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Abstract. Belief propagation, or the sum-product algorithm, is a pow-
erful and well known method for inference on probabilistic graphical
models, which has been proposed for the specific use in side channel
analysis by Veyrat-Charvillon et al. [13].
We define a novel metric to capture the importance of variable nodes in
factor graphs, we propose two improvements to the sum-product algo-
rithm for the specific use case in side channel analysis, and we explicitly
define and examine different ways of combining information from multi-
ple side channel traces. With these new considerations we systematically
investigate a number of graphical models that “naturally” follow from
an implementation of AES. Our results are unexpected: neither a larger
graph (i.e. more side channel information) nor more connectedness neces-
sarily lead to significantly better attacks. In fact our results demonstrate
that in practice the (on balance) best choice is to utilise an acyclic graph
in an independent graph combination setting, which gives us provable
convergence to the correct key distribution. We provide evidence using
both extensive simulations and a final confirmatory analysis on real trace
data.
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1 Introduction

Side channels in the form of power or EM traces are a significant source of
information for adversaries. Extracting as much as possible of this information
is clearly desirable, and the utilisation of graphical models for this purpose was
early on described in publications such as [5,11,2]. These papers represented
the algorithm under attack as a Markov model and inferred information about
the underlying hidden state by using statistical inference, e.g. the max-product
algorithm.

The key idea in such types of attacks is that the graphical model defines how
variables (observed and hidden) depend on each other. By using different types
of algorithms it is possible to infer information about the hidden variables. The
use of the sum-product algorithm (aka belief propagation, BP) on a factor graph



was proposed recently in [13] as a way to utilise graphical models for complex
algorithms such as AES. It proved to be very powerful: in comparison to other
profiled attacks, this method can cope with very noisy side channel traces, and
even combine information from many traces effectively. In follow on works this
type of attack was compared to other types of DPA style attacks [3], and used in
different contexts [12]. Although the method performed well in all these papers,
it is well known that there are no guarantees for convergence, or even for the
inferred distributions to be at all meaningful. This is due to the nature of the
factor graphs that result from a typical implementation of e.g. AES. Thus like
many other analysis methods it is possible that the method completely fails in
some contexts, but is strong in other contexts.

In this submission we set out to determine how to best configure a graphical
model to ensure attack success. We focus our study around the AES algorithm
that was also chosen by the seminal papers introducing this method. Our results
challenge in particular the intuition that “more” leakage makes for stronger at-
tacks. This is interesting because more leakage intuitively implies more potential
information: even if multiple leakages may provide redundant information (it is
well known that AES achieves full diffusion after two rounds), this redundant in-
formation could be hoped to implicitly improve the signal quality. Consequently,
one could expect that the more leakage information about AES is included in a
factor graph, the more of this information can propagate to the key bytes.

1.1 Contributions and Outline of this Paper

We review the necessary background on using (loopy) belief propagation in Sec-
tion 2, covering the basic concepts ranging from the definition of a factor graph,
over the sum-product algorithm to implementation specifics for the AES factor
graph and our attack setup.

Thereafter in Section 3 we explain two improvements of the sum-product
algorithm. The first improvement is a termination criterion that signals when
no further significant information is propagating to the key nodes. The second
improvement is a check for the consistency of the belief about the plaintext bytes
after the sum-product algorithm has finished. We compare the belief about the
plaintext bytes before and after the run of the sum-product algorithm: if as
a result of the sum-product algorithm we find that our new belief is highly
inconsistent with what we know to be the “truth” about the plaintext, we are
able to discard the plaintext that led to this result as “too bad”. Hence we
can avoid introducing false beliefs into our graphs, which can be detrimental to
attack results.

In Section 4 we give a novel definition that captures the importance of a
variable node. We also define several variations of factor graphs of particular
interest for attacks on AES. These variations essentially represent progressively
smaller graphs, whereby the smallest is an acyclic graph requiring the least
memory. For this graph the results guarantee convergence of the sum-product
algorithm without any loss of success rate and efficiency. We also spell out three
methods for combining multiple traces.
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Sections 5, 6, and 7 present results of experiments using simulated (we sim-
ulate leakage according to a weighted bit model, and add Gaussian noise) and
real trace data. Surprisingly we observe that our round reduced and node re-
duced graphs do not result in severely weakened attack performances. In fact
we observe that except for the noisiest of cases the acyclic graph with the most
pragmatic trace combination method is on par with more complex variations.
Hence unexpectedly the acyclic graph offers the most reliable attack success
(guaranteed convergence with the least memory overhead).

