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Abstract—The static power consumption of modern CMOS
devices has become a substantial concern in the context of the
side-channel security of cryptographic hardware. Its continuous
growth in nanometer-scaled technologies is not only inconvenient
for effective low power designs, but does also create a new
target for power analysis adversaries. Additionally, it has to
be noted that several of the numerous sources of static power
dissipation in CMOS circuits exhibit an exponential dependency
on environmental factors which a classical power analysis adver-
sary is in control of – much in contrast to the dynamic power
consumption. These factors include the operating conditions
temperature and supply voltage. Furthermore, in case of clock
control, the measurement interval can be adjusted to arbitrarily
enhance the measurement quality. We investigate the influence of
each of these factors on our ability to exploit the data-dependent
leakage currents in a 150nm CMOS ASIC prototype chip and
provide results that once again show how fatal it can be to neglect
this source of information leakage. With respect to the signal-to-
noise ratio as a common metric in side-channel analysis we are
able to demonstrate that increasing the measurement interval
exponentially decreases the noise and even more importantly that
increasing the working temperature exponentially increases the
signal. Control over the supply voltage has a far smaller, but still
noticeable, positive impact on the exploitability of the leakage
currents as well. In summary, a static power analysis adversary
can physically force a device to leak more information by
controlling its operating environment and furthermore measure
these leakages with arbitrary precision by modifying the interval
length.

I. INTRODUCTION

Established cryptographic primitives usually come along
with a set of mathematical security guarantees to inspire confi-
dence in their resistance against state-of-the-art (cryptanalytic)
attacks. These guarantees, however, are only valid against com-
putationally bounded black-box adversaries. For instance, it is
common to prove that no polynomial-time adversary stands
a better-than-negligible chance to compromise the security of
a said primitive1 when being restricted to the observation of
its inputs and outputs exclusively. Yet, in embedded contexts
such a limitation is not respected, due to the constant physical
exposure of the hardware to potential adversaries. Any ad-
versary, who is capable of measuring the physical emissions
of a cryptographic device during the execution of a primitive
(in sufficiently high quality) has access to substantially more
information than just the inputs and outputs. In particular, these
observations can directly be correlated to intermediate values
of the underlying cryptographic algorithms. This specific kind
of adversary model invalidates the security claims of virtually
all (raw/unprotected) cryptographic primitives, since they were

1by known methods or under a certain assumption

simply not developed to withstand attacks which make use of
their intermediate results. Hence, in many cases it is possible
to break the security of physical instances of mathematically
secure primitives (e.g., recovering the fixed key of an AES
implementation) by carefully observing the emissions of the
executing device. To mitigate these threats, dedicated counter-
measures which minimize the leakage of information through
physical side-channels need to be applied when implementing
cryptography in real-world devices.

The static power consumption of CMOS hardware (a.k.a.
leakage power) is one type of observable physical charac-
teristic that can be exploited as a side-channel. Due to its,
historically speaking, smaller contribution to the overall power
consumption when compared to the dynamic currents, it has
rarely been considered in traditional side-channel analyses. In
view of its exponential growth, however, which is directly
linked to the down-scaling of the technology, it has attracted
more and more attention over the last decade.

A. History of Static Power Analysis

Ever since the introduction of power analysis attacks in
1999 [23] researchers have concentrated almost exclusively
on the exploitation of the operation- and data-dependency
that can be observed in the dynamic power consumption of
cryptographic hardware. However, in the year 2007 the authors
of [16] provided the first concrete evidence for the fact that the
leakage currents in modern CMOS gates exhibit a strong data-
dependency as well. Additionally, they pointed out that the
static power consumption had already reached a considerable
dimension for sub-micron CMOS technologies by then. These
discoveries consequently led to the first attempts to exploit
the emerging new side channel. In [24] a DPA-based attack
on (simulated) static power measurements using a single-bit
power model is proposed. The works presented in [7] and [8]
verify the soundness of the Hamming weight model in the
static power domain and conduct a successful CPA attack.
Further investigations revealed extensively that multiple DPA-
resistant logic styles are rather ineffective against static power
analysis [24], [5], [6], [22]. The results of [12] and [9] do
even suggest that an unprotected CMOS implementation of
the block cipher PRESENT-80 is less vulnerable to such
attacks than the same cipher implemented in the DPA-resistant
logic style WDDL. To cope with the issue of a possible
exploitation of the static currents Zhu et al. proposed first
countermeasures in 2013 [45] and 2014 [20]. Further ones
have been suggested in the following years [19], [32], [9], [44],
[43]. Even extensions to template [41], [11] and multivariate
attacks [11], [15] exist in the literature and one first approach



to combine the information leaked through the static and the
dynamic power side-channel has been published [42].

However, apart from one small experiment in proof-of-
concept manner which has been performed on an 8-bit reg-
ister [16], [7], all evaluations, all countermeasures and es-
pecially all attacks in the previously mentioned articles are
exclusively based on simulation results. The first contribution
to this field where an analysis has been performed on actual
leakage measurements, taken from a physical device, was
published in 2014 [27]. Here, detailed information about the
leakage currents of different FPGA elements in various pro-
cess technologies is presented. Additionally, a successful key
recovery on a masked and shuffled AES-128 implementation
is performed by utilizing the higher-order moments of the
static power consumption. The second work in this area with
an experimental focus suggests that the ability to control the
clock enables adversaries to arbitrarily reduce the noise in
their measurements [34]. It was recently confirmed by practical
experiments on a threshold implementation prototype chip that
this possibility indeed poses a serious threat to algorithmic
DPA countermeasures that require high noise levels, such
as masking [26]. Additionally, a sophisticated measurement
setup is introduced in [26] consisting mainly of a low-noise
DC amplifier and a powerful climate chamber. The authors
of [10] recently proposed another (distinct) measurement setup
dedicated to static power analysis with the objective of being
low-cost and demonstrated its suitability by an analysis of a
crypto core on a 45nm Xilinx Spartan-6 FPGA. This setup
is based on a DC pico-ammeter for trace acquisition and a
commercial Peltier cell to control the temperature of the device
under test.

