y, π∗)← P∗(1λ,Cλ, ∅)

}
λ∈N

and {
(Cλ, x, y)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, ∅)

}
λ∈N ,

are computationally indistinguishable (where ∅ is the empty set).

Proof. This lemma follows directly from the construction of Self-Correct since the output of
Self-Correct is identical with that of P∗ when Q = ∅. ⊓⊔

6.3 Key Properties of Self-Correct

In this subsection, we give three key lemmas on Self-Correct, which roughly say that when
Self-Correct is applied on a cheating prover that convinces the relaxed verifier with overwhelming
probability, it produces a proof that passes Linearity Test, Tensor-Product Test, SAT Test on any points
with overwhelming probability.

Lemma 4 (Linearity of Self-Corrected Proof). Let Ṽ = (V0, Ṽ1) be the relaxed PCP verifier in
Section 5, {Cλ}λ∈N be any circuit family, and κmax be any polynomial such that κmax(λ) ≥ κV (λ) =
2λ(5λ + 3), where κV is the query complexity of (P,V).

Then, for any κmax-wise no-signaling cheating prover P∗, if it holds

Pr
[
Ṽ1(stV , x, y, π∗) = 1

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≥ 1 − negl(λ) (25)

for infinitely many λ ∈ N (let Λ be the set of those λ’s), there exists a negligible function negl such that
for every sufficiently large λ ∈ Λ and every u, v ∈ FN (resp. u, v ∈ FN2), it holds

Pr
[
π̃(u) + π̃(v) = π̃(u + v)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {u, v,u + v})

]
≥ 1 − negl(λ) . (26)

Lemma 5 (Tensor-Product Consistency of Self-Corrected Proof). Let Ṽ = (V0, Ṽ1) be the relaxed
PCP verifier in Section 5, {Cλ}λ∈N be any circuit family, and κmax be any polynomial such that κmax(λ) ≥
2λ(8λ + 3).

Then, for any κmax-wise no-signaling cheating prover P∗, if it holds

Pr
[
Ṽ1(stV , x, y, π∗) = 1

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≥ 1 − negl(λ) (27)

for infinitely many λ ∈ N (let Λ be the set of those λ’s), there exists a negligible function negl such that
for every sufficiently large λ ∈ Λ and every u, v ∈ FN , it holds

Pr
[
π̃ f (u)π̃ f (v) = π̃g(u ⊗ v)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {u, v,u ⊗ v})

]
≥ 1 − negl(λ) . (28)
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Lemma 6 (SAT Consistency of Self-Corrected Proof). Let Ṽ = (V0, Ṽ1) be the relaxed PCP verifier
in Section 5, {Cλ}λ∈N be any circuit family, and κmax be any polynomial such that κmax(λ) ≥ κV (λ) =
2λ(5λ + 3), where κV is the query complexity of (P,V).

Then, for any κmax-wise no-signaling cheating prover P∗, if it holds

Pr
[
Ṽ1(stV , x, y, π∗) = 1

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≥ 1 − negl(λ) (29)

for infinitely many λ ∈ N (let Λ be the set of those λ’s), there exists a negligible function negl such that
for every sufficiently large λ ∈ Λ and every σ ∈ FM , it holds

Pr
[
π̃ f (ψσ) + π̃g(ψ′σ) = cσ

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {ψσ,ψ′σ})

]
≥ 1 − negl(λ) , (30)

where cσ,ψσ,ψ′σ are defined as follows: let Ψ = {Ψi(z) = ci}i∈[M] be the system of equations that is
obtained from the circuit Cλ as described in Section 4, and let

Ψσ(z) B
∑

i∈[M]

σiΨi(z) and cσ B
∑

i∈[M]

σici ;

then, ψσ,ψ′σ are the coefficient of Ψσ(z) such that

Ψσ(z) = ⟨ψσ, z⟩ + ⟨ψ′σ, z ⊗ z⟩ .

We prove these lemmas in Sections 6.6, 6.7, and 6.8.

6.4 Corollaries of Lemma 4

Before proving the three key lemmas in the previous subsection, we observe that we can obtain several
useful corollaries from the linearity of the self-corrected proof (Lemma 4).

First, we obtain the following basic lemma from Lemma 4.

Lemma 7. Let Ṽ = (V0, Ṽ1) be the relaxed PCP verifier in Section 5, {Cλ}λ∈N be any circuit family,
and κmax be any polynomial such that κmax(λ) ≥ κV (λ) = 2λ(5λ+ 3), where κV is the query complexity
of (P,V).

Then, for any κmax-wise no-signaling cheating prover P∗, if it holds

Pr
[
Ṽ1(stV , x, y, π∗) = 1

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≥ 1 − negl(λ) (31)

for infinitely many λ ∈ N (let Λ be the set of those λ’s), there exists a negligible function negl such that
for every sufficiently large λ ∈ Λ and every v ∈ FN (resp. v ∈ FN2), it hold

Pr
[
π̃(0) = 0

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {0})

]
≥ 1 − negl(λ) (32)

and

Pr
[
π̃(−v) = −π̃(v)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {v,−v})

]
≥ 1 − negl(λ) , (33)

where 0 = (0, . . . , 0) ∈ FN (resp. 0 = (0, . . . , 0) ∈ FN2).
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Proof. Fix any {Cλ}λ∈N, κmax, and P∗, and assume that Equation (31) holds for infinitely many λ ∈ N.
Let Λ be the set of those λ’s, and fix any sufficiently large λ ∈ Λ. Our goal is to show Equations (32)
and (33).

First, we obtain Equation (32) by first obtaining

Pr
[
π̃(v + 0) = π̃(v) + π̃(0)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {v, 0})

]
≥ 1 − negl(λ)

for any v ∈ FN (resp. v ∈ FN2) from Lemma 4 and then use the no-singling property of Self-Correct
(Lemma 2).

Next, we obtain Equation (33) by first obtaining

Pr
[
π̃(v) + π̃(−v) = π̃(0)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {v,−v, 0})

]
≥ 1 − negl(λ)

from Lemma 4 and then use Equation (32) and the no-signaling property of Self-Correct (Lemma 2).
⊓⊔

Next, we observe that Lemma 4 can be generalized as follows.

Lemma 8 (Linearity of Self-Corrected Proof, scalar multiplication). Let Ṽ = (V0, Ṽ1) be the re-
laxed PCP verifier in Section 5, {Cλ}λ∈N be any circuit family, and κmax be any polynomial such that
κmax(λ) ≥ κV (λ) = 2λ(5λ + 3), where κV is the query complexity of (P,V).

Then, for any κmax-wise no-signaling cheating prover P∗, if it holds

Pr
[
Ṽ1(stV , x, y, π∗) = 1

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≥ 1 − negl(λ) (34)

for infinitely many λ ∈ N (let Λ be the set of those λ’s), there exists a negligible function negl such that
for every sufficiently large λ ∈ Λ, every v ∈ FN (resp. v ∈ FN2), and every k ∈ {3 . . . , |F| − 1}, it holds

Pr
[
kπ̃(v) = π̃(kv)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {v, kv})

]
≥ 1 − negl(λ) . (35)

Proof. Fix any {Cλ}λ∈N, κmax, and P∗, and assume that Equation (34) for infinitely many λ ∈ N. Let Λ
be the set of those λ’s, and fix any sufficiently large λ ∈ Λ. Our goal is to show Equation (35).

Fix any v ∈ FN (resp. v ∈ FN2), and let

p(k) B Pr
[
kπ̃(v) = π̃(kv)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {v, kv})

]
for k ∈ {2, . . . , kmax}, where kmax B |F| − 1. (Note that we have log kmax ≤ poly(λ).) In this notation,
our goal is to show p(k) ≥ 1 − negl(λ) for every k ∈ {3, . . . , kmax}. Assume, for simplicity, that k is
an odd number (the case that k is an even number can be handled similarly). Then, observe that if we
have

π̃(kv) = π̃(v) + π̃((k − 1)v)
∧
π̃((k − 1)v) = 2π̃(

k − 1
2

v)
∧
π̃(

k − 1
2

v) =
k − 1

2
π̃(v) ,

then we have kπ̃(v) = π̃(kv). In addition, observe that from the linearity of the self-corrected proof
(Lemma 4), we have

Pr
[
π̃(kv) = π̃(v) + π̃((k − 1)v)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {v, (k − 1)v, kv})

]
≥ 1 − negl(λ)
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and

Pr
[
π̃((k − 1)v) = 2π̃(

k − 1
2

v)
∣∣∣∣∣ (x, y, π̃)← Self-CorrectP

∗
(1λ,Cλ, { k−1

2 v, (k − 1)v})
]

≥ 1 − negl(λ) .

By combining the above observations and the no-signaling property of Self-Correct (Lemma 2), we
obtain

p(k) ≥ p(
k − 1

2
) − negl(λ) .

Now, since we have p(2) ≥ 1 − negl(λ) from the linearity of the self-corrected proof (Lemma 4), we
have

p(k) ≥ 1 − log k · negl(λ) ≥ 1 − negl(λ)

as desired. This concludes the proof of Lemma 8. ⊓⊔

Finally, we notice that Lemma 4 can also be generalized as follows.

Lemma 9 (Linearity of Self-Corrected Proof, more than two points). Let Ṽ = (V0, Ṽ1) be the
relaxed PCP verifier in Section 5, {Cλ}λ∈N be any circuit family, and κmax be any polynomial such that
κmax(λ) ≥ κV (λ) = 2λ(5λ + 3), where κV is the query complexity of (P,V).

Then, for any κmax-wise no-signaling cheating prover P∗, if it holds a

Pr
[
Ṽ1(stV , x, y, π∗) = 1

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≥ 1 − negl(λ)

for infinitely many λ ∈ N (let Λ be the set of those λ’s), there exists a negligible function negl such
that for every sufficiently large λ ∈ Λ and every v1, . . . , vk ∈ FN (resp. v1, . . . , vk ∈ FN2), where
k ∈ {3, . . . , κmax/(2λ) − 2}, it holds

Pr
[
π̃(v1) + · · · + π̃(vk)
= π̃(v1 + · · · + vk)

∣∣∣∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ,Q)

where Q = {v1, . . . , vk, v1 + · · · + vk}

]
≥ 1 − negl(λ) .

6.5 Preliminary Observation

The rest of this section is devoted for proving the three key lemmas in Section 6.3. Since we only use
the statements of these lemmas in the rest of this paper, the readers can skip the rest of this section if
they believe that these lemmas hold.

In this subsection, we make a useful immediate observation about Self-Correct. Specifically, we
observe that if Self-Correct is applied on a no-signaling cheating prover that convinces the relaxed
verifier with overwhelming probability, it produces a proof that passes each of Linearity Test, Tensor-
Product Test, and SAT Test on random points with overwhelming probability even when these tests are
done individually. We remind the readers that the relaxed verifier accepts a PCP proof even when the
proof fails to pass a small number of tests, which means that we can only hope for that the self-corrected
proof passes Linearity Test etc. except for a small number of trials.
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Observation 1. Let Ṽ = (V0, Ṽ1) be the relaxed PCP verifier in Section 5, {Cλ}λ∈N be any circuit
family, and κmax be any polynomial such that κmax(λ) ≥ κV (λ) = 2λ(5λ + 3), where κV is the query
complexity of (P,V).

Then, for any κmax-wise no-signaling cheating prover P∗, if it holds

Pr
[
Ṽ1(stV , x, y, π∗) = 1

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≥ 1 − negl(λ)

for infinitely many λ ∈ N (let Λ be the set of those λ’s), there exists a negligible function negl such
that for every sufficiently large λ ∈ Λ, each of the following holds.

– Linearity Test.

Pr
[
|Ilinear| ≥ λ − µ

∣∣∣∣∣∣ ri,1, ri,2 ← FN for ∀i ∈ [λ]
(x, y, π∗)← P∗(1λ,Cλ,Q) where Q = {ri,1, ri,2, ri,1 + ri,2}i∈[λ]

]
≥ 1 − negl(λ) ,

where

Ilinear B
{
i s.t. π∗f (ri,1) + π∗f (ri,2) = π∗f (ri,1 + ri,2)

}
.

The same holds when π∗f is replaced with π∗g.
– Tensor-Product Test.

Pr

|ITensor| ≥ λ − µ

∣∣∣∣∣∣∣∣∣
ri,1, ri,2 ← FN for ∀i ∈ [λ]
(x, y, π̃)← Self-CorrectP

∗
(1λ,Cλ,Q)

where Q = {ri,1, ri,2, ri,1 ⊗ ri,2}i∈[λ]

 ≥ 1 − negl(λ) ,

where

ITensor B
{
i s.t. π̃ f (ri,1)π̃ f (ri,2) = π̃g(ri,1 ⊗ ri,2)

}
.

– SAT Test.

Pr

|ISAT| ≥ λ − µ

∣∣∣∣∣∣∣∣∣
σi ← FM for ∀i ∈ [λ]
(x, y, π̃)← Self-CorrectP

∗
(1λ,Cλ,Q)

where Q = {ψσi ,ψ
′
σi
}i∈[λ]

 ≥ 1 − negl(λ) ,

where ψσi ∈ FN ,ψ′σi
∈ FN2 are defined as in Equation (18), and

ISAT B
{
i s.t. π̃ f (ψσi) + π̃g(ψσi) = cσi

}
.