To aid the flow of the paper we opted to supplying comprehensive tables and
figures primarily in the appendix. The text however does summarise the most
important findings from both tables and figures.

2 Preliminaries

The key ingredients for the attacks that we aim to study are a suitable graphical
model and an algorithm for inference. We review these briefly using and relating
them to AES as appropriate (for a more in-depth description we refer the reader
to [6]). At the end of this section we provide the necessary details about our
simulation environment.

2.1 Inference on Graphical Models

A factor graph is a bipartite graph G = (V,F , E) where V,F are two finite sets
of vertices and E (⊂ V × F) is a set of undirected edges. We will refer to the
vertices in V as variable nodes and the vertices in F as factor nodes. We will
use the i, j, k to denote the variable nodes and f, g, h to denote the factor nodes.
Given i ∈ V, the set ∂i is defined as ∂i := {f ∈ F : (i, f) ∈ E}. For any f ∈ F
the adjacent vertices ∂f is defined in the same way.

A factor graph gives the joint distribution of the random variables XV :=
(X1, . . . , X|V|) where each Xi corresponds to a vertex in V. For any subset of
variable nodes I := {i1, i2, . . . , im} ⊂ V we will denote the corresponding random
variables as
XI := (Xi1 , Xi2 , . . . , Xim). The values of these random variables xI , are also
defined in a similar way.

For our application each random variable Xi can have values xi ∈ X :=
{0, 1}n. For the rest of this article X will denote the set {0, 1}n unless specified
otherwise.

Definition 1. The joint distribution µ over x ∈ XV factors in the factor graph
G = (V,F , E) if there exists a set of functions β = {βf : f ∈ F} and βf : X ∂f →
R+ such that

µ(x) =
1

Z

∏
f∈F

βf (x∂f ) (1)
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The normalisation constant Z is given as

Z =
∑
x

∏
f∈F

βf (x∂a)

Note that there must be at least one x ∈ X V for which βf (x∂a) > 0 so that
the distribution is well defined.

Constructing a factor graph A factor graph can be constructed from (the
implementation of) any iterative function F 1. The input variables, intermediate
variables used in the iterative function, and the output variables are represented
as the variable nodes of the factor graph. The factor nodes correspond to the
basic functions/operations used to define (or implement) F . A factor node is
usually connected to two or more variable nodes which represent the inputs and
outputs of the function.

In practice an AES assembly implementation can be easily translated to
a factor graph. The sixteen plaintext bytes and key bytes are represented as
variable nodes. Parsing the (assembly) code, whenever an arithmetic operation
is performed we add a factor node for this operation, and a new variable node to
represent the output of the operation, and connect these elements to the existing
graph. Although leaky, we excluded memory operations, such as ldr and str

operations from our factor graph (so we do not artificially inflate leakages). Our
AES factor graph thus includes the following factor operations: XOR, SBOX, and
XTIMES.

The sum-product algorithm The sum-product algorithm, also known as the
belief propagation (BP) algorithm, is an iterative “message” passing algorithm
where the messages are the probability distributions over the single variable
space X . For each edge in E there are two such distributions νi→f (·), which is
the message from variable node to factor node and ν̃f→i(·), which is the message
from a function node to variable node. The messages at the tth iteration are

denoted as ν
(t)
i→f and ν̃

(t)
f→i.

For any function f the compatibility function ψf (in Eq. 3) is defined as the
indicator function χf of the corresponding function i.e ψf := χf (x, y).

χf =

{
1, if f(x) = y

0, otherwise

At each iteration the messages are updated according to the following rules

1 A factor graph can also be constructed for non-iterative functions but this is not
necessary for our work
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ν
(t+1)
i→f (xi) =

1

Zi→f

∏
g∈∂i\f

ν̃
(t)
g→i(xi) (2)

ν̃
(t+1)
f→i (xi) =

1

Zf→i

∑
x∂f\i

ψf (x∂f )
∏

k∈∂f\i

ν
(t)
k→f (xk) (3)

where Zi→f and Zf→i are normalisation constants and ψf is the compatibility
function. In the BP algorithm the updates are done in parallel for all the variable
nodes and then in parallel for all the function nodes, and so on.

It can be proven that in a tree-structured graph the BP algorithm converges
to a fixed point ν∗, ν̃∗ after t∗ iterations which is equal to the diameter of the
graph. In other words, for any t ≥ t∗, ν(t) = ν∗ and ν̃∗ = ν̃(t).