B. Role of Operating Conditions

Regarding the role of operating conditions in attack scenar-
ios it is usually (and consistently among all publications) stated
that the temperature has to be kept constant during the analysis
of the target. The reason for this is the exponential dependency
of the static currents on thermal influences. Apart from this
constraint the device under test is usually investigated under
realistic conditions like room temperature and specified supply
voltage. Some of the previously listed works include figures
for the data dependency of static currents in CMOS logic
gates under different working temperatures [16], [24], [8], [5],
[32]. However, those numbers are based on library information
of single standard cells and only presented to confirm the
suitability of the Hamming weight model regardless of the
applied temperature (as long as it is kept constant during the
whole acquisition of a set of traces). Up to this point it was paid
little attention to the fact that an increase of the temperature
also increases the absolute difference between the leakage
currents for the different possible input vectors to digital
standard cells. Since the ratio between the currents for any two
input vectors is roughly maintained and the absolute currents
are exponentially increasing when more thermal energy is
applied, the signal in a side-channel attack can – in theory –
artificially be amplified in an exponential manner by raising the
temperature. The simulation results presented in [12] seem to
exploit this observation for the first time. Here the simulations
are performed under a working temperature of 100 ◦C and it is
referred to this operating condition as the ”worst-case scenario
for the designer”. In the practical measurements presented

in [10] the device under test (DUT) was heated up by a
Peltier cell to 65 ◦C. A comparison to other temperatures is
not presented in either of these works. Subsequently, in 2017
two works have been published that utilize the temperature as
a replacement for the missing time-dimension in static power
analysis to perform multivariate attacks [11], [15]. One of these
works comes to the conclusion that increasing the tempera-
ture progressively eases a static power analysis in terms of
the required number of measurements for a successful key
recovery [15]. However, due to the simulation-based nature of
those investigations the authors are forced to make assumptions
about the noise and its very own dependency on the working
conditions. From our point of view a natural assumption would
be that the static currents of all non-targeted parts of the circuit,
i.e., the algorithmic noise (see e.g. [39], [18] for descriptions of
algorithmic noise), is affected in the same way as the targeted
parts and that other noise sources, e.g., the electronic noise, the
measurement noise or the quantization error, are less affected.
We are not entirely sure which assumptions the authors in [11]
and [15] make. In both works it is claimed that the signal-to-
noise ratio (SNR) is fixed to a value of −60 dB regardless
of the temperature. If this would be true (and the SNR is
meant to be what is frequently applied as metric in the side-
channel literature, c.f., Section V) the number of measurements
to disclosure (MTD) should not significantly vary between the
sets of measurements for different temperatures, since there
exists a known anti-proportional relationship between the SNR
and the MTD. In particular it was demonstrated in several
articles, e.g., [18], that from the SNR alone the MTD value
can be predicted. As a consequence one would expect a more
or less constant number of measurements required to recover
the key for a fixed SNR. This is contradictory to the results
presented in [15]. We believe what the authors actually did is
fixing the amount of additive white noise over the simulations
at different temperatures, i.e., fixing the mean and the standard
deviation of the Gaussian distribution that is added onto the
noise-free simulated power traces. This would also match the
fact that in [15] it is claimed to be possible to extract the
same amount of information ”even in the presence of lower
SNR”, while the presented data is actually showing that it
is possible to extract the same amount of information in the
presence of more noise (exactly because the variance of the
signal is amplified by the increased temperature). Regardless
of the apparent misconception of the authors (or our inability
to follow their interpretation) neither the claimed assumption,
i.e., fixed SNR over all experiments, nor the assumption that
is suggested by the data, i.e., fixed noise standard deviation
and mean over all experiments, seems to be a good capture
of the reality. In any case it has to be evaluated by practical
measurements whether higher temperatures lead to a larger
signal-to-noise ratio and therefore to a smaller number of
measurements that are required to break an implementation.

Another crucial parameter for the correct operation of
integrated circuits is the supply voltage. To the best of our
knowledge no work has investigated the influence of changes in
the supply voltage on the exploitability of the static currents so
far, neither in simulations nor in practice, even though strong
dependencies of the static dissipation on potential-differences
in CMOS transistors are known to exist. We discuss this in
more detail in Section VI.



C. Our Contribution

In this paper we try to close the gap between theoretical
considerations regarding the influence of measurement factors
on the feasibility of static power analysis attacks and their
practical verification on actual hardware. We answer the ques-
tion whether an adversary can physically force a device to leak
more information by controlling specific operating parameters
and provide informative numbers in this regard based on more
than two months of non-stop measurements. In particular we
have acquired 19 distinct sets with a cardinality of at least
5 million measurements per set in a controlled environment,
each for a different temperature-voltage-combination (-20 to
90 ◦C, 1.62 to 1.98 V), which took roughly 2.7 days for each
set. Afterwards, for the most effective temperature-voltage-
combination (90 ◦C and 1.98 V), we recorded another 8 sets
of traces for different lengths of the measurement interval. Our
results show very clearly that, in this case study, increasing the
temperature exponentially increases the signal, that increasing
the supply voltage only marginally increases the signal and
finally that increasing the measurement interval exponentially
decreases the noise. Additionally, it becomes obvious that
all three measurement factors can effectively be combined
to lower the number of measurements that are required for
a successful key recovery to a minimum. Control over these
parameters – in theory – allows to eliminate any source of
noise except for the algorithmic noise, which highly depends
on the particular implementation as well as the concrete
attack scenario and will always be present in power mea-
surements [39]. Setup-wise we have built upon [26], but (1)
improved the construction of the DC amplifier to obtain stable
results at extreme temperatures, (2) built a custom low-pass
filter, and (3) employed a simple post-processing technique.
All these modifications have been verified to be useful in
diminishing the noise and improving the signal.