^

It is easy to see that this observation follows from the definition of the relaxed verifier and the no-
signaling property of P∗.
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6.6 Proof of Lemma 4 (Linearity of Self-Corrected Proof)

In this subsection, we prove Lemma 4, which says that the self-corrected proof passes Linearity Test
on any points. As mentioned in the technical overview (Section 3.3), our analysis is an extension of
a previous analysis of Linearity Test in the standard PCP setting. (In particular, our analysis is based
on the analysis that is described in a textbook by Goldreich [Gol17], which follows the idea of Blum,
Luby, and Rubinfeld [BLR93].)

Proof (of Lemma 4). Fix any {Cλ}λ∈N, κmax, and P∗, and assume that Equation (25) holds for infinitely
many λ ∈ N. Let Λ be the set of those λ’s, and fix any sufficiently large λ ∈ Λ. Our goal is to show
Equation (26). In the following, we only consider the case of u, v ∈ FN . (The case of u, v ∈ FN2 can be
proven identically.)

At a high level, the proof proceeds as follows. From the construction,
Self-CorrectP

∗
(1λ,Cλ, {u, v, u + v}) defines the self-corrected values π̃(u), π̃(v), π̃(u + v) by us-

ing three independent sets of randomness (where each set consists of λ random points in FN). First,
we introduce a mental experiment where, in addition to π̃(u), π̃(v), π̃(u + v), alternative self-corrected
values ρ̃(u), ρ̃(v), ρ̃(u + v) are defined by Self-Correct, where those alternative self-corrected values
are defined by using three mutually dependent sets of randomness. Then, we proceed in the following
two steps.

1. First, we show that the self-correction procedure is “consistent” in the sense that we have π̃(t) =
ρ̃(t) for every t ∈ {u, v, u + v}. Roughly, we show this consistency by using the fact that, although
the three sets of randomness that are used for ρ̃(u), ρ̃(v), ρ̃(u + v) are mutually dependent, each of
these three sets is, when viewed individually, uniformly distributed.

2. Second, we show that the alternative self-corrected values satisfy linearity, i.e., they satisfy ρ̃(u)+
ρ̃(v) = ρ̃(u+v). Roughly, we show this linearity by using the fact that the alternative self-corrected
values are generated with mutually dependent sets of randomness.

By combining there two steps, we can obtain π̃(u)+ π̃(v) = ρ̃(u)+ ρ̃(v) = ρ̃(u+v) = π̃(u+v) as desired.
Formally, we first observe that the no-signaling property of P∗ and the construction of Self-Correct

guarantees that, to prove the this lemma, it suffices to show that Equation (26) holds when π̃ are sampled
in the following way. (A notable difference from Self-CorrectP

∗
(1λ,Cλ, {u, v, u+ v}) is highlighted by

red.)

1. Choose 4λ random points

ru,1, . . . , ru,λ, rv,1, . . . , rv,λ, ru+v,1, . . . , ru+v,λ ∈ FN , and
s1, . . . , sλ ∈ FN

2. Run (x, y, π∗)← P∗(1λ,Cλ,Q∪Q′), where

Q = {ru,i,u + ru,i, rv,i, v + rv,i, ru+v,i, u + v + ru+v,i}i∈[λ] ,
Q′ = {si,u + si, si − v}i∈[λ] .

3. For each i ∈ [λ], define a function π̃(i) : {u, v, u + v} → F by

π̃(i)(t) B π∗(t + rt,i) − π∗(rt,i) for ∀t ∈ {u, v, u + v}
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and a function ρ̃(i) : {u, v, u + v} → F by

ρ̃(i)(u) B π∗f (u + si) − π∗f (si)

ρ̃(i)(v) B π∗f (si) − π∗f (si − v)

ρ̃(i)(u + v) B π∗f (u + si) − π∗f (si − v) .

4. Define a function π̃ : {u, v,u + v} → F by

π̃(t) B majority
(
π̃(1)(t), . . . , π̃(λ)(t)

)
for ∀t ∈ {u, v,u + v}

and a function ρ̃ : {u, v, u + v} → F by

ρ̃(t) B majority
(
ρ̃(1)(t), . . . , ρ̃(λ)(t)

)
for ∀t ∈ {u, v, u + v} .

5. Output (π̃, ρ̃).

Therefore, we can obtain Equation (26) by showing

Pr
π̃,ρ̃

[π̃(u) + π̃(v) = π̃(u + v)] ≥ 1 − negl(λ) , (36)

where for any event E, we use

Pr
π̃,ρ̃

[E]

as a shorthand for the probability that the event E occurs when π̃, ρ̃ are chosen as above (along with
x, y).

Now, we show Equation (36) by using the following two claims.

Claim 3 (Consistency of Self Correction). For every t ∈ {u, v, u + v},

Pr
π̃,ρ̃

[
π̃(t) = ρ̃(t)

] ≥ 1 − negl(λ) . (37)

Claim 4 (Existence of Strong Majority). For every t ∈ {u, v,u + v},

Pr
π̃,ρ̃

[
|{i s.t. ρ̃(i)(t) = ρ̃(t)}| ≥ λ − 20µ

]
≥ 1 − negl(λ) .

Before proving Claim 3 and Claim 4, we show that Equation (36) indeed follows from these two claims.
From Claim 3 and the union bound, we can show Equation (36) by showing

Pr
π̃,ρ̃

[
ρ̃(u) + ρ̃(v) = ρ̃(u + v)

] ≥ 1 − negl(λ) . (38)

Thus, we focus on showing Equation (38). First, from Claim 4 and the union bound, we have

Pr
π̃,ρ̃

 |{i s.t. ρ̃(i)(u) = ρ̃(u)}| ≥ λ − 20µ
∧ |{i s.t. ρ̃(i)(v) = ρ̃(v)}| ≥ λ − 20µ
∧ |{i s.t. ρ̃(i)(u + v) = ρ̃(u + v)}| ≥ λ − 20µ

 ≥ 1 − negl(λ) . (39)
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Then, since we have 3 · 20µ < λ for every sufficiently large λ, from Equation (39) and the pigeonhole
principle we have

Pr
π̃,ρ̃

∃i∗ ∈ [λ] s.t.
ρ̃(i∗)(u) = ρ̃(u)
∧ ρ̃(i∗)(v) = ρ̃(v)
∧ ρ̃(i∗)(u + v) = ρ̃(u + v)

 ≥ 1 − negl(λ) . (40)

Then, observe that for every i∗ ∈ [λ] such that

ρ̃(i∗)(u) = ρ̃(u) ∧ ρ̃(i∗)(v) = ρ̃(v) ∧ ρ̃(i∗)(u + v) = ρ̃(u + v) ,

we have

ρ̃(u) = π∗f (u + si∗) − π∗f (si∗) ,

ρ̃(v) = π∗f (si∗) − π∗f (si∗ − v) ,

ρ̃(u + v) = π∗f (u + si∗) − π∗f (si∗ − v) ,

from the definition of ρ̃(i∗), and therefore have ρ̃(u) + ρ̃(v) = ρ̃(u + v). By combining this observation
with Equation (40), we obtain Equation (38).

Finally, to conclude the proof of Lemma 4, we prove Claim 3 and Claim 4. We prove these two
claims by proving the following claim, which implies both of Claim 3 and Claim 4.

Claim 5. For every t ∈ {u, v, u + v},

Pr
π̃,ρ̃

[
Strong-Majorityt

] ≥ 1 − negl(λ) ,

where Strong-Majorityt is the event that there exists at ∈ F such that∣∣∣{i s.t. π̃(i)(t) = ρ̃(i)(t) = at}
∣∣∣ ≥ λ − 20µ .

(To see that Claim 5 indeed implies Claim 3 and Claim 4, observe that when Strong-Majorityt occurs,
we have π̃(t) = ρ̃(t) = at since we have λ − 20µ > λ/2 for every sufficiently large λ.) Hence, to prove
Claim 3 and Claim 4, it remains to prove Claim 5.

Proof (of Claim 5). An important observation is that, during the sampling of π̃, ρ̃ (as per the description
at the beginning of the proof of Lemma 4), each of

– ru,λ, . . . , ru,λ, s1, . . . , sλ
– rv,1, . . . , rv,λ, s1 − v, . . . , sλ − v
– ru+v,1, . . . , ru+v,λ, s1 − v, . . . , sλ − v

is a set of 2λ random points. This observation, combined with the no-signaling property of P∗ and the
definition of ρ̃(i), implies that, to prove Claim 5, it suffices to show the following simpler claim.

Claim 6. For any t ∈ {u, v, u + t}, we have

Pr
π̃t ,ρ̃t

[Strong-Majority] ≥ 1 − negl(λ) , (41)

where the probability is taken over the following sampling of π̃t , ρ̃t .
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1. Choose 2λ random points r1, . . . , rλ, s1, . . . , sλ ∈ FN .
2. Run (x, y, π∗)← P∗(1λ,Cλ,Q ∪ Q′), where Q = {ri, t + ri}i∈[λ] and Q′ = {si, t + si}i∈[λ].
3. For each i ∈ [λ], define π̃(i)

t B π
∗(t + ri) − π∗(ri) and ρ̃(i)

t B π
∗(t + si) − π∗(si).

4. Output π̃t
def
= majority(π̃(1)

t , . . . , π̃
(λ)
t ) and ρ̃ def

= majority(ρ̃(1)
t , . . . , ρ̃

(λ)
t ).

and Strong-Majority is the event that there exists at ∈ F such that∣∣∣∣{i s.t. π̃(i)
t = ρ̃

(i)
t = at}

∣∣∣∣ ≥ λ − 20µ .

Remark 6. To see that Claim 6 indeed implies Claim 5, observe the following. Consider, for example,
the case of t = v. Then, if we simplify the sampling of π̃, ρ̃ in Claim 5 by removing all the queries that
are not used for defining π̃(v), ρ̃(v), we obtain the following sampling (note that this simplification does
not non-negligibly increase the probability of Strong-Majorityv occurring because of the no-signaling
property of P∗).
1. Choose 2λ random points rv,1, . . . , rv,λ, s1, . . . , sλ ∈ FN .
2. Run (x, y, π∗)← P∗(1λ,Cλ,Q ∪ Q′), where Q = {rv,i, v + rv,i}i∈[λ] and Q′ = {si, si − v}i∈[λ].
3. For each i ∈ [λ], define π̃(i)(v) B π∗(v + rv,i) − π∗(rv,i) and ρ̃(i)(v) B π∗(si) − π∗(si − v).
4. Output π̃(v) def

= majority(π̃(1)(v), . . . , π̃(λ)(v)) and ρ̃(v) def
= majority(ρ̃(1)(v), . . . , ρ̃(λ)(v)).

Now, since in this sampling, we have ρ̃(i)(v) = π∗(v+(si−v))−π∗(si−v) and that the set {rv,1, . . . , rv,λ, s1−
v, . . . , sλ−v} is a set of 2λ random points, this sampling is equivalent to the sampling of π̃, ρ̃ in Claim 6.
^

Thus, what remains to do is to prove Claim 6.
Proof (of Claim 6). To show Equation (41), we use the following two sub-claims.
Sub-Claim 1. We have

Pr
π̃t ,ρ̃t

[
|IGood-pair| ≥ λ − 2µ

]
≥ 1 − negl(λ) , (42)

where IGood-pair B {i s.t. π̃(i)
t = ρ̃

(i)
t }.

Sub-Claim 2. We have

Pr
π̃t ,ρ̃t

[
IGood-pair ≥ λ − 2µ

∣∣∣ ¬Strong-Majority
]
≤ negl(λ) ,

where IGood-pair is defined as in Sub-Claim 1.

First, Equation (41) follows from these two sub-claims since we have

Pr
π̃t ,ρ̃t

[Strong-Majority]

≥ Pr
π̃t ,ρ̃t

[
Strong-Majority ∧ IGood-pair ≥ λ − 2µ

]
= Pr
π̃t ,ρ̃t

[
IGood-pair ≥ λ − 2µ

]
− Pr
π̃t ,ρ̃t

[
¬Strong-Majority ∧ IGood-pair ≥ λ − 2µ

]
≥ Pr
π̃t ,ρ̃t

[
IGood-pair ≥ λ − 2µ

]
− Pr
π̃t ,ρ̃t

[
IGood-pair ≥ λ − 2µ | ¬Strong-Majority

]
= 1 − negl(λ) ,

where we use the two sub-claims in the last equation. Thus, what remains to do is to prove the two
sub-claims.
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Proof (of Sub-Claim 1). At a high level, the proof proceeds as follows. Observe that for every i ∈ [λ],
since we have

π̃(i)
t = π

∗(t + ri) − π∗(ri) and ρ̃(i)
t = π

∗(t + si) − π∗(si)

from the definitions of π̃(i)
t and ρ̃(i)

t , we have π̃(i)
t = ρ̃

(i)
t if we have

π∗(t + ri) − π∗(t + si) = π∗(ri) − π∗(si) .