After t iterations the estimate of the marginal distribution µ(xi) of any vari-
able xi is given by

∏
f∈∂i ν̃f→i(xi). The marginal distribution is exact when

computed on a tree-structured graph.
The BP algorithm can be applied to cyclic graphical structures by following

the same message update rules given in the equations 2 and 3. This is known
as loopy belief propagation. However, the sequence of messages is not guaranteed
to converge to a fixed point after any number of iterations. A frequently used
heuristic to stop the BP algorithm in such cases is to terminate after tmax

iterations which is a fixed parameter to the algorithm. Typically one chooses
tmax in line with the size (i.e. diameter) of the graph.
For further details on factor graphs and BP algorithm we refer the interested
readers to [6,10].

In our implementation, all variable nodes send their initial distribution along
all their connected edges in the first round of the algorithm. Once completed,
the factor nodes send their messages, by selecting an adjacent variable node,
then collecting all incoming messages (excluding the one from the target vari-
able node) and applying their own ‘function’ on these messages. They do this
for all adjacent variable nodes. Upon termination of the algorithm, the marginal
distributions of all sixteen key bytes are computed. This is done by taking the
product of each key’s initial distribution with all incoming messages to the re-
spective key byte. To judge success of an attack, the keys are ranked according
their probability.

2.2 Attack Setup and Implementation Details

The work presented in this paper uses an adaptation of AES FURIOUS (originally
written for Atmel’s AVR) written in the ARM Thumb assembly language. Our
lab setup consists of custom host board with an ARM Cortex-M0 of the LPC
series. The board has an on board signal amplifier and filter. We utilise a stable
external clock running at 125MHz. The data is recorded by a PicoScope 2000
Series instrument. We took 150000 traces, of which 120000 were used for template
building and 30000 for doing repeat attacks. In any attack the result of the
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template matching is utilised as the input probability distributions for the (leaky)
variable nodes.

Because real trace data implies a fixed device leakage model and a corre-
sponding signal-to-noise ratio (SNR), we also performed two types of simula-
tions with varying SNRs. The first simulation was via using the tool ELMO [9],
which emulates the leakage of a Cortex-M0. The emulator was built by profil-
ing a different type of M0, manufactured by ST Micro. Thus we would expect
the simulation results (when appropriate levels of Gaussian noise is added) to
match our real trace results. We also performed Hamming weight (HW) based
simulation, which turned out to give identical results to the ELMO simulations
hence we opted to not include them in our tables.

In our implementation we set the value of tmax (used by the BP algorithm) to
be 50. This value was chosen because it is greater than the diameter of the largest
graph G (which has a diameter of 42), and thus gives room for propagation
around the loops. For the calculation of first-order success rates (SR) and key
ranks, we follow the recommendation of [8] and compute average key ranks over
200 repeat experiments.

3 Improving Loopy Belief Propagation

Different variations of the (loopy) BP algorithm are proposed in the literature.
We add our own improvements and explain the resulting algorithm in this sec-
tion.

3.1 Epsilon Exhaustion

One of the parameters for the Belief Propagation Algorithm is how many itera-
tions to run. This is represented by the value tmax. In this paper we propose an
additional termination criterion, which allows the algorithm to terminate early,
if certain conditions are met. As the BP algorithm is a message passing algo-
rithm, there may come a point after a number of iterations where the messages
being updated have received most of the information in the graph, and will
not change significantly. If this is detected over a series of consecutive rounds,
we can deduce that the factor graph has reached a stable equilibrium, and we
can therefore terminate the algorithm without being at risk of discarding useful
information.

We implement this by having two user defined parameters, ε and εs. After
each iteration of the BP algorithm, we observe the incoming messages at the
sixteen key byte nodes. If the Euclidean distance between the message from the
current iteration and the message from the previous iteration is greater than
the threshold ε, we conclude that the current round did not provide the key
bytes with enough new information. If this occurs over εs consecutive rounds,
we conclude that as enough information has propagated, further rounds would
not benefit the key bytes, and it is safe to terminate the BP algorithm early.