This paper is organized as follows: In Section II we
describe the measurement setup for the static power side-
channel measurements. Section III introduces the targeted
ASIC and the PRESENT block cipher implementation that
is investigated. The measurement procedure for acquiring the
traces (including the post-processing) is detailed in Section IV,
while the necessary evaluation tools and metrics are intro-
duced in Section V. Our main results are then presented
in Section VI. Here we investigate the influence of each of
the three measurement factors: temperature, supply voltage
and measurement interval, on the expolitability of the data-
dependent static currents. Finally we conclude our work in
Section VII.

II. MEASUREMENT SETUP

In order to measure the static power consumption of
our target ASIC, we inserted a precision 1 Ω resistor with
low temperature coefficient into the Vdd path. In contrast
to dynamic power measurements the amplifier cannot be AC
coupled since AC coupling works as a kind of high-pass
filter and would eliminate our static target signal (DC offset).
Thus, common AC-coupled amplifiers like the ZFL-1000NL+
from Mini-Circuits cannot be used in this setup2. Instead,

2Such an AC amplifier has been used in several dynamic power measure-
ment setups, e.g., [17], [28], [29], [30], [37].

(a) schematic (b) photo

Fig. 1: Low-noise DC amplifier for static power measurements.

the voltage drop over the resistor needs to be measured
differentially and with a DC-coupled amplifier. There are two
main problems when measuring the static leakage. At first,
the voltage difference we would like to measure is very small,
typically in the range of a few micro volts. To get an accurate
measurement, a high DC amplification is needed. The second
problem is the susceptibility to temperature variations. The
static leakage itself is highly temperature dependent which
results in huge shifts of the measured signal e.g., when the
measurement room is accessed. Also, many amplifiers and
differential probes suffer from a DC shift when they heat up
during use. In [27] a LeCroy AP 033 differential probe which
features a ×10 amplification was used. While this probe is
capable of measuring the signal with its high common DC
offset, it only features a low amplification and is susceptible
to thermal shifts in the measurements when the probe heats up
during the long measurement procedure.

A. Low-Noise DC Amplifier

In order to overcome these drawbacks, we developed
a sophisticated amplifier to measure the static leakage. A
schematic of the amplifier and a photo of the employed board
in its aluminum case can be seen in Figure 1. The first stage
of the amplifier consists of an Analog Devices AD8421 instru-
mentation amplifier [1], which provides a very low temperature
dependency with 0.2 µV/◦C maximum offset voltage drift
and 1 ppm/◦C gain drift. This stage removes the common
voltage between its two inputs which are connected to the two
terminals of the shunt resistor and applies an amplification
with a gain of 2. In contrast to [26] we did not make use
of the adjustable offset of the instrumentation amplifier, but
rather fixed it to a specific value, since the formerly employed
potentiometer increased the noise in our measurements at
higher temperatures. A second stage consisting of an Analog
Devices AD8676 operational amplifier (op-amp) [2] applies a
×500 amplification to the resulting signal (i.e. the DC amplifier
achieves a total gain of ×1000). This op-amp also has a low
temperature dependency of 0.6 µV/◦C input offset drift. The
PCB of the amplifier is housed in a custom aluminum case
which provides SMA connectors. Due to the high gain, the
bandwidth of the amplifier is below 20 kHz which does not
pose a problem since we are working with static signals3.

3Details of the developed amplifier (schematic, PCB layout) are accessible
through the authors’ webpage.
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Fig. 2: Third-order (Butterworth Pi) LC low pass filter with
cutoff-frequency of ~100 Hz.
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Fig. 3: Exemplary depiction of two measurements, one with
and one without low-pass filter, for a measurement interval of
50 ms. Time period T1 (here 20 ms) corresponds to the interval
that is ignored due to the memory effect. Time period T2 (here
50 ms) corresponds to the measurement interval. All values
that are measured in T2 are averaged to a singular static power
value.

B. Low-Pass Filter

During the measurement procedure we observed some
high-frequency noise in the measurements which increased
for higher temperatures. Hence we built a custom low-pass
filter to remove these portions of the signal and connected
it between the output of the DC amplifier and the input of
the oscilloscope. The filter, which is shown in Figure 2, is
built as a passive third-order Butterworth Pi LC construction
to provide a cutoff-frequency (−3 dB) of approximately 100
Hz for a 50 Ω input impedance of the oscilloscope. A visual
impression of its effect is given in Figure 3 by means of
one sample measurement with and one without the low-pass
filter applied. The time periods denoted as T1 and T2 are
introduced in Section IV. As one can see in Figure 3 the
amplitude of the oscillating static signal is far smaller when the

low-pass filter is applied, especially in relation to the voltage
difference between the regions before and after the clock is
stopped. This modification of the setup alone already reduced
the measurement interval to reach a certain signal-to-noise
ratio by a factor of about 5 when operated at a temperature of
90 ◦C.

C. Evaluation Board

The Side-channel Attack Standard Evaluation Board
(SASEBO-R) [3] that we used for our experiments was
specifically designed to evaluate the security of cryptographic
hardware implementations against side-channel attacks. The
board provides a socket for an ASIC prototype that is con-
nected by a 16-bit bidirectional data bus as well as a 16-bit
address signal for control and communication purposes. We
are able to control the mounted ASIC by a Xilinx Virtex-II
Pro FPGA, which itself is connected to a 24-MHz oscillator.
Since measuring small signals over long wires can induce
measurement errors, we kept the distance between the shunt
resistor and the amplifier short by designing the housing
of our developed amplifier in such a way that it can be
plugged directly on top of the SASEBO-R board by the SMA
connectors.