Now, a key observation is that each of {t+ ri, t+ si}i∈[λ] and {ri, si}i∈[λ] is λ pairs of two random points,
so we can use Observation 1 to show that linearity holds on at least λ−µ pairs in each of {t+ri, t+si}i∈[λ]
and {ri, si}i∈[λ], and therefore can conclude that the number of i’s such that we have

π∗(t + ri) − π∗(t + si) = π∗(ri − si) = π∗(ri) − π∗(si)

is at least λ − 2µ as desired.
Formally, we first observe that, from the no-signaling property of P∗, it suffices to show that Equa-

tion (42) holds when π̃t , ρ̃t are sampled in the following way. (A notable difference from the original
sampling (the one in Claim 6) is highlighted by red.)
1. Choose 2λ random points r1, . . . , rλ, s1, . . . , sλ ∈ FN .
2. Run (x, y, π∗) ← P∗(1λ,Cλ,Q ∪ Q′∪Q′′), where Q = {ri, t + ri}i∈[λ], Q′ = {si, t + si}i∈[λ], and

Q′′ = {ri − si}i∈[λ].
3. For each i ∈ [λ], define π̃(i)

t B π
∗(t + ri) − π∗(ri) and ρ̃(i)

t B π
∗(t + si) − π∗(si).

4. Output π̃t
def
= majority(π̃(1)

t , . . . , π̃
(λ)
t ) and ρ̃ def

= majority(ρ̃(1)
t , . . . , ρ̃

(λ)
t ).

Now, let

I1 B
{
i s.t. π∗(si) + π∗(ri − si) = π∗(ri)

}
,

I2 B
{
i s.t. π∗(t + si) + π∗(ri − si) = π∗(t + ri)

}
.

Observe that for any i∗ ∈ I1 ∩ I2, we have

π̃(i∗)
t = π

∗(t + ri∗) − π∗(ri∗) (from the definition)
=

(
π∗(t + si∗) + π∗(ri∗ − si∗)

) − (
π∗(si∗) + π∗(ri∗ − si∗)

)
(since i∗ ∈ I1 ∩ I2)

= π∗(t + si∗) − π∗(si∗)

= ρ̃(i∗)
t . (from the definition)

Thus, to prove this sub-claim it suffices to show

Pr
π̃t ,ρ̃t

[|I1 ∩ I2| ≥ λ − 2µ
] ≥ 1 − negl(λ) , (43)

where π̃t , ρ̃t are sampled as above. Now, since {si, ri − si}i∈[λ] (resp., {t+ si, ri − si}i∈[λ]) are 2λ random
points, Observation 1 and the no-signaling property of P∗ imply that we have

Pr
π̃t ,ρ̃t

[|I1| ≥ λ − µ
] ≥ 1 − negl(λ) and Pr

π̃t ,ρ̃t

[|I2| ≥ λ − µ
] ≥ 1 − negl(λ) .

Thus, from the union bound, we have

Pr
π̃t ,ρ̃t

[|I1| ≥ λ − µ ∧ |I2| ≥ λ − µ
] ≥ 1 − negl(λ)

and therefore have Equation (43). ⊓⊔
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Proof (of Sub-Claim 2). For editorial simplicity, we think that π̃t , ρ̃t are sampled by the following
sampling algorithm, which differs from the original one (the one in Claim 6) only syntactically.

1. Choose 2λ random points r1, . . . , r2λ ∈ FN .
2. Run (x, y, π∗)← P∗(1λ,Cλ,Q′), where Q′ = {ri, t + ri}i∈[2λ].
3. Randomly partition {π∗(t + ri) − π∗(ri)}i∈[2λ] into (π̃(1)

t , . . . , π̃
(λ)
t ) and (ρ̃(1)

t , . . . , ρ̃
(λ)
t ).

4. Output π̃t
def
= majority(π̃(1)

t , . . . , π̃
(λ)
t ) and ρ̃t

def
= majority(ρ̃(1)

t , . . . , ρ̃
(λ)
t ).

Note that in this sampling algorithm, the event Strong-Majority is implied by the event that there exists
at ∈ F such that ∣∣∣{i ∈ [2λ] s.t. π∗(t + ri) − π∗(ri) = at}

∣∣∣ ≥ 2λ − 20µ .

Let

Iw B {i ∈ [2λ] s.t. π∗(t + ri) − π∗(ri) = w} for each w ∈ F .
Imax B Iw∗ ,where w∗ B argmax

w∈F
(|Iw|) .

Iothers B [2λ] \ Imax .

When Strong-Majority does not occur, we have

|Imax| < 2λ − 20µ and |Iothers| ≥ 20µ . (44)

Now, observe that having |IGood-pair| ≥ λ − 2µ in the above sampling algorithm is equivalent to having
at least λ − 2µ “good” pairs when partitioning [2λ] into λ pairs of indices randomly, where we say a
pair of indices is good if the two indices in the pair belong to the same set Iw for w ∈ F. We show
that when we have Equation (44), we create at least λ−2µ good pairs only with negligible probability.
Toward showing this fact, we consider partitioning [2λ] into λ pairs of indices as follows.

1. Choose random 10µ indices (i1, . . . , i10µ) from Iothers.
2. Create 10µ pairs by, for each index in (i1, . . . , i10µ), choosing an index from the remaining indices

of [2λ] (without replacement).
3. Create the remaining λ − 10µ pairs by randomly partitioning the remaining indices of [2λ] into
λ − 10µ pairs.

When partitioning [2λ] into λ pairs of indices in this way, we create at least λ − 2µ good pairs in total
only when we create at least 10µ−2µ = 8µ good pairs in Step 2. Since each pair that is created in Step
2 is good with probability at most

λ

2λ − 10µ
≤ 0.51 (since we have |Iw| ≤ λ for ∀Iw , Imax)

(where the inequality holds for every sufficiently large λ), the probability that we create at least 8µ
good pairs in Step 2 of the above procedure is bounded by(

10µ
2µ

)
× (0.51)8µ ≤

(
10µ · e

2µ

)2µ

× (0.51)8µ =
(
(5e)2 × (0.51)8

)µ ≤ (0.9)µ = negl(λ) ,

where we use the standard inequality
(
n
k

)
≤ ( ne

k )k in the first inequality. Thus, we create at least 8µ good
pairs in Step 2 of the above procedure only with negligible probability, so we create at least λ − 2µ
good pairs in total only with negligible probability. This concludes the proof of Sub-Claim 2. ⊓⊔
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Remark 7. The proof of Sub-Claim 2 is based on the idea that is used in the analysis of previous
no-signaling PCPs, e.g., [BHK16, Claim 22]. ^

As noted above, Equation (41) follows from Sub-Claim 1 and Sub-Claim 2. This concludes the proof
of Claim 6. ⊓⊔

As noted above, Claim 6 implies Claim 5. This concludes the proof of Claim 5. ⊓⊔

As noted above, Claim 5 implies Claim 3 and Claim 4, with which we can prove Lemma 4. This
concludes the proof of Lemma 4. (By inspection, one can verify that our analysis indeed works if
κmax(λ) ≥ κV (λ) = 2λ(5λ + 3) since we make at most 9λ queries to P∗ in all the mental experiments.)

⊓⊔

6.7 Proof of Lemma 5 (Tensor-Product Consistency of Self-Corrected Proof)

In this subsection, we prove Lemma 5, which says that the self-corrected proof passes the tensor-
product test on any points.

Proof (of Lemma 5). Fix any {Cλ}λ∈N, κmax, and P∗, and assume that Equation (27) holds for infinitely
many λ ∈ N. Let Λ be the set of those λ’s, and fix any sufficiently large λ ∈ Λ. Our goal is to show
Equation (28).

Roughly speaking, we obtain Equation (28) by using Observation 1 and Lemma 4. Recall that
Observation 1 guarantees that the self-corrected proof has Tensor-Product consistency on random
points. Our strategy is to use the linearity of the self-corrected proof (Lemma 4) to show that if the
self-corrected proof has Tensor-Product consistency on random points, it actually has Tensor-Product
consistency on any points u, v ∈ FN . At a high level, we implement this strategy in two steps.

1. First, we split u into u + s and s for random s ∈ FN and split v into v + t and t for random t ∈ FN ,
and then observe that we can reduce the problem of showing Tensor-Product consistency on u, v
to the problem of showing Tensor-Product consistency on four pairs of points, where at least one
of the points in each pair is taken from {u + s, s, v + t, t}.

2. Next, we show Tensor-Product consistency on the four pairs of points by relying on the fact each
point in {u+ s, s, v+ t, t} is, when viewed individually, a random point. Specifically, we show this
Tensor-Product consistency by using a strengthened version of Observation 1, namely the version
that guarantees that Tensor-Product consistency holds on any pair of a single fixed point and a
single random point.

The formal argument is given below.
We first prove the following strengthened version of Observation 1.

Claim 7. For any t ∈ {u, v}, we have

Pr

∣∣∣I′Tensor

∣∣∣ ≥ λ − 2µ

∣∣∣∣∣∣∣∣∣
ri ← FN for ∀i ∈ [λ]
(x, y, π̃)← Self-CorrectP

∗
(1λ,Cλ, {t} ∪ Q ∪ Q′)

where Q = {ri}i∈[λ] and Q′ = {t ⊗ ri}i∈[λ]

 ≥ 1 − negl(λ)

where

I′Tensor B
{
i s.t. π̃ f (t)π̃ f (ri) = π̃g(t ⊗ ri)

}
.
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Proof. For concreteness, we consider the case of t = u. (The case of t = v can be handled similarly.)
From the no-signaling property of Self-Correct (Lemma 2), it suffice to show

Pr


∣∣∣I′Tensor

∣∣∣ ≥ λ − 2µ

∣∣∣∣∣∣∣∣∣∣∣
ri, si ← FN for ∀i ∈ [λ]
(x, y, π̃)← Self-CorrectP

∗
(1λ,Cλ, {u} ∪ Q ∪ Q′)

where Q = {ri, si, u + si}i∈[λ] and
Q′ = {u ⊗ ri, (u + si) ⊗ ri, si ⊗ ri}i∈[λ]


≥ 1 − negl(λ) . (45)

In the remaining of this proof, for any event E, we use

Pr
π̃

[E]

to denote the probability of E occurring when π̃ (and others) is sampled as in Equation (45). Let

I1 B
{
i s.t. π̃ f (u + si) = π̃ f (u) + π̃ f (si)

}
I2 B

{
i s.t. π̃g((u + si) ⊗ ri) = π̃g(u ⊗ ri) + π̃g(si ⊗ ri)

}
I3 B

{
i s.t. π̃ f (u + si)π̃ f (ri) = π̃g((u + si) ⊗ ri)

}
I4 B

{
i s.t. π̃ f (si)π̃ f (ri) = π̃g(si ⊗ ri)

}
Observe that for every i such that i ∈ I1 ∩ I2 ∩ I3 ∩ I4, we have

π̃ f (u)π̃ f (ri) = π̃ f (u + si)π̃ f (ri) − π̃ f (si)π̃ f (ri) (since i ∈ I1)
= π̃g((u + si) ⊗ ri) − π̃g(si ⊗ ri) (since i ∈ I3 ∩ I4)
= π̃g(u ⊗ ri) (since i ∈ I2) .