We used the Euclidean distance metric to measure the difference between two
probability distributions after considering other possibilities, see also Sect. 4.1.
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Algorithm 1: BP algorithm with epsilon exhaustion and ground truth
check

1 function BPA(Gaes, ε, εs, εg, tmax, k
∗, ip)

/* k∗, ip are the variable nodes corresponding to the key and

plaintext respectively */

2 Initialize the messages as i.i.d uniform random variables
3 count := 0
4 foreach t ∈ {1, . . . , tmax} do
5 foreach (i, f) ∈ E do

6 update ν
(t)
i→f according to (2)

7 end
8 foreach (i, f) ∈ E do

9 update ν̃
(t)
f→i according to (3)

10 end

11 if (k∗, f) ∈ E, ‖ν̃(t)f→k∗ − ν̃
(t−1)
f→k∗‖∞ < ε then

12 count = count+ 1
13 if count == εs then

/* Epsilon Exhaustion check */

14 break

15 else
16 count = 0
17 end

18 end
19 if ‖νf→ip − µL[ip]‖∞ < εg then

/* Ground truth check */

/* µL[ip] is the leakage distribution at node ip */

20 return 0;

21 else
22 return −1 /* Discard trace */

3.2 Ground Truth Checking

One open problem encountered in template-based DPA style attacks is differen-
tiating a ‘good’ trace from a ‘bad’ one, when it is not simply characterised by a
large variance. For instance, even a small clock jitter can slightly misalign a trace
in relation to the template values, which typically means that template matching
gives very poor results. Due to the nature of the Belief Propagation algorithm,
we compute the marginal distribution of the key bytes by taking the product of
all their incoming messages (Section 2.1). If an erroneous trace is computed in
an attack, an erroneous distribution sent to a key byte can detrimentally alter
the marginal; in a worst case scenario, if the erroneous message has probability 0
for the correct key byte value, the attack will never successfully recover the key.
In this paper we present a way of detecting an erroneous trace, by considering a
known plaintext attack against AES.

Assuming we know the plaintext values, the idea is to check the “belief”
about them after BP has terminated. We would expect that for a good trace,
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once all information has propagated through the graph, the belief about the
plaintext values would be consistent with what we know to be the true values. If
this is not the case, then BP is unlikely to have converged to a meaningful key
distribution either. We measure the consistency between the initial distribution
of the plaintext bytes and the distribution after BP using the Euclidean distance
(as with the termination criterion).

For the ground truth check to work we need to assume some leakage on the
key bytes in the graph (this may come from the key schedule for instance). If
the probability distribution on the key bytes was uniform (i.e. we assume no
information on the key bytes), then, because the key byte nodes are connected
to the plaintext byte nodes via an XOR factor node, we could not infer any
information about the plaintext byte nodes. This is due to the XOR “locking
effect”: XOR the acts like a one-time pad if one of the two inputs is uniform.

4 Studying AES FURIOUS Factor Graphs

Previous work already explored the effect of some choices regarding the actual
construction of the factor graph for implementations of AES. We are interested
whether or not there is a trade-off between the number of included factor nodes
and the efficiency of an attack. Utilising fewer nodes is advantageous in practice
not only because fewer profiles have to be created (and therefore fewer profiling
traces are required) but also because having to correctly match fewer templates
during an attack leads to more robust attacks (in practice traces are not perfectly
aligned).

Our “base” graph G takes into account all intermediate steps, and we also
assume some leakage via the key schedule on the key bytes. We then introduce
a measure that is novel in the context of Belief Propagation in the context of
side channels to judge the “importance” of a node in relation to the key bytes
in Sect. 4.1, and then study reduced graphs systematically in Sect. 4.2.

4.1 Importance of a Variable node

We want to assess whether or not it is necessary to include all the nodes of the
factor graph from the full AES. More specifically, one could wonder what “effect”
the information from nodes from the second and further rounds of AES have on
the key. It is known that AES reaches full state diffusion after two rounds of
AES, but there is no implication that nodes from future rounds provide more or
less information than nodes in the first two rounds.

To quantify the “effect” of a node we somehow want to consider its contri-
bution in the detection of the (unknown) key. For an important node we would
expect that any change in it’s input distribution would result in a change in a
key byte(s) distribution.

The effect or importance of a node in the factor graph is quantified by the
“distance” of it’s distribution from the key node distribution. In the graphical
model the variable nodes have an associated (discrete) distribution. Thus it
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seems natural to look for a suitable distance metric in relation to (discrete)
distributions.

We determine the marginal distribution of the key node say K, given the dis-
tribution of the other nodes: we thus determine µ(K) =

∑
Xi

Pr(K,X1, X2, . . .)
where Xi is the random variable corresponding to the variable node in the factor
graph. In the AES factor graph these nodes correspond to the different interme-
diate variables e.g. k1, t1 etc in figure 4. In the following paragraph we will refer
to a node by the associated random variable.

