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Abstract—Deep learning technology has been evaluated to achieve the high-accuracy of state-of-the-art algorithms in a variety of AI
tasks. Its popularity draws security researchers’ attention to the topic of privacy-preserving deep learning, in which neither training data
nor model is expected to be exposed. Recently, federated learning becomes a promising way where multi-parties upload local
gradients and a server updates parameters with collected gradients, in which the privacy issue has been discussed widely. In this
paper, we explore additional security issues in this setting, not merely the privacy. First, we consider that the general assumption of
honest-but-curious server is problematic, and the malicious server may break privacy. Second, the malicious server or participants may
damage the correctness of training, such as incorrect gradient collecting and parameter updating. Third, we indicate that federate
learning lacks incentives, since privacy and financial considerations may prevent distrustful parties from collaborative training. To
address the aforementioned issues, we introduce a value-driven incentive mechanism based on Blockchain. Adapted to this incentive
setting, we migrate the malicious threats from server and participants, and guarantee the privacy and public auditability. Thus, we
propose to present DeepChain which gives distrustful parties incentives to participate in privacy-preserving training, share gradients
and update parameters correctly, and accomplish iterative training with a win-win result. At last, we give an implementation prototype
for DeepChain by integrating deep learning module with a blockchain development platform. We evaluate it in terms of encryption
performance and training accuracy, which demonstrates the feasibility of DeepChain.
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1 INTRODUCTION

Recent advances in deep learning based on artificial neural
networks have performed unprecedented accuracy in var-
ious tasks, e.g., speech recognition, image recognition and
other attractive domains such as drug discovery and gene
analysis related to cancer [1]. For gaining the higher accura-
cy, deep learning models to be trained can be more complex,
and need numerous data to feed, which consume both
massive computation and time [2], [3]. This issue of massive
consuming can be migrated by employing distributed deep
learning technology which also is widely researched in
recent years. These developments promote deep learning
technologies obtaining more excellent achievements, and
also lead to the privacy issue of deep learning receiving
much concern. Thus, many researchers pay great attention
to the topic of privacy-preserving deep learning.

A few work has performed their methods for privacy-
preserving deep learning in different system models [4]–
[9]. Among these work, the methods in the setting of fed-
erated learning are widely discussed. Federated learning
1 essentially is derived from the technology of distributed
deep learning where training data is partitioned to multiple
parties. Multiple parties locally train the same model on
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1. It is also called as collaborative learning, and we do not distinguish
them in the paper.

local data and upload training intermediate gradients to
the parameter server maintaining the model. The parameter
server aggregates gradients from multiple parties and up-
dates the parameters of the model. Then parties download
the updated parameters to the local model and continue to
train it. The training procedure goes on iteratively and ends
when the training errors occur below pre-set thresholds.
Actually, collaborative training by the federal-based way
avoids the exposure of training data, but it cannot really pro-
tect privacy of training data. There exists a series of work in-
dicating that training intermediate gradients can be used to
infer significant information about training data [10]. Shokri
et. al [7] applied differential privacy technique adding a
spot of noises to uploading gradients, which demonstrated
a trade-off between data privacy and training performance.
However, Hitaj et. al [11] pointed out that their work failed
to protect data privacy and indicated a curious parameter
server can learn private data by GAN (general adversary
network) learning. Phong et. al [12] also concerned privacy
threats of data from a curious parameter server, and protect-
ed data privacy by utilizing the homomorphic encryption
technique against the learning of the server. Nevertheless,
their scheme assumed that collaborative parties are honest
but not curious; that cannot prevent some party’s gradients
or data from being exposed to a curious party. The proposed
method by Bonawitz et. al [13] can resist this threat, which
employed secret sharing and symmetric encryption mech-
anism to ensure the confidentiality of parties’ gradients.
The resistance to be effective needs some assumptions that
parties and parameter server can not collude to a certain,
and aggregated gradients in the clear text reveal nothing
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about parties’ data. The second assumption may need to
be re-concerned, since a membership inference attack on
aggregated location data is newly proposed [14]. The afore-
mentioned work generally prevented the privacy threat
from a curious parameter server. It is actually not enough to
simply consider such a parameter server because its other
malicious behaviors can disrupt the whole procedure of col-
laborative training, such as dishonestly collecting gradients
or updating parameters. From this view, a securer method
is desirable that no only guarantees the confidentiality of
gradients but also ensures the computation verifiability of
gradient collecting and parameter updating.