D. Oscilloscope

We used a Teledyne LeCroy HRO 66zi oscilloscope for
the measurements. This scope provides a true 12-bit ADC, a
maximum sampling rate of 2 GS/s, and a maximum bandwidth
of 600 MHz.

E. Climate Chamber

To quantify the influence of the temperature on the quality
of our side-channel acquisitions we performed the static leak-
age measurements inside a CTS climate test chamber of series
C-40/100 with 100 litres test space capacity. The chamber
achieves temperatures between −40 ◦C and +180 ◦C as well as
a temperature change rate of 5 K/min for cooling and 3 K/min
for heating. It can hold the temperature with a variation of
0.3 ◦C at a maximum thermal load of 1200 W at 20 ◦C. This
should highly suffice for our purposes as the target is not
expected to radiate a considerable amount of heat (resulting in
even smaller temperature variations). We placed the SASEBO-
R board together with the mounted ASIC prototype and the
DC amplifier inside the chamber, whereas the low-pass filter,
the oscilloscope and the power supply units for the board and
the amplifier have been placed outside of the chamber. In this
regard we had to put two power supply cables for the amplifier
and one for the board, as well as one SMA coaxial cable for
the amplified static power signals, an RS-232 cable for the
communications and a trigger probe cable through a vent in
the chamber that was carefully sealed with silicone foam. The
whole setup is pictured in Figure 4.

III. TARGET

The target for our experiments is a 150nm CMOS ASIC
prototype chip with a nominal supply voltage of 1.8 V. A
photo of the prototyped chip is shown by Figure 5. Among
5 other cores the chip features the PRESENT-80 block ci-
pher realized as a 3-share threshold implementation [33].



(a) outside
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Fig. 4: Photographs of the complete setup including the DC
amplifier, the low pass filter, the board, the oscilloscope, the
climate chamber and some power supply units.

(a) layout (b) photo

Fig. 5: ASIC prototype with 6 cores in 150 nm CMOS.

Although this work is not focusing on masked implementations
or higher-order attacks, we chose this specific core for our
investigations to make the results comparable to what has
been reported in [26]. In this regard we treat the core as a
regular unprotected PRESENT-80 implementation by setting
all masks to zero, which corresponds to the PRNG OFF mode
of operation described in [26]. By doing this we make sure that
the core operates deterministically, i.e., for identical plaintexts
all intermediate values and the shared output are identical as
well. This is explained in more detail in Section VI.

PRESENT-80 is an ultra-lightweight block cipher (ISO/IEC
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Fig. 6: Nibble-serial architecture of the PRESENT-80 threshold
implementation core.

29192-2:2012 standard) that operates on a block size of 64 bits
and a key length of 80 bits and consists of 31 computation
rounds [13]. The term threshold implementation refers to a
masking scheme based on Boolean secret sharing and multi
party computation that implements non-linear functions of
symmetric block ciphers efficiently in such a way that prov-
able security against first-order power analysis attacks can be
guaranteed, even in the presence of glitches [31]. The specific
application of this scheme to the PRESENT-80 block cipher is
introduced in [33]. Our investigated ASIC core implements the
profile 2 of [33]. This profile refers to a serial implementation
of PRESENT-80 with a shared data path (with 3 shares) but
an unshared key schedule. A schematic of the nibble-serial
architecture can be seen in Figure 6.

All intermediate values and data buses are 4-bit wide. As
the graphics show, the S-box – which has an algebraic degree
of 3 – is decomposed into two non-linear quadratic functions F
and G. Those 4-bit boxes are then split into 3 shares each. The
three G-boxes are processed at the same time in the ASIC and
each of them receives 2 inputs out of the 3 data shares. The
corresponding outputs are stored into registers. Afterwards, the
three F-boxes are evaluated in parallel. The 4-bit words of the
round state are processed in a pipelined manner by one instance
of the shared S-box. Thus, (due to the register between the F
and G functions) 17 clock cycles are required to evaluate the
complete substitution layer of the cipher for one round. After
the last nibble of the shares has been processed, the outputs are
routed according to the linear layer (PLayer) of the cipher and
saved into the register again. Therefore, each full computation
round of the PRESENT-80 cipher takes 18 clock cycles on the
investigated ASIC core.

The initial masking of the input (with all zeros in our
case) as well as the unmasking of the output are performed
on the chip itself. Hence the communication with the ASIC is
performed in an unshared, conventional manner.

IV. MEASUREMENT PROCEDURE

In order to measure the static currents, we executed the
following procedure. At the specific clock cycle, where the
targeted intermediate value is processed, the clock signal of
the PRESENT core is stopped and all other input signals to
the ASIC are kept constant at a deterministic value. This idle
state of the target is held for an arbitrarily long time interval
during which the static power consumption of the device can
be measured before the clock signal is switched back on.



Thus, in our experiments recording the static leakage traces
requires a stronger attacker model than it would be required
for a classical power analysis, as full control over the clock
signal is necessary. The power consumption values that are
obtained in the mentioned time interval are then averaged to a
singular value. Since the leakage currents are not supposed
to change during that period, all occurring variations are
noise and can be averaged out. This technique is called intra-
trace averaging and constitutes one major advantage of static
power analysis in comparison to classical attacks when control
over the clock signal is obtained (see [34]). Due to the very
high gain of our developed DC amplifier (×1000) and the
very low cutoff-frequency of our low pass filter (100 Hz), a
significant impact of the memory effect (described in [29])
on the measurement quality can be observed. The sudden
drop of the power consumption when the clock signal is
stopped influences the measured static power values for up
to the next 20 ms. Hence the first 20 ms of the idle state are
discarded and not included in our measurements. After that
period, the actual measurement interval starts. This procedure
is illustrated in Figure 3 exemplarily for a measurement with
and a measurement without low-pass filter applied. The time
period which is denoted by T1 corresponds to the first 20 ms
of the idle state that are discarded due to the influence of
the memory effect. The second time period T2 indicates the
measurement interval.