For a (randomly) fixed unknown key and a fixed plaintext the value of the
intermediate variable at the node Xi is also fixed. Suppose we have a perfect
leakage corresponding to the different values of the intermediate variable at Xi.
This can be described by fixing a value of the random variable Xi = x and
Pr(Xi = x) = 1 whereas Pr(Xi 6= x) = 0. For the correct value of Xi, the
distribution µx(K) =

∑
Xj

Pr(K,X1, X2, . . . , Xi = x,Xi+1, . . .) is expected to
be “closer” to µ compared to the distribution obtained by fixing an incorrect
value of Xi. For defining this notion of distance between two distribution we use
Hellinger distance. The Hellinger distance is a well known measure to quantify
the similarity of two distributions. In contrast to other (similar) measures it is
directly related to the Euclidean distance metric (in the discrete case) and thus
is an actual distance metric.

Definition 2. The importance of a node X is defined as

I(X) = {D(µ(K), µX=x(K))}

where D(·, ·) is the Hellinger distance between the distributions.

Note that I(X) is a set of “distances” for different values x of X.

Definition 3. (Hellinger Distance) For two discrete distributions {pi} and
{qi} the Hellinger distance is defined as

D(p, q) =
1√
2

√∑
i

(
√
pi −

√
qi)2. (4)

Because we are in a profiled scenario, we know all the necessary distributions
to compute this distance metric for any node in the graph.

4.2 AES Factor Graphs

We now detail the graphs that we study. They range from a “full graph”, includ-
ing nodes for intermediates across all ten AES rounds, to a very sparse graph,
including only a few intermediates from the first round. The larger the graph is,
the more memory it requires. The memory requirements can be derived based on
the number of nodes and edges. All variable nodes store an initial distribution,
and each edge has two probability distributions, corresponding to incoming and
outgoing messages from the connected variable node. Because AES FURIOUS es-
sentially is byte oriented implementation of AES, all distributions in our graph
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are represented by 256 floating point values. The exact memory requirements are
thus dependent on the specific implementation/use of a float. In the following
description we assume the use of a C style floating point data type (four bytes).

G : corresponds to the full AES encryption algorithm. It requires ≈ 6.6MB of
memory per trace.

G1 : corresponds to the first encryption round only, excluding the key schedule.
We provide (part of) this graph in Fig. 3, which shows the first column of the
first round. It requires ≈ 0.7MB of memory per trace. Several factor nodes
are drawn in red in this graph. Removing them leads to GA

1 .
G2 : corresponds to G1, with the addition of the Add Round Key step and the

SubBytes output of the second round. It requires ≈ 0.9MB of memory per
trace.

GA
1 : corresponds to an acyclic factor graph of the first encryption round, as

shown in Fig. 4. It requires ≈ 0.54MB of memory per trace.
GKS

1 : corresponds to G1, with the addition of the key schedule variables. It
requires ≈ 0.84MB of memory per trace.

As an example, to mount a 200 trace BPA attack against graph G, one would
require ≈ 1.3GB memory. To mount an attack using the graphs G1 and GA

1 one
would only need ≈ 140MB and ≈ 108MB memory respectively.

Considerations regarding node removal for GA
1 To convert the one round

AES factor graph G1 into an acyclic graph GA
1 we choose to remove a set of factor

nodes which are marked in red in Figure 3. One obvious reason to choose this set
of nodes is that in the AES algorithm these nodes are part of the diffusion layer.
Since the diffusion layer causes the cyclic structure of the AES factor graph,
removal of these nodes leaves the factor graph acyclic. Removal of any node
naturally is followed by the removal of the edges to that node, along with any
leaf nodes (which would otherwise be disconnected from the rest of the graph
and thus not contributing any messages).

4.3 Combining AES Factor Graphs

In many real world settings adversaries may gain access to several leakage traces.
These traces may correspond to different inputs for instance. In any case so far
we have only discussed factor graphs that take input (e.g. the plaintext) and
thus we now look at ways in which we can process multiple inputs.

Large Factor Graph (LFG) Method. In [13] they approach the problem of
combining graphs from different inputs by associating each input with a ded-
icated graph, and then they produce a “large factor graph” by connecting all
factor graphs through some common nodes. In the particular case of AES (the
same would apply to other algorithms too), the nodes representing the key bytes
are common (because all traces would be for the same unknown secret key). We
call this method the LFG Method.
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The potential advantage of this method is that information from one trace can
propagate through the common nodes into the “adjacent’ graph, which may (pos-
itively) affect the attack outcome. However, the clear downside to this method
is that it potentially incurs a large memory overhead (unless one swaps “sub-
graphs” in and out of memory but this clearly implies a performance penalty
and potentially some limitations on the message passing). It is also difficult to
apply our ground truth check in this case because our intuition of “discarding”
traces is made challenging due to all traces being interconnected; as information
can propagate from one trace to another, it is not possible to pinpoint which
trace affected the plaintext bytes. Finally there are a large number of cycles in
such a graph, which means that it is impossible to make any statements about
convergence or any meaningful outcome.