On the other hand, those schemes are presented in a
common situation where there exist multi-parties possess-
ing data and being prepared to accomplish training. But
even data sparseness does be a bottleneck to obtain a well-
trained deep learning model in general [15], especially to
obtain a large, complex and high-accuracy model. For ex-
amples, in medical research, normal samples always are far
more than acromegalic samples. Individual institutes may
only possess small quantities of data which is not enough
to train a good model. Many promising companies and
research institutes focusing on deep learning techniques
also devote a lot to collect enough data [7]. Nevertheless,
benefit and privacy considerations make it difficult to be
accomplished. Available data means unlimited value and
is linkable and inferrable which may disclose more hidden
private information. In this case, it may be feasible to build
up an incentive setting where distrustful data-possessing
individuals, even if they only possess a piece of data, are
value-driven to participate in collaborative training. Mean-
while, gradients collecting and parameter updating are in-
centivizable to be accomplished honestly. It is expected to
eventually achieve win-win benefit, in which collaborative
parties can gain a well-trained deep learning model and
solve corresponding AI tasks.

Fig. 1. The system model comparison between traditional training and
DeepChain (Tx means transactions covering the entire collaborative
training; Trading Contract and Processing Contract are Smart Contract
on DeepChain, which together instructs the secure training.)

With the aforementioned consideration, we notice it
is feasible to find a solution by integrating an exquisite-
ly Blockchain-based incentive with pro-developing cryp-
tographic primitives. Therefore, we build DeepChain, a
healthy and win-win decentralized platform based on
Blockchain for privacy-preserving deep learning training.
The system models of traditional training and DeepChain
are presented in Fig. 1. It makes massive locally train-

ing intermediate gradients be securely aggregated among
distrustful owners via launching transactions. Parameter
updating is incentivizedly computed by workers via pro-
cessing transactions, thereby accomplishing iterative train-
ing. In addition, data ownerships and the entire training
process are publicly auditable. In conclusion, we make our
contributions as follows.

• DeepChain recognizes the value of separated data
pieces, and provides an reliable incentive mechanism
to aggregate them for collaborative training.

• It provides the auditability and confidentiality for
locally training gradients of each participant.

• It in addition employs economic affair to push each
participant behaving honestly, which the fairness for
collaboration is guaranteed.

• By introducing the promising security into the in-
centive mechanism, gradient collecting and parame-
ter updating are incentivized to be honestly accom-
plished.

• DeepChain also brings long-term benefits. All train-
ing processes and well-trained models are recorded,
which could advance the development of transfer
learning.

The rest of the paper is organized as follows. In Section
2, we summary the existing related work. In Section 3, we
give a brief introduction on Blockchain and the background
of deep learning. Then, we describe the threat model and
security requirements in Section 4. In Section 5, we present
an overview and further introduce concrete design details of
DeepChain. We analyze security properties of DeepChain in
Section 6 and in the Section 7 we display the implementation
of DeepChain and evaluation results. Lastly, we conclude
the paper in Section 8.

2 RELATED WORK

This work is supported by the related works twofold. In this
section, the topic about privacy-preserving training is given
at first and then we discuss the works on distributed deep
learning.

