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Abstract. In this paper we study structured linear block codes, starting
from well known examples and generalizing them to a wide class of codes
that we call reproducible codes. These codes have the property that can
be entirely generated from a small number of signature vectors, and
consequently admit matrices that can be described in a very compact
way. We then show some cryptographic applications of this class of codes
and explain why the general framework we introduce may pave the way
for future developments of code-based cryptography based on structured
codes.
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1 Introduction

Defining linear block codes that possess a certain inner structure and verify
some regularity properties is a natural process in coding theory. Arguably, the
most relevant example is represented by the class of cyclic codes, which includes
several families of codes that proved to be important throughout the history
of communications, such as BCH and Hamming codes, as well as the binary
Golay codes, Reed-Solomon codes and many others. This class is defined by the
property of having codewords that are invariant under the action of a specific
permutation, namely the cyclic (circular) shift, i.e. the rotation of the vector
to the right (equivalently, to the left). Other examples which are well-known in
literature include constacyclic codes, negacyclic codes, quasi-cyclic codes etc.

Recently, this research direction has been investigated further: Misoczki and
Barreto in 2009 introduced the family of quasi-dyadic codes [1], which contain
codewords that are invariant under a different type of permutation. The work was
motivated by its applications in the framework of the McEliece cryptosystem [2],
and in particular by the necessity of having a family of codes which possess
generator and parity-check matrices that can be represented in a compact way.
Another family of codes that have been considered for application in this context
is that of quasi-cyclic (QC) codes [3] and, more recently, of quasi-cyclic low-
density parity-check (QC-LDPC) [4] and quasi-cyclic moderate-density parity-
check (QC-MDPC) codes [5]. These codes have characteristic matrices formed



by circulant blocks, which can be described by one of their rows, thus yielding
very compact representations.

All these efforts are motivated by the fact that, in code-based cryptography,
the public key of an encryption (or signature) scheme usually consists precisely
of a generator or parity-check matrix of a linear block code. With the size of
the codes used in code-based cryptography (code length is in the order of 103
to 104), describing a whole matrix results in a public key of several kilobytes,
and this size increases quadratically in the code length. This has historically
prevented the use of the original McEliece cryptosystem [2], exploiting random-
like public codes, in many applications. On the other hand, structured codes
admit a generator and parity-check matrix which can be entirely described by
one or few rows; this allows for a very important reduction in public-key size,
and it is arguably a fundamental step towards making code-based cryptography
truly practical.

The importance of code-based cryptography has risen dramatically in recent
years due to the work of Peter Shor [6], which shows how it will be possible
to effectively break cryptography based on “classical” number theory problems
by introducing polynomial-time algorithms for factoring and computing discrete
logarithms on a quantum computer. This means that the cryptographic commu-
nity has to devise primitives which rely on different hard problems, which will
not be affected once quantum computers of an appropriate size will be available.
Code-based cryptography is one of the most important solutions in this sense,
and ever since McEliece’s seminal work in 1978, has shown no vulnerabilities
against quantum attackers.

Our Contribution In this paper we analyze in details the construction of struc-
tured codes. We introduce the notion of reproducible codes, which captures the
generic idea of a code which admits matrices that can be entirely described by
a subset of rows. We show that all the existing constructions are in fact but a
simple, special case of our general formulation. We then propose a framework for
constructing reproducible codes of any kind, and present concrete instantiations
of non-trivial reproducible codes which have not been proposed in literature
before.

2 Preliminaries

We denote with Fq the finite field with q elements, where q is a prime power. For
two sets X and Y we denote by XY the set of all functions from X to Y . For
a set S we then denote by 2S its power set, exploiting the well-known bijection
between the power set of S and the set of functions from S to {0, 1}.



2.1 Coding Theory

A linear code C is a k-dimensional subspace of the n-dimensional vector space
over the finite field Fq. The parameters n (length) and k (dimension) are positive
integers with k ≤ n. The value r = n− k is known as codimension of the code.

Definition 1 (Hamming metric). The Hamming weight wt(x) of a vector
x ∈ Fnq is the number of its non-zero entries. The Hamming distance d(x, y)
between two vectors x, y ∈ Fnq is defined as the weight of their difference, i.e.
d(x, y) = wt(x − y). The minimum distance d of a code C is defined as the
minimum distance between any two different codewords of C, or equivalently as
the minimum weight over all non-zero codewords.

A linear code of length n, dimension k, and minimum distance d is called an
[n, k, d]-code.