Independent Factor Graph (IFG) method. In contrast to assembling one
large graph, we could also treat each leakage trace independently and only have
one copy of the graph in memory. Each trace then produces a set of distributions
for the unknown key bytes, which can be combined using Bayes theorem.

The advantage for this method is that it can be executed in parallel (dis-
tributed over different cores) or sequential, allowing an easy speed-memory trade-
off. Also, no further cycles are added, thus for our acyclic graphs we can be
assured of convergence even in a multiple trace setting. The disadvantage may
be that information cannot propagate from one leakage trace (associated graph)
to another. It is possible to use the ground truth check here.

Sequential Factor Graph (SFG) method. An easy tweak to the IFG method
that enables information to “propagate” from one graph to another, would be
to use the key distribution that is derived from the i − 1th leakage trace as
prior distribution for the graph with the i−th leakage trace. This turns the IFG
method into a strictly sequential method (thus SFG); it thus retains IFG’s mem-
ory efficiency, convergence for acyclic graphs, and the possibility to implement
a ground truth check.

5 Studying the Effect of Reduced Graphs in a Single
Trace Setting

In the remainder of this paper we discuss experiments that aim to determine
the impact of our tweaks to the BP algorithm, the variations of graphs and
graph combination methods. We start in a single trace setting, and first consider
the effects of nodes in later rounds, then we examine the effectiveness of our
improvements on the BP algorithm, followed by an enquiry into the impact of
using reduced graphs (in particular G1 and GA

1 ) on the attack outcomes.
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5.1 Effect of Nodes in Later Rounds

We previously defined a metric that enables us to judge the effect that a node in
the graphical model has on the key bytes. To use this metric practically we set
up an experiment on the full graph G in which we supply simulated, HW based
leaks with minimal noise (SNR = 2) and we let the BP algorithm run for the
full tmax = 50. As implied by the definition, we first let BP run and produce a
key distribution. Then we fix the input for the node that we are computing the
effect of and fix this to a value (running through all input values of this node
one by one), which enables us to compute the effect as defined in Sect. 4.1.
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Fig. 1. Hellinger Distance of k1 to different fixed value s nodes

Our findings are that variable nodes from later rounds have no effect on the
key distribution. To provide some evidence for this, we include one graph that
is representative for all results. Figure 1 visualises the result from the variable
node s (which corresponds to the Sbox output) in different rounds of AES to
key byte k1. Recall that our definition is based on the Hellinger distance metric:
any number that is close to zero indicates that a node has no effect. Figure 1
demonstrates then that this particular node as a great effect in round one, and
some small effect in round two, but thereafter it has no effect on this key byte.
Other variable nodes show the same behaviour: first round nodes have an effect,
second round nodes have a very small effect, and from round three onwards our
metric indicates that they have no effect.

5.2 Effectiveness of our Improvements to the BP Algorithm

We investigated the effect of our epsilon exhaustion technique on by running
repeat experiments using ELMO simulations. These showed that in cases of high
and low noise, the information can be exhausted before reaching tmax iterations
(nearly all experiments terminated via the epsilon exhaustion rather than tmax).
Interestingly having more noise does not mean that the algorithm is more likely
to run up to tmax iterations. In fact often the epsilon exhaustion was considerably
earlier, e.g. in for SNR=21 on average around 20 Belief Propagation iterations
are required before reaching a stable point.

We also investigated how often the ground truth check kicks in. We configured
our criterion to reject only “extreme outliers”. Unsurprisingly, we found that it
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is much harder to detect such cases in high noise settings, where the information
from a single trace is insufficient for any meaningful result. We note that in such
cases, where one would require multiple traces anyway, the ground truth check
could be applied to consecutive traces and we noticed in our implementation
that if there are two “bad” traces fed into BP consecutively, then our ground
truth method would pick this up. The experiments also indicate that cycles
in the graph may “amplify” unhelpful information, because in the experiments
on graphs without cycles our ground truth check criterion was never met; the
ground truth method spotted erroneous traces after BP had iterated for more
than 15 rounds, but as the acyclic graph is run for a maximum of 8 iterations,
these erroneous messages did not appear.