2.1 Privacy-preserving training

There are mainly two kinds of works on privacy-preserving
neural network learning, one of which is privacy-preserving
training and other one is privacy-preserving classification.
This paper falls in the area of the former, so we only display
here the related works of privacy-preserving training. Chen
et. al [4] proposed privacy-preserving two-party algorithm
of multi-layer neural networks by using homonorphic en-
cryption. However, they focus on party data which is verti-
cally partitioned. Bansal et. al [5] first considered arbitrarily
partitioned data between two parties for privacy-preserving
back-propagation neural network learning. Their algorithm
guarantees the privacy of each party’ training data, in which
two party only share the random values of weights after
each round of training and learn the result weights just at
the end of training. The above two works only focus on the
two-party setting. Yuan et. al [6] introduced the power of
cloud computing to the multi-party setting and proposed
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privacy-preserving back-propagation algorithm on arbitrar-
ily data. Their scheme allowed multiple parties to upload
locally encrypted data to the cloud and the cloud under-
take to execute learning algorithm on encrypted training
data. With the popularity of big data feature by employing
deep learning technique, Zhang et. al [9] presented effective
privacy-preserving deep learning model by migrating the
complex operations to the cloud. Their method successfully
used the currently most efficient BGV encryption scheme to
support full homomorphic operations and avoid computing
exponentiation operation by approximating the activation
function as a polynomial function. Following the works on
privacy-preserving training with the power of the cloud,
Li et. al [8] discussed those works only allow individual
training data to be encrypted with the same public key. They
claimed this kind of method is limited to the scenario where
data are from different parties who encrypted data with d-
ifferent public key. Thus, they took it into consideration and
proposed a cloud computing-based framework to privacy-
preserving training by utilizing a proxy fully homomorphic
encryption scheme. Shokri et. al [7] implemented a privacy-
preserving deep learning system where multiple parties
share a small fraction of gradients and learn a deep learning
model together. Their system assume parties are willing and
honest to upload their gradients to a centralized server and
the server always maintains the latest training results for
being downloaded by parties. They did not consider the
necessary to audit the behaviors of joint parties and the
server, and provide the fairness among them. Their work
also did not achieve the unlinkability of parties’ sharing
parameters although they recognized the importance of it.
Considering about training on communication-expensive
and instable mobile devices, Bonawitz et. al [13] preserved
Shokri et. al’s [7] system model of training and proposed
an efficient method to securely aggregate parties’s local
gradients for a common deep learning model. Different
from a single server model of above shemes, Mohassel
et. al [16] explored the method of the two-server model,
and constructed SecureML where two non-colluding servers
collect and accomplish the training while preserving the
privacy of data.

2.2 distributed deep learning
Modern deep learning model trained on massive datasets
requires significant amount of computation power and ex-
tremely long time-consuming, so distributed deep learning
training have been condcted in recent years. There are two
approaches to distributed deep learning training: model
parallelism and data parallelism, the difference of which
is the partitioning on a total model or dataset. Actually,
distributed training can work is due to most of modern
deep learning algorithms are based on stochastic gradient
descent (SGD) which can execute parallizedly and asyn-
chronously [17]–[21]. DistBelief was proposed to enable
training large-scale DNNs which supported both model and
data partitioning. However, it cost significant amounts of
computation (2000 machines for the 22K ImageNet clas-
sification task) [19]. Another attractive aychronously dis-
tributed system was implemented by Adam with model
partitioning. Adam demonstrated more efficient and scal-
able training than DistBelief (120 machines for the same

task with DistBelief) [3]. SINGA also was proposed based
on model partitioning, but it allowed both synchronous and
asynchronous training [22]. Yan et. al considered the impact
of model and data partitioning on training large DNNs. By
an optimizer on the system scalability, they finally gained
the best configurations which achieved high accuracy and
minimized the training time [23]. Recently, a series of works
on distributed deep learning training are continuely pro-
posed [24]–[28], which showed us the feasibility to research
on collaborative training a deep learning model.

3 BACKGROUND

3.1 Blockchain technology

Blockchain technology has arisen a surge of interests both
in the research community and industry. It becomes an
emerging technology as a decentralized, immutable, sharing
and time-order ledger. Transaction are stored into blocks
containing timestamps and references (i.e., the hash of a pre-
vious block) which are maintained as a chain. In Blockchain,
transactions are created by pseudonymous participants and
competitively collected to build a new block by a role
named worker. The worker of a new and valid block can
gain amount of rewards so that the chain is continuously
lengthened by competitive workers. That presents the in-
centive mechanism in the Blockchain setting. In addition,
pro-developing Blockchain technologies introducing smart
contract support Turing-complete programmability, such as
Ethereum and Hyperledger. On the other hand, a series
of works on transaction privacy are popular by applying
cryptographic tools into Blockchain, such as Zerocash [29],
Zerocoin [30] and Hawk [31]. Therefore, Blockchain technol-
ogy’s incentive feature and its pro-developing technologies
inspire us to solve our problem.

3.2 Deep learning training

The backbone of a deep learning model consists of three
layers: the input layer, the hidden layer and the output layer.
A deep learning model can contain multiple hidden layers
which represents the depth of a model. Each layer includes
amount of neurones. Neurones in different layers enable
to learn hierarchical features from training data and then
obtain feature representations in different levels of abstrac-
tion. Each neurone has multiple inputs and a single output.
Typically, the outputs of neuron i in layer l − 1 connects
to the inputs of all neurones in layer l. Each connection is
associated with a weight w. For example, wj,i associates the
connection between neuron j in layer l − 1 and neuron i
in layer l. Each neuron i also has a bias bi. These weights
and bias are called as model parameters which need to be
learned via training.