Thus, to show Equation (45), it suffices to show

Pr
π̃

[|I1 ∩ I2 ∩ I3 ∩ I4| ≥ λ − 2µ
] ≥ 1 − negl(λ) . (46)

First, we have

Pr
π̃

[|I1| = λ] ≥ 1 − negl(λ) and Pr
π̃

[|I2| = λ] ≥ 1 − negl(λ)

since the linearity of the self-corrected proof (Lemma 4) and the no-signaling property of Self-Correct
(Lemma 2) guarantee that we have

Pr
π̃

[
π̃ f (u + si) = π̃ f (u) + π̃ f (si)

]
≥ 1 − negl(λ) ,

Pr
π̃

[
π̃g(u ⊗ ri + si ⊗ ri) = π̃g(u ⊗ ri) + π̃g(si ⊗ ri)

]
≥ 1 − negl(λ)

for every i ∈ [λ]. Next, we have

Pr
π̃

[|I3| ≥ λ − µ
] ≥ 1 − negl(λ) and Pr

π̃

[|I4| ≥ λ − µ
] ≥ 1 − negl(λ)

from Observation 1 since each of (u + s1, r1), . . . , (u + sλ, rλ) and (s1, r1), . . . , (sλ, rλ) are λ pairs of
two random points. Thus, from the union bound, we have

Pr
π̃

[|I1| = |I2| = λ ∧ |I3| ≥ λ − µ ∧ |I4| ≥ λ − µ
] ≥ 1 − negl(λ)

and thus have Equation (46) as desired. Therefore, we have Equation (45). ⊓⊔
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Now, we are ready to prove Lemma 5. From the no-signaling property of Self-Correct (Lemma 2), it
suffice to show

Pr

 π̃ f (u)π̃ f (v)
= π̃g(u ⊗ v)

∣∣∣∣∣∣∣∣∣∣∣
si, ti ← FN for ∀i ∈ [λ]
(x, y, π̃)← Self-CorrectP

∗
(1λ,Cλ, {u, v,u ⊗ v}∪Q ∪ Q′)

where Q = {si, ti, u + si, v + ti}i∈[λ] and
Q′ = {(u + si) ⊗ (v + ti),u ⊗ ti, si ⊗ v, si ⊗ v}i∈[λ]


≥ 1 − negl(λ) . (47)

In the remaining of this proof, for any event E, we use

Pr
π̃

[E]

to denote the probability of E occurring when π̃ (and others) is sampled as in Equation (47). Let

I1 B
{
i s.t. π̃ f (u + si) = π̃ f (u) + π̃ f (si)

}
I′1 B

{
i s.t. π̃ f (v + ti) = π̃ f (v) + π̃ f (ti)

}
I2 B

{
i s.t. π̃g((u + si) ⊗ (v + ti))

= π̃g(u ⊗ v) + π̃g(u ⊗ ti) + π̃g(si ⊗ v) + π̃g(si ⊗ ti)

}
I3 B

{
i s.t. π̃ f (u + si)π̃ f (v + ti) = π̃g((u + si) ⊗ (v + ti))

}
I4 B

{
i s.t. π̃ f (si)π̃ f (ti) = π̃g(si ⊗ ti)

}
I5 B

{
i s.t. π̃ f (u)π̃ f (ti) = π̃g(u ⊗ ti)

}
I6 B

{
i s.t. π̃ f (si)π̃ f (v) = π̃g(si ⊗ v)

}
Observe that for every i such that i ∈ I1 ∩ I′1 ∩ I2 ∩ I3 ∩ I4 ∩ I5 ∩ I6, we have

π̃ f (u)π̃ f (v)

= π̃ f (u + si)π̃ f (v + ti) − π̃ f (u)π̃ f (ti) − π̃ f (si)π̃ f (v) − π̃ f (si)π̃ f (ti) (since i ∈ I1 ∩ I′1)
= π̃g((u + si) ⊗ (v + ti)) − π̃g(u ⊗ ti) − π̃g(si ⊗ v) − π̃g(si ⊗ ti) (since i ∈ I3 ∩ I4 ∩ I5 ∩ I6)
= π̃g(u ⊗ v) (since i ∈ I2) .

Thus, to show Equation (47), it suffices to show

Pr
π̃

[I1 ∩ I2 ∩ I3 ∩ I4 , ∅] ≥ 1 − negl(λ) . (48)

First, we have

Pr
π̃

[|I1| = λ] ≥ 1 − negl(λ)

Pr
π̃

[
|I′1| = λ

]
≥ 1 − negl(λ)

Pr
π̃

[|I2| = λ] ≥ 1 − negl(λ)
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since the linearity of the self-corrected proof (Lemma 4 and Lemma 9) and the no-signaling property
of Self-Correct (Lemma 2) guarantees that we have

Pr
π̃

[
π̃ f (u + si) = π̃ f (u) + π̃ f (si)

]
≥ 1 − negl(λ) ,

Pr
π̃

[
π̃ f (v + ti) = π̃ f (v) + π̃ f (ti)

]
≥ 1 − negl(λ) ,

Pr
π̃

[
π̃g(u ⊗ v + u ⊗ ti + si ⊗ v + si ⊗ ti)
= π̃g(u ⊗ v) + π̃g(u ⊗ ti) + π̃g(si ⊗ v) + π̃g(si ⊗ ti)

]
≥ 1 − negl(λ)

for every i ∈ [λ]. Next, we have

Pr
π̃

[|I3| ≥ λ − µ
] ≥ 1 − negl(λ) and Pr

π̃

[|I4| ≥ λ − µ
] ≥ 1 − negl(λ)

from Observation 1 since each of (u+ s1, v+ t1), . . . , (u+ sλ, v+ tλ) and (s1, t1), . . . , (sλ, tλ) are λ pairs
of two random points, and we have

Pr
π̃

[|I5| ≥ λ − 2µ
] ≥ 1 − negl(λ) and Pr

π̃

[|I6| ≥ λ − 2µ
] ≥ 1 − negl(λ)

from Claim 7 and the no-signaling property of Self-Correct (Lemma 2). Thus, from the union bound,
we have

Pr
π̃

[
|I1| = |I′1| = |I2| = λ ∧ |I3 ∩ I4| ≥ λ − 2µ ∧ |I5 ∩ I6| ≥ λ − 4µ

]
≥ 1 − negl(λ)

and thus have Equation (48) from λ − 6µ > 0. Therefore, we have Equation (47). This concludes the
proof of Lemma 5. ⊓⊔

Remark 8. By inspection, one can verify that the proof of Lemma 5 indeed works if κmax(λ) ≥ 2λ(8λ+
3) since we make at most 8λ+ 3 queries to Self-Correct in all the mental experiments and we can use
Lemma 4 as long as κmax(λ) ≥ κV (λ) = 2λ(5λ + 3). ^

6.8 Proof of Lemma 6 (SAT Consistency of Self-Corrected Proof)

In this subsection, we prove Lemma 6, which says that the self-corrected proof passes the SAT-product
test on any points.

Proof (of Lemma 6). The high-level strategy of the proof of this lemma is the same as that of the proof
of Lemma 5, namely we prove this lemma by using Observation 1 and Lemma 4. (In other words, we
use the linearity of the self-corrected proof (Lemma 4) to show that if the self-corrected proof has
SAT consistency on random points (Observation 1), it also has SAT consistency on any points.) The
formal argument is given below.

Fix any {Cλ}λ∈N, κmax, and P∗, and assume that Equation (29) holds for infinitely many λ ∈ N. Let
Λ be the set of those λ’s, and fix any sufficiently large λ ∈ Λ. Our goal is to show Equation (30).

From the no-signaling property of Self-Correct (Lemma 2), to show Equation (30) it suffices to
show

Pr

π̃ f (ψσ) + π̃g(ψ′σ) = cσ

∣∣∣∣∣∣∣∣∣
σi ← FM for ∀ j ∈ [λ]
(x, y, π̃)← Self-CorrectP

∗
(1λ,Cλ, {ψσ,ψ′σ}∪Q)

where Q = {ψσi ,ψσ+σi ,ψ
′
σi ,ψ

′
σ+σi}i∈[λ]


≥ 1 − negl(λ) , (49)
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where for any τ = (τ1, . . . , τM) ∈ FM , we use ψτ,ψ′τ to denote the coefficient vectors such that

⟨ψτ, z⟩ + ⟨ψ′τ, z ⊗ z⟩ = Ψτ(z) def
=

∑
i∈[M]

τiΨi(z) .

In the remaining of this proof, for any event E, we use

Pr
π̃

[E]

to denote the probability of E occurring when π̃ is sampled as in Equation (49). Let

I1 B
{
i s.t. π̃ f (ψσi) + π̃g(ψ′σi) = cσi

}
I2 B

{
i s.t. π̃ f (ψσ+σi) + π̃g(ψ′σ+σi) = cσ+σi

}
I3 B

{
i s.t. π̃ f (ψσ+σi) − π̃ f (ψσi) = π̃ f (ψσ)

}
I4 B

{
i s.t. π̃g(ψ′σ+σi) − π̃g(ψ′σi) = π̃g(ψ′σ)

}
Observe that for every i such that i ∈ I1 ∩ I2 ∩ I3 ∩ I4, we have

π̃ f (ψσ) + π̃g(ψ′σ)

= π̃ f (ψσ+σi) − π̃ f (ψσi) + π̃g(ψ′σ+σi) − π̃g(ψ′σi) (since i ∈ I3 ∩ I4)
= cσ+σi − cσi (since i ∈ I1 ∩ I2)
= cσ . (from the definitions of cσ+σi , cσi)

Thus, to show Equation (49), it suffices to show

Pr
π̃

[I1 ∩ I2 ∩ I3 ∩ I4 , ∅] ≥ 1 − negl(λ) . (50)

First, we have

Pr
π̃

[|I1| ≥ λ − µ
] ≥ 1 − negl(λ) and Pr

π̃

[|I2| ≥ λ − µ
] ≥ 1 − negl(λ)

from Observation 1 and the no-signaling property of Self-Correct (Lemma 2) since each of σi and
σ + σi is a random point in FM. Next, we have

Pr
π̃

[|I3| = λ] ≥ 1 − negl(λ) and Pr
π̃

[|I4| = λ] ≥ 1 − negl(λ)

since the linearity of the self-corrected proof (Lemma 4) and the no-signaling property of Self-Correct
(Lemma 2) guarantee that we have

Pr
π̃

[
π̃ f (ψσi) + π̃ f (ψσ) = π̃ f (ψσ+σi)

]
≥ 1 − negl(λ)

Pr
π̃

[
π̃g(ψ′σi) + π̃g(ψ′σ) = π̃g(ψ′σ+σi)

]
≥ 1 − negl(λ)

for every i ∈ [λ]. Thus, from the union bound, we have

Pr
π̃

[|I1| ≥ λ − µ ∧ |I2| ≥ λ − µ ∧ |I3| = |I4| = λ
] ≥ 1 − negl(λ)

and thus have Equation (50) as desired. Therefore, we have Equation (49). This concludes the proof
of Lemma 6. ⊓⊔
Remark 9. By inspection, one can verify that the proof of Lemma 6 indeed works if κmax(λ) ≥ κV (λ) =
2λ(5λ+ 3) since we make at most 4λ+ 2 queries to Self-Correct in the mental experiment and we can
use Lemma 4 as long as κmax(λ) ≥ κV (λ). ^
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7 Analysis of Our PCP: Step 3 (Consistency with Claimed Computation)

In this section, we show that if a no-signaling cheating prover convinces the relaxed verifier with
overwhelming probability, the self-corrected proof is “locally consistent” with the system of equations
Ψ = {Ψi(z) = ci}i∈[M]. That is, we show that (1) if we recover the wire value of an input gate from
the the self-corrected proof, the recovered wire value is consistent with the input x, (2) if we recover
the wire values of the input and output wires of a gate from the self-corrected proof, the recovered
wire values are consistent with the computation of the gate, and (3) if we recover the wire value of an
output gate from the the self-corrected proof, the recovered wire value is consistent with the claimed
output y.

Lemma 10 (Consistency with Claimed Computation). Let Ṽ = (V0, Ṽ1) be the relaxed PCP verifier
in Section 5, {Cλ}λ∈N be any circuit family, and κmax be any polynomial such that κmax(λ) ≥ 2λ(8λ+3).

Then, for any κmax-wise no-signaling cheating prover P∗, if it holds

Pr
[
Ṽ1(stV , x, y, π∗) = 1

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≥ 1 − negl(λ) (51)

for infinitely many λ ∈ N (let Λ be the set of those λ’s), there exists a negligible function negl such that
for every sufficiently large λ ∈ Λ and every i∗ ∈ [M], it holds

Pr
[
Consisti∗(Cλ, x, y, π̃)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {eα, eβ, eγ})

]
≥ 1 − negl(λ) , (52)

where (1) α, β, γ ∈ [N] (α < β < γ) are any wires of Cλ such that there exist d j ∈ {−1, 0, 1} ( j ∈
{α, β, γ}) and d j,k ∈ {−1, 0, 1} ( j, k ∈ {α, β, γ}) such that the i∗-th equation of Ψ = {Ψi(z) = ci}i∈[M] can
be written as ∑

j∈{α,β,γ}
d jz j +

∑
j,k∈{α,β,γ}

d j,kz jzk = ci∗ , (53)

(2) for any j ∈ {α, β, γ}, e j = (0, . . . , 0, 1, 0, . . . , 0) ∈ FN is the vector such that only the j-th element is
1, and (3) Consisti∗(Cλ, x, y, π̃) is the event that π̃ is consistent with i∗-th equation of Ψ , i.e., it holds∑

j∈{α,β,γ}
d jπ̃ f (e j) +

∑
j,k∈{α,β,γ}

d j,kπ̃ f (e j)π̃ f (ek) = ci∗ .

Proof. Fix any {Cλ}λ∈N, κmax, and P∗, and assume that Equation (51) for infinitely many λ ∈ N. Let
Λ be the set of those λ’s, and fix any sufficiently large λ ∈ Λ and any i∗ ∈ [M]. Our goal is to show
Equation (52).