The error-correcting capability of a linear code is connected to its minimum
distance, and in particular it corresponds to b(d− 1)/2c.

Definition 2 (Generator and Parity Check Matrices). Let C be a linear
code over Fq. We call Generator Matrix of C a matrix G whose rows form a
basis for the vector space defined by C, i.e.:

C = {xG : x ∈ Fkq}.

For any matrix H and any vector x, the vector HxT is called syndrome of x.
We then call Parity-Check Matrix of C a matrix H such that every codeword has
syndrome 0 with respect to H, i.e.

C = {x ∈ Fnq : HxT = 0}.

Note that the parity-check matrix of a code C is also a generator matrix for
the dual code C⊥, i.e. the linear code formed by all the words of Fnq that are
orthogonal to C. It follows that for any generator matrix G and parity check
matrix H of a code, we have GHT = 0.

For an [n, k, d]-code, the generator matrix G has size k × n, and the parity
check matrix has size (n−k)×n = r×n. Both matrices always have to have full
rank. Moreover, notice that, clearly, neither matrix is unique: for instance, given
a generator matrix G it is always possible to obtain another generator matrix
for the same code by a linear transformation, that is, the multiplication on the
left by an invertible k × k matrix S, so that G′ = SG. This corresponds simply
to a change of basis for the vector space. A similar property is verified by the
parity-check matrix. Finally, two generator matrices generate equivalent codes if
one is obtained from the other by a permutation of columns. These two facts are
at the basis of the McEliece cryptosystem.

Joining these two properties, we can write any generator matrix G in system-
atic form as G = [Ik|A], where Ik is the identity matrix of size k and | denotes



concatenation. If C is generated by G = [Ik|A], then a parity check matrix for
C is H = [−AT |In−k] (up to permutation, H can be transformed so that the
identity submatrix is on the left hand side).

2.2 The McEliece Cryptosystem

The McEliece public-key encryption scheme [2] was introduced by R. J. McEliece
in 1978. The original scheme uses binary Goppa codes, with which it remains
unbroken (with a proper choice of parameters), but the scheme can be used with
any class of codes for which an efficient decoding algorithm is known.

Key Generation Let G be a generator matrix for a linear [n, k, d]-code over Fq
with an efficient decoding algorithm D which can correct up to t = b(d− 1)/2c
errors. Let S be an invertible k×k matrix and P be a random n×n permutation
matrix over Fq. The private key is (S,G, P ) and the public key is G′ := SGP .

Encryption To be able to encrypt a plaintext, it has to be represented as a
vector m of length k over Fq. The encryption algorithm chooses a random error
vector e of weight t in Fnq , and computes the ciphertext c = mG′ + e.

Decryption The decryption algorithm first computes ĉ = cP−1 = mSG+ eP−1.
As P is a permutation matrix, eP−1 has the same weight as e. Therefore, D can
be used to decode the errors: m̂ = mS = D(ĉ). Finally, the plaintext is retrieved
as m = m̂S−1.

In successive papers, the original McEliece cryptosystem was refined and
tweaked many times; for example it is now common practice to replace the
scrambling method given by S and P with the computation of the systematic
form, i.e. G′ is the systematic form of G. This is possible when the McEliece cryp-
tosystem is embedded into a larger framework to convert it into an IND-CCA2
secure PKE or KEM, and has the additional advantage (beyond the obvious sim-
per formulation) of a smaller public key (since only the non-identity submatrix
needs to be stored).

The (one-way) security of McEliece is largely based on the following hard
problem.

Problem 1 (Syndrome Decoding Problem). Given an (n−k)×n full-rank matrix
H and a vector s, both with entries in Fq, and a non-negative integer t; find a
vector e ∈ Fnq of weight t such that HeT = sT .

The Syndrome Decoding Problem (SDP) is a well-known problem in com-
plexity theory, and it has been shown to be NP complete [7]. Note that, since



the McEliece cryptosystem uses an [n, k, d] code, the number of error vectors is(
n
t

)
(q − 1)t, while the number of possible syndromes is qr. Therefore, if(

n

t

)
(q − 1)t < qr,

there is at most one solution to the problem, which guarantees the decoding
process has a unique solution.