Data from this experiment can be found in the appendix. Table 1 shows the
percentage of traces terminated through the Epsilon Exhaustion tweak for two
different graphs (we did not include the acyclic graph GA

1 because it provably
terminates after 8 iterations, which corresponds to the diameter of the graph).
Table 2 shows how many traces were detected to be “bad”.

5.3 Impact of Graphs on Attack Success

As measures for the success of attacks we look at the (first-order) success rate,
as well as the lowest (i.e. best) rank for the key. For the specific purpose of
this experiment, we elected not to invoke our termination criterion for the cyclic
graphs and instead allow BP to run up to 50 iterations (for G we did experi-
mentally verify that increasing tmax did not lead to better success). We did this
for a range of SNR’s. In both settings, the high signal and the high noise, the
performance of the attack using G1 is nearly identical to the performance of the
attack using the whole AES graph, or when including the key schedule, or when
looking at two rounds, whereas there is a clear gap to the performance when
using GA

1 . This shouldn’t come as a huge surprise: we know from works such as
[7,1] on SPA attacks on block ciphers, that the information from either the key
schedule or just the encryption round goes a long way to recovering the key.

With such little difference in performance between the whole graph and G1,
it seems reasonable to utilise only the first round. This has not only the ad-
vantage of dealing with much smaller graphs, crucially it implies that also less
profiling effort is necessary, which could be a practical advantage. For instance,
if traces become increasingly misaligned (e.g. because the clock frequency of the
processor is changeable), having to only profile the beginning (or end) round of
an implementation could be more feasible than having to profile across the entire
trace. With respect to GA

1 , although we see a large performance gap in the suc-
cess rate (when compared to the whole graph and G1), the ‘Best Rank’ results
show that the GA

1 method is still effective as an attack. The advantage GA
1 has

in this attack scenario is that convergence is guaranteed after 8 BP iterations.
Our results also showed, surprisingly, that better SNRs do not imply that

fewer BP iterations are required. We observed that for SNR = 21, we needed 20
BP iterations; but for SNR = 2−3 we needed fewer iterations, namely 15. We also
noticed that, for SNR = 21 in the case of G, there was a success rate drop when
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using 50 iterations over 25. We speculate that this is due to the large number
of cycles in the graph. From these results clear that there is no simple way of
choose tmax optimally. However, by using our Epsilon Exhaustion improvement
(see Section 3.1) we can terminate BP when the information updating the key
has reached a stable equilibrium.

6 Studying the Effect of Different Graph Combination
Methods

Having established that attack results based on using the whole graph or just
G1 are nearly identical in a single trace setting, we now turn our attention to
attacks that utilise multiple leakage traces. We now compare the performance
of the G1 and the GA

1 graphs specifically to see if the performance difference
between them persists across different trace combination methods.

We ran simulations ranging from high signal to high noise scenarios. In the
high signal scenarios there were no differences between the graphs w.r.t different
combination methods. Only in noisy scenarios did we observe differences. For
our discussion we include two particularly striking sets of results in Figure 5 and
Figure 6 in the appendix. In the high noise scenario we provided more traces
than in the high signal case. The figure shows attack outcomes for the different
graph combination methods as applied to different graphs.

In the case of SNR of 2−1 we see, surprisingly, that the acyclic graph GA
1 can

outperform G1 across different combination methods, and that LFG for GA
1 isn’t

strictly the best method. When we use ten or more traces, GA
1 has a constant

success rate, compared to G1 when using IFG and SFG for the same number of
traces. We saw the same results for an SNR of 2−3. Only when decreasing the
SNR to 2−6, G1 performed better than GA

1 and LFG is the best combination for
G1. The IFG method with G1 only starts to succeed after 45 traces, when the
LFG method has over a 90% success rate. We also observe here that although IFG
is favoured over SFG when the SNR is high (2−1), SFG becomes more effective
when the SNR is lower, needing around 70 traces to have an 80% success rate.
When using GA

1 in a low noise scenario, the graph connecting method seems to
have little effect on the results, and we see no signs of success until we use 60 or
more traces. We hypothesise that in a low SNR setting having more dependent
variables helps to compensate for the noise, an observation that has been made
elsewhere in the same context [4]. However it would appear that in the context of
a relatively large graph that takes into account “sufficient” leakage from the first
round, extra information from later rounds is not as important. These results
show that neither more rounds nor more intermediates or more connected graphs
necessarily make for a more effective attack overall.
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7 Studying the Effect of Reduced Graphs in a Multiple
Traces Setting

As a final experiment we simulated multiple trace attacks (with IFG) using
reduced graphs. We studied different noise levels (low, medium, and high), and
provide Figure 7 in the appendix. In short, only when moving to high noise
settings the larger graphs proved to be slightly advantageous (in line with the
observations in the previous section) in terms of first-order success rate. However,
if we consider the median ranks of the experiments, we see the effectiveness of the
acyclic methods is still comparable to the cyclic methods; when using 90 traces,
the acyclic graphs ranked the correct key with the second highest probability.

