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Abstract. In this paper we study structured linear block codes, starting
from well-known examples and generalizing them to a wide class of codes
that we call reproducible codes. These codes have the property that they
can be entirely generated from a small number of signature vectors, and
consequently admit matrices that can be described in a very compact
way. We then show some cryptographic applications of this class of codes
and explain why the general framework we introduce may pave the way
for future developments of code-based cryptography.
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1 Introduction

Defining linear block codes that possess a certain inner structure and verify
some regularity properties is a natural process in coding theory. Arguably, the
most relevant example is represented by the class of cyclic codes, which includes
several families of codes that proved to be important throughout the history
of communications, such as BCH and Hamming codes, as well as the binary
Golay codes, Reed-Solomon codes and many others. This class is defined by the
property of having codewords that are invariant under the action of a specific
permutation, namely the cyclic (circular) shift, i.e. the rotation of the vector
to the right (equivalently, to the left). Other examples which are well-known in
literature include constacyclic codes, negacyclic codes, quasi-cyclic codes and
many others.

In recent times, this research direction has been investigated further: Misoczki
and Barreto in 2009 introduced the family of quasi-dyadic codes [29], which
contain codewords that are invariant under a different type of permutation.
The work was motivated by its applications in the framework of the McEliece
cryptosystem [28], and in particular by the necessity of having a family of codes
which possess generator and parity-check matrices that can be represented in
a compact way. The reason behind this is that, in code-based cryptography,
the public key of an encryption (or signature) scheme usually consists precisely
of a generator or parity-check matrix of a linear block code. With the size of
the codes used in code-based cryptography (typical code length values are in
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the order of 103 to 104), describing a whole matrix results in a public key of
several kilobytes, and this size increases quadratically in the code length. This
has historically prevented the use of the original McEliece cryptosystem, which
exploits random-looking public codes, in many applications. On the other hand,
structured codes admit a generator and parity-check matrix which can be entirely
described by one or few rows; this allows for a very important reduction in
public-key size, and it is arguably a fundamental step towards making code-based
cryptography truly practical. Previous efforts to reduce key size were centered
on quasi-cyclic algebraic codes [21] and have been since then extended to codes
of a different nature, namely the low-density parity-check (LDPC) codes [3]
and their recent generalization known as moderate-density parity-check (MDPC)
codes [30]. These codes are characterized by sparse parity-check matrices and
admit characteristic matrices in quasi-cyclic form, i.e. formed by circulant square
blocks. Due to their efficient decoding algorithms and the lack of additional
algebraic structure that could lead to structural attacks, schemes based on quasi-
cyclic low-density parity-check (QC-LDPC) codes and quasi-cyclic moderate-
density parity-check (QC-MDPC) codes are among the most promising solutions
in the area.

The importance of code-based cryptography has risen dramatically in mod-
ern times due to the work of Peter Shor [35], which shows how it will be possible
to effectively break cryptography based on “classical” number theory problems
by introducing polynomial-time algorithms for factoring large integers and com-
puting discrete logarithms on a quantum computer. This means that the crypto-
graphic community has to devise primitives that rely on different hard problems,
which will not be affected once quantum computers of an appropriate size will
be available. Code-based cryptography is one of the most important areas in this
scenario, and ever since McEliece’s seminal work in 1978, has shown no vulner-
abilities against quantum attackers. Moreover, generic decoding attacks, which
have exponential complexity, have improved only marginally over nearly 40 years
of security history. Together with schemes based on lattice problems, code-based
cryptography is at the basis of many candidates for the Post-Quantum Stan-
dardization call recently launched by NIST [2].

Our Contribution In this paper we analyze in detail the nature of structured
codes. First, we introduce the notion of reproducible codes, which captures the
generic idea of a code admitting characteristic matrices that can be entirely
described by a subset of their rows. To the best of our knowledge, it is the
first time such a broad concept is introduced and studied in its entirety. We
then show that all the existing constructions of structured codes (cyclic, quasi-
cyclic, dyadic etc.) are in fact but a special case of our general formulation – in
particular, corresponding to the simplest case where the codes are “reproduced”
via permutations applied to a single row. Finally, we propose a framework for
constructing reproducible codes of any kind, and present concrete instantiations
of non-trivial reproducible codes which have not appeared in literature before.
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2 Preliminaries

We denote with Fq the finite field with q elements, where q is a prime power. For
two sets X and Y we denote by XY the set of all functions from X to Y . For
a set S we then denote by 2S its power set, i.e. the set containing all possible
subsets of S, exploiting the well-known bijection between the power set of S and
the set of functions from S to {0, 1}. We use bold letters to denote vectors and
matrices. Given a vector a, we refer to its element in position i as ai. The size-k
identity matrix is denoted as Ik, while the k×n null matrix is denoted as 0k×n.

2.1 Coding theory background

A linear code C is a k-dimensional subspace of the n-dimensional vector space
over the finite field Fq. The parameters n (length) and k (dimension) are positive
integers with k ≤ n. The value r = n− k is known as codimension of the code.

Definition 1 (Hamming metric). The Hamming weight wt(x) of a vector
x ∈ Fnq is the number of its non-zero entries. The Hamming distance d(x,y)
between two vectors x,y ∈ Fnq is defined as the weight of their difference, i.e.
d(x,y) = wt(x − y). The minimum distance d of a code C is defined as the
minimum distance between any two different codewords of C, or equivalently as
the minimum weight over all non-zero codewords.

A linear code of length n, dimension k, and minimum distance d is called an
[n, k, d]-code.

The error-correcting capability of a linear code is connected to its minimum
distance, and in particular it corresponds to b(d−1)/2c under bounded distance
decoding. When soft-decision decoding is used, a linear block code with distance
d may correct up to d− 1 symbol errors.

Definition 2 (Generator and parity-check matrices). Let C be a linear
code over Fq. We call generator matrix of C a k× n matrix G whose rows form
a basis for the vector space defined by C, i.e.:

C = {xG : x ∈ Fkq}.

For any matrix H and any vector x, the vector HxT is called syndrome of x. We
then call parity-check matrix of C an r × n matrix H such that every codeword
belonging to C has syndrome 0 with respect to H, i.e.

C = {x ∈ Fnq : HxT = 0}.

Note that the parity-check matrix of a code C is also a generator matrix for
the dual code C⊥, i.e. the linear code formed by all the words of Fnq that are
orthogonal to C. It follows that for any generator matrix G and parity-check
matrix H of a code, we have HGT = 0r×k.
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Both matrices are required to have full rank. Moreover, notice that, clearly,
neither matrix is unique: for instance, given a generator matrix G it is always
possible to obtain another generator matrix for the same code by a linear trans-
formation, that is, the multiplication on the left by an invertible k × k matrix
S, so that G′ = SG. This corresponds to a change of basis for the vector space.
A similar property is verified by the parity-check matrix. Finally, two generator
matrices generate equivalent codes if one is obtained from the other by a permu-
tation of columns. These two facts are at the basis of the McEliece cryptosystem.

Joining these two properties, we can write any generator matrix G in system-
atic form as G = [Ik|A], where Ik is the identity matrix of size k and | denotes
concatenation. If C is generated by G = [Ik|A], then a (systematic) parity-check
matrix for C is H = [−AT |Ir].

2.2 The McEliece cryptosystem

The McEliece public-key encryption scheme [28] was introduced by R. J. McEliece
in 1978. The original scheme uses binary Goppa codes, with which it remains
unbroken (with a proper choice of parameters), but the scheme can be used with
any class of codes for which an efficient decoding algorithm is known.

Key Generation Let G be a generator matrix for a linear [n, k, d]-code over Fq
with an efficient decoding algorithm D which can correct up to t = b(d− 1)/2c
errors under bounded-distance decoding. Let S be an invertible k×k matrix and
P be a random n× n permutation matrix over Fq. The private key is (S,G,P)
and the public key is G′ := SGP.

Encryption To be able to encrypt a plaintext, it has to be represented as a
vector m of length k over Fq. The encryption algorithm chooses a random error
vector e of weight t in Fnq , and computes the ciphertext c = mG′ + e.

Decryption The decryption algorithm first computes ĉ = cP−1 = mSG+eP−1.
As P is a permutation matrix, eP−1 has the same weight as e. Therefore, D can
be used to decode the errors and obtain m̂ = mS = D(ĉ). Finally, the plaintext
is retrieved as m = m̂S−1.