In contrast to [26] we also employed a simple post-
processing technique. The idea is to filter out the long-term
temperature-induced variations of the static power consump-
tion over time, i.e., over a set of measurements (as opposed
to noise that is included in single measurements). Quite
obviously the climate chamber requires a lot more activity of
its regulation units to maintain a constant temperature when
it is set to a value far above or below the temperature of the
room it is located in. These activities can be observed as low
frequency noise along the whole set of measurements. Our
post-processing step is therefore to apply a simple moving-
average filter onto the measurement set by using the Matlab
function filter()4. The effect of such filtering is depicted
in Figure 7. The blue plot in Figure 7a corresponds to a set of
100 unaltered measurements as they were recorded from the
oscilloscope. The red curve corresponds to the moving-average
that is generated by the Matlab filter() function. The sub-
traction of the moving-average from the original measurements
results in the black graph in Figure 7b and constitutes the
resulting measurement set after the post-processing. We tested
several window-sizes as parameter for the filter() function
and revealed that a window-size of 8 leads on average to
the best results on our measurements. In general we observed
that for measurements with a long measurement interval, i.e.,
the more time-demanding ones, a smaller window-size led
to optimal results, while for the measurements with a short
interval larger windows were more successful. However, to
keep all results comparable we have always used a window-
size of 8 for the experiments that are presented in Section VI.
Although the initial purpose of the post-processing was to
improve the measurement quality at extreme temperatures (like
−20 ◦C or 90 ◦C) we observed that it has a positive influence
on the measurements in all cases, even at room temperature.

4We also tested other filters in Matlab, for example a butterworth high-pass
filter, but achieved inferior results.
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Fig. 7: Illustration of the post-processing technique for 100 ex-
emplary measurements at 20 ◦C, 1.8 V, measurement interval
of 10 ms and window-size of 8.

V. EVALUATION TOOLS AND METRICS

Section VI analyzes in detail how the investigated mea-
surement factors influence the amount of information that is
included in, or can be extracted from, the corresponding side-
channel measurements. In this regard several evaluation tools
and metrics which are common in the side-channel analysis
literature are used. We introduce these tools and metrics shortly
in this section.

A. Signal-to-Noise Ratio

The signal-to-noise ratio (SNR), introduced by Mangard
in 2004 [25], is one of the most common metrics to quantify
the quality of side-channel measurements and to determine the
points of interest in a dynamic power trace. The corresponding
formula is given in Equation 1.

SNR =
V ar(Signal)

V ar(Noise)
(1)

The variance of the signal is defined as any variation in the
measurements (e.g., power consumption or electromagnetic
radiation) that is caused by the targeted intermediate value,
while the variance of the noise describes all further variations
in the traces that are not caused by this value. To assess
those parameters for a specific sample point in a set of traces
(acquired for random inputs), one has to sort the traces into
a number of groups corresponding to the specific value the
targeted intermediate result attains (e.g., 16 distinct groups for
a 4-bit intermediate value). In the case of (SPN-based) block
ciphers, for example, which make use of a bijective non-linear
mapping and key addition, one can directly calculate the SNR
for the intermediate values after the first round (resp. before
the last round) from the input (resp. output) of the cipher. The
variance of the signal is then calculated as the variance of the
means of the individual groups, while the variance of the noise
can be calculated as the overall mean over the variances of the
individual groups.



B. Correlation Power Analysis

Correlation power analysis (CPA) was introduced by Brier
et al. at CHES 2004 [14] to overcome some drawbacks of
classical DPA. The main advantage is that a power model
can be used to create a hypothesis for the leakage of a full
intermediate value instead of targeting only a single bit at a
time. This hypothetical power consumption is then compared
to the actual power consumption by means of a (Pearson)
correlation coefficient, which measures the linear dependency.
The corresponding formula for two discrete vectors X,Y is
given in Equation 2. The mean of the two vectors is denoted
by X,Y .

ρ =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
(2)

In a successful attack the highest correlation coefficient di-
rectly translates to a correctly guessed part of the key. Common
models, in addition to the identity model, include for example
the Hamming weight of an intermediate result or the Hamming
distance between two processed values.

C. Measurements to Disclosure

Historically, the number of traces that are required to
perform a successful attack on an implementation (DPA, CPA,
...) has been the most common metric to assess the resistance
of a device against such attacks. Nowadays there exist tools,
like for example the non-specific Welch’s t-test (see [36]
for a detailed methodology), that are able to evaluate the
leakage of a device without performing any specific attack
and without being dependent on a correct choice of a leakage
model. However, those metrics fail to provide information
about the hardness of an actual key recovery, which makes
them unsuitable for a variety of purposes. In our case, for
example, a suitable model and a successful attack are already
known and the goal is to evaluate how large the impact of
changes in a specific operating parameter on the exploitability
of the implementation is. In this case the number of required
measurements to disclose the correct key is still the most
preferable metric. To the best of our knowledge the term
”measurements to disclosure” together with its abbreviation
”MTD” has been first used and defined as a metric by Kiri et
al. at CHES 2005 [40]. The authors describe it as the cross-
over point between the correlation coefficient for the correct
key and the maximum correlation coefficient among all wrong
key guesses when plotting the coefficients for all key guesses
over the number of samples considered. For a relation between
the SNR and the MTD see for example [18].