For confirmation purposes we also ran these attacks on our real trace set. We
determined the SNR on those traces and reran the simulations with a matching
SNR (=2−5). Fig. 2 shows the outcomes of these experiments. In the left pane we
visualise the comparison based on using G1 between real and simulated traces.
The right pane shows the same comparison using GA

1 . Clearly the simulation
results are a very good match with the real traces. We can also see that the
performance of GA

1 is again nearly identical to G1.
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Fig. 2. Comparison of a BP Attack on Real Trace Data against Simulated Data (SNR
2−5), using Graphs G1 and GA

1 .

8 Recommendations for Practical Use

In this paper we perform our experiments on the AES FURIOUS implementation.
We found most success using the Independent Factor Graph connection method,
and removing the cycles in the graph to get GA

1 . We arrived at these results after
experimenting with each method in a controlled enviornment, and comparing the
attack success of each method. However, we understand that these choices are
implementation dependent. We will therefore provide intuition to extend these
results to other implementations.

For block ciphers we are aware of, the cyclic attribute of the algorithm can
lead to uncontrolled loopy belief propagation. Because of this, we suggest that
users remove the cycles and run the attack on a reduced graph. Additionally,
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by using the Hellinger Distance metric to measure the ‘importance’ of each
node in the graph, the user can carefully select the desired factor graph for the
implementation. Upon finding the optimal structure of the graph, the user then
has a choice for the graph connection method; in this paper we propose using
the Independent Graph connection method, as it does not incur a large memory
overhead when dealing with multiple traces (the noisier the trace set, the more
traces will be required for the attack phase). However, if the user has access
to a large amount of memory and computational power, they may instead opt
to use the Large Factor Graph method, as we show in our results it performs
marginally better over other graph connection methods.

9 Conclusions

The approach of using a belief propagation algorithm on a factor graph that de-
scribes an implementation under attack leads to a very powerful attack strategy.
However there are many options to concretely instantiate this idea, and these
options are expected to have an impact on the performance of concrete attacks.
So far there exist very few publications about this important attack vector and
none of them has drilled into the details related to building a graph for a specific
implementation.

Our submission makes the first step into developing an understanding how
choices in instantiating this attack vector impact on the resulting attacks. We
specialise our investigation to AES FURIOUS, and look at the attack performance
when reducing elements from the graph as it would “immediately” follow from
the AES FURIOUS implementation. Alongside our experiments we provide a new
metric to capture the effect of a variable node, and introduce two improvements
to the (loopy) Belief Propagation algorithm that are useful specifically in the
context of side channel analysis.

Our findings show that assumptions that might have been made in previous
work, and that seem to naturally follow from the intuition about the working
principle of Belief Propagation on factor graphs are not always met in practice.
E.g. including more leakage does not always make a significant difference (our
findings show that only in very noisy settings there is a slight advantage for our
full factor graph). Combining multiple traces into a large factor graph is also
not necessarily the best option. In fact our experiments suggest that the best
option (except for the noisiest of settings) is to use an acyclic graph (which is
guaranteed to converge to a correct result) in either the independent or sequential
combination method because this will guarantee attack success at the expense of
marginally more traces (in medium noise settings the approach works in fact as
well as the best other approach). This is particularly interesting for the potential
use of such a method in an evaluation setting: as a configuration is possible
that guarantees convergence, and we have theoretical understanding about the
necessary number of Belief Propagation iterations, we can avoid the attack failing
with no explanation.
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Table 1. % of
Traces where
Epsilon Exhaus-
tion occurred

G G1

21 99.57 99.4
2−1 4.46 11.44
2−3 62.31 65.12
2−6 100 100

Table 2.
% of Traces
that failed
the Ground
Truth check

G G1

21 0.42 0.57
2−1 1.16 0.88
2−3 0 0
2−6 0 0
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Fig. 5. Graph combination methods using Graphs G1 and GA
1 , SNR 2−1
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Fig. 6. Graph combination methods using Graphs G1 and GA
1 , SNR 2−6
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