In successive papers, the original McEliece cryptosystem was refined and
tweaked many times; for example it is now common practice to replace the
scrambling method given by S and P with the computation of the systematic
form, i.e. G′ is the systematic form of G. This is possible when the McEliece
cryptosystem is embedded into a larger framework to convert it into an IND-
CCA2 secure PKE or KEM, and has the additional advantage (beyond the ob-
vious simpler formulation) of a smaller public key (since only the non-identity
submatrix needs to be stored).

The (one-way) security of McEliece is largely based on the following hard
problem.
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Problem 1 (Syndrome Decoding Problem). Given an r × n full-rank matrix H
and a vector s, both with entries in Fq, and a non-negative integer t; find a
vector e ∈ Fnq of weight t such that HeT = sT .

The Syndrome Decoding Problem (SDP) is a well-known problem in com-
plexity theory, and it has been shown to be NP complete [13]. Note that, since
the McEliece cryptosystem uses an [n, k, d] code, the number of error vectors is(
n
t

)
(q − 1)t, while the number of possible syndromes is qr. Therefore(

n

t

)
(q − 1)t < qr

is a necessary condition for the existence of at most one solution to the problem,
i.e., for the decoding process to have a unique solution.

3 Sparse-matrix codes

One of the most delicate points about the McEliece cryptosystem is that, in order
for the security to reduce to SDP, it is assumed that the matrix produced as the
public key is indistinguishable from a uniformly random matrix of the same
size. This is a plausible assumption, which however has been shown to be false
in several cases. For many variants of McEliece (e.g. [36]), in fact, this opened
up avenues of attack which simply ruled out the variant altogether. Even the
long-standing binary Goppa codes have been shown to be distinguishable from
random codes [20] when the code rate is chosen carelessly (too high). This is
arguably one of the main reasons that pushed researchers away from algebraic
codes, and towards codes of a different nature.

Low-Density Parity-Check (LDPC) codes are defined by parity-check matri-
ces whose main requirement is to be sparse, with a very low row and column
weight. These codes are easy to generate, and moreover admit a variety of choices
for the decoding algorithm D, like the Bit Flipping (BF) decoder of Gallager [22],
which is very efficient in practice. For these reasons, this class of codes is a nat-
ural candidate for the McEliece cryptosystem. In such a framework, the private
code C is represented through its sparse parity-check matrix H, while the public
key corresponds to a generator matrix G for C. It is important to note that, from
the knowledge of G, the opponent can compute several parity-check matrices H′
for C, but they will not lead to an efficient decoding, unless they are sparse.
As explained in section 2.2, typically having G in systematic form is enough to
guarantee such a property. Indeed, we can always write H = [H0|H1], where H0

and H1 have size r×k and r×r, respectively. Then, the corresponding generator
matrix in systematic form is obtained as G = [Ik|HT

0 H
−T
1 ]. Typically (unless

for specific choices of H) the inverse of a sparse matrix is dense, and so H−T1 is
dense: in such a case, the multiplication of HT

0 by H−T1 is enough to hide the
structure of H into the one of G.
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It is important to note that, due to their probabilistic nature, decoding algo-
rithms for LDPC codes are characterized by a non-trivial decoding failure rate
(DFR). This means that, in the case of a decoding failure, Bob must ask Alice
for a retransmission of the plaintext, encrypted with a different error vector.
In order to avoid frequent retransmissions, which would obviously increase the
latency of the system, the DFR must be kept sufficiently low; typically, values
are in the range of 10−6 to 10−9. As we will discuss later, this fact represents
a crucial difference, with respect to the case of algebraic codes, since it leads to
a new family of attacks, aimed at recovering the secret key by observing Bob’s
reactions. This also has implications on the security model against a Chosen
Ciphertext Attack (CCA) for these systems.

3.1 Main attacks

We briefly recall the two main types of attacks that can be mounted against the
McEliece cryptosystem and its variants when using sparse-matrix codes.

Decoding attacks Decoding attacks are aimed at recovering the plaintext
from the ciphertext by performing decoding through the public code. In fact,
being unable to retrieve the private code representation that enables efficient
decoding, an attacker can still try to perform decoding through the public code,
which looks like a general random code.

At the current state of the art, the best procedure for this task is the infor-
mation set decoding (ISD) algorithm, which was first introduced by Prange in
1962 [32], and has received many improvements during the years [11, 26, 27, 37].
However, ISD and all its variants are characterized by an exponential complex-
ity: the search for a weight-w codeword has asymptotic complexity equal to 2αw,
where the value of the constant α depends on the code parameters and on the
particular algorithm we are analyzing. Even in a quantum setting, ISD algo-
rithms are still characterized by exponential complexity: indeed, the only known
application of a quantum algorithm to an ISD algorithm, which consists in us-
ing Grover’s algorithm [23] to speed up the search, leads to a reduction in the
complexity, with respect to the classical case, which cannot be larger than the
square root of the exponent α [14].

Key-recovery attacks When LDPC codes are used, security against key re-
covery attacks depends on the difficulty of recovering low-weight codewords from
the dual of the public code, which is again a decoding problem. In particular, let
us denote by C⊥ the dual code of C, which admits H as generator matrix. Since
the rows of H are sparse, and have maximum weight w � n, with overwhelm-
ing probability they represent minimum-weight codewords in C⊥, and so can be
searched with a generic algorithm for finding low-weight words. ISD algorithms
can be exploited for this purpose as well.
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Since the main threat to the use of LDPC codes is represented by a search for
low-weight words, it makes sense to relax the notion of “low-density”: the authors
in [30] introduce the notion of “moderate-density” by increasing the allowed row
weight in the parity-check matrix from O(1) to O(

√
n). It is still possible to

decode such codes (called MDPC by analogy) with the previously-mentioned
algorithms; the error-correction capacity gets obviously worse, but the gain in
security makes this tradeoff worth it.

In the end, the adoption of LDPC and MDPC codes does not reduce the
security of the McEliece cryptosystem against key recovery attacks, since attacks
deriving from the structure of the secret code can be easily avoided by fixing the
minimum weight of the rows of H.

3.2 Structured sparse-matrix codes

Using generic LDPC and MDPC codes without any structure is not a practical
choice, since the resulting public key sizes are significantly larger than the ones
we can obtain with other families of codes, like Goppa codes. In fact, even if
the private sparse parity-check matrix can be compactly represented through
the positions of its non-null entries (and so, a row with Hamming weight equal
to w can be stored just with w log2 n log2 q bits), applying this technique to the
public key is not possible, since a sparse G might compromise the security of the
system. One way to avoid this issue is to add some structure to the code family.
This idea was first introduced by considering quasi-cyclic (QC) codes [21], and
was then extended to LDPC codes [6] and algebraic codes [12]. In all cases, the
authors propose to use QC codes to reduce key size. A QC code is simply a code
which admits parity-check and generator matrices made of circulant blocks. A
circulant matrix is a matrix in which every row is obtained as the cyclic shift of
the previous one; an example of a circulant matrix is reported below.

a0 a1 . . . ap−1
ap−1 a0 . . . ap−2
...

...
. . .

...
a1 a2 . . . a0


This means that, in the McEliece cryptosystem, we can describe the public

key completely using just the first row of each circulant block; it is clear that this
results in a significant reduction in the public key size. However, this additional
structure presents some drawbacks, since it exposes the system to structural
weaknesses. In particular, the QC structure summed to the algebraic structure
of the underlying codes provides a lot of information to the attacker, and opens
up the possibility of structural attacks aimed at recovering the private code.
The most famous structural attack of this type is known as FOPT [19], and
works by solving a multivariate algebraic system with Gröbner bases techniques
together with the QC property which greatly reduces the number of unknowns
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of the system. As a result, it seems very hard to provide secure schemes which
involve QC algebraic codes (Goppa, GRS etc.), while still obtaining an effective
key reduction: the recent NIST proposal BIG QUAKE [1] shows a reduction of
about 1/4 of the key size which would be obtained in a “classical” McEliece using
unstructured binary Goppa codes.

Therefore, once again, it seems safer to deploy code-based schemes using
sparse-matrix codes, since in this case there is no additional algebraic structure,
and the QC property alone is not enough to provide a structural attack. However,
some care is still necessary when using sparse-matrix codes. In particular, two
main aspects have to be considered:

– ISD algorithms might obtain a speed up from the QC structure. This re-
sults in a complexity reduction for the relevant attacks. Such a speedup is
achieved for both key recovering attacks and decoding attacks (following
from the Decoding One Out of Many (DOOM) approach [34]). The attack
complexity remains exponential in the key length, but the attack speedup
leads to an increase in the row weight of H and in the number of errors to be
used during encryption, which in turn results in an increase in the key length.