The currently popular deep model learning method is
Back-Propagation (BP) learning algorithm which is com-
posed of two steps: feed forward and back-propagation.
Specifically, in the step of feed forward, the values in
each layer are calculated based on the parameters of the
preceding layer and the current-layer parameters. A key
component in the calculation is called as activation which is
the output of each neuron i. Activation is used to learn non-
linear features of inputs via a function Act(·). For computing
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the value of a neuron i in layer l, Act(·) takes all inputs n of
i from layer l−1 as input. Additionally, we assume weights
wj,i link to the connections between neurons j in layer l− 1
and neurons i in layer l and bi links to the bias of neuron
i. Then, the value of neuron i in layer l is calculated as
Acti(l) = Acti(Σ

n
j=1(wj,i ∗ Actj(l − 1)) + bi). On the other

hand, the second step is back-propagation algorithm by
using gradient descent. It is to shrink the error Etotal which
are the gaps between model output values Voutput and target
values Vtarget. Assume that there are n output units in the
output layer. Then, Etotal = Σn

i=11/2(Vtargeti − Voutputi)
2

is computed. With the error Etotal, weights wj,i can be
updated via wj,i = wj,i − η ∗ ∂Etotal

∂wj,i
so that its gradient

decreases. η means the learning rate and ∂Etotal

∂wj,i
is the

partial derivative of Etotal with respect to wj,i. The learning
procedure is repeated until the pre-set iterations to train is
reached.

When training a rather complex and multi-layer deep
learning model, the aforementioned training procedure
needs high computation-consuming and time-cost. In order
to migrate this problem, distributed deep learning training
has been widely discussed, and most of developed excellent
systems and architectures exhibit attractive performance,
such as DistBelief [32], Torch [33], DeepImage [34] and
Purine [35]. There are two approaches for distributed train-
ing: model parallelism and data parallelism. The former
partitions a total model while the latter partitions the whole
training dataset on multiple machines. Our work focuses on
the latter one where multiple machines maintain the copy of
the training model and process different data subsets being
partitioned. These machines share the common parameters
of the training model, by uploading and downloading pa-
rameters, on a centralized parameter server. Then, multiple
machines upload their local training gradients, with which
the commonly maintaining model is updated by using SGD.
They download updated parameters from the parameter
server and continue to train the local model. With iteratively
training, those machines at the end together gain the trained
model.

4 THREATS AND SECURITY GOALS

In this section, we discuss twofold threats in the scenario
where distrustful parties share locally training gradients
for collaborative training. Then, we present which kinds of
security properties provided by DeepChain with respected
to the threats.

Threat 1: Disclosure of data and model. This threat
refers to three hands: 1) the disclosure of any individual’s
updated gradients enables adversaries to infer respective
and available information about local data and model. Ad-
versaries may initiate inference attacks or membership at-
tacks [36]. 2) a collaborative training model without protec-
tion may leak private information. Adversaries may launch
parameter inferring attacks, thus breaking the privacy for
participants [11]. 3) the leakage of aggregating updated
gradients may lead to some linkability threats [14].

Security Goal for Threat 1: Confidentiality guarantees
for training gradients. Note that DeepChain creates a plat-
form trading gradients for participants to collaboratively

train a significant model. Each participant individually en-
crypts and trades training gradients belonging to his local
model based on personal data. All gradients then are used
to update the parameters of collaborative training model
which also is collaboratively encrypted by participants. In
each iteration, participants obtain updated parameters via
collaboratively decryption. Assume that participants them-
selves do not expose data, and a threshold t of participants
are honest in the entire produce, which means no more than
t participants colluding to disclose parameters. Individuals’
training gradients do not be exposed to anyone unless t
participants collude, from which the first kind of threat is
resisted. In terms of the second threat, only if participants
do not disclose the updated parameters of the collaborative
model he gain, any external parity could not gain any
information.