D. Success Rate

The success rate of a power analysis attack is simply
the probability that the attack succeeds in recovering the
correct key candidate by isolating it from a restricted set of
key guesses [38], [35]. The most straightforward option to
evaluate the success rate of an attack is to simply perform
the attack multiple times. Many efforts have been devoted to
the exploration of more efficient ways to estimate the success
rate rather than this empirical one (the interested reader is
referred to [38], [35]). However, in this work we do indeed
perform the attack multiple times on disjoint subsets of a larger
measurement set whenever success rates are reported

VI. MEASUREMENT FACTORS

In this section we present measurement results that have
been acquired over a time period of roughly four months and
represent the equivalent of more than two months of non-stop
data acquisition5. We build upon the results that are reported
in [26] and try to improve the attacks on unprotected imple-
mentations in terms of the required number of measurements
by controlling the operating parameters. While the influence
of the measurement interval on the noise has been mentioned
in [34] and [26], although not as detailed as in this work, the
influence of the operating conditions temperature and supply
voltage has not yet been reported based on practical side-
channel measurements. In order to keep all results comparable
we target the same threshold implementation prototype chip
as [26] and operate the same PRESENT core.

All reported values for the measurements to disclosure
(MTD) metric refer to a standard Correlation Power Analysis
(CPA) attack [14] on the combined Hamming weight of the
outputs of the three F-boxes (4 bit× 3 boxes = 12 bit), effec-
tively targeting one key nibble (4 bit) at a time. To perform
this kind of attack on the targeted threshold implementation
core it is required to have knowledge of the masks that are
involved in the computation, which a regular power analysis
adversary against a securely implemented masking scheme
would (ideally) not have. But, as mentioned before, we operate
the core by setting all masks to zero, which allows us to predict
the exact intermediate values, under the correct key hypothesis,
that are actually processed by the circuit. This corresponds to
the usual adversarial situation when targeting an unprotected
PRESENT implementation, with the only difference that each
S-box output corresponds to a 12 bit value instead of a 4
bit one (which certainly eases the attack). We would like to
stress here that the whole purpose of our practical evaluation in
this section is to investigate the influence of the measurement
factors on the success of power analysis attacks. We do
in no way claim that the presented attacks on the targeted
implementation with fixed masks are a realistic scenario for
any adversary against a real-world device. We just aim for
conformity with the previous work described in [26] and
restrict all our claims to unprotected implementations.

For all three measurement factors that are investigated in
this section we provide estimations of the noise to determine
whether it is influenced by the altered parameters. Additionally
we report the number of measurements that are required for
a successful recovery of one key-nibble by means of a CPA
attack. From both of those values the influence of the operating
parameters on the signal becomes obvious. For instance, due
to the known anti-proportional relationship between the signal-
to-noise ratio (SNR) and the measurements to disclosure
(MTD) [18], a constant noise level and a lowered MTD
indicate an increased signal. Similarly a decreased noise level
and a constant MTD indicate a decreased signal. Estimated
signal values would therefore be redundant. Furthermore the
signal-to-noise ratio itself is mostly used to determine the
points of interest in a dynamic power trace, which is not
required in static power analysis attacks like the ones reported
in this work, since each trace corresponds to a single measured

5Between the acquisition of the different sets the ASIC and parts of the setup
have to rest at target climate to adopt the temperature accordingly before the
next set can be recorded.
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Fig. 8: Visual depiction of our technique to use disjoint subsets
of one large set of traces to disclose the key multiple times.
The shown MTD values (achieved for 90 ◦C, 1.98 V, 10 ms)
from left to right are 85 000, 28 000, 181 000, 59 000, 143
000.

value anyway. The only reasonable use case of the SNR in
this context would be to identify which intermediate value
is possibly leaked in a particular clock cycle, in order to
perform the attack on this value or find the exact clock cycle
that needs to be targeted. However, this is not a necessity in
our experiments as we have detailed information about the
implementation and know exactly which intermediate value is
processed within which clock cycle.

At all temperature-voltage combinations we have collected
at least 5 million traces with a constant measurement interval
of 10 ms. In all cases we have tried to disclose the correct
key nibble multiple times using this set. For example if a CPA
succeeds by indicating the highest (absolute) correlation value
for the correct key candidate after roughly 150 000 traces and
this correlation value remains to be the largest one among all
candidates for at least further 20 000 traces (to avoid false
positives) we state that the first MTD value for the attack on
this set is 150 000. Then we ignore the first 170 000 traces
and repeat the process from trace 170 001. In other words we
use disjoint subsets of the whole measurement set to disclose
the key multiple times in order to obtain multiple MTD values.
This enables us to report average MTD values and success rates
for each set (only if the average MTD lies below 2.5 million,
otherwise only one disclosure is possible). In case of the most
effective temperature voltage combination and a measurement
interval of 10 ms for example we were able to disclose the
correct key 48 times using 5 million traces. We have illustrated
this procedure for 5 consecutive MTD values in Figure 8.
The average number of measurements to disclosure (MTD)
for this snippet of traces would be 95 200 and the number of
measurements to reach a success rate larger than 50 % would
be 85 000. Admittedly, the single MTD values may not be fully
independent, although being computed on disjoint subsets of
the whole set, because strictly speaking they do not originate
from statistically independent experiments. However, we have
observed that assuming the independence of the particular
subsets leads to sound and reproducible results. Furthermore,
as apparent from Figure 8, the MTD values can vary quite
significantly. Thus, we believe that averaging several of those
values and reporting success rates leads to more meaningful
results and is therefore superior to only reporting single MTD
values (like for example in [26]).

The 8 additional sets of traces that we have recorded

at the most effective temperature voltage combinations, but
for different measurement intervals (1 ms to 200 ms), have a
smaller cardinality (because of the significantly longer run time
for larger intervals). Hence, unfortunately, we are only able to
present a single MTD value per set here.