3 Sparse-Matrix Codes

One of the most delicate points about the McEliece cryptosystem is that, in
order for the security to reduce to SDP, it is assumed that the matrix produced
as the public key is indistinguishable from a uniformly random matrix of the
same size. This is, as we just mentioned, an assumption, and while plausible,
it has been shown to be false in several cases. For many variants of McEliece
(e.g. [8], in fact, this opened up avenues of attack which simply ruled out the
variant altogether. Even the long-standing binary Goppa codes have been shown
to be distinguishable [9] when the code rate is chosen carelessly (too high). This
is arguably one of the main reasons that pushed researchers away from algebraic
codes, and towards codes of a different nature.

Low-Density Parity-Check (LDPC) codes are defined by matrices whose only
requirement is to be very sparse, with a very low, constant row weight. These
codes are easy to generate, and moreover admit a variety of choices for the
decoding algorithm D, like the Bit Flipping (BF) decoder of Gallager [10], which
is very efficient in practice. For these reasons, this class of codes is a natural
candidates for the McEliece cryptosystem. In such a framework, the secret code
C is represented through its parity check matrix H; the public key corresponds to
a generator matrix G for C. It is important to note that, from the knowledge of
G, the opponent can compute several parity-check matrices H ′ for C, but they
will not lead to an efficient decoding, unless they are sparse. As explained in
section 2.2, typically having G in systematic form is enough to guarantee such
property. Indeed, we can always write H = [H0|H1], where H0 and H1 have
dimensions, respectively, r × k and r × r. Then, the corresponding generator
matrix in systematic form is obtained as G = [Ik|HT

0 H
−T
1 ]. Typically (unless

for specific choices of H) the inverse of a sparse matrix is dense, and so H−T1 is
dense: in such a case, the multiplication of HT

0 by H−T1 is enough to hide the
structure of H into the one of G.

It is important to note that, due to their probabilistic nature, decoding algo-
rithms for LDPC codes are characterized by a non-trivial decoding failure rate
(DFR). This means that, in the case of a decoding failure, Bob must ask Alice
for a retransmission of the plaintext, encrypted with a different error vector.
In order to avoid frequent retransmissions, which would obviously increase the
latency of the system, the DFR must be kept sufficiently low; typically, values



are in the range of 10−6 to 10−9. As we will discuss later, this fact represents a
crucial difference, with respect to the case of algebraic codes, since it leads to a
new family of attacks, aimed at recovering the secret key.

3.1 Security

The advantage of using LDPC codes is that the indistinguishability issue boils
down to recovering low-weight words, and specifically low-weight codewords in
the dual code, which is again a decoding problem. In particular, let us denote
by C⊥ the dual code of C, which admits H as generator matrix. Since the rows
of H are sparse, with maximum weight w � n, with overwhelming probability
they represent minimum-weight codewords in C⊥, and so can be searched with
a generic algorithm for finding low-weight words.

At the current state of the art, the best procedure for this task is the infor-
mation set decoding (ISD) algorithm, which was first introduced by Prange in
1962 [11], and has received many improvements during the years [12–15]. How-
ever, ISD and all its variants are characterized by an exponential complexity:
the search for a weight-w codeword has asymptotic complexity equal to 2αw,
where the value of the constant α depends on the particular algorithm we are
analyzing. Even in a quantum setting, ISD algorithms are still characterized by
exponential complexity: indeed, the only known application of a quantum al-
gorithm to an ISD algorithm, which consists in using Grover’s algorithm [16]
to speed up the search, leads to a reduction in the complexity, with respect to
the classical case, which cannot be larger than the square root of the exponent
α [17]. This means that the adoption of Low-density parity-check (LDPC) and
moderate-density parity-check (MDPC) codes does not reduce the security of the
McEliece cryptosystem, since attacks deriving from the structure of the secret
code can be easily avoided by fixing the minimum weight of the rows of H.

Since the main threat to the use of LDPC codes is represented by a search
for low-weight words, it makes sense to relax the notion of “Low-Density”: the
authors in [18] introduce the notion of “Moderate-Density” by increasing the
allowed row weight in the parity-check matrix from O(1) to O(

√
n). It is still

possible to decode such codes (called MDPC by analogy) with the previously-
mentioned algorithms; the error-correction capacity gets obviously worse, but
the gain in security makes this tradeoff worth it.