Threat 2: Internal disruption for collaborative training.
Considering the situation that participants may be mali-
cious, and their disruption behavior may lead to a bad
collaborative training. They may at random choose their
inputs instead of a correctly encrypted construction for gra-
dients, which disrupts the evaluation operations on ciphers,
obstructing the training. The evaluation results on encrypt-
ed gradients for parameter updating may be computed
as an incorrect result. During the phase of collaborative
decryption, participants may give a problematic decryption
share. They may be selfish, and then even independently
abort the training. The aforementioned malicious behaviors
by disrupted participants can block up the training, as a
result that honest participants are unable to gain a good
trained model.

Security Goal for Threat 2: Public auditability for
gradient collecting and parameter updating. Assume that
the majority of participants for gradient collecting are honest
and more than 2/3 workers are honest to update parameters
on DeepChain. In terms of gradient collecting, participants’
transactions containing encrypted gradients additionally
provide proofs for correctness, which allows the public to
audit whether some participant gives a correctly encrypt-
ed construction for gradients or not. On the other hand,
workers claim computation results for parameter updating
via transactions which are recorded on DeepChain. Those
transactions are publicly auditable, and computation results
presented by them are convincing to be correct only if
2/3 workers are honest. With parameter updating, updated
parameters are to be collaboratively decrypted where par-
ticipants provide their decryption shares and correspond-
ing proofs for correctness. Similar to the case of gradient
collecting, anyone can audit whether the decryption shares
are correct or not.

Security Goal for Threat 2: Fairness enhancement for
collaborative training. Fairness is enhanced by a trusted
timeout-checking and a monetary penalty mechanisms on
DeepChain. This refers to the consistence of participants’ be-
havior and benefit by defining time clocks for each functions
within smart contracts for accomplishing a collaborative
training. Specifically, at a time point following a function,
the accomplished results of this function are verified. When
the function is verified to be failed, it represents two cases
where participants behave dishonestly. One case is that
there exists participants not being punctual at the time
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point. Another case means that there exists participants who
incorrectly accomplish the function. In this two cases, the
monetary penalty mechanism works by revoking the pre-
frozen deposit of a dishonest participant, and allocating
them to honest participants. As a result, fairness ensures
honest participant who both behave punctually and cor-
rectly must not be punished, and honest participant will
be compensated if there exists some participant behaving
dishonestly.

5 SYSTEM DESIGN

In this section, we give the overview of collaborative train-
ing on DeepChain as shown in Fig. 2 and introduce its
concrete design details.

Fig. 2. The overview of collaborative training on DeepChain

5.1 Overview

Informally, DeepChain integrates special features of
Blockchain and cryptographic tools to provide a platform
which publicly recognizes the value of private data owned
by individual parties. We assume the condition of network
communication is synchronous among parties. Suppose that
parties Pj(j ∈ {1, ..., N}) constitute a cooperative group for
collaborative training. They agree on pre-defined informa-
tion for training including to initialize a collaborative model
to be trained. Those pre-defined information is generated
into a transaction Tx0

com by signing with cooperative par-
ties. Suppose that an address attaching to the transaction is
pkit0 where it0 means the beginning of iterative training.
At the end of each iteration i, the updated model in Txi

com

is attached to a new address pkiti known to cooperative
parties. Intermediate gradients from cooperative parties via
transactions Txi

Pj
are collected by Trading Contract dur-

ing each iteration. Those intermediate gradients are their
locally training weights CPj (△Wi,j) where C means the
corresponding ciphers and i represents the iteration index
of training. When accomplishing the collection of transac-
tions, Trading Contract uploads transactions to DeepChain

{Txi}P1,...,PN . Workers perform their contributions by pro-
cessing transactions {Txi}P1,...,PN via Processing Contract.
They update the weights of the latest model C(Wi) in
Txi

com into C(Wi+1) in Txi+1
com with C(△Wi,j) by com-

puting C(Wi+1) = C(Wi) · 1/N ·
∏N

j=1 CPj (△Wi,j). Due
to the incentive mechanism on DeepChain, workers are
competitive to perform for monetary rewards. Specifically,
workers process transactions competing for a leader who
would be rewarded by DeepChain. DeepChain maintains
the payoff maximization of parties and workers, so that a
healthy and win-win environment is created. This can refer
to section 5.2.2. In order to give a better understanding
of DeepChain, we firstly introduce the materia terms and
several processes to accomplish model training. We further
describe the foundational significance of DeepChain. The
material terms are as following:

• Party DeepChain attracts those parties who desire
but fail to accomplish their AI tasks due to limited
available data, to cooperate with others having the
similar tasks. Parties display their assert (i.e., da-
ta) and the brief descriptions of their tasks related
to asserts when they first registers DeepChain. All
task descriptions of registered parties are public on
DeepChain.