– It has been recently shown that the probability of a decoding failure de-
pends on the number of overlapping ones between the error vector and rows
of H [24]. In addition, in a circulant matrix, all the rows are character-
ized by the same set of cyclic distances between set symbols (given two
ones at positions i and j, the corresponding cyclic distance is computed as
min {±(i− j) mod p}, with p being the circulant size). Based on these con-
siderations, it has been shown in [24] that an adversary can mount a key
recovery attack by impersonating Alice, producing many ciphertexts and
requesting Bob to decrypt them. The adversary can then exploit Bob’s reac-
tions concerning decoding failures, which are of public knowledge, in order
to gather information about the secret key structure. The set of all distances
of the rows of H is called distance spectrum, and can be used to reconstruct
H. This problem can be related to a graph problem, in which a row of H
corresponds to a clique with maximum size. For a sparse QC matrix, such a
graph is sparse as well, which gives a small number of cliques. This means
that, once the distance spectrum is known, recovering the corresponding
parity-check matrix is not a hard task in most cases.

Currently, the countermeasures that have been devised against the aforemen-
tioned reaction attacks exploit the use of ephemeral keys [4,10], or of particular
families of codes which make the reconstruction of the secret key unfeasible [33].
However, both these solutions come with some price to pay, since a new key-pair
must be generated for each encryption (in the first case) or the size of the pub-
lic key must be increased (in the second case). Another solution could be that
of reducing the DFR to a negligible value, in order to increase the number of
ciphertexts that the opponent must produce to recover the secret distance spec-
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trum [38]. However, this requires the use of much longer codes, thus yielding a
considerable increase in the public key size.

As we will see in the rest of this paper, the idea of using some structure
to reduce the public key size can be strongly generalized. In particular, we will
show that existing solutions are just very special cases of a wider framework,
characterized by a large variety of options. This generalization comes with no
increase in public key size, while on the other hand potentially allows to avoid
DOOM and/or reaction attacks, or at the very least reduce their efficiency.

4 Reproducibility

We now introduce the main notions that we will use to provide a generalized
approach to the design of structured codes.

Definition 3. Consider a matrix A ∈ Fk×nq . Let R be the set of the rows of A
and let 2R be its power set. We say that A is reproducible if A can be entirely
described as F(a), where a is an element of 2R, of cardinality m < k, called the
signature set, and F = {σ0,σ1, · · · ,σ`} is a family of linear transformations on
elements of Fm×nq .

Definition 4. Let C be a linear code over Fq. If C can be described by a repro-
ducible generator matrix G ∈ Fk×nq and/or a reproducible parity-check matrix
H ∈ Fr×nq , then we say that C is in reproducible form.

Thus, a reproducible matrix is described just by its signature set and by its
family of linear functions. Consequently, having the generator matrix (and/or
the parity-check matrix) in reproducible form leads to a compact representation
of the code. The condition on the reproducibility of a matrix can be relaxed, in
order to take into account other structures that allow a compact representation.

Definition 5. Let Ai,j ∈ Fki,j×ni,jq be reproducible matrices, each with its own
dimensions, signature set ai,j ∈ Fmi,j×ni,jq and family of linear functions Fi,j.
Let A be a matrix obtained using as building blocks the matrices Ai,j; then, we
say that A is quasi-reproducible.

Definition 6. Let C be a linear code over Fq. If C can be described by a quasi-
reproducible generator matrix G ∈ Fk×nq and/or a quasi-reproducible parity-check
matrix H ∈ Fr×nq , then we say that C is in quasi-reproducible form.

It is clear that, in order to describe a quasi-reproducible matrix, we just
need the ensemble of the signature sets of its building blocks, together with
the corresponding families of linear functions. Quasi-reproducibility generalizes
the concept of reproducibility, since each reproducible code can be seen as a
particular quasi-reproducible code, with a generator matrix described just by
one signature. A particular type of quasi-reproducible codes is the one in which
the blocks Ai,j are square matrices, defined by the same family F .
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At this point, we are ready to introduce a very important notion regarding
the set of reproducible matrices obtained via a given family of transformations.
Specifically, consider a family of linear functions F =

{
σ0,σ1, · · · ,σ p

m−1

}
,

where each σi is a p × p matrix over Fq. We denote by MF,mq the set of all
reproducible matrices over Fq obtained via signatures of size m × p and F ,
equipped with the usual operations of matrix sum and multiplication. Then the
following results1 hold.

Theorem 1. The setMF,mq is an abelian group with respect to the sum.

Proof. Showing thatMF,mq is an additive abelian group is quite straightforward.
In fact, the signature of the sum of two matrices corresponds to the sum of the
original signatures. Commutativity and associativity follow from the element-
wise sum between two matrices. The identity is given by the null signature (i.e.,
the signature made of all zeros), while the inverse of a matrix with signature a
is the matrix with signature −a. ut

On the other hand, it is possible to show that the set, with respect to the
multiplication, is a semigroup; in this case, the only requirements are closure
and associativity. While associativity easily follows from the properties of the
multiplication between two matrices, in order to guarantee closure, we must
make an additional assumption.

Theorem 2. MF,mq is a semigroup with respect to the multiplication if and only
if for every matrix M ∈MF,mq , we have

σiM = Mσi, ∀i ∈ N, 0 ≤ i ≤ p

m
− 1.

Proof. We show that commutativity is necessary first. For what we discussed
above, we only need to prove closure. Let A and B be two matrices of MF,mq ,
with respective signatures a0, b0, that is

A =


a0

a0σ1

...
a0σ p

m−1

 =


a0
a1
...

a p
m−1

 , B =


b0

b0σ1

...
b0σ p

m−1

 =


b0

b1

...
b p
m−1

 .
Multiplying these two matrices we get

C = AB =


a0B
a1B
...

a p
m−1B

 =


a0B

a0σ1B
...

a0σ p
m−1B

 =


c0
c1
...

c p
m−1

 . (1)

1 For simplicity we assume σ0 = Ip, but this is not necessary and the results holds
even if F does not contain the identity function.
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Now by hypothesis
ci = a0σiB = a0Bσi = c0σi, (2)

for all i ≤ p
m − 1. It follows that C is reproducible and defined by F .

Conversely, supposeMF,mq is a semigroup, and in particular that it is closed
with respect to multiplication. Consider again two matrices A and B and their
product, defined as in Equation 1. Since by hypothesis C ∈MF,mq , and therefore
reproducible, we have that ci = c0σi for all i ≤ p

m − 1. It follows that

a0σiB = ci = c0σi = a0Bσi. (3)

Now, since equation (3) holds in general for every signature a0, it must be that
σiB = Bσi, which concludes the proof. ut

Finally, note that multiplication distributes over addition, as usual. This
means that, if the conditions of Theorem 2 are satisfied, MF,mq verifies all the
requisites of a mathematical pseudo-ring, i.e. a ring without multiplicative iden-
tity (also known as rng). We call this the reproducible pseudo-ring induced by
F over Fq.

4.1 Pseudo-rings induced by families of permutations

In the particular case of signatures made of just one row (i.e., m = 1) and the
functions σi being permutations, we have a further result, which is described
in Theorem 3. We point out that all the results we present in this section can
be generalized, in order to consider the case m > 1, but we will not go into
further details here. Since a p× p permutation corresponds to a matrix in which
every row and column has weight equal to 1, it can equivalently be described
as a bijection over [0, p − 1] ⊂ N. Given a permutation matrix σi, we denote
the corresponding bijection as fσi . If the element of σi in position (v, z) is
equal to 1, then fσi(v) = z. The inverse of fσi is denoted as f−1σi , which is the
bijection associated to the permutation matrix σ−1i = σTi ; if fσi(v) = j, then
f−1σi (j) = v. Let a and a′ be two row vectors with entries {a0, a1, a2, . . .} and
{a′0, a′1, a′2, . . .} respectively, such that a′ = aσi. Then, a′j = af−1

σi
(j). If instead

a′T = σia
T , then a′j = afσi (j). We use fσi ◦ fσj to denote the bijection defined

by the application of fσi after fσj . In other words, fσi ◦ fσj corresponds to the
permutation matrix σiσj , and fσi ◦ fσj (v) = fσi

(
fσj (v)

)
. The identity Ip can

be seen as the particular permutation that does not change the order of the
elements; the corresponding bijection, which will be denoted as fIp , is such that
each element is mapped into itself (in other words, fIp(v) = v).