3.2 Structures Codes

Using generic LDPC and MDPC is not a practical choice, since the resulting
public-key sizes are significantly larger than the ones we can obtain with other
families of codes, like Goppa codes. Indeed, even if the secret parity-check matrix
can be compactly represented just by storing the positions of the ones (and so,
each row can be stored just with w log2 n bits), applying this technique to the



public key is not possible, since a sparse G might compromise the security of the
system. One way to avoid this issue is to add some structure to the code family.
This idea was first introduced in the context of algebraic codes [3, 19], and was
therefore extended to sparse codes [5,20]. In all cases, the authors propose to use
QC codes to reduce key size. A QC code is simply a code which admits parity-
check and generator matrices made of circulant blocks. A circulant matrix is a
matrix in which every row is obtained as the cyclic shift of the previous one; an
example of a circulant matrix is depicted below.

a0 a1 . . . ap−1
a1 a2 . . . a0
...

...
. . .

...
ap−1 a0 . . . ap−2



This means that, in the McEliece cryptosystem, we can describe the public
key completely using just the first row of each circulant block; it is clear that
this results in a significant reduction in the public key size. However, this addi-
tional structure presents some drawbacks, since it exposes the system to further
weaknesses. In particular, the QC structure summed to the algebraic structure
of the underlying codes, provides a lot of information to the attacker, and opens
up the possibility of structural attacks aimed at recovering the private code.
The most famous structural attack of this type is known as FOPT [21], and
works by solving a multivariate algebraic system with Gröbner bases techniques
together with the QC property which greatly reduces the number of unknowns
of the system. As a result, it seems very hard to provide secure schemes which
involve QC algebraic codes (Goppa, GRS etc.), while still obtaining an effective
key reduction: the recent NIST proposal BIG QUAKE [?] shows a reduction of
about 1/4 of the key size which would be obtained in a “classical” McEliece using
unstructured binary Goppa codes.

Therefore, once again, it seems safer to deploy code-based schemes using
sparse codes, since in this case there is no additional algebraic structure, and the
QC property alone is not enough to provide a structural attack. However, some
care is still necessary when using such systems. In particular, we can consider
two main aspects which need to be addressed:

– ISD algorithms might exploit the QC structure, and thus obtain a speed up;
this technique, consisting of analyzing multiple samples at once, is known
as Decoding One Out of Many (DOOM) [22], and results in a reduction in
the complexity of these attacks. Note that this speedup is valid not only for
attacks aiming at recovering the secret key, but also for attacks aiming at
decoding intercepted ciphertexts (one-way security). While the speedup is
not dramatic (it is in the order of the circulant size), it still has an important
impact, since it leads to an increase in the row weight of H and in the num-
ber of errors applied during encryption, which in turn results in an increase



in the key length.

– It has been recently shown that the probability of a decoding failure depends
on the number of overlapping ones between the error vector and rows of H.
In addition, in a circulant matrix, all the rows are characterized by the same
set of cyclic distances between set symbols (given two ones at positions i and
j, the corresponding cyclic distance is computed as min {±(i− j) mod p},
with p being the circulant size). As shown in [23], an adversary can mount
a Chosen Ciphertext Attack (CCA) attack, in which he impersonates an
honest user, producing ciphertexts and requesting their decryption. The ad-
versary can then exploit the events of decoding failures, which are of public
knowledge, in order to gather information about distances among ones. The
set of all such distances is called distance spectrum, and can be used to re-
construct the secret parity-check matrix. This problem can be related to a
graph problem, in which a row of H corresponds to a clique with maximum
size. For a sparse QC matrix, such graph is sparse as well, and so it is typ-
ically characterized by a small number of cliques. This means that, once
the distance spectrum is known, recovering the corresponding parity-check
matrix is, in most of the cases, not a hard task.

Among the cited attacks, reaction attacks represent the main threat, since
they can be fully avoided only with significant trade-offs. In fact, currently ex-
isting solutions are based on the use of ephemeral keys [24, 25], or on the use
of particular families of codes which make the reconstruction of the secret key
unfeasible [26]. However, as we mentioned, both these solutions come with a sig-
nificant price to pay, since we must generate a new key-pair for each encryption
(in the first case) or increase the size of the public key. Another solution could be
that of reducing the DFR to a negligible value, in order to increase the number
of ciphertexts that the opponent must produce to recover the secret distance
spectrum [27].

As we will see in the rest of this paper, the idea of using some structure
to reduce the public key size can be strongly generalized. In particular, we will
show that existing solutions are just very special cases of a wider framework,
characterized by several different aspects. This generalization comes with no
increase in the public key, while it might allow avoiding the attack of DOOM
and/or reaction attacks, or at the very least reduce their efficiency.