Since the high-level idea is already explained in the technical overview (Section 3), we directly go
to the formal argument. First, from SAT consistency of the self-corrected proof (Lemma 6), we obtain

Pr
[
π̃ f (ψei∗ ) + π̃g(ψ′ei∗ ) = cei∗

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {ψei∗ ,ψ

′
ei∗ })

]
≥ 1 − negl(λ) . (54)

Second, for any α, β, γ such that the i∗-th equation of Ψ can be written as Equation (53), we have

ψei∗ =
∑

j∈{α,β,γ}
d je j and ψ′ei∗ =

∑
j,k∈{α,β,γ}

d j,ke j ⊗ ek
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from the definition of ψei∗ ,ψ
′
ei∗ (cf. Lemma 6), so we have

Pr

π̃ f (ψei∗ ) =
∑

j∈{α,β,γ}
d jπ̃ f (e j)

∣∣∣∣∣∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ,Q)

where Q = {ψei∗ } ∪ {e j} j∈{α,β,γ}


≥ 1 − negl(λ)

and

Pr

π̃g(ψ′ei∗ ) =
∑

j,k∈{α,β,γ}
d j,kπ̃g(e j ⊗ ek)

∣∣∣∣∣∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ,Q)

where Q = {ψei∗ } ∪ {e j ⊗ ek} j,k∈{α,β,γ}


≥ 1 − negl(λ)

from the linearity of the self-corrected proof (Lemma 4, Lemma 7, Lemma 9), the no-signaling prop-
erty of Self-Correct (Lemma 2), and the union bound. Third, from the Tensor-Product consistency of
the self-corrected proof (Lemma 5), we have

Pr
[
π̃g(e j ⊗ ek) = π̃ f (e j)π̃ f (ek)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {e j, ek, e j ⊗ ek})

]
≥ 1 − negl(λ)

for every j, k ∈ {α, β, γ}. Now, we obtain Equation (52) from all the above by using the no-signaling
property of Self-Correct (Lemma 2) and the union bound. ⊓⊔

8 Analysis of Our PCP: Step 4 (Consistency with Correct Computation)

In this section, we show that if a no-signaling cheating prover convinces the relaxed verifier with
overwhelming probability, the self-corrected proof is consistent with the correct computation of C(x).
That is, we show that if we recover the wire value of an output gate from the the self-corrected proof,
the recovered wire value is consistent with the output C(x).

Lemma 11. Let Ṽ = (V0, Ṽ1) be the relaxed PCP verifier in Section 5, {Cλ}λ∈N be any circuit family,
and κmax be any polynomial such that κmax(λ) ≥ 2λ(8λ + 3).

Then, for any κmax-wise no-signaling cheating prover P∗, if it holds

Pr
[
Ṽ1(stV , x, y, π∗) = 1

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≥ 1 − negl(λ) (55)

for infinitely many λ ∈ N (let Λ be the set of those λ’s), there exists a negligible function negl such that
for every sufficiently large λ ∈ Λ and every i∗ ∈ [m] (recall that m is the output length of Cλ), it holds

Pr
[
π̃(eN−m+i∗) = Ci∗(x)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {eN−m+i∗})

]
≥ 1 − negl(λ) , (56)

where eN−m+i∗ = (0, . . . , 0, 1, 0, . . . , 0) ∈ FN is the vector such that only the (N − m + i∗)-th element is
1, and Ci∗(x) denote the i∗-th bit of Cλ(x).
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Proof. Fix any {Cλ}λ∈N, κmax, and P∗, and assume that Equation (55) holds for infinitely many λ ∈ N.
Let Λ be the set of those λ’s. Now, our goal is to show Equation (56) for every sufficiently large λ ∈ Λ.
The high-level idea of this proof is explained in the technical overview in Section 3.

For any Cλ, we use the following notation. Recall that we assume that arithmetic circuits are “lay-
ered” in such a way that (1) the first layer consists of the input gates and the last layer consists of the
output gates, and (2) each gate in the i-th layer has children in the (i − 1)-th layer. Let (ℓ, i) denote the
i-th wire in the ℓ-th layer. Let ℓmax be the number of the layers, and Ni be the number of the wires in
the i-th layer (i.e., those from the gates in the i-th layer); thus, we have

∑
i∈[ℓmax] Ni = N, N1 = n, and

Nℓmax = m. For every ℓ ∈ [ℓmax], let

Dℓ B {v = (v1, . . . , vN) ∈ FN | vi = 0 for ∀i < {N≤ℓ−1 + 1, . . . ,N≤ℓ−1 + Nℓ}} ,

where N≤ℓ−1 B
∑

i∈[ℓ−1] Ni.
For any λ ∈ N, we also use the following notations. For any ℓ ∈ [ℓmax] and event E, we use

Pr
Uℓ,π̃

[E]

to denote the probability of E occurring when Uℓ and π̃ are sampled as follows (along with x and y).
1. Sample uℓ,i ← Dℓ for each i ∈ [λ], and let Uℓ B {uℓ,i}i∈[λ].
2. Run (x, y, π̃)← Self-CorrectP

∗
(1λ,Cλ,Uℓ).

Similarly, for any ℓ ∈ [ℓmax] and event E, we use

Pr
Uℓ,Uℓ+1,π̃

[E]

to denote the probability of E occurring when Uℓ,Uℓ+1 and π̃ are sampled as follows.
1. Sample uℓ,i ← Dℓ and uℓ+1,i ← Dℓ+1 for each i ∈ [λ], and let Uℓ B {uℓ,i}i∈[λ] and Uℓ+1 B
{uℓ+1,i}i∈[λ].

2. Run (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ,Uℓ ∪ Uℓ+1).

Given these notations, we prove Lemma 11 by using the following claims.
Claim 8. There exists a negligible function negl such that for every sufficiently large λ ∈ Λ, we have

Pr
U1,π̃

 ∧
u∈U1

π̃(u) = π(u)

 ≥ 1 − negl(λ) ,

where π B P(C, x) is the honestly generated proof on input (C, x).

Claim 9. There exists a negligible function negl such that for every sufficiently large λ ∈ Λ and for
every ℓ ∈ [ℓmax], if we have

Pr
Uℓ,π̃

∧
u∈Uℓ
π̃(u) = π(u)

 ≥ 0.9, (57)

then for every v ∈ Dℓ, we have

Pr
v,Uℓ,π̃

π̃(v) = π(v)

∣∣∣∣∣∣∣∣
∧

u∈Uℓ
π̃(u) = π(u)

 ≥ 1 − negl(λ), (58)

where π is defined as in Claim 8, and for any event E the notation Prv,Uℓ,π̃ [E] is to denote the probability
of E occurring when Uℓ and π̃ are sampled as follows.
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1. Sample uℓ,i ← Dℓ for each i ∈ [λ], and let Uℓ B {uℓ,i}i∈[λ].
2. Run (x, y, π̃)← Self-CorrectP

∗
(1λ,Cλ, {v} ∪ Uℓ).

Claim 10. There exists a negligible function negl such that for every sufficiently large λ ∈ Λ and for
every ℓ ∈ [ℓmax − 1], if we have

Pr
Uℓ,π̃

∧
u∈Uℓ
π̃(u) = π(u)

 ≥ 0.9, (59)

then we have

Pr
Uℓ,Uℓ+1,π̃

 ∧
u∈Uℓ+1

π̃(u) = π(u)

∣∣∣∣∣∣∣∣
∧

u∈Uℓ
π̃(u) = π(u)

 ≥ 1 − negl(λ), (60)

where π is defined as in Claim 8.

Before proving these claims, we finish the proof of Lemma 11 by using them.
First, we show that there exists a negligible function negl such that for every sufficiently large

λ ∈ Λ and every ℓ ∈ [ℓmax − 1], if we have

Pr
Uℓ,π̃

∧
u∈Uℓ
π̃(u) = π(u)

 ≥ 0.9,

then we have

Pr
Uℓ+1,π̃

 ∧
u∈Uℓ+1

π̃(u) = π(u)

 ≥ Pr
Uℓ,π̃

∧
u∈Uℓ
π̃(u) = π(u)

 − negl(λ) . (61)

Fix any sufficiently large λ ∈ Λ. Toward showing Equation (61), we observe that from the no-signaling
property of Self-Correct (Lemma 2), we have

Pr
Uℓ+1,π̃

 ∧
u∈Uℓ+1

π̃(u) = π(u)

 ≥ Pr
Uℓ,Uℓ+1,π̃

 ∧
u∈Uℓ+1

π̃(u) = π(u)

 − negl(λ)

and

Pr
Uℓ,π̃

∧
u∈Uℓ
π̃(u) = π(u)

 ≤ Pr
Uℓ,Uℓ+1,π̃

∧
u∈Uℓ
π̃(u) = π(u)

 + negl(λ) ,

and thus, for any ℓ ∈ [ℓmax], we can show Equation (61) by showing

Pr
Uℓ,Uℓ+1,π̃

 ∧
u∈Uℓ+1

π̃(u) = π(u)

 ≥ Pr
Uℓ,Uℓ+1,π̃

∧
u∈Uℓ
π̃(u) = π(u)

 − negl(λ) .
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Now, we observe that this inequality indeed holds.

Pr
Uℓ,Uℓ+1,π̃

 ∧
u∈Uℓ+1

π̃(u) = π(u)


≥ Pr

Uℓ,Uℓ+1,π̃

 ∧
u∈Uℓ+1

π̃(u) = π(u)

∣∣∣∣∣∣∣∣
∧

u∈Uℓ
π̃(u) = π(u)

 Pr
Uℓ,Uℓ+1,π̃

∧
u∈Uℓ
π̃(u) = π(u)


≥ (1 − negl(λ)) × Pr

Uℓ,Uℓ+1,π̃

∧
u∈Uℓ
π̃(u) = π(u)

 (from Claim 10)

≥ Pr
Uℓ,Uℓ+1,π̃

∧
u∈Uℓ
π̃(u) = π(u)

 − negl(λ) .

Therefore, we have Equation (61) for any ℓ ∈ [ℓmax − 1] as desired.
Now, we are ready to show Equation (56). From Claim 8 and Equation (61), we have

Pr
Uℓmax ,π̃

 ∧
u∈Uℓmax

π̃(u) = π(u)

 ≥ Pr
U1,π̃

 ∧
u∈U1

π̃1(u) = π1(u)

 − (ℓmax − 1) · negl(λ)

≥ 1 − negl(λ) .

By combining this inequality with Claim 9 and the no-signaling property of Self-Correct (Lemma 2),
we obtain Equation (56). (Notice that from the construction of our PCP, we have eN−m+i∗ ∈ Dℓmax and
π(eN−m+i∗) = Ci∗(x) for every i∗ ∈ [m].)

This concludes the proof of Lemma 11 except for proving Claim 8, Claim 9, and Claim 10. Those
claims are proven in the subsequent subsections. ⊓⊔

8.1 Proof of Claim 8
From the no-signaling property of Self-Correct (Lemma 2) and the union bound, it suffices to show
the following claim.
Claim 11. There exists a negligible function negl such that for every sufficiently large λ ∈ Λ and every
v ∈ D1, we have

Pr
[
π̃(v) = π(v)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {v})

]
≥ 1 − negl(λ) .

Furthermore, since for any v ∈ D1 there exist d1, . . . , dN1 ∈ {0, . . . , |F| − 1} such that

v =
∑

i∈[N1]

die1,i

(where each e1,i B (0, . . . , 0, 1, 0, . . . , 0) ∈ FN is the vector such that only the i-th element is 1),
Claim 11 is equivalent with the following claim.
Claim 12. There exists a negligible function negl such that for every sufficiently large λ ∈ Λ and every
d1, . . . , dN1 ∈ {0, . . . , |F| − 1}, we have

Pr
[
π̃(v) = π(v)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {v})

]
≥ 1 − negl(λ) , (62)

where v B
∑

i∈[N1] die1,i.
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Therefore, we focus on proving Claim 12 below.
Proof (of Claim 12). Before showing Equation (62), we first show that there exists a negligible function
negl such that for every sufficiently large λ ∈ Λ, every i ∈ N1, and every di ∈ {0, . . . , |F| − 1}, we have

Pr
[
π̃(die1,i) = π(die1,i)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {die1,i})

]
≥ 1 − negl(λ) .

Fix any sufficiently large λ ∈ Λ, any i ∈ N1, and any di ∈ {0, . . . , |F| − 1}. From the consistency with
the claimed computation of the self-corrected proof (Lemma 11), we have

Pr
[
π̃(e1,i) = xi

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {e1,i})

]
≥ 1 − negl(λ) ,

and from the linearity of the self-corrected proof (Lemma 7, Lemma 8), we have

Pr
[
π̃(die1,i) = diπ̃(e1,i)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {e1,i, die1,i})

]
≥ 1 − negl(λ) .

Therefore, from the above inequalities, the no-signaling property of Self-Correct (Lemma 2), and the
union bound, we have

Pr
[
π̃(die1,i) = dixi

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {die1,i})

]
≥ 1 − negl(λ) .

Since we have π(die1,i) = dixi from the construction of our PCP, we have

Pr
[
π̃
(
die1,i

)
= π

(
die1,i

) ∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {die1,i})

]
≥ 1 − negl(λ)

as desired.
Now, we show Equation (62). Fix any sufficiently large λ ∈ Λ and any d1, . . . , dN1 ∈ {0, . . . , |F|−1}.