• Trading A trading is generated by a pseudorandom
pk of some cooperative party and sent to an appoint-
ed cooperative pk referred to the same goal. Here
trading data are locally training weights but not raw
data. A trading also is built by a worker processing a
group of transactions where worker’s pk means the
sender of the trading.

• Cooperative group A cooperative group is set up
by the parties who have similar AI tasks. In this
group, they collaboratively trade their locally train-
ing weights for the same goal, i.e., cooperative train-
ing model to be referred.

• Cooperative training model When a cooperative
group is set up, they agree on a collaborative train-
ing model to be trained. This step includes defin-
ing initial model and initializing model parameters.
In the following iterations, the cooperative parties
contribute to this commonly maintained model by
trading their locally training weights. Those trading
weights among cooperative parties are used to up-
date their collaborative training model.

• Locally training model Locally training model is
locally trained by each party. At the end of a local
iteration, a party generates a trading attaching his
local weights to the appointed pk which is called
Trading Contract.

• Worker Workers are incentive to process transac-
tions that include individual training weights for
the collaborative model updating by C(Wi+1) =
C(Wi) · 1/N ·

∏N
j=1 CPj (△Wi,j). They compete to

work out a block as a leader so that they gain block
rewards and good reputation. Gained rewards and
reputation would be evaluated when the worker
exchanges them with trained models on DeepChain
for accomplishing his AI task.

• Iteration An iteration is referred to a processing unit



6

to train a deep learning model. After an iteration,
parameters in a model are updated one time. To train
a deep learning model needs multiples iterations. A
cooperative group agree on the iteration times before
training their model.

• Round An round relates to the time interval of a
block generation on DeepChain. In a round, trans-
actions from different cooperative groups are pro-
cessed, which demonstrates the updated results on
the corresponding models.

• DeepCoin DeepCoin $Coin is a kind of value repre-
sentation on DeepChain. Users participate in Deep-
Coin circulation by acting on DeepChain. In partic-
ular, a trained cooperative model brings participants
with $Coin due to each newly generating block on
DeepChain. We note that participants consist of two
roles: party and worker. Parties in a cooperative
group gain $Coin due to their contributions on train-
ing parameters. Workers are rewarded with $Coin
according to their behaviors on DeepChain where
they help to update training models corresponding
to cooperative groups. Moreover, well-trained mod-
els being used need $Coin. Those who have not AI
tasks and meanwhile fail to get trained models spend
$Coin to use available models. This can be related
with serval recent work on model-based pricing for
machine learning [37], [38]. In addition, we add a
property called a validity value to DeepCoin. The
size of the validity value is set as an interval of a
round. The new introduction of the validity value
is related to the consensus mechanism played on
DeepChain. We will further describe it in 5.2.5.

Then, the procedure to accomplish a collaborative mod-
el training includes (1) cooperative group establishment
where parties who desire to gain a similar model build
up a cooperative group according to the similarity of their
individual possessing data; (2) collaborative information
commitment where cooperative parties agree on necessary
collaborative information for training and security commit-
ment for security requirement; (3) gradient collecting via
trading contract where cooperative parties securely upload
their locally iterative parameters to a trading contract; (4)
parameter updating via processing contract where locally
iterative parameters from individual parties are contributed
to a common model by workers via Processing Contract, so
that an iteration of the common model is achieved.

Last, we describe DeepChain corresponding to three pro-
posed definitions in the Blockchain setting, which demon-
strates the significance made by DeepChain. V (.) predicate
means validation where each $Coin a party spends in a
transaction is guaranteed valid, and a transaction related to
DeepChain business is effectively validated. Another pred-
icate I(.) represents how the valid contents of a block are
input where workers do effective contribution on processing
transactions into blocks. The last predicate R(.) refers to
the interpretation of DeepChain where DeepChain records
all procedures of each collaborative trained model which is
significantly useful for solving current and future AI tasks
in a trusted way.