4 Reproducible and Quasi-Reproducible Codes

We are now ready to introduce the fundamental notions of this paper.

Definition 3. Consider a matrix M ∈ Fk×nq . Let R be the set of the rows of M
and let 2R be its power set. We say that M is reproducible if M can be entirely
described as F(V ), where F is a family of linear transformations from Fnq to Fnq
and V is an element of 2R called the signature set.



Definition 4. Let C be a linear code over Fq, described by a generator matrix
G ∈ Fk×nq ; if G is reproducible, then we say that C is in reproducible form.

Basically, a reproducible matrix is described just by its signature set and by
the corresponding family of linear functions. Consequently, the reproducible form
of the generator matrix leads to a compact representation of the code. Actually,
the condition on the reproducibility of a matrix can be relaxed, in order to take
into account also other structures that allow a compact representation.

Definition 5. Let us consider some reproducible matrices Gi,j ∈ Fki,j×ni,j
q , each

one of them with dimensions ki,j×ni,j, signature set Vi,j ∈ Fmi,j×ni,j
q and family

of linear functions Fi,j. Let G be a matrix obtained using as building blocks the
matrices Gi,j; then, we say that G is quasi-reproducible. If G is the generator
matrix of a code C, then we say that C is in quasi-reproducible form.

It is clear that, in order to describe a quasi-reproducible matrix, we just need
the ensemble of the signature sets of its building blocks, together with the cor-
responding families of linear functions. One common case of quasi-reproducible
codes is the one in which the blocks Gi,j are square matrices, are defined by the
same family F and form a group.

Definition 6. Let us consider a family of linear functions F =
{
σ0, σ1, · · · , σ p

m−1

}
,

where each σi is a p × p matrix. We denote as MF,m the ensemble of all re-
producible matrices with signature of dimensions m × p and family of linear
transformations F . Then, ifMF,m is a group, which means

A+B,AB ∈MF,m,∀ A,B ∈MF,m,

we say that F induces a reproducible group over Fq.

4.1 Families of transformations inducing reproducible groups

In this section we derive the properties that a family of transformations F must
have, in order to let it induce a reproducible group over Fq.

Theorem 1. Let F =
{
σ0 = id, σ1, · · · , σ p

m−1

}
be a family of linear transfor-

mations inducing a reproducible group MF,m over Fq. Then, for every matrix
B ∈MF,m, it must be

σiB = Bσi, ∀i ∈ N, 0 ≤ i ≤ p

m
− 1.

Proof. Let A and B be two matrices belonging toMF,m, with respective signa-
tures a0, b0, that is

A =


a0
a1
...

a p
m−1

 =


a0
a0σ1
...

a0σ p
m−1

 , B =


b0
b1
...

b p
m−1

 =


b0
b0σ1
...

b0σ p
m−1

 .



It is straightforward to show that C = A + B is again a reproducible matrix,
defined by the family F and signature a0 + b0.

For the product C = AB, we have

C =


c0
c1
...

c p
m−1

 = AB =


a0B
a1B
...

a p
m−1B

 =


a0B
a0σ1B

...
a0σ p

m−1B

 . (1)

Since we want C to be reproducible and defined by F , its signature must be
c0 = a0B, and

a0σiB = ci = c0σi = a0Bσi, (2)
for each integer i ≤ p

m − 1. Since eq. (2) must be satisfied for every a0 ∈ Fm×pq ,
then every transformation σi must commute with every matrix B ∈MF,m, that
is σiB = Bσi. ut

In the particular case of the functions σi being permutations, the previous
theorem leads to a further result, which is described in theorem 2. Since a per-
mutation is a matrix in which every row and column has weight equal to 1, it
can equivalently described as a bijection over [0; pm − 1] ⊂ N. With some abuse
of notation, we say that σi(v) = z if the permutation σi is such that it places the
v-th element in position z. Then, σi(v) = z means that the element in position
(v, z) in σi is equal to 1. In addition, we use σi ◦ σj to denote the bijection
defined by the application of σi after σj . The actual meaning of σi (permutation
or bijection) should be clear from the context.

Theorem 2. Let F =
{
σ0 = id, σ1, · · · , σ p

m−1

}
be a family of linear transfor-

mations, with each σi being a permutation, and let us suppose that F induces a
reproducible groupMF,m over Fq. Then, the following relation must be satisfied

σiσj = σσj(i), ∀i, j ∈ N, 0 ≤ i ≤ p

m
− 1, 0 ≤ j ≤ p

m
− 1.