For any k ∈ [N1], let

p(k) B Pr
[
π̃(v≤k) = π(v≤k)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {v≤k})

]
,

where v≤k B
∑

i∈[k] die1,i. In this notation, our goal is to show p(N1) ≥ 1 − negl(λ). Since we have
p(1) ≥ 1 − negl(λ) from what we show in the previous paragraph, it suffices to show that we have
p(k) ≥ p(k−1)−negl(λ) for every k ∈ {2, . . . ,N}. Now, observe that for any k ∈ {2, . . . ,N}, if we have

π̃(v≤k) = π̃(v≤k−1) + π̃(dke1,k)
∧
π̃(v≤k−1) = π(v≤k−1)

∧
π̃(dke1,k) = π(dke1,k) ,

then we have π̃(v≤k) = π(v≤k) (this is because we have π(v≤k) = π(v≤k−1)+π(dke1,k) from the construc-
tion of our PCP). In addition, observe that from the linearity of the self-corrected proof (Lemma 4),
we have

Pr
[
π̃(v≤k) = π̃(v≤k−1) + π̃(dke1,k)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {v≤k−1, dke1,k, v≤k})

]
≥ 1 − negl(λ) ,

and from what we show in the previous paragraph, we have

Pr
[
π̃(dke1,k) = π(dke1,k)

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {dke1,k})

]
≥ 1 − negl(λ) .

Thus, from the no-signaling property of Self-Correct (Lemma 2) and the union bound, for randomly
chosen k ∈ {2, . . . ,N} we have p(k) ≥ p(k − 1) − negl(λ) as desired. This concludes the proof of
Claim 12. ⊓⊔
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As noted above, Claim 12 is equivalent with Claim 11, with which we can prove Claim 8. This con-
cludes the proof of Claim 8.

8.2 Proof of Claim 9

Fix any sufficiently large λ ∈ Λ. Fix any ℓ ∈ [ℓmax], and assume that Equation (57) holds. Our goal is
to show Equation (58) for any v ∈ Dℓ.

We first note that, to show Equation (58), it suffices to show

Pr
v,Uℓ,π̃

π̃(v) , π(v) ∧
∧

u∈Uℓ
π̃(u) = π(u)


 ≤ negl(λ) . (63)

This is because if we have Equation (63) and Equation (57), we have

Pr
v,Uℓ,π̃

π̃(v) = π(v)

∣∣∣∣∣∣∣∣
∧

u∈Uℓ
π̃(u) = π(u)

 ≥ 1 −
Prv,Uℓ,π̃

[
π̃(v) , π(v) ∧ (

∧
u∈Uℓ π̃(u) = π(u))

]
Prv,Uℓ,π̃

[∧
u∈Uℓ π̃(u) = π(u)

]
≥ 1 − negl(λ) .

Thus, we focus on showing Equation (63). First, from the no-signaling property of Self-Correct
(Lemma 2), if suffice to show that Equation (63) holds when Uℓ and π̃ are sampled as follows.

1. Define Uℓ = {uℓ,i}i∈[λ] by defining each uℓ,i as follows. Sample ri ∈ Dℓ and bi ∈ {0, 1} for each
i ∈ [λ]; then let uℓ,i B ri if bi = 0, and let uℓ,i B v + ri otherwise. Additionally, let U′ℓ B
{ri, v + ri}i∈[λ] \ Uℓ

2. Run (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {v} ∪ Uℓ ∪ U′ℓ).

In other words, we can obtain Equation (63) by showing

Pr
v,{ri},Uℓ,π̃

π̃(v) , π(v) ∧
∧

u∈Uℓ
π̃(u) = π(u)


 ≤ negl(λ) , (64)

where for an event E, we use

Pr
v,{ri},Uℓ,π̃

[E]

to denote the probability of E occurring when Uℓ and π̃ are sampled as above.
From the linearity of the self-corrected proof (Lemma 4), the no-signaling property of Self-Correct

(Lemma 2), and the union bound, we have

Pr
v,{ri},Uℓ,π̃

∧
i∈[λ]
π̃(v + ri) − π̃(ri) = π̃(v)

 ≥ 1 − negl(λ) .
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Hence,

Pr
v,{ri},Uℓ,π̃

π̃(v) , π(v) ∧
∧

u∈Uℓ
π̃(u) = π(u)




≤ Pr
v,{ri},Uℓ,π̃

π̃(v) , π(v) ∧
∧

u∈Uℓ
π̃(u) = π(u)

 ∧
∧

i∈[λ]
π̃(v + ri) − π̃(ri) = π̃(v)


 + negl(λ)

≤ Pr
v,{ri},Uℓ,π̃


∧

u∈Uℓ
π̃(u) = π(u)


∣∣∣∣∣∣∣∣ π̃(v) , π(v) ∧

∧
i∈[λ]
π̃(v + ri) − π̃(ri) = π̃(v)


 + negl(λ) . (65)

Now, observe that when

π̃(v) , π(v) ∧
∧

i∈[λ]
π̃(v + ri) − π̃(ri) = π̃(v)


occurs, we have either π̃(v + ri) , π(v + ri) or π̃(ri) , π(ri) for every i ∈ [λ] since we have π(v + ri) −
π(ri) = π(v) for every i ∈ [λ] from the construction of our PCP. Then, since each uℓ,i is defined by
taking either ri or v + ri randomly, we have

Pr
v,{ri},Uℓ,π̃


∧

u∈Uℓ
π̃(u) = π(u)


∣∣∣∣∣∣∣∣ π̃(v) , π(v) ∧

∧
i∈[λ]
π̃(v + ri) − π̃(ri) = π̃(v)


 ≤ 2−λ . (66)

Thus, by combining Equations (65) and (66), we obtain Equation (64) as desired. This concludes the
proof of Claim 9.

8.3 Proof of Claim 10

Fix any sufficiently large λ ∈ Λ. Fix any ℓ ∈ [ℓmax − 1] and assume that Equation (59) holds. Our goal
is to show Equation (60).

In this proof, we use

Pr [E]Uℓ

as the shorthand of

Pr

E
∣∣∣∣∣∣∣∣
∧

u∈Uℓ
π̃(u) = π(u)

 .
First, we notice that, to prove Claim 10, it suffices to show that for any i∗ ∈ [Nℓ+1], we have

Pr
[
π̃(eℓ+1,i∗) = π(eℓ+1,i∗)

∣∣∣∣∣∣ Uℓ ← Dλ
ℓ

(x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {eℓ+1,i∗} ∪ Uℓ)

]
Uℓ

≥ 1 − negl(λ) , (67)
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where eℓ+1,i∗ B (0, . . . , 0, 1, 0, . . . , 0) ∈ FN is the vector such that only the (N≤ℓ + i∗)-th element is 1
(recall that N≤ℓ B

∑
i∈[ℓ] Ni). Indeed, if we have Equation (67), we can argue as in the proof of Claim 8

that for any v =
∑

i∈[Nℓ+1] dieℓ+1,i (where d1, . . . , dNℓ+1 ∈ {0, . . . , |F| − 1}), we have

Pr
[
π̃(v) = π(v)

∣∣∣∣∣∣ Uℓ ← Dλ
ℓ

(x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {v} ∪ Uℓ)

]
Uℓ

≥ 1 − negl(λ) ,

and thus we can obtain Equation (60) from the no-signaling property of Self-Correct (Lemma 2) and
the union bound.

Thus, our goal is to show Equation (67). To simplify the exposition, we only consider the case that
i∗ ∈ [Nℓ+1] is such that the wire (ℓ + 1, i∗) is the output wire of an addition gate (other cases can be
handled similarly), and denote the input wires of this addition gate by (ℓ, j∗) and (ℓ, k∗). Now, from the
consistency with the claimed computation of the self-corrected proof (Lemma 11) and Equation (59),
we have

Pr

π̃(eℓ+1,i∗) = π̃(eℓ, j∗) + π̃(eℓ,k∗)

∣∣∣∣∣∣∣∣∣
Uℓ ← Dλ

ℓ

(x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ,Q ∪ Uℓ)

where Q = {eℓ+1,i∗ , eℓ, j∗ , eℓ,k∗}


Uℓ

≥ 1 − negl(λ) .

Then, since we have π(eℓ+1,i∗) = π(eℓ, j∗) + π(eℓ,k∗) from the construction of our PCP (Section 4), to
show Equation (67) it suffices to show that

Pr

 π̃(eℓ, j∗) = π(eℓ, j∗)∧ π̃(eℓ,k∗) = π(eℓ,k∗)

∣∣∣∣∣∣∣∣∣
Uℓ ← Dλ

ℓ

(x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ,Q ∪ Uℓ)

where Q = {eℓ+1,i∗ , eℓ, j∗ , eℓ,k∗}


Uℓ

≥ 1 − negl(λ) . (68)

Now, we notice that Equation (68) follows immediately from Equation (59), Claim 9, the no-signaling
property of Self-Correct (Lemma 2), and the union bound.

This concludes the proof of Claim 10.

9 Analysis of Our PCP: Step 5 (Concluding Proof of No-signaling Soundness)

Finally, we conclude the proof of Theorem 1. Recall that our goal is to show that for any circuit family
{Cλ}λ∈N, any polynomial κmax such that κmax(λ) ≥ 2λ · max(8λ + 3,mλ) + κV (λ), and any κmax-no-
signaling cheating prover P∗, there exists a negligible function negl such that for every λ ∈ N, we
have

Pr
[
V1(stV , x, y, π∗) = 1 ∧Cλ(x) , y

∣∣∣∣∣∣ (Q, stV )← V(1λ,Cλ)
(x, y, π∗)← P∗(1λ,Cλ,Q)

]
≤ negl(λ) .

(Recall that mλ is the output length of Cλ and κV is the query complexity of (P,V).) From Lemma 1,
it follows that toward this goal, it suffices to show that for any κ̃max-wise no-signaling cheating prover
P̃∗ and negligible function negl, we have

Pr
[
Ṽ1(stV , x, y, π∗) = 1 ∧Cλ(x) , y

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P̃∗(1λ,Cλ,Q)

]
≤ 1 − negl(λ), (69)
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for every sufficiently large λ ∈ N, where κ̃max B κmax − κV . Furthermore, it is easy to see that to show
Equation (69), it suffices to show that if there exists a negligible function negl such that we have

Pr
[
Ṽ1(stV , x, y, π∗) = 1

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P̃∗(1λ,Cλ,Q)

]
≥ 1 − negl(λ) (70)

for infinitely many λ ∈ N (let Λ be the set of those λ’s), then there exists another negligible function
negl such that we have

Pr
[
Cλ(x) , y

∣∣∣∣∣∣ (Q, stV )← V0(1λ,Cλ)
(x, y, π∗)← P̃∗(1λ,Cλ,Q)

]
≤ negl(λ) (71)

for every sufficiently large λ ∈ Λ. Thus, we focus on showing Equation (71). Fix any P∗, and assume
that we have Equation (70). Fix any sufficiently large λ ∈ Λ. (Note that we have

κ̃max(λ) = κmax(λ) − κV (λ) ≥ 2λ ·max(8λ + 3,mλ) ,

so in particular Self-Correct is m-wise no-signaling.) First, from the consistency with the claimed
computation of the self-corrected proof (Lemma 10) and the union bound, we have

Pr

∧
i∈[m]

π̃(eN−m+i) = yi

∣∣∣∣∣∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {eN−m+i}i∈[m])


≥ 1 − negl(λ) .

On the other hand, from the consistency with the correct computation of the self-corrected proof
(Lemma 11) and the union bound, we have

Pr

∧
i∈[m]

π̃(eN−m+i) = Ci(x)

∣∣∣∣∣∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {eN−m+i}i∈[m])


≥ 1 − negl(λ) .

From these two inequalities and the union bound, we obtain

Pr
[
Cλ(x) = y

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, {eN−m+i}i∈[m])

]
≥ 1 − negl(λ) .

Then, we use the no-signaling property of Self-Correct (Lemma 2) to obtain

Pr
[
Cλ(x) = y

∣∣∣ (x, y, π̃)← Self-CorrectP
∗
(1λ,Cλ, ∅)

]
≥ 1 − negl(λ) ,

and use the statement indistinguishability of self-corrected proof (Lemma 3) to obtain

Pr
[
Cλ(x) = y

∣∣∣ (x, y, π∗)← P̃∗(1λ,Cλ, ∅)
]
≥ 1 − negl(λ) .

Now, we use the no-signaling property of P̃∗ to obtain Equation (71). This concludes the proof of the
no-signaling soundness of our PCP.
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10 Application: Delegating Computation in Preprocessing Model

In this section, we give an application of our no-signaling linear PCP system to a 2-message delegation
scheme for P in the preprecessing model. As mentioned in Introduction, we obtain our delegation
scheme by applying the transformation of Kalai et al. [KRR13, KRR14] on our no-signaling linear
PCP system.

We remark that our delegation scheme is actually non-interactive in the sense that, after the veri-
fier’s message is computed and published in the (expensive) offline phase, anyone can prove a statement
to the verifier in the online phase by sending a single message, and the same offline verifier message
can be used for proving multiple statements in the online phase. Formally, this property is guaranteed
due to the adaptive soundness of our delegation scheme, which guarantees that the soundness holds
even when the statement to be proven is chosen after the verifier’s message.

10.1 Technical Overview

In this subsection, we give an overview of our delegation scheme. Those who are familiar with the
transformation of Kalai et al. [KRR13, KRR14] can skip this subsection.