TABLE 1
Notations and implications

Notations Implications
pkpsuP a pseudo-generated public key of party P
skP a secret key of the party P
q a randomly selected big prime
G1 cyclic multiplicative cyclic groups of prime order q
G2 cyclic multiplicative cyclic groups of prime order q
g a generator of group G1

Z∗
q {1,2, ..., q-1}

e a bilinear map e: G1 ×G1 → G2

H1 a collision-resistant hash function mapping
any string into an element in Z∗

q

H2 a collision-resistant hash function mapping
any string into an element in G1

C() a cipher generated by Paillier.Encrypt algorithm
Enc() the encryption by individual parties

5.2 Concrete Design
Our concrete design includes five building blocks:
DeepChain bootstrapping, incentive mechanism, party as-
sert display, cooperative training and consensus protocol.
For giving a better understanding, we list related crypto-
graphic notations on TABLE 1.

5.2.1 DeepChain bootstrapping
DeepChain bootstrapping accomplishes two things: (1)
DeepCoin distribution and (2) genesis block generation
which are innate elements for running DeepChain. On one
hand, we assume that users have registered on DeepChain
and each user uses one of pks as the address corresponding
to a DeepCoin unit he possesses or launching a transaction.
DeepCoin distribution realizes that each user on DeepChain
is allocated amounts of DeepCoins. We assume that the
quantity of the allocations are equal.On the other hand,
the genesis block contains initial transactions referring to
DeepCoin possession statements after the step of DeepCoin
distribution. Assume that the round begins with 0 and gen-
erates the genesis block. When the genesis block is generat-
ed, a random seed seed0 also is public. seed0 is randomly
chosen by initial users via using distributed random number
generation. We note that seed0 is the base random seed
for DeepChain. Particularly, seed0 is one of components to
choose the random seed seed1 in the round with the index
1 and the rest of rounds can be done in the same manner.
The seeds are crucial to guarantee the randomness to select
a new leader who creates a new block. This follows the
idea of cryptographic sortition from Algorand [39], [40]. We
will introduce it in section 5.2.5 for the health running of
DeepChain.

5.2.2 Incentive mechanism
An incentive is the motivation for a party to act. Designing
an incentive mechanism is to produce value and leads to
collective benefit. By DeepChain’s incentive mechanism,
individual parties are value-driven to exchange gradients
with others for obtaining collaborative models which are
well-trained. On one hand, it promotes the cooperation
of parties who desire but fail to gain a well-trained deep
learning model solving AI tasks due to data sparseness. On
the other hand, it encourages cooperative parties to hon-
estly trade locally training gradients, and makes workers
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honestly process parties’ transactions where they update
parameters of collaborative models with traded gradients.

This incentive mechanism is value-driven and intro-
duces monetary rewards and penalties for participants’ per-
formances. For giving a better understanding, we suppose a
scenario where two individual parties possess small quanti-
ties of data which cannot allow individuals to train an high-
accuracy model; combining their data makes it possible
for them to achieve the high-accuracy training. DeepChain
enables two parties to combine their data for collaborative
training via launching transactions. Data possessed by two
parties are assumed in the unequal distribution. Parties
launch transactions and pay a few transaction fees, the
amount of which are related to the quantity distribution
of individual data; the more data an individual owns, the
less fees he should pay. Suppose that two parties constitute
a group and agree on the amount of fees for collabora-
tive training; they also promise the fees each party should
pay according to the quantity distribution. Assume that
each party needs to make ten thousand transactions for
accomplishing collaborative training; the total fees paid by
those ten thousand transactions should be equal to the
value he promised. Note that transactions containing iter-
ative gradients would be iteratively processed by workers
who compete for a leader to earn rewards by successfully
creating a new block. In addition, transaction making and
processing are verifiable. If an invalid transaction made
by some party is caught, the party would be punished.
Meanwhile, a leader who incorrectly processes transactions
also is punished, which reduces his reputation. At the end,
the accomplished model creates value for these two parties
solving their AI tasks and serving others via paying.

To give a formalized description for the incentive mech-
anism, we first introduce two properties, compatibility and
liveness of the incentive mechanism for parties and work-
ers, which demonstrates collaborative value on DeepChain.
Then, we further explain it that parties and workers have
incentives to behave honestly. Assume that we guarantee
data privacy and the security of the consensus protocol
which are to be introduced. We also assume that the value
vc of the collaboratively well-trained model is higher than
the value vi of individually trained model in terms of the
quantity of training data.