Proof. Because of theorem 1, for every matrix B ∈ MF,m and every function
σi it must be σiB = Bσi. In particular, the left-side multiplication of B by σi
corresponds to a row-permutation, such that

σiB =


bσi(0)

bσi(1)

...
bσi(

p
m−1) =

 =


b0σσi(0)

b0σσi(1)

...
b0σσi(

p
m−1)

 . (3)

The product Bσi defines, instead, a column permutation of the elements in B,
and can be expressed as

Bσi =


b0σ0
b0σ1
...

b0σ p
m−1

σi =


b0σ0σi
b0σ1σi

...
b0σ p

m−1σi

 . (4)



Then, we can put together eqs. (3) and (4), and thus obtain

σiσj = σσj(i), (5)

which must be satisfied for every pair of indexes (i, j). ut

From theorem 2 we can derive some other properties about that F must
satisfy.

Corollary 1. Let F be a family of permutations satisfying theorem 2. Then, F
has the following properties

(a) σi(0) = i, ∀i;
(b) ∀i ∃j s.t. σi ◦ σj = id.

Proof. From theorem 2, we have

σj = σ0σj = σσj(0), (6)

from which it is clear that it must be σj(0) = j, and this proves property (a).
Since each σi is a bijection of the integers in [0; pm − 1], we know that

∀j ∃i s.t. σj(i) = 0. (7)

Since we have defined σ0 = id, then

∀j ∃i s.t. σjσi = id, (8)

which proves property (b). ut

4.2 Some examples of reproducible groups

In the previous section we have derived some properties that a family of linear
transformations F must satisfy, in order to guarantee that it induces a repro-
ducible group over Fq. Well known cases of such groups, with common use in
cryptography, are the ones of circulant matrices and dyadic matrices. It is quite
easy to show that these families of matrices are compliant with theorem 2 and
corollary 1.

Circulant Matrices As we have seen before, a circulant matrix is a p×pmatrix for
which each row is obtained as the cyclic shift of the previous one. In particular,
a circulant matrix can be seen as a square reproducible matrix, whose signature
corresponds to the first row and the functions σi defining F correspond to πi,
where the elements of π are defined as

πl,j =

{
1 if l + 1 ≡ j mod p

0 otherwise
. (9)



Basically, the bijection representing π is defined as

π(v) = v + 1 mod p. (10)

It can be easily shown that

σi(v) = πi(v) = π ◦ π · · · ◦ π︸ ︷︷ ︸
i times

(v) = v + i mod p, (11)

which leads to πp = Ip and πiπj = πi+j mod p. Since permutation matrices
are orthogonal, their inverse correspond to their transpose, and thus we have
(πi)T = πp−i. With these properties, we have

σi ◦ σj(v) = (v + j) + i mod p =

= v + (i+ j) mod p =

= σi+j mod p(v) =

= σσj(i)(v), (12)

which corresponds to the thesis of theorem 2.

Dyadic Matrices A dyadic matrix is a p × p matrix, with p being a power of
2, whose signature corresponds to its first row. The rows of a dyadic matrix
are obtained by permuting the elements of the signature, such that the element
in position (i, j) is the one in the signature in position i ⊕ j, where ⊕ denotes
the bitwise XOR between i and j. Then, a dyadic can be described in terms
of reproducible matrices, for which each function σi is the dyadic matrix whose
signature have all null entries, except for the one in position i. This means that
σi can be described as

σi(v) = v ⊕ i mod p. (13)

If we combine two transformations, we obtain

σi ◦ σj(v) = (v ⊕ j)⊕ i =
= v ⊕ (i⊕ j) =
= σi⊕j(v) =

= σσj(i)(v),

which again is compliant with the thesis of theorem 2. It straightforwardly follows
that σi ◦ σi = id.

Circulant and dyadic matrices are just two particular cases of reproducible
groups, and can obviously be further generalized by considering signatures that
are composed by more than one row. In addition, several more constructions can
be obtained. For example, for every orthogonal matrix ψ (i.e., ψψT = Ip) and ev-
ery reproducible groupMF,m, we can obtain a new group as

{
ψMψT

∣∣M ∈MF,m}.



Indeed, for any two matrices A = ψMAψ
T and B = ψMBψ

T , with MA,MB ∈
MF,m, we have

A+B = ψMAψ
T + ψMBψ

T = ψ(MA +MB)ψ
T , (14)

AB = ψMAψ
TψMBψ

T = ψMAMBψ
T , (15)

which return matrices belonging to the defined group, sinceMA+MB ,MAMB ∈
MF,m.