A. Factor: Temperature

According to [21] all leakage effects that are based on
solid-state physics, such as subthreshold leakage and diode cur-
rents, show extreme thermal dependencies. The subthreshold
current for example, which is the dominating source of static
power consumption in our technology, depends exponentially
on the temperature [21]. From simulated measurements it
is known that the factor between the leakage currents for
any two input vectors to digital standard cells is roughly
maintained [16], [24], [8], [5], [32]. Hence the difference
between the classes in a power analysis attack should increase
when raising the temperature, which corresponds to an increase
of the signal in a side-channel attack. For most adversaries
against embedded systems it should be feasible to influence the
temperature of the environment, since physical access is part
of the adversary model. In our experiments we put the target
device into a climate chamber, like explained in Section II, and
fixed the temperature and the relative humidity to a determined
value. The supply voltage was kept at 1.8 V, which is the
nominal supply voltage of the chip. In the range of −20 ◦C
to 0 ◦C we raised the temperature in steps of 5 ◦C between
different sets and were not able to control the humidity. In the
range of 0 ◦C to 80 ◦C we raised the temperature in steps of
10 ◦C and kept a constant relative humidity of 20 %. Finally
we measured two sets for 85 ◦C and 90 ◦C at a constant relative
humidity of 10 %. The humidity was always set in order to
have a small impact on the experiments. In general we chose
a rather dry climate in order to not face any problems with
condensation of water vapor at the electronic components.
Furthermore, we observed that the climate chamber is able to
keep the temperature more stable when the relative humidity
is controlled as well. Since the absolute humidity increases
when the relative humidity is kept at a fixed value and the
temperature is increased we needed to reduce the relative
humidity from 20 % to 10% for the temperatures above 80 ◦C.

As explained above, we expect the signal to increase for
higher temperatures. However, this only eases an attack if the
noise is not equally (or greater) affected. Hence as a first
step we estimated the variance of the noise for all of the 19
temperature sets, according to the description in Section V
over the first 50 000 measured values. The results can be seen
in Figure 9. Apparently the noise increases approximately in a
linear fashion with the temperature. To emphasize this a first
degree (linear) polynomial curve was fitted to the data. At
a first glance, this behavior appears to be a negative result
when trying to increase the exploitable information in the
measurements by raising the temperature. On the other hand,
this result was expected, since not only the static currents
associated with the targeted intermediate value are increased,
but the algorithmic noise is supposed to grow in a similar
fashion. Additionally, it can be expected that the measurements
include more thermal noise when raising the temperature.
The important question is here whether the increase of the
signal is large enough to overcome this linear increase of the
noise. To answer this question we performed CPA attacks
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Fig. 9: Estimated noise standard deviation for temperatures
between −20 ◦C and 90 ◦C.
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Fig. 10: Number of measurements required to overcome a
success rate of 50 % for temperatures between 10 ◦C and
90 ◦C.

using the Hamming weight of the 12-bit output of the F-
boxes. As explained before, each set has a cardinality of
(at least) 5 million measurements. Whenever possible we
tried to disclose the correct key candidate multiple times by
using disjoint subsets of the whole measurement set. As a
result we are able to report how many traces are required to
reach a certain success rate, as shown by Figure 10. Please
note that no temperatures below 10 ◦C are plotted here. The
reason for this is that for these temperatures the correct key
candidate could not be disclosed even a single time with 5
million measurements. For the higher temperatures it becomes
obvious that the number of measurements that are required
to extract the same amount of information is reduced in an
exponential manner. In order to emphasize this we have added
an exponentially fitted curve. The same kind of exponential
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Fig. 11: Average number of measurements required to disclose
the correct key candidate for temperatures between 10 ◦C and
90 ◦C.

decrease can be observed in Figure 11 for the average MTD
values. Despite of the linear increase of the noise for increasing
temperatures the MTD values are exponentially decreasing.
This confirms that the signal is exponentially increased by
raising the temperature and more generally that the signal-
to-noise ratio is exponentially increased. Since the signal is
growing much stronger than the noise, it is – in theory –
possible to raise the temperature up to a point where each noise
source apart from the algorithmic noise becomes negligible.

B. Factor: Supply Voltage

Apart from the obvious linear dependency of the static
power consumption on the supply voltage (Pleak = Ileak·VDD)
there are several other dependencies listed in [21]. The gate
leakage for example is doubled when the supply voltage is
increased by 100 mV. The drain induced barrier lowering
(DIBL) effect leads to a reduction of the effective threshold
voltage when the supply voltage is increased [21]. This on
the other hand increases the subthreshold conduction expo-
nentially. Finally, the gate induced drain leakage (GIDL) effect
increases the junction current exponentially in a specific region
of the supply voltage. However, we do not expect a very
large dependency of the static currents of our 150 nm ASIC
on the supply voltage for mainly two reasons. First of all
the gate leakage and the junction current are (more or less)
negligible sources of static dissipation in technologies larger
than 100 nm. Secondly the DIBL effect is only relevant for
short channel length as well and even for a 65 nm technology
the supply voltage needs to be increased by 192 mV to raise
the overall leakage by 10% [21]. In total we expect at least
a linear decrease in the number of required measurements
to disclosure when increasing the supply voltage. Concerning
the feasibility of controlling the supply voltage of the device
under test it should be kept in mind that a regular power
analysis adversary is supposed to place (or find) a resistor
in the GND or VDD path of the device under test and to
measure the voltage drop across this component by means
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Fig. 12: Estimated noise standard deviation for supply voltages
between 1.62 V and 1.98 V and temperature of 90 ◦C.

of a digital sampling oscilloscope. Thus, it should be easily
possible to influence the supply voltage with this kind of
capabilities. In our experiments we adjusted the supply voltage
by a potentiometer in the feedback path of the linear voltage
regulator on the measurement board and verified the correct
setting while the setup was present in the climate chamber at
target temperature.