Theorem 3. Let F = {σ0 = Ip,σ1, · · · ,σp−1} be a family of linear transfor-
mations, with each σi being a permutation, and suppose that F induces the
reproducible pseudo-ring MF,1q over Fq. Then, the following relation must be
satisfied

σjσi = σfσi (j), ∀i, j ∈ N, 0 ≤ i ≤ p− 1, 0 ≤ j ≤ p− 1.
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Proof. Since MF,1q is a pseudo-ring, we know from Theorem 2 that, for every
matrix B ∈ MF,1q and every function σi ∈ F , it must be σiB = Bσi. In
particular, the left-hand term multiplication of σi by B corresponds to a row
permutation, such that

σiB =


bfσi (0)
bfσi (1)

...
bfσi (p−1) =

 =


b0σfσi (0)
b0σfσi (1)

...
b0σfσi (p−1)

 , (4)

where bi denotes the i-th row of B. The product Bσi instead defines a column
permutation of B, and can be expressed as

Bσi =


b0σ0

b0σ1

...
b0σp−1

σi =


b0σ0σi
b0σ1σi

...
b0σp−1σi

 . (5)

Putting together equations (4) and (5), we obtain

σjσi = σfσi (j), (6)

which must be satisfied for every pair of indexes (i, j). ut

Starting from the result of Theorem 3, we can easily derive some other prop-
erties that F must satisfy.

Corollary 1. Let F be a family of permutations satisfying Theorem 3. Then,
F has the following properties

(a) fσi(0) = i, ∀i;
(b) ∀i ∃j s.t. fσi ◦ fσj = fIp .

Proof. According to Theorem 3, we have

σfσi (0) = σ0σi = Ipσi = σi, (7)

which can be satisfied only if fσi(0) = i, and this proves property (a).
Since each fσi is a bijection of the integers in [0, p−1], we know that, for a fixed
value of i, there is a value j ∈ [0, p− 1] such that fσi(j) = 0. Then, we have

σjσi = σfσi (j) = σ0 = Ip. (8)

In other words, the bijections corresponding to fσi and fσj are one the inverse
of the other, and this proves property (b). ut

Corollary 2. Let F be a family of permutations satisfying Theorem 3. Then,
MF,1q is a ring, which we call, by analogy, reproducible ring induced by F .
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Proof. Let us show thatMF,1q contains the multiplicative identity, i.e., the p×p
identity matrix. Because of Corollary 1, F is formed by p× p permutations such
that fσi(0) = i,∀i. If we generate the element of MF,1q corresponding to the
signature u = [1, 0, · · · , 0], we easily obtain the p× p identity matrix Ip. ut

Theorem 4. Let F be a family of permutations satisfying Theorem 3. Then,
MF,1q is a reproducible ring and the invertible elements of MF,1q constitute a
multiplicative group overMF,1q .

Proof. Based on Corollary 2,MF,1q is a reproducible ring provided with multi-
plicative identity. Now, we need to prove that any non-singular matrix inMF,1q

admits inverse inMF,1q . Let us consider a matrix A ∈MF,mq , with signature a,
and let B be its inverse. Since AB = Ip, we have

AB =


a

aσ1

...
aσp−1

B = Ip =


u

uσ1

...
uσp−1

 ,
with u = [1, 0, · · · , 0] as in Corollary 2. Then we have aσiB = uσi. For i = 0,
we have u = aB. Hence, for whichever value i, we get

aσiB = uσi = aBσi,

which can be satisfied for whichever a only if σi and B commute. Because of
Theorem 2, this means that B ∈MF,1q . ut

Sum and multiplication are not the only matrix operations we consider. In
Theorem 5 we analyze how transposition acts on the matrices belonging to a
reproducible pseudo-ringMF,1q .

Theorem 5. LetMF,1q be a reproducible pseudo-ring; if

f−1σj (i) = f−1σv (0), v = f−1σi (j), ∀i, j s.t. 0 ≤ i ≤ p− 1, 0 ≤ j ≤ p− 1

thenMF,1q is closed under the transposition operation.

Proof. Let A ∈ MF,1q , with signature a, and denote as B = AT its transpose.
The i-th row of B corresponds to the i-th column of A. In particular, the i-th
column of A is defined as 

ai
af−1
σ1

(i)

af−1
σ2

(i)

...
af−1
σp−1

(i)

 .
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Because B is the transpose of A, the i-th row of B corresponds to the i-th
column of A. Let us denote as b0 the first row of B, that is

b0 = [a0, af−1
σ1

(0), · · · , af−1
σp−1

(0)] = [af−1
σ0

(0), af−1
σ1

(0), · · · , af−1
σp−1

(0)]. (9)

Let us consider the i-th row of B, and denote it as bi; if transposition has closure
inMF,1q , then it must be

bi = [ai, af−1
σ1

(i), · · · , af−1
σp−1

(i)] = [af−1
σ0

(i), af−1
σ1

(i), · · · , af−1
σp−1

(i)] = b0σi. (10)

Now suppose that fσi(v) = j; then, the j-th entry of bi corresponds to the v-th
entry of b0, that is af−1

σv (0). In other words, we have bi,j = az, with

z = f−1σv (0), v = f−1σi (j). (11)

In order to satisfy eq. (10), az must be equal to the j-th entry of the i-th column
of A, that is af−1

σj
(i). Then, it must be f−1σj (i) = z, that is

f−1σj (i) = f−1σv (0), v = f−1σi (j), (12)

which concludes the proof. ut

Depending on the properties stated in the previous theorems, the family F
might induce different algebraic structures over Fp×pq . In particular, let us con-
sider the case of F corresponding toMF,1q satisfying both Theorems 4 and 5. Let
A be a square matrix whose elements are picked fromMF,1q . By definition, we
have A−1 = det(A)−1adj(A), where det(A) is the determinant of A and adj(A)
is the adjugate of A. Computing det(A) involves only sums and multiplications:
this means that det(A) ∈ MF,1q ; because of Theorem 4, det(A)−1 ∈ MF,1q .
Computing adj(A) involves sums, multiplications and transpositions: because of
Theorem 5, we have that the entries of adj(A) are again elements ofMF,1q . This
means that A−1 is a matrix whose elements belong to MF,1q , and so has the
same quasi-reproducible structure of A.

4.2 Known examples of reproducible pseudo-rings

In Section 4.1 we have described some properties that a family of permutations
F must have to guarantee that it induces algebraic structures on Fp×pq . Well-
known cases of such objects, with common use in cryptography, are circulant
matrices and dyadic matrices.

Circulant Matrices As we have seen before, a circulant matrix is a p×pmatrix for
which each row is obtained as the cyclic shift of the previous one. In particular,
a circulant matrix can be seen as a square reproducible matrix, whose signature
corresponds to the first row and the functions σi defining F correspond to πi,
where π is the unitary circulant permutation matrix with entries

πl,j =

{
1 if l + 1 ≡ j mod p

0 otherwise
(13)
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Basically, the bijection representing π is defined as

fπ(v) = v + 1 mod p. (14)

It can be easily shown that

fσi(v) = fπi(v) = fπ ◦ fπ · · · ◦ fπ︸ ︷︷ ︸
i times

(v) = v + i mod p, (15)

which leads to πp = Ip and πiπj = πi+j mod p. Since permutation matrices are
orthogonal, their inverses correspond to their transposes, and thus (πi)T = πp−i.
With these properties, we have

σiσj = π
i+j mod p = σi+j mod p, (16)

which is compliant with Theorem 3, since fσi(j) = i+j mod p. With some sim-
ple computations, it can be easily shown that circulant matrices satisfy Theorem
5 and that the multiplication between two circulant matrices is commutative.

Dyadic Matrices A dyadic matrix is a p× p matrix, with p being a power of 2,
whose signature is again its first row. The rows of a dyadic matrix are obtained
by permuting the elements of the signature, such that the element at position
(i, j) is the one in the signature at position i ⊕ j, where ⊕ denotes the bitwise
XOR between i and j. Then, a dyadic matrix can be described in terms of
reproducible matrices, for which each function σi is the dyadic matrix whose
signature has all-zero entries, except that at position i. This means that σi can
be described by the following bijection

fσi(v) = v ⊕ i mod p. (17)

If we combine two transformations, we obtain

fσi ◦ fσj (v) = (v ⊕ j)⊕ i = v ⊕ (i⊕ j) = fσi⊕j (v). (18)

Since fσi(j) = i⊕ j, this proves that the family of dyadic matrices is compliant
with Theorem 3. It can be straightforwardly proven that dyadic matrices are
symmetric (and so, satisfy Theorem 5), and that the multiplication between two
dyadic matrices is commutative.