The two examples we have just presented illustrate how the structures that
have been proposed for the McEliece cryptosystem (i.e, circulant and dyadics)
are just special cases of a wider framework. As we show in the next section, such
framework can be further generalized.

5 Codes in reproducible form

In the previous section we have described the properties that a family of functions
F must have, in order to let it induce a reproducible group over Fq. Our analysis
has shown that there is a wide range of possibilities for obtaining a code with a
compact representation. Basically, it is enough to choose a family of functions F
that induces a reproducible group, and use elements from such group to construct
a parity-check matrix. Then, a quasi-reproducible generator matrix can be easily
obtained (e.g., by using the systematic form); because of the group structure,
the so obtained matrix is completely described by the signatures of the blocks.
It is clear that the use of reproducible groups allows obtaining codes that can
be efficiently described. We remember that the use of such codes has a crucial
meaning for the McEliece cryptosystem, in which we are interested in obtaining
public keys that can be compactly represented. In this section we describe how
this whole construction can be further generalized. Indeed, we can obtain codes
that are described by a generator matrix that is not made of reproducible square
blocks. This fact offers a new wide range of possible constructions. Basically,
what we do in this section is removing the condition on reproducible groups and
just consider the case of codes that can be described by a reproducible generator
matrix. In addition, we provide a simple method that allows obtaining random
codes in reproducible form, starting from their parity-check matrix.

The following theorem states some properties about the parity-check matrix
that are sufficient conditions (but not necessary) for having a code in repro-
ducible form.

Theorem 3. Let C over Fq be a code with length n, dimension k and codimen-
sion r. Let m ∈ N be a factor of k, and consider a family of linear transforma-
tions F =

{
σ0, σ1, · · · , σ k

m−1

}
, with σ0 = In. Let H ∈ Fr×nq be a parity-check

matrix for C, and s ∈ N be a factor of r. Let hi denote the subset of rows of H
in positions {is, is+ 1, · · · , (i+ 1)s− 1}. Let g0 ∈ Fm×nq be a matrix such that
g0H

T = 0m×r. If we can define a function f : [0; km − 1] × [0; rs − 1] ⊂ N2 →
[0; rs − 1] ⊂ N with the following properties:



(a) hjσ
T
i = hf(i,j);

(b) for any three integers i ∈ [0; km−1] and j0, j1 ∈ [0; rs−1] it must be f(i, j0) 6=
f(i, j1);

(c) for any three integers i0, i1 ∈ [0; km−1] and j ∈ [0; rs−1] it must be f(i0, j) 6=
f(i1, j);

then C admits a generator matrix in reproducible form which is defined by the
family F and by the signature g0.

Proof. Since the generator matrix G is reproducible, with signature g0, we have

G =


g0
g1
...

g k
m−1

 =


g0
g0σ1
...

g0σ k
m−1

 , (16)

while for the parity-check matrix H we can write

H =


h0
h1
...

h r
s−1

 . (17)

Because GHT = 0k×r, it must be

gih
T
j = g0σih

T
j = 0m×s, ∀i, j ∈ N s.t. 0 ≤ i ≤ k

m
− 1, 0 ≤ j ≤ r

s
− 1. (18)

From the hypothesis, we dispose of an m×n matrix g0 such that g0HT = 0m×r,
which means

g0h
T
j = 0m×s, ∀j ∈ N s.t. 0 ≤ j ≤ r

s
− 1. (19)

Let us now consider the product gihTj = g0σih
T
j , for i ≥ 1. If we can define a

function f : [0; km − 1]× [0; rs − 1] ⊂ N2 → [0; rs − 1] ⊂ N, such that

σih
T
j = hTf(i,j), (20)

then eq. (18) is surely satisfied, since

gih
T
j = g0σih

T
j = g0h

T
f(i,j) = 0m×s, (21)

where g0hTf(i,j) because of (19). In particular, by transposing both sides of eq.
(20), we obtain hjσTi = hf(i,j), which proves property a).