Since it seemed infeasible to determine the influences of
the supply voltage for all temperatures, we chose the most
successful temperature in terms of success rate, i.e., 90 ◦C,
and changed the supply voltage by 10% in comparison to the
nominal supply voltage in both, positive and negative direction.
We did not evaluate more extreme changes in order to not
damage the chip. The results for the noise estimation at 90 ◦C
can be seen in Figure 12. Almost no voltage-induced change
in the noise level can be observed. If at all, the noise is slightly
increased. When taking a look at the MTD values in Figure 13
and Figure 14 it can be seen that the attacks become slightly
more successful by raising the voltage, but the effect is much
less drastic than what could be observed for the temperature.
Obviously, when taking only three data points into account, it
is difficult to make a statement about the type of dependency
that could be observed, which is why we leave this open
to interpretation. Finally, please note that, in contrast to the
temperature, the supply voltage also has a direct (quadratic)
influence on the dynamic power consumption.

C. Factor: Measurement Interval

In [26] a clear trade-off between intra-trace averaging and
inter-trace averaging is observed. In other words, by stretching
the measurement interval the noise can be reduced and the
attacks succeed with fewer traces, but the time to acquire
a specific number of traces is also increased. Independent
of the time it takes to acquire a set of traces we want to
investigate whether we can apply this technique onto the
measurements at the most informative temperature-voltage
combination. In particular, we want to take the measurement
setting that requires the least amount of traces for a successful
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Fig. 13: Number of measurements required to overcome a
success rate of 50 % for supply voltages between 1.62 V and
1.98 V and temperature of 90 ◦C.
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Fig. 14: Average number of measurements required to disclose
the correct key candidate for supply voltages between 1.62 V
and 1.98 V and temperature of 90 ◦C.

key recovery due to an already increased signal (90 ◦C and
1.98 V) and try to additionally decrease the noise by stretching
the interval as much as possible. Therefore we acquired trace
sets for the following measurement intervals: 1 ms, 2 ms,
5 ms, 10 ms, 20 ms, 50 ms, 100 ms, 200 ms. The results of
the noise estimation can be seen in Figure 15. The noise level
decreases exponentially when linearly increasing the length of
the measurement interval until roughly 20 ms. Afterwards the
development seems to stagnate. This can be observed when
comparing it to the exponentially fitted curve over the data
points. However, in Figure 16 it can be seen that the number
of required measurements for a key recovery decreases even
beyond the 20 ms in an exponential fashion. In any way the
decrease of the noise seems to be lower bounded by the
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Fig. 15: Estimated noise standard deviation for measurement
intervals between 1 ms and 200 ms at a supply voltage of
1.98 V and a temperature of 90 ◦C.
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Fig. 16: Number of measurements required to disclose the
correct key candidate for measurement intervals between 1 ms
and 200 ms at a supply voltage of 1.98 V and a temperature
of 90 ◦C.

amount of algorithmic noise in the measurements, since this
part cannot be averaged out by intra-trace averaging (see [26]).
For the sake of completeness we should mention that we
also performed the experiments with even longer measurement
intervals. However, neither the noise nor the MTD could be
reduced any further (due to the lower bound). In fact, they even
started to slowly increase again. Our assumption is that for
very long measurement intervals (>200 ms) the temperature-
induced variations coming from the active regulation of the
climate chamber start to affect single measurements, instead of
being present between traces in a set. Hence, we achieved the
overall best results at a temperature of 90 ◦C, a supply voltage
of 1.98 V and a measurement interval of 200 ms. The result of
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Fig. 17: CPA on Hamming weight of 12-bit F-box output for a
measurement interval of 200 ms at a supply voltage of 1.98 V
and a temperature of 90 ◦C.
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Fig. 18: CPA on Hamming weight of 12-bit F-box output for
a measurement interval of 1 ms at a supply voltage of 1.98 V
and a temperature of 90 ◦C.

the CPA attack under this setting can be seen in Figure 17. It is
shown that 8 000 traces are required to identify the correct key
candidate. This in fact corresponds to the number of traces that
the corresponding CPA on the dynamic power measurements
(on the same ASIC chip) required in [26]. For comparison
purposes, the result of the same attack for a measurement
interval of 1 ms is given in Figure 18 (multiple examples for
a measurement interval of 10 ms are given in Figure 8).

VII. CONCLUSIONS

In this work we have presented an extensive case study
on the effects of the three measurement factors temperature,
supply voltage and measurement interval on the amount of
information that can be extracted from static power measure-



ments. We are able to show that by controlling either the
temperature or the measurement interval (in case of clock
control) the number of traces that are required for a successful
key recovery can exponentially be reduced. Additionally we
observed that modifying the supply voltage at least marginally
eases such attacks as well. In particular by adjusting all three
parameters an adversary can theoretically end up with a set of
traces that only contains algorithmic noise. We conclude that
the existence of the investigated measurement factors and their,
in some cases, exponential impact on the success of attacks
further strengthen the position of the static power side channel
as a realistic target for adversaries against cryptographic hard-
ware. In this regard we would like to encourage research and
industry to incorporate static power attacks into their security
evaluation and certification processes.

Considering that our target ASIC was manufactured in
a rather old 150 nm technology, the results are even more
astonishing. The static power dissipation in this technology is
still several times smaller than the dynamic power consump-
tion. But still, only by controlling some measurement factors,
a successful static power analysis attack on an unprotected
implementation could be performed with as many traces as
a corresponding dynamic power analysis on the same target.
According to [4] the data dependency of the static current in
digital standard cells stays the same for smaller technology
sizes while especially the subthreshold leakage increases more
than linearly. Additionally, the exponential dependencies of
some static power sources on the supply voltage become only
relevant for more advanced technologies, which again favors
the adversaries. Hence, we suspect that the results presented
in this work are even more drastic for smaller feature sizes.

As a suggestion for future work on this topic, quite
obviously test chips in more advanced technology generations
need to be investigated. Additionally, it has to be verified
whether control over these measurement factors enables a
similar improvement of higher-order attacks against securely
masked implementations. Finally, effective countermeasures
need to be constructed to counteract the exploitation of this
emerging side channel.
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