Circulant and dyadic matrices are just two particular cases of reproducible
pseudo-rings, and can obviously be further generalized by considering signatures
that are composed by more than one row. In addition, several more construc-
tions can be obtained. For instance, for every permutation matrix ψ and every
reproducible pseudo-ringMF,mq , induced by F =

{
σ0 = Ip, σ1, · · · , σ p

m−1

}
, we

can obtain a new pseudo-ring as

MF
′,m

q =
{
M′|M′ = ψMψT , M ∈MF,mq

}
. (19)
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The corresponding family of transformations is F ′ =
{
σ′0, σ

′
1, · · · , σ′p

m−1

}
, with

σ′i = σfψ(i)ψ
T . Proving that F ′ actually induces a pseudo-ring is quite simple;

indeed, for any two matrices A = ψMAψ
T and B = ψMBψ

T , with MA,MB ∈
MF,m, we have

A+B = ψMAψ
T +ψMBψ

T = ψ(MA +MB)ψ
T , (20)

AB = ψMAψ
TψMBψ

T = ψMAMBψ
T , (21)

which return matrices belonging to MF ′,mq , since MA + MB ∈ MF,mq and
MAMB ∈ MF,mq . In addition, if multiplication is commutative inMF,mq , then
it will be commutative in MF ′,mq too. To prove this fact, let us consider two
matrices MA,MB ∈ MF,mq , such that MAMB = MBMA. Then, for A =

ψMAψ
T and B = ψMBψ

T , we have

AB = ψMAψ
TψMBψ

T = ψMAMBψ
T =

= ψMBMAψ
T = ψMBψ

TψMAψ
T = BA.

It is easy to prove that, ifMF,mq is closed under transposition,MF ′,mq is too.

5 Codes in reproducible form

In the previous section we have described the properties that a family of functions
F must have in order to generate reproducible matrices. This opens a wide
range of possibilities for obtaining codes with compact representations. In fact,
reproducible pseudo-rings allow to design codes that can be described in a very
compact manner. Codes of this type are of interest in code-based cryptography,
where small public keys are important.

In this section we describe how to design codes with reproducible represen-
tations, and the properties that characterize them. In particular we study how
to achieve a reproducible representation for the parity-check matrix H starting
from a generator matrix G in reproducible form. In addition, we provide in-
tuitive methods to obtain random-looking codes in reproducible form, starting
from their parity-check matrix. The following theorem states some properties
about the parity-check matrix that are sufficient (but not necessary) conditions
for having a code with G and H in reproducible form.

Theorem 6. Let G ∈ Fk×nq be a reproducible matrix, with signature g0 ∈ Fm×nq

(hence, m is among the factors of k) and family F =
{
σ0,σ1, · · · ,σ k

m−1

}
. For

simplicity, we suppose that σ0 = In. Let H ∈ Fr×nq , such that g0H
t = 0m×r. We

denote as hj the subset of rows of H at positions {js, js+ 1, · · · , (j + 1)s− 1}.
If we can define a function f(x0, x1) : [0, km−1]×[0,

r
s−1] ⊂ N2 → [0, rs−1] ⊂ N,

such that

hjσ
T
i = hf(i,j), ∀i, j ∈ N, 0 ≤ i ≤ k

m
− 1, 0 ≤ j ≤ r

s
− 1, (22)

then G and HT are orthogonal, i.e. GHT = 0k×r.



Reproducible Codes and Cryptographic Applications 17

Proof. Since the generator matrix G is reproducible, with signature g0, we have

G =


g0

g1

...
g k
m−1

 =


g0

g0σ1

...
g0σ k

m−1

 , H =


h0

h1

...
h r
s−1

 . (23)

In order for G to be a valid generator matrix, it must be GHT = 0k×r, that is

gih
T
j = g0σih

T
j = 0m×s, ∀i, j ∈ N s.t. 0 ≤ i ≤ k

m
− 1, 0 ≤ j ≤ r

s
− 1. (24)

By hypothesis, g0 is an m× n matrix such that g0H
T = 0m×r, which means

g0h
T
j = 0m×s, ∀j ∈ N s.t. 0 ≤ j ≤ r

s
− 1. (25)

Consider now the product gihTj = g0σih
T
j , for i ≥ 1. If we can define a function

f(x0, x1) : [0,
k
m − 1]× [0, rs − 1] ⊂ N2 → [0, rs − 1] ⊂ N with the aforementioned

property described by (22), then for all couples of indexes i, j we have

σih
T
j = hTf(i,j), (26)

and (24) is surely satisfied, since

gih
T
j = g0σih

T
j = g0h

T
f(i,j) = 0m×s, (27)

where g0h
T
f(i,j) = 0m×s because of (25). ut

For G and H to be, respectively, generator and parity-check matrix of a code
C, some conditions have to be verified, given in Corollary 3 below.

Corollary 3. Let G ∈ Fk×nq be a reproducible matrix, with signature g0 ∈ Fm×nq

(hence, m is among the factors of k) and family F =
{
σ0,σ1, · · · ,σ k

m−1

}
. Let

H ∈ Fr×nq be a matrix such that GHT = 0k×n, and suppose that it satisfies the
hypothesis of Theorem 6. For H and G to be, respectively, the parity-check and
generator matrices of a code C with length n, dimension k and redundancy r, the
following conditions are necessary

(a) F contains k
m distinct linear transformations;

(b) k
m ≤

r
s ;

(c) for any three integers i ∈ [0, km − 1] and j′, j′′ ∈ [0, rs − 1], with j′ 6= j′′, it
must be f(i, j′) 6= f(i, j′′).

Proof. We want the reproducible k × n matrix G to be the generator matrix of
a code with dimension k: then, G must have rank equal to k. If F contains two
transformations σi = σj , with i 6= j, then the rows of G obtained as g0σi are
identical to the ones obtained as g0σj . If G has some identical rows, then its
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rank cannot be maximum, and this proves condition (a). It is straightforward
to show that this condition can also be expressed as follows: there cannot exists
three integers i′, i′′ ∈ [0, km − 1], with i′ 6= i′′, and j ∈ [0, rs − 1], such that
f(i′, j) = f(i′′, j). Indeed, if we can determine such integers, then

hjσ
T
i′ = hf(i′,j) = hf(i′′,j) = hjσ

T
i′′ ,

which results in σi′ = σi′′ .

We can then easily prove condition (b). Indeed, fix an integer j ∈ [0, rs − 1]

and consider, for all i ∈ [0, km − 1], all the images f(i, j): because of condition
(a), these images must be distinct. However, the dimension of the codomain of
f(i, j) is equal to r

s : if
k
m > r

s , then (a) cannot be satisfied. This proves (b).
If H is the parity-check matrix a code with redundancy r, then it must have
rank equal to r. If we suppose that there exists three integers i ∈ [0, km − 1],
j′, j′′ ∈ [0, rs − 1], with j′ 6= j′′, such that f(i, j′) = f(i, j′′) then, because of
Theorem 6, we also have hj′σ

T
i = hj′′σ

T
i , which implies hj′ = hj′′ . If H has

some identical rows, then its rank must be < r, and this proves condition (c). ut

Theorem 6 and Corollary 3 allow obtaining a code in reproducible form in a
very simple way. Given a family of transformations F , a matrix H with the
characteristics required by the theorem can be found. Then, for the code C
having H as parity-check matrix, a variety of reproducible generator matrices
can be found. Indeed, let G be a generator matrix for C: by definition, since
GHT = 0k×r, we know that whichever subset g0 formed by m rows of G is such
that g0H

T = 0m×r. Then, g0 is a valid signature for a reproducible generator
matrix, defined by the family F . On condition that both H and G have full
rank, then they can be used to represent the code C, with length n, dimension
k and redundancy r.

In some cases, a quasi-reproducible code can be seen as a particular case of a
reproducible code (and viceversa). Let us consider a code C with length n = n0p,
dimension k = p and codimension r = (n0−1)p, for some integer n0 ∈ N. Let us
suppose that G is obtained as a row of n0 blocks with dimensions p× p, that is

G = [G0|G1| · · · |Gn0−1]. (28)

This form of the generator matrix is commonly used in sparse-matrix code-based
cryptosystems [5,30]. Suppose that G in (28) is in quasi-reproducible form, i.e.,
each Gi is an element of the reproducible pseudo-ringMFi,miq , and has signature
Vi. If the signatures have all the same number of rows (that is, mi = m), then
such a G can be characterized as a particular reproducible matrix. Let us write
the i-th family of transformations as Fi =

{
σ

(i)
0 ,σ

(i)
1 , · · · ,σ(i)

p
m−1

}
and define an

overall family of transformations F =
{
σ0,σ1, · · · ,σ p

m−1

}
, such that
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σi =


σ

(0)
i 0p×p 0p×p · · · 0p×p

0p×p σ
(1)
i 0p×p · · · 0p×p

0p×p 0p×p σ
(2)
i · · · 0p×p

...
...