For the other two properties, we must consider that we want H and G to
have rank, respectively, equal to r and k. One necessary condition for having
H with full rank (but obviously not a sufficient one) is that, for a fixed i, the
function f(i, j) spans over all the integers in [0; rs − 1] for different input values



j. Indeed, if for some integers i and j0 6= j1 we have f(i, j0) = f(i, j1), then this
means that hj0σTi = hj1σ

T
i , which implies hj0 = hj1 . In analogous way, there

cannot exist three integers i0 6= i1 and j such that hjσTi0 = hjσ
T
i1
, otherwise it

must be σi0 = σi1 , which results in G having some identical rows. ut

Theorem 3 allows obtaining a code in reproducible form in a very simple way.
Suppose that, given a family of transformations F , we have found a matrix H,
with the characteristics required by theorem 3. Then, for the code C having H as
parity-check matrix we can obtain a variety of reproducible generator matrices.
Indeed, let G be a generator matrix for C: by definition, since GHT = 0k×r, we
know that whichever subset g0 formed bym rows of G is such that g0HT = 0m×r.
Then, g0 is a valid signature for our reproducible generator matrix, defined by
the family F .

5.1 The relation between reproducible and quasi-reproducible
codes

In some cases, a quasi-reproducible code can be seen as a particular case of a
reproducible code (and viceversa). Indeed, let us consider a code C with length
n = n0p, dimension k = p and codimension r = (n0− 1)p, for some integer n0 ∈
N. We suppose that C is described by a generator matrix in quasi-reproducible
form: in particular, we suppose that G is obtained as the concatenation of n0
blocks with dimensions p× p, that is

G = [G0|G1| · · · |Gn0−1], (22)

where each Gi is an element of the reproducible groupMFi,mi , and has signature
Vi.

If the signatures have all the same number of rows (that is, mi = m), then
such a G can be characterized as a particular reproducible matrix. Indeed, let
us denote as Fi =

{
σ
(i)
0 , σ

(i)
1 , · · · , σ(i)

p
m−1

}
the i-th family of transformations. It

is quite easy to see that a matrix as in (22) can be described as a reproducible
matrix, with signature

g0 =
[
g
(0)
0

∣∣∣ g(1)0

∣∣∣ · · · ∣∣∣g(n0−1)
0

∣∣∣] , (23)

and described by a unique family of transformations F =
{
σ0, σ1, · · · , σ p

m−1

}
,

such that

σi =


σ
(0)
i 0p×p 0p×p · · · 0p×p

0p×p σ
(1)
i 0p×p · · · 0p×p

0p×p 0p×p σ
(2)
i · · · 0p×p

...
...

...
. . .

...
0p×p 0p×p 0p×p · · · σ(n0−1)

i .

 (24)



5.2 An efficient technique for obtaining reproducible codes

In this section we present a particular case of codes satisfying theorem 3, and
provide an efficient and simple technique to design such codes. Let us here con-
sider a matrix π, such that π

r
s = In, and consider the family of transformations

F =
{
σ0, σ1, · · · , σ k

m−1

}
, with σi = πi. In particular, a matrix H satisfying

theorem 3 can be easily obtained just by picking an s × n matrix h0 and using
it to generate a reproducible matrix of size r × n, with the family of functions{
In, (π

r
s−1)T , (π

r
s−2)T , · · · , (π2)T , πT

}
. In other words, we have

H =


h0
h1
h2
...

h r
s−1

 =


h0

h0(π
r
s−1)T

h0(π
r
s−2)T

...
h0(π

1)T

 . (25)

It is quite easy to show that such a parity check matrix is compliant with property
(a) from theorem 3. Indeed, we have

hjσ
T
i = h0(π

r
s−j)T (πi)T =

= h0
(
π

r
s+i−j

)T
, (26)

such that

h0
(
π

r
s+i−j

)T
= h0

[
π(i−j) mod r

s

]T
= h(i−j) mod r

s
. (27)

In such a case the function f(i, j) required by theorem 3 is defined as

f(i, j) = i− j mod
r

s
. (28)

For what concerns property (b), we can consider the following equivalence

i− j0 ≡ i− j1 mod
r

s
, (29)

which turns into
j1 − j0 ≡ 0 mod

r

s
. (30)

Then, it is clear that it must be j0, j1 < r
s : however, this condition is quite

straightforward, since j denotes the row index of the matrix blocks in H. In the
same way, when considering the index of the transformation σi, we have

i0 − j ≡ i1 − j mod
r

s
, (31)

which turns into
i0 − i1 ≡ 0 mod

r

s
. (32)

Again, in order to guarantee that the previous equivalence has no solution, it
must be i0, i1 < r

s . This basically means that we must have k ≤ m r
s .
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