Recall that in the setting of delegating computation, a computationally weak client asks a powerful
server to perform a heavy computation, and the server returns the computation result to the client with
a proof that the result is correct. Our focus is delegation schemes for arithmetic-circuit computation, so
the statement to be proven by the server is of the form (C, x, y), which states that an arithmetic circuit
C outputs y on input x. For simplicity, in this overview, we consider a static soundness setting where
the statement is fixed before the verifier’s message is generated.

In our delegation scheme, we use the following two building blocks.

– Our no-signaling linear PCP system for deterministic arithmetic-circuit computation (Section 4).
– An additive homomorphic encryption scheme HE, which is an encryption scheme such that the

message space is a finite group and that anyone can efficiently compute a ciphertext of m0 + m1
from ciphertexts of any two messages m0,m1.

We assume that the message space of HE is a finite field F of prime order, and consider delegation
scheme for arithmetic circuits over this finite field F.

The high-level structure of our delegation scheme is quite simple. When the statement is (C, x, y),
our scheme roughly proceeds as follows.

1. In the offline phase, the client firsts samples PCP queries Q of our PCP system, where Q = {qi}i∈[κV ]
and qi = (qi,1, . . . , qi,N′) ∈ FN′ , where N′ B N+N2. Next, the client encrypts those queries by HE,
where each query qi is encrypted under a fresh key. (That is, for each i ∈ [κV ], the client samples
a key pair (pki, ski) of HE and encrypts each qi, j ∈ F ( j ∈ [N′]) under the public-key pki.) Finally,
the verifier sends the resultant ciphertexts {(cti,1, . . . , cti,N′)}i∈[κV ] to the server.

2. Given the ciphertexts of the PCP queries {(cti,1, . . . , cti,N′)}i∈[κV ], the server obtain ciphertexts of
the PCP answers by homomorphically evaluate the PCP oracle π : FN′ → F under the ciphertexts
(since π is a linear function, additive homomorphism of HE suffices for evaluating π15), and then
returns the resultant ciphertexts {c̃ti}i∈[κV ] to the client.

3. Given the ciphertexts of the PCP answers {c̃ti}i∈[κV ], the client obtains the PCP answers by decrypt-
ing {c̃ti}i∈[κV ] and then verifies the PCP answers by using the PCP decision algorithm.

15 Since F is of prime order, it is possible to compute Enc(pk, v · m) from Enc(pk,m) for any v,m ∈ F.
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The offline phase of our delegation scheme is expensive since the verifier query algorithm of our PCP
system runs in time poly(λ+|C|), while the online phase is efficient since the verifier decision algorithm
of our PCP system runs in time poly(λ+ |x|+ |y|). Very roughly speaking, the soundness of our scheme
holds since, somewhat surprisingly, the semantic security of HE directly guarantees that the server can
answer to the PCP queries under the ciphertexts of HE only in a no-signaling way. (Formally, in order
to guarantee that the server is κmax-wise no-signaling for sufficiently large κmax, we need to change the
above delegation scheme and add “dummy” queries to the PCP queries.)

Using multiplicative homomorphic encryption rather than additive one. We can replace the ad-
ditive homomorphic encryption scheme in the above scheme with a multiplicative one over prime-
order bilinear group as follows: we replace the scheme so that, instead of encrypting the PCP queries
{(qi,1, . . . , qi,N)}i∈[κV ] directly, the client encrypts {gqi,1 , . . . , gqi,N }, where g is a generator of the bilinear
group, and the server homomorphically evaluates the PCP oracle in the exponent of g using the multi-
plicative homomorphic property of HE. Since the PCP verification algorithm only involves quadratic
tests on the PCP answers, the client can verify the PCP answers even when the PCP answers are en-
coded in the exponent of g. (Unfortunately, the security analysis cannot be straightforwardly modified
to work for this modified scheme.)

10.2 Preliminaries

In this subsection, we first give the definition of delegation scheme and next give the definition of
homomorphic encryption schemes.

Preprocessing non-interactive delegation scheme. For concreteness, we focus our attention on 2-
message delegation schemes with adaptive soundness, or in other words, non-interactive delegation
schemes in the preprocessing model where the preprocess consists of a single message from the veri-
fier. We remark that the following definition is essentially identical with the definition of preprocessing
SNARGs (e.g., [BCI+13]) as well as the definition of adaptively sound 2-message delegation schemes
of [BHK17, BKK+18]. The difference is that the following definition is tailored for deterministic
arithmetic circuit computation.

A preprocessing non-interactive delegation scheme consists of three polynomial-time algorithms
(Gen,Prove,Verify) with the following syntax.

– Gen is a probabilistic algorithm such that on input the security parameter 1λ and an arithmetic
circuit C, it outputs a public-key pk and a secret key sk.

– Prove is a deterministic algorithm such that on input the public-key pk, the circuit C, and an input
x of C, it outputs a proof pr.

– Verify is a deterministic algorithm such that on input the secret key sk, the input x, the output y,
and the proof pr, it outputs a bit b ∈ {0, 1}.

The execution of preprocessing non-interactive delegation schemes is separated into two phases, the
offline phase and the online phase.

– Offline phase: First, the verifier obtains an arithmetic circuit C that it wants to let the prover
compute. Next, the verifier obtains (pk, sk) by running Gen on C and sends pk to the prover. After
executing Gen, the prover can erase the circuit C.
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– Online phase: The prover, on input x (which is obtained either from the verifier or from any other
process), computes the output y = C(x) and the proof pr = Prove(pk,C, x) and then sends (x, y, pr)
to the verifier. Given (x, y, pr), the verifier verifies the proof by running Verify(sk, x, y, pr). The
online phase can be repeated multiple times on the same public key and secret key (see Remark 10
below).

Note that delegation scheme is meaningful only when the running time of Verify is much smaller than
the time that is needed for computing C(x).

The security requirements of preprocessing non-interactive delegation schemes are the following.

Correctness. For every security parameter λ ∈ N, arithmetic circuit C, input x of C, and the output
y B C(x),

Pr
[
Verify(sk, x, y, pr) = 1

∣∣∣∣∣∣ (pk, sk)← Gen(1λ,C)
pr B Prove(pk,C, x)

]
= 1 .

Soundness. For every circuit family {Cλ}λ∈N and ppt adversary A, there exists a negligible function
negl such that for every λ ∈ N,

Pr
[
Verify(sk, x, y, pr) = 1 ∧Cλ(x) , y

∣∣∣∣∣∣ (pk, sk)← Gen(1λ,Cλ)
(x, y, pr)← A(1λ,Cλ, pk)

]
≤ negl(λ) .

Remark 10. It is easy to see that if a delegation scheme is sound w.r.t. the above definition, it remains
sound even when the same (pk, sk) is used for generating multiple proofs as long as the results of the
verification are kept secret against the cheating provers (or, equivalently, as long as a new public-key–
secret-key pair is generated when the verification of a proof is rejected).16 ^

Homomorphic encryption. A public-key encryption scheme consists of three polynomial-time algo-
rithms (Gen,Enc,Dec) with the following syntax.

– Gen is a probabilistic algorithm such that on input the security parameter 1λ, it outputs a public-key
pk and a secret key sk.

– Enc is a probabilistic algorithm such that on input the public-key pk and a message m ∈ F, it
outputs a ciphertext ct. (It is assumed that pk contains the information of a finite field F, which
works as the message space.)

– Dec is a deterministic algorithm such that on input the secret-key sk and the ciphertext ct, it outputs
the plaintext m.

For any vector v, we denote by Enc(v) the element-wise encryption of v.
The following security notion of public-key encryption schemes is used in this paper (it is easy to

see that the following security notion is implied by the standard CPA-security through a simple hybrid
argument).

Definition 5 ((multi-key multi-message) CPA-security). For every polynomial p and ppt adversary
A = (A0,A1,A2), there exists a negligible function negl such that for every security parameter λ ∈ N
16 Previous designated-verifier delegation schemes (such as the schemes of [BHK17] and subsequent works) also have this

restriction.
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and every z ∈ {0, 1}poly(λ),

Pr


b = b̃

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ℓ, st0)← A0(1λ, z),where ℓ ≤ p(λ)
(pki, ski)← Gen(1λ) for every i ∈ [ℓ]
((m0,1, . . .m0,ℓ), (m1,1, . . .m1,ℓ), st1)← A1(st0, pk1, . . . , pkℓ)
b← {0, 1}
ct∗i ← Enc(pki,mb,i) for every i ∈ [ℓ]
b̃← A2(st1, ct∗1, . . . , ct∗ℓ)


≤ 1

2
+ negl(λ) .

^

A public-key encryption scheme (Gen,Enc,Dec) is additive homomorphic if it has an addi-
tional ppt algorithm Eval+ such that, on input ct1 ← Enc(m1), . . . , ctp(λ) ← Enc(mp(λ)) for any
m1, . . . ,mp(λ) ∈ F (where p is a polynomial), it outputs Enc(

∑p(λ)
i=1 mi). Formally, Eval+ is required

to satisfy the following property.

Homomorphic Evaluation. For every polynomial p, every ppt adversaryA, and every λ ∈ N,

Pr


m̃ = m1 + · · · + mp(λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)← Gen(1λ)
(m1, . . . ,mp(λ))← A(pk, sk), where m1, . . . ,mp(λ) ∈ F
ctb ← Enc(pk,mi) for every i ∈ [p(λ)]
ct← Eval+(pk, ct1, , . . . , ctp(λ))
m̃ B Dec(sk, ct)


= 1 .

To simplify the exposition, for any two ciphertext ct0, ct1 under a public-key pk, we use ct0 + ct1 as a
shorthand of Eval+(pk, ct0, ct1). Similarly, for any ciphertext ct and a scalar k ∈ N, we use k · ct as a
shorthand of ct + · · · + ct︸        ︷︷        ︸

k

.

A public-key encryption scheme is multiplicative homomorphic if it has a ppt algorithm Eval∗ that
satisfies the above property w.r.t. multiplication over F.

10.3 Our Result

Theorem 2. Assume the existence of an additive homomorphic encryption scheme over fields of prime
order (i.e., over the additive group of the fields) or a multiplicative homomorphic encryption scheme
over bilinear groups with prime order. Then, there exists a preprocessing non-interactive delegation
scheme for polynomial-time arithmetic-circuit computation with the following efficiency.

– The running time of Gen is poly(λ + |C|).
– The running time of Prove is poly(λ + |C|).
– The running tine of Verify is poly(λ + |x| + |y|).

Proof. We focus on the case of additive homomorphic encryption schemes over fields of prime orders.
(The case of multiplicative homomorphic encryption schemes over bilinear groups is discussed in
Appendix A.) Let (HE.Gen,HE.Enc,HE.Dec) be the additive homomorphic encryption scheme and
(PCP.P,PCP.V) be the PCP prover and verifiers of our PCP system (Section 4). Recall that our PCP
system satisfies the following properties.
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– It can handle arithmetic circuits over any prime-order fields. Furthermore, there exists a polynomial
κmax such that the soundness holds against any κmax-wise no-signaling adversaries.17

– For an arithmetic circuit C over a finite filed F, PCP.P outputs a linear function π : FN+N2 → F as
the PCP proof, where N is the number of wires in C. (To simplify the notations, we let N′ B N+N2

in what follows.) Since π is linear, there exists d1, . . . , dN′ ∈ F such that π(z) =
∑

i∈[N′] dizi.
– For an arithmetic circuit C over a finite filed F, PCP.V0 outputs a set of queries Q = {qi}i∈[κV (λ)] ⊂
FN′ and a state stV ∈ Fn+m, where κV is a polynomial (which is independent of C) and n,m are the
input and output length of C.

We assume that for every security parameter λ, the arithmetic circuit C to be delegated is defined over
a finite field F that is also the message space of HE.

Construction. The three algorithms (Gen,Prove,Verify) are defined as follows.

– Algorithm Gen(1λ,C)

1. Run (Q, stV )← PCP.V0(1λ,C).
Then, parse Q as {qi}i∈[κV (λ)], where qi = (qi,1, . . . , qi,N′) ∈ FN′ .

2. Define ct1, . . . , ctκmax(λ) as follows.
(a) Choose a random injective function τ : [κV (λ)]→ [κmax(λ)].
(b) Define cti for each i ∈ [κmax(λ)] by

cti ←
HE.Enc(HE.pki, qτ−1(i)) (if ∃i′ ∈ [κV (λ)] s.t. τ(i′) = i)

HE.Enc(HE.pki, 0) (otherwise)
,

where (HE.pki, HE.ski)← HE.Gen(1λ) and 0 B (0, . . . , 0) ∈ FN′ .
3. Output pk B (ct1, . . . , ctκmax(λ)) and sk B (stV , τ, {HE.ski}i∈[κmax(λ)]).

– Algorithm Prove(pk,C, x)

1. Run π← PCP.P(C, x).
Let d1, . . . , dN′ ∈ F be such that π(z) =

∑
i∈[N′] dizi.