...
. . .

...
0p×p 0p×p 0p×p · · · σ(n0−1)

i

 . (29)

Then, it is easy to see that a matrix in the form (28) can be described as a
reproducible matrix obtained through F in (29), with signature

g0 =
[
g
(0)
0

∣∣∣ g(1)
0

∣∣∣ · · · ∣∣∣g(n0−1)
0

]
. (30)

5.1 Reproducible Codes from Householder Matrices

A Householder matrix [25] is a matrix that is at the same time orthogonal and
symmetric. Let us consider a set of distinct Householder matrices ψ0, · · · ,ψv−1.
We have that, for all j = 0, . . . , v − 1, it must be ψ−1j = ψTj = ψj . In order
to fulfill the conditions of Theorem 6, these matrices must form a commutative
group, that is

ψiψj = ψjψi, 0 ≤ i, j ≤ v − 1. (31)

Let us consider two sets containing all the 2v distinct binary v-tuples, i.e.{
a(i)
∣∣∣ 0 ≤ i ≤ 2v − 1, a(i) ∈ Fv2, s.t. a(i) 6= a(j), ∀i 6= j

}
,{

b(i)
∣∣∣ 0 ≤ i ≤ 2v − 1, b(i) ∈ Fv2, s.t. b(i) 6= b(j), ∀i 6= j

}
.

(32)

For the sake of simplicity, let us fix a(0) = 01×v. It is clear that these two sets
are identical, except for the order of their elements. We can now define a family
of transformations F , containing 2v linear functions σi, defined as

σi =

v−1∏
l=0

ψ
a
(i)
l

l , (33)

where a(i)l is the l-th entry of a(i). Since we are considering Householder matrices
with the property (31), it is easy to verify that σ2

i = In, and it follows that each
function is an involution.

The family F can be used to define a reproducible generator matrix G of
a code C; a parity-check matrix for C can be the reproducible matrix H, with
signature h0Fs×nq , whose rows are obtained as

hj = h0

(
v−1∏
l=0

ψ
b
(j)
l

l

)T
. (34)
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If H has full rank, the corresponding code has redundancy r = s2v, and

hjσ
T
i = hj

(
v−1∏
l=0

ψa
(i)

l

)T
= h0

(
v−1∏
l=0

ψb
(j)

l

)T (v−1∏
l=0

ψ
a
(i)
l

l

)T
=

= h0

(
v−1∏
l=0

ψ
a
(j)
l ⊕b

(i)
l

l

)T
= hf(i,j),

where ⊕ denotes the modulo 2 sum and

f(i, j) = u, s.t. b(u) = a(i) ⊕ b(j). (35)

It is straightforward to show that such a function satisfies the properties required
by Theorem 6 and Corollary 3. The corresponding code has length n, dimension
k = m2v and redundancy r = s2v, thus the code rate corresponds to m

m+s . In
addition, we point out that it might be possible to tune the code parameters,
by selecting only proper subsets of all the binary v-tuples, in order to form the
rows of both G and H.

5.2 Reproducible codes from powers of a single function

In this section we present another construction of reproducible codes satisfying
Theorem 6. Let us consider an n × n matrix π such that πb = In, for some
integer b. Let v be a divisor of b; obviously, if b is a prime, then v = 1. Then,
we can use π to build a family F of k

m ≤
b
v linear transformations, where k is

the desired code dimension and m is the number of rows in a signature. Indeed,
the functions in F can be defined as σi = πvzi , where the values zi are distinct
integers ≤ b

v . For simplicity, we assume z0 = 0, i.e. σ0 = In. Then, given a m×n
signature g0, we can use the family F to obtain a generator matrix G for a code
C as

G =


g0

g1

g2

...
g k
m−1

 =


g0

g0π
vz1

g0π
vz2

...
g0π

vz k
m
−1

 . (36)

A parity-check matrix for C can be chosen in reproducible form, by taking an
s× n matrix h0, and use it to generate the parity-check matrix H as

H =


h0

h1

h2

...
h b
v−1

 =


h0

h0(π
b−v)T

h0(π
b−2v)T

...
h0(π

v)T

 . (37)

When H has full rank, then C has redundancy r = s bv ; the code dimension and
redundancy must be linked to the code length according to k + s bv = n.
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It is quite easy to show that such a parity check matrix is compliant with
Theorem 6. In fact, we have

hjσ
T
i = h0(π

b−jv)T (πvzi)T = h0

[
πb+(zi−j)v

]T
. (38)

If zi ≥ j, we have[
πb+(zi−j)v

]T
=
[
π2b−b+(zi−j)v

]T
=
[
πb−(

b
v+j−zi)v

]T [
πb
]T

=

=
[
πb−(

b
v+j−zi)v

]T
=
[
πb−(j−zi mod b

v )v
]T
.

In the case of zi < j, we can write[
πb+(zi−j)v

]T
=
[
πb−(j−zi)v

]T [
πb−(j−zi mod b

v )v
]T
. (39)

Thus, we have proven that

hjσ
T
i = h0

[
πb−(j−zi mod b

v )v
]T

= h(j−zi mod b
v )
, (40)

such that the function f(x0, x1) required by Theorem 6 is defined as

f(x0, x1) = x1 − zx0
mod

b

v
. (41)

For instance, a simple construction can be obtained by choosing m = s = 1
and k = r = n/2: the matrices G and H are two reproducible matrices, with
signatures that are row vectors of length n, and are characterized by the same
number of rows (thus, C has rate 1/2).

5.3 Code-based schemes from quasi-reproducible codes

The algebraic structures we have introduced in the previous sections can be used
to generate key pairs in code-based cryptosystems. For instance, let us consider
a parity-check matrix H made of r0 × n0 matrices belonging to a pseudo-ring
MF,mq . In order to use H as the private key of a sparse-matrix code-based in-
stance of the Niederreiter cryptosystem, we must guarantee that H is sufficiently
sparse: this property can be easily achieved by choosing a family F of sparse ma-
trices σi, which guarantee that a matrix defined by a sparse signature will be
sparse as well. In such a case, we can obtain the public key as H′ = SH, where
S is a random dense matrix, whose elements are picked over MF,mq . Because
of Theorem 2, the entries of H′ belong toMF,mq , thus they maintain the same
reproducible structure defined by F .

If m = 1 and F is a family of permutations satisfying Theorem 3, then FF,1q

is actually a ring (see Corollary 2). Then, the secret key can be chosen as H =
[H0,H1, · · · ,Hn0−1], with Hi ∈MF,1q , while the public key can corresponds to
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the systematic form of H, that is H′ = H−10 H. Indeed, because of Theorem 4, we
have H−10 ∈MF,1q , and so H′ is a matrix constituted of blocks overMF,1q . This
is the approach followed in previous LDPC and MDPC code-based instances of
the McEliece and Niederreiter cryptosystems [5, 30], in which however only the
special case of Hi in the form of a circulant matrix was considered.

Suppose we have a family F satisfying Theorem 5, for which multiplication in
MF,1q is commutative (see Section 4.2 for some examples). Then, we can use the
reproducible pseudo-ring induced by F to obtain key pairs for a McEliece cryp-
tosystem. For instance, we can choose H = [H0,H1], with Hi ∈ MF,1q , as the
secret parity-check matrix, and obtain a generator matrix as G = S[HT

1 ,−HT
0 ],

with S ∈ MF,1q . The matrices H and G can be used as the private and pub-
lic key, respectively, for a McEliece cryptosystem. Even if this case might seem
quite specific, it is of significant interest since it is exactly the structure appear-
ing in the first of the three variants (BIKE-1) of the BIKE proposal to the NIST
competition.

When both Theorems 4 and 5 are satisfied, we can obtain a generator ma-
trix in systematic form, which maintains a quasi-reproducible structure. In fact,
starting from a r × n parity-check matrix H, where the elements are picked
randomly fromMF,1q , we can use the corresponding parity-check matrix in sys-
tematic form as the public key for a Niederreiter cryptosystem instance. In the
same way, we can compute the systematic generator matrix, and use it as the
public key in a McEliece cryptosystem instance.