2. Parse pk as (ct1, . . . , ctκmax(λ)), where cti = (cti,1, . . . , cti,N′).
Then, perform homomorphic operation to obtain

c̃ti B π(cti) =
∑

j∈[N′]
d jcti, j

for every i ∈ [κmax(λ)].
3. Output pr B (c̃t1, . . . , c̃tκmax(λ)).

– Algorithm Verify(sk, x, y, pr)

1. Parse sk as (stV , τ, {HE.ski}i∈[κmax(λ)]), and pr as (c̃t1, . . . , c̃tκmax(λ))
Then, run ai B HE.Dec(HE.skτ(i), c̃tτ(i)) for every i ∈ [κV (λ)].

2. Output b B PCP.V1(stV , x, y, {ai}i∈[κV (λ)]).

17 Formally, κmax depends on m, which is an upper bound of the output length of the circuits to be considered.
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Security Analysis. Correctness can be verified by inspection, so we focus on the proof of soundness.
Fix any circuit family {Cλ}λ∈N and a ppt adversaryA, and assume for contradiction that we have

Pr
[
Verify(sk, x, y, pr) = 1 ∧Cλ(x) , y

∣∣∣∣∣∣ (pk, sk)← Gen(1λ,Cλ)
(x, y, pr)← A(1λ,Cλ, pk)

]
≥ 1

poly(λ)
(72)

for infinitely many λ ∈ N. Our goal is to obtain, by using A, a successful κmax-wise no-signaling
cheating prover against our PCP system. That is, our goal is to obtain a κmax-wise no-signaling cheating
prover PCP.P∗ such that

Pr
[
PCP.V1(stV , x, y, π∗) = 1 ∧Cλ(x) , y

∣∣∣∣∣∣ (Q, stV )← PCP.V0(1λ,Cλ)
(x, y, π∗)← PCP.P∗(1λ,Cλ,Q)

]
≥ 1

poly(λ)
(73)

holds for infinitely many λ ∈ N.
Consider the following ppt κmax-wise cheating prover PCP.P∗ against our PCP system. (Essen-

tially, PCP.P∗ internally executesA while emulating Gen and Verify forA.)

– Adversary PCP.P∗(1λ,Cλ,Q)
1. Parse Q as {qi}i∈[κ], where qi = (qi,1, . . . , qi,N′) ∈ FN′ and κ B |Q|.
2. Define ct1, . . . , ctκmax(λ) as follows.

(a) Choose a random injective function τ : [κ]→ [κmax(λ)].
(b) Define cti for each i ∈ [κmax(λ)] by

cti ←
HE.Enc(HE.pki, qτ−1(i)) (if ∃i′ ∈ [κ] s.t. τ(i′) = i)

HE.Enc(HE.pki, 0) (otherwise)
,

where (HE.pki, HE.ski)← HE.Gen(1λ) and 0 B (0, . . . , 0) ∈ FN′ .
3. Run (x, y, pr)← A(1λ,Cλ, pk), where pk B (ct1, . . . , ctκmax(λ)).
4. Parse pr as (c̃t1, . . . , c̃tκmax(λ))

Then, run ai B HE.Dec(HE.skτ(i), c̃tτ(i)) for every i ∈ [κ].
5. Output (x, y, π∗), where π∗ : Q→ F is a function such that π∗(qi) = ai for every qi ∈ Q.

From the construction of PCP.P∗, we directly obtain Equation (73) from (72). (Observe that
PCP.P∗ perfectly emulates Gen and Verify forA.)

Thus, it remains to show that PCP.P∗ is κmax-wise no-signaling. That is, it remains to show that
for every ppt distinguisherDNS, there exists a negligible function negl such that for every λ ∈ N, every
Q,Q′ such that Q′ ⊂ Q and |Q| ≤ κmax(λ), and every z ∈ {0, 1}poly(λ),∣∣∣∣∣∣∣Pr

[
DNS(Cλ, x, y, π∗|Q′ , z) = 1

∣∣∣ (x, y, π∗)← PCP.P∗(1λ,Cλ,Q)
]

− Pr
[
DNS(Cλ, x, y, π∗, z) = 1

∣∣∣ (x, y, π∗)← PCP.P∗(1λ,Cλ,Q′)
] ∣∣∣∣∣∣∣ ≤ negl(λ) . (74)

We show this indistinguishability by relying on the the multi-key multi-message CPA-security of HE
(Definition 5). Fix any DNS, λ ∈ N, Q and Q′ such that Q′ ⊂ Q and |Q| ≤ κmax(λ), and z Let
z′ B (z,Cλ,Q,Q′). Then, consider the following adversary AHE = (AHE

0 ,AHE
1 ,AHE

2 ) against HE.
(Essentially,AHE internally executesANS andDNS while emulating PCP.P∗ for them.)

– AdversaryAHE
0 (1λ, z′).

1. Parse z′ as (z,Cλ,Q,Q′).
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2. Output (ℓ, st0), where ℓ B |Q \ Q′| and st0 B z′.
– AdversaryAHE

1 (st0, HE.pk1, . . . , HE.pkℓ).
1. Parse st0 as (z,Cλ,Q,Q′), and parse Q as {qi}i∈[κ], where κ B |Q|. Let i1, . . . , iℓ be such that

Q \ Q′ = {qik }k∈[ℓ].
2. Output ((qi1 , . . . , qiℓ), (0, . . . , 0)) and st1 B st0.

– AdversaryAHE
2 (st1, ct∗1, . . . , ct∗ℓ).

1. Parse st1 as (z,Cλ,Q,Q′), and parse Q as {qi}i∈[ℓ]. Let i1, . . . , iℓ be defined as above.
2. Define ct1, . . . , ctκmax(λ) as follows.

(a) Choose a random injective function τ : [κ]→ [κmax(λ)].
(b) Define ctτ(i1), . . . , ctτ(iℓ) by renaming ct∗1, . . . , ct∗ℓ as ctτ(i1), . . . , ctτ(iℓ).
(c) Define cti for each i ∈ [κmax(λ)] \ {τ(ik)}k∈[ℓ] by

cti ←
HE.Enc(HE.pki, qτ−1(i)) (if ∃i′ ∈ [κ] \ {ik}k∈[ℓ] s.t. τ(i′) = i)

HE.Enc(HE.pki, 0) (otherwise)
,

where (HE.pki, HE.ski)← HE.Gen(1λ) and 0 B (0, . . . , 0) ∈ FN′ .
3. Run (x, y, pr)← A(1λ,Cλ, pk), where pk B (ct1, . . . , ctκmax(λ)).
4. Parse pr as (c̃t1, . . . , c̃tκmax(λ))

Then, run ai B HE.Dec(HE.skτ(i), c̃tτ(i)) for every i ∈ [κ] \ {ik}k∈[ℓ].
5. Output b̃ ← DNS(Cλ, x, y, π∗, z), where π∗ : Q′ → F is a function such that π∗(qi) = ai for

every qi ∈ Q′. (Observe that Q′ = {qi}i∈[κ]\{ik}k∈[ℓ] holds since Q′ ⊂ Q.)

From the construction ofAHE, we have

Pr

AHE
2 (st1, ct∗1, . . . , ct∗ℓ) = 1

∣∣∣∣∣∣∣∣∣∣∣
(ℓ, st0)← A0(1λ, z′),where ℓ ≤ κmax(λ)
(HE.pki, HE.ski)← HE.Gen(1λ) for every i ∈ [ℓ]
((m1, . . .mℓ), (0, . . . , 0), st1)← AHE

1 (st0, HE.pk1, . . . , HE.pkℓ)
ct∗i ← HE.Enc(HE.pki,mi) for every i ∈ [ℓ]


= Pr

[
DNS(Cλ, x, y, π∗|Q′ , z) = 1

∣∣∣ (x, y, π∗)← PCP.P∗(1λ,Cλ,Q)
]

and

Pr

AHE
2 (st1, ct∗1, . . . , ct∗ℓ) = 1

∣∣∣∣∣∣∣∣∣∣∣
(ℓ, st0)← A0(1λ, z′),where ℓ ≤ κmax(λ)
(HE.pki, HE.ski)← HE.Gen(1λ) for every i ∈ [ℓ]
((m1, . . .mℓ), (0, . . . , 0), st1)← AHE

1 (st0, HE.pk1, . . . , HE.pkℓ)
ct∗i ← HE.Enc(HE.pki, 0i) for every i ∈ [ℓ]


= Pr

[
DNS(Cλ, x, y, π∗, z) = 1

∣∣∣ (x, y, π∗)← PCP.P∗(1λ,Cλ,Q′)
]
.

(Observe thatAHE perfectly emulates PCP.P∗ forANS andDNS in both cases.) Thus, from the (multi-
key multi-message) CPA-security of HE, we obtain Equation (74).

Efficiency. By inspection, it can be verified that our delegation scheme indeed has the following
efficiency.

– The running time of Gen is poly(λ + |C|).
– The running time of Prove is poly(λ + |C|).
– The running tine of Verify is poly(λ + |x| + |y|).

This concludes the proof of Theorem 2. ⊓⊔
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A Delegation Scheme based on Multiplicative Homomorphic Encryption

In this section, we explain how we prove Theorem 2 in the case of using multiplicative homomorphic
encryption schemes over prime-order bilinear groups.

Construction. The construction is based on the one that we give in Section 10.3 for the case of additive
homomorphic encryption schemes. In the following, the differences are highlighted by red.

– Algorithm Gen(1λ,C)
1. Run (Q, stV )← PCP.V0(1λ,C).

Then, parse Q as {qi}i∈[κV (λ)], where qi = (qi,1, . . . , qi,N′) ∈ FN′ .
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2. Choose a bilinear group (G,GT , e) with order |F| and its generator g, and define ct1, . . . , ctκmax(λ)
as follows.
(a) Choose a random injective function τ : [κV (λ)]→ [κmax(λ)].
(b) Define cti for each i ∈ [κmax(λ)] by

cti ←
HE.Enc(HE.pki, g

qτ−1(i)) (if ∃i′ ∈ [κV (λ)] s.t. τ(i′) = i)
HE.Enc(HE.pki, 1) (otherwise)

,

where (HE.pki, HE.ski) ← HE.Gen(1λ), gqτ−1(i) B (gqτ−1(i),1 , . . . , gqτ−1(i),N′ ), and
1 B (1, . . . , 1) ∈ GN′ .

3. Output pk B (ct1, . . . , ctκmax(λ)) and sk B (stV , τ, {HE.ski}i∈[κmax(λ)], (G,GT , e), g).
– Algorithm Prove(pk,C, x, y)

1. Run π← PCP.P(C, x, y).
Let d1, . . . , dN′ ∈ F be such that π(z) =

∑
i∈[N′] dizi.

2. Parse pk as (ct1, . . . , ctκmax(λ)), where cti = (cti,1, . . . , cti,N′).
Then, perform homomorphic operation to obtain

c̃ti B
∏

j∈[N′]
ctd j

i, j

for every i ∈ [κmax(λ)].
3. Output pr B (c̃t1, . . . , c̃tκmax(λ)).

– Algorithm Verify(sk, x, y, pr)
1. Parse sk as (stV , τ, {HE.ski}i∈[κmax(λ)], (G,GT , e), g), and pr as (c̃t1, . . . , c̃tκmax(λ))

Then, run ai B HE.Dec(HE.skτ(i), c̃tτ(i)) for every i ∈ [κV (λ)].
2. Output b B PCP.V′1(stV , x, y, {ai}i∈[κV (λ)]), where PCP.V′1 is an algorithm that runs PCP.V1

in the exponent of g by using the bilinear map e.

Security Analysis. The analysis is also based on the one that we give in Section 10.3 for the case
of additive homomorphic encryption schemes. That is, given any successful cheating ppt adversary
against the above scheme, we obtain a cheating PCP prover PCP.P∗, and show that it successfully
fools the PCP verifier as well as that it is κmax-wise no-signaling.

The problem is that if we obtain the PCP prover PCP.P∗ in the same way as in Section 10.3,
PCP.P∗ runs in super-polynomial time since the PCP answers in the delegation scheme are now en-
coded in the exponent of g and PCP.P∗ need to solve the discrete-logarithm problem to obtain the PCP
answers. This is problematic since, if PCP.P∗ runs in super-polynomial time, we can no longer show
the no-signaling property of PCP.P∗ under the semantic security of HE, which holds only against ppt
adversaries.

To overcome this problem, we modify our PCP system so that the prover returns the PCP answers in
the exponent of a generator of a bilinear group (which is chosen by the verifier as a public parameter),
and the verifier runs the verification algorithm in the exponent by using the bilinear map (recall that
the verification algorithm of our (original) PCP system only checks quadratic equations on the PCP
answers). It is easy to see that if this modified PCP system is sound against κmax-wise no-signaling
cheating provers, we can prove the soundness of the above delegating scheme as in Section 10.3.
Furthermore, it can be verified by inspection that the analysis of our original PCP system (Section 5 to
Section 9) can be straightforwardly modified so that it works for the above modified PCP system. (A
key point is every event that we consider in the analysis can be efficiently checked by quadratic tests
on PCP answers.)
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