The idea of using codes that are completely reproducible, and not formed
by reproducible pseudo-rings, opens up for the possibility of a whole new way
of generating key pairs in the McEliece cryptosystem. Indeed, once we have
generated a sparse parity-check matrix H, we can use it as the secret key. Then,
a possible public key can be obtained by taking a bunch of linearly independent
codewords, and using them as the signature of the public generator matrix. If
such codewords correspond to rows of the generator matrix in systematic form,
then we obviously obtain another significant reduction in the public key size,
since there is no need for publishing the first k bits of each one of the selected
codewords.

It is clear that having the public code described by a matrix with some
reproducible structure leads to a very significant reduction in the public-key size.
Indeed, once the structure of the matrix is fixed by the protocol (i.e. dimensions,
family F), the whole public-key can be efficiently represented using just the
signatures of each building block.

6 Cryptographic Properties and Attacks

In the previous sections we have introduced the notion of reproducibility and
have described some properties of codes that are built with such a feature. Our
analysis has shown that there can be a wide variety of methods which allow
obtaining codes with some reproducible structure. As we have seen in Section
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5.3, these codes can be used to generate key-pairs in code-based cryptosystems.
The main advantage is the possibility of reducing the information needed to
represent the matrix used as the public key. In particular, following the consid-
erations in Section 3, this framework is well suited for sparse-matrix code-based
cryptosystems. Let C be a secret code with parity-check matrix H, and suppose
that the public key is constituted by a general generator matrix (for the McEliece
case) or parity-check matrix (for the Niederreiter case) of C. Then, the following
properties must be satisfied

(a) H is sufficiently sparse to perform efficient decoding;
(b) the knowledge of the public key does not admit efficient techniques for ob-

taining H or another valid sparse parity-check matrix H′.

When property (a) is satisfied, C is an LDPC code and so admits an efficient de-
coding algorithm D. We point out that this property can be easily satisfied if we
choose F as a family of sparse matrices: this way, choosing a sparse signature for
H guarantees that H will be sparse as well. Satisfying property (b) might result
in being the most delicate part, since it depends on the particular reproducible
structure we consider. However, as the case of circulant matrices clearly shows,
this property might not be hard to satisfy. For instance, let us consider the sys-
tematic form of H = [H0|H1] obtained as H′ = H−11 H. For a generic sparse
matrix, there is no constraint regarding the density of its inverse. This means
that, unless for particular structures (like orthogonal matrices), H−11 is dense
with overwhelming probability, and this is enough to hide the structure of H into
that of H′. For the systematic generator matrix, we have G′ = [Ik|(H−11 H0)

T ],
and so we can make analogous considerations.

Regardless of the particular choice of F , it is important to note that this
additional structure does not expose the secret key to the risk of enumeration.
For instance, let us consider the construction described in Section 5.2, in which
the signature H is defined by a signature of size m×n, with all the rows having
weight w. If we assume that the rows are picked in such a way as to be linearly
independent, the cardinality of the secret key is then approximately equal to(
n
w

)m. It is easy to see that, for practical choices of the parameters, this number
is sufficiently high to make attacks based on the enumeration of the secret key
unfeasible.

6.1 Reaction Attacks

Reaction attacks [16–18,24] are a recent kind of attacks aimed at recovering the
private key by exploiting events of decoding failure. In this section we briefly
describe the attack proposed in [24], and then we make some considerations
about reproducible codes. In particular, we consider a QC code with parity-
check matrix H = [H0|H1], where each Hi is a sparse p× p circulant with row
and column weight equal to w. Then, the resulting code has length n = 2p,
dimension and redundancy equal to p.
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In a reaction attack, the opponent impersonates Alice, producing ciphertexts
and sending them to Bob. Events of decoding failure can be detected since, in the
case of a decoding failure, Bob must ask for a retransmission. A crucial player
in a reaction attack is the distance spectrum, that is the set of all distances pro-
duced by the elements of value 1 in a vector [24]. If a distance d appears µ times
in the spectrum, we say that it has multiplicity equal to µ; if a distance is not
in the spectrum, we say that it has zero multiplicity. In the case of QC codes,
these distances are computed cyclically: given two ones at positions x0 and x1,
the corresponding distance is obtained as d = min {±(x0− x1) mod p}. In a
circulant matrix, all the rows are characterized by the same distance spectrum;
in particular, an opponent performing a reaction attack aims to obtain the dis-
tance spectrum of the rows of H0. For this purpose, he collects the produced
ciphertexts into subsets Σd, such that each error vector used for the encryption
of a ciphertext in Σd has d in the distance spectrum of its first circulant block.
Then he observes a sufficiently large number of Bob’s reactions and assigns a
decoding failure probability to each set. As observed in [24], the decoding failure
probability of Σd depends on the presence of couples of ones in the rows of H0,
at the same distance d. Indeed, suppose that the first length-p block of e has a
couple of ones forming the distance d; then, the following properties hold

– if the distance spectrum ofH0 contains d with multiplicity µ, then the couple
of ones overlaps with µ rows of H;

– if the distance spectrum of H0 does not contain d, then the couple of ones
does not overlap with any row of H.

These justify the fact that the average syndrome weight of the ciphertexts be-
longing to the same set Σd depends on the multiplicity of d in the spectrum of
H0, as observed in [16]. In particular, the syndrome weight slightly decreases as
µ increases, and this causes the difference in the corresponding decoding failure
probabilities [16]. This allows an opponent to obtain the distance spectrum of
H0, since he can guess the multiplicity of each distance d by looking at the de-
coding failure probability of the corresponding set Σd. Since H0 is sparse, its
distance spectrum is sparse as well, which means that it contains a small number
of distances. It is then possible to recover H0 from the knowledge of its distance
spectrum, with a procedure that can be related to the solution of a graph prob-
lem, in which solutions are represented as cliques of size w. In principle, finding
cliques of maximal size in a graph is a hard problem; however, the fact that the
graph is sparse allows for an efficient solution of the problem [17,24].

Consider now the case of reproducible codes in general. For simplicity, we
will focus on a code with k = r = p and n = 2p, with a signature made of
just one row, and a family F of functions σi that are obtained as consecutive
powers of a permutation ψ. In addition, let us suppose that ψ is obtained as the
product of two disjoint p-cycles. In other words, ψ is such that that we can find
two disjoint sets

{
a
(0)
0 , a

(0)
1 , · · · , a(0)p−1

}
and

{
a
(1)
0 , a

(1)
1 , · · · , a(1)p−1

}
, such that

fψ

(
a
(b)
j

)
= a

(b)
j+1 mod p, b ∈ {0, 1} . (42)
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It is clear that
fσi

(
a
(b)
j

)
= a

(b)
j+i mod p, b ∈ {0, 1} ,∀i. (43)

Suppose that the signature of H has two ones at positions a(0)v and a
(0)
l , with

a
(0)
l −a

(0)
v = d. Then, in the i-th row of H these ones correspond to the positions

a
(0)
v+i mod p and a

(0)
l+i mod p. The corresponding distance is d′ = a

(0)
l+i mod p −

a
(0)
v+i mod p. It is clear that d

′ and d are, in general, different.

As a toy example, set p = 7 and ψ formed by the cycles {1, 8, 5, 3, 16, 0, 13}
and {4, 12, 10, 6, 15, 11, 16}. For simplicity, suppose that in the signature there
are two ones at positions 0 and 1. These correspond to the ones at positions 13
and 8 in the second row of H, at positions 1 and 8 in the third row, etc. The
distances between these ones are all different, depending on the considered row.

This removes the basis on which reaction attacks are built, and proves that
families of reproducible codes exist that can make reaction attacks infeasible.
Asserting the resistance of general families of transformations requires deeper
investigations, although some conclusions can already be drawn. First of all, in
the case of reproducible codes it is no longer guaranteed that the opponent can
find a way to produce subsets Σd that are associated to different decoding failure
probabilities. Secondly, as opposed to the case of QC codes, it may be impossible
for the opponent to obtain the distance spectrum of a single row of H.

6.2 Decoding One Out of Many

In [34], Sendrier introduced a technique, called Decoding One Out of Many
(DOOM), which speeds up the execution of ISD algorithms for certain fam-
ilies of codes, including QC codes. In general, this technique can be applied
whenever there are multiple instances of SDP with just one solution. When ISD
is used to perform a decoding attack, the gain obtained from DOOM can be
explained as follows. Consider the public parity-check matrix H′ and a set of N
different syndromes S =

{
s(0), s(1), · · · , s(N−1)

}
to be decoded. Suppose that,

∀e(i) such that H′e(i)
T

= s(i), there exists a bijective function that allows to
obtain e(i) from e(0) and vice-versa. We denote such a function by B, so that
e(i) = B(e(0)) and e(0) = B−1(e(i)). Then each pair

{
s(i),H′

}
can be considered

as the input of an ISD instance aimed at finding e(0) with weight ≤ w such that
H′B(e(0))T = H′e(i)

T
= s(i). According to DOOM, we consider Ni independent

calls to an ISD algorithm: as soon as one of these runs successfully ends, the
whole algorithm ends since e(0) has been found. The corresponding gain is equal
to |S| /

√
Ni = N/

√
Ni, which becomes

√
N when Ni = N . Obviously, exploiting

DOOM is beneficial when the Ni decoding instances have comparable complex-
ity. This occurs on condition that e(i) = B(e(0)) has the same Hamming weight
as e(0), or almost the same.

So, the rationale of exploiting DOOM for a decoding attack is to intercept one
ciphertext and then try to obtain other valid ciphertexts from it, corresponding
to transformed versions of the same error vector. Let us consider the case in which
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the opponent intercepts a ciphertext corresponding to an initial syndrome s(0),
and wants to recover the vector e(0) used during encryption. Then, in order to
apply DOOM, the opponent must produce other syndromes corresponding to as
many error vectors being deterministic functions of e(0). In other words, suppose
that ISD returns the solution e(i) for s(i), then it must be e(i) = Ae(0), with A
being a full-rank matrix. For instance, in the QC case, the opponent can obtain
a set of p syndromes S just by cyclically shifting the initial syndrome s(0) and
the corresponding error vector e(0).

In general terms, the applicability of DOOM can be modeled as follows.
Starting from a syndrome s(0) = H′e(0)T , we want to determine a transformation
Φ of the syndrome that corresponds to a transformation Ψ of the error vector,
that is

Φs(0) = ΦH′e(0)T = H′
(
e(0)Ψ

)T
= H′ΨTe(0)T , (44)

where Φ and Ψ are two matrices over Fq, with size r× r and n×n, respectively.
The previous equation must be satisfied for every vector e(0); this can happen
only if

∃ Φ ∈ Fr×rq , ΨFn×nq s.t. ΦH′ = H′ΨT . (45)

For the general class of reproducible codes, the applicability of DOOM must
be carefully analyzed. For instance, consider a code obtained with the procedure
described in Section 5.2, using a family of functions F consisting of powers
of a single function. If this is a permutation, ue to Theorem 6, we have that
Hσi with σi ∈ F always results in a permutation of the rows of H. So, the
opponent can build the set S, which is used as input for the DOOM algorithm,
by multiplying the initial syndrome by the matrices σi. However, the case in
which π is not a permutation matrix is of interest. For instance, take three
commuting permutation matrices π(a), π(b) and π(c), all having order equal to
n = 2p, for some integer p. We focus here on the binary case, and suppose
π = πa + πb + πc. It can be easily verified that π has order n, since

πn = π2p
a + π2p

b + π2p
c = In + In + In = In.

We then choose F = {In,σ0, · · · ,σp−1}, with σi = π2i. Since πa, πb and πc
commute, we have σi = π2i

a + π2i
b + π2i

c . This means that each σi is a sparse
matrix, with row and column weight ≤ 3. Then, starting from a sparse signature
h0, we can obtain a sparse parity-check matrix.

In this case, the opponent can still produce a set S, since equation (44) can
be satisfied by choosing Ψ = σi; the corresponding reordering of the rows of
H is a cyclic shift by i positions. However, it results that e(i) = e(0)σi and
e(i) does not have the same Hamming weight of e(0). In fact, since both e(0)

and σi are sparse matrices, the weight of e(i) is close to 3 times the weight of
e(0). According to [15], we can approximate the time complexity for solving ISD
on s(0) as 2ct, where c = − log2(1 − k

n ) and t is the Hamming weight of s(0).
Since the syndromes s(i), i ≥ 1, are associated to error vectors that have weight
approximately equal to 3t, applying ISD on them requires a time-complexity
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that can be estimated as 23ct. Then, there is no gain in considering this set
of multiple instances, since the additional instances produced by the opponent
are associated to an ISD complexity that is significantly larger than that of the
original instance.

7 Explicit Constructions

In this section we introduce some explicit constructions of reproducible codes
that can be advantageous for the use in code-based cryptographic schemes, with
the aim of illustrating the potential of this theoretical framework and paving the
way for further developments and research on the topic.

7.1 Quasi-Dyadic MDPC Codes

Dyadic matrices, defined in Section 4.2, have been used with some success in
cryptography, but always in the context of algebraic codes. The first proposal [29]
using quasi-dyadic (QD) Goppa codes was cryptanalyzed [19] almost in its en-
tirety. A later proposal based on Generalized Srivastava (GS) codes [31] proved
to be more robust, and led to one of the current NIST submissions, DAGS [8].
Nevertheless, the threat of structural attacks is always present, as shown by the
recent results of Barelli and Couvreur [9]. On the other hand, using dyadic ma-
trices has undeniable advantages in terms of key reduction, and leads to fast
and efficient arithmetic (as shown in [7]) while at the same time featuring a
reproducible structure which is less “obvious” than that provided by circulant
matrices.

This is why we believe that designing MDPC codes with QD structure, i.e.
QD-MDPC codes, has a great potential in cryptography. Constructing a code-
based scheme from QD-MDPC codes is actually rather intuitive. Since dyadic
matrices have many good properties (e.g. they are symmetric) and satisfy Theo-
rems 2-4, we can follow the guidelines detailed in Section 5.3. Indeed, in the
simplest instantiation, one can form a parity-check matrix by selecting just
two blocks, i.e. H = [H0,H1], with Hi ∈ MF,1q of size r × r. In this case
F = {σ0,σ1, . . . ,σr−1} consists of r distinct dyadic permutations (as described
in Section 4.2), for r a power of 2. The resulting code has rate 1/2. Then we can
obtain a generator matrix as G = S[HT

1 ,−HT
0 ], where S ∈MF,1q is dense. This

is essentially a dyadic version of BIKE-1, where H and G are used as private
and public key in a framework based on McEliece.
On the other hand, using a matrix in systematic form requires some caution. In
fact, as explained in Section 6, since dyadic matrices are orthogonal, the density
of the inverse matrix is not guaranteed, which could create problems in terms
of security. Therefore, if one wants to use a matrix in systematic form, we rec-
ommend to choose Hi to be 2 × 2 block matrices, with blocks in MF,1q of size
r/2× r/2. Then it is possible, for instance, to form the matrix H′ = H−11 H and
use it as a public key in a framework based on Niederreiter.
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Note that in both cases the size of the public matrix is identical, since in the
first case we have two fully-dyadic blocks of size r, for a total of 2r = n bits,
while in the second case we have one quasi-dyadic block for which we need four
signatures, totaling again 4 · r/2 = 2r = n bits.

7.2 Block-wise circulant matrices

As shown in Section 4.2, circulant matrices are a classic special case of repro-
ducible matrices and have already been used in cryptography for some time.
For a circulant matrix, the signature corresponds to its first row and F ={
σ0 = Ip,σ1 = π,σ2 = π2, . . . ,σp−1 = πp−1

}
, where π is the unitary circulant

permutation matrix (13).

The concept of circulant matrix can be easily generalized into that of a block-
wise circulant matrix as follows. Let us consider m > 1, such that m|p, and an
m×p signature z formed by m independent rows of p elements each, with entries
over Fq. Then, let us consider the set of permutations

F =
{
σ0 = Ip,σ1 = πm,σ2 = π2m, · · · ,σ p

m−1 = πp−m
}
, (46)

which inducesMF,mq as the set of all reproducible matrices of the type

Z =


z

zπm

zπ2m

...
zπp−m

 . (47)

These matrices are indeed block-wise circulant matrices, in the sense that any
block of m rows is originated by the previous block of m rows through a cyclic
shift by m positions. It is easy to verify that, for every matrix Z ∈ MF,mq , we
have

σiZ = πimZ = Zπim = Zσi, ∀i ∈ N, 0 ≤ i ≤ p

m
− 1.

Based on Theorem 2,MF,mq is a semigroup with respect to the multiplication.

Circulant matrices have the property that any distance between a pair of
ones in their first row can be found in any other position in one of the other
rows, due to the unitary cyclic shift between any row and the subsequent one.
In this more general formulation, shifts by m positions replace unitary shifts,
therefore the aforementioned property no longer holds. This hinders reactions
attacks of the type introduced in [24], which rely on such a property of circulant
matrices.

To the best of our knowledge, it is the first time that this type of reproducible
structure is proposed in literature, and this construction therefore represents
even more of a novelty, compared to the one presented in the previous section.
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