Fig. 3. The incentive mechanism of DeepChain

First, we say it has compatibility if each party can obtain
the best result just by performing according to their true
propensities. Meanwhile, we say it has liveness that vc

is maintained, only if each party trends to transform vi,
and each worker has incentives to vc. Both honest par-
ties and workers have the same common propensity to
gain well-trained models, represented as vc. For a party,
he should iteratively perform to trade gradients for vc,
which is defined as cost(vi). If the party desires to obtain a
collaboratively well-trained model, he needs to accomplish
his entire participancy. For a worker, he should process
transactions for vc, to earn rewards with probability and
gain reputation. Money he earned enables him to pay AI
services on DeepChain. Note that the probability is said that
a worker has a probability to gain rewards according to the
quantity of money and reputation he has earned, i.e., the
larger the quantity is, the higher probability would be. As
a result, a worker in order to gain rewards with the higher
probability, has incentives to maintaining vc. We further use
ωP and ωW to represent the contributions of a party and a
worker for maintaining vc, respectively; using πP and πW

to represent their payoffs from maintaining vc, respectively.
For an individual party, the more he contributes ωP , the
more he gains πP and that rule also holds for a worker.
Then, within a collaborative training, both sides play incen-
tively to a well-trained model Max(ωP )

∧
Max(ωW ), the

total payoff is highest gained by them Max(πP , πW ). If any
participant can not perform well (ωP = 0)

∨
(ωW = 0),

nothing would be got that their is false to their individual
true propensities (πP = 0)

∧
(πW = 0) where

∧
means

’and’ and
∨

means ’or’.
Payoff={
Max(πP

∧
πW ) If Max(ωP )

∧
Max(ωW )

(πP = 0)
∧
(πW = 0) If (ωP = 0)

∨
(ωW = 0)

Second, based on the aforementioned description, we
show each party and worker are value-driven to behave
honestly in each iteration so that they can obtain the highest
payoff, in which the theory derives from the work [41]. We
formalize it as V alue(1) = πP − ωP (1) for a party. Assume
that the method is correct with the probability Prv(P ) to
verify a party’s malicious behavior is malicious and Prv(W )
is similar to a worker; the mechanism to launch a penalty
is assumed to be designed securely. Note that a party’s
contribution is defined as ωP . For party, we say that ωP

is honestly provided with the probability Prc(P ). Then,
ωP (Prc(P )) is used to represent his true performance. In
addition, we get the probability Prv(P )∗(1−Prc(P )) that a
dishonest party would be caught. Once the dishonest party
is caught, he is punished by forfeiting his deposit, the loss of
which is defined as fP . Thus, the returned value according
to the party’s true behavior can be represented as

V alue(Prc(P )) = πP ∗(1−Prvc(P ))−fP ∗Prvc(P )−ωP (Prc(P ))

where Prvc(P ) = Prv(P ) ∗ (1 − Prc(P )). We expect that
the value is max only when the party behaves honestly
Prc(P ) = 1 and then V alue(1) = πP−ωP (1) can hold. This
indicates the significance of the incentive mechanism. We
can achieve this expectation by setting the values of Prv(P ),
πP , and fP as following.

Theorem 1. If fP /πP > (1 − Prvc(P ))/Prvc(P ) where
Prvc(P ) = Prv(P ) ∗ (1 − θ) is set, then a party will
be honest at least with the probability θ.
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Proof. It can be significant by proving that for any
Prc

′
(P ) < θ, V alue(Prc

′
(P )) is lower than V alue(θ).

Without the loss of generality, we prove for any
Prc

′
(P ) < θ, V alue(Prc

′
(P )) is lower than 0. That is

V alue(Prc
′
(P )) = πP ∗ (1− Prvc

′
(P ))− fP ∗ Prvc

′
(P )−

ωP (Prc
′
(P )) is lower than 0. When we set fP /πP >

1/Prvc
′
(P )−1, the result πP ∗(1−Prvc

′
(P ))−fP ∗Prvc

′
(P )

is lower than 0. Thus, in this case, V alue(Prc
′
(P )) is lower

than 0 that holds.
For a worker, the incentive analysis is similar to the

analysis for a party, expect that his payoff has probability
to gain. We set this probability is Prleader . Thus, we should
set the relationship of four values Prleader , Prv(W ), πW ,
and fW to encourage a worker to be honest.
Theorem 2. If fW /πW ∗Prleader > (1−Prvc(W ))/Prvc(W )

where Prvc(W ) = Prv(W )∗ (1− ϵ) is set, then a worker
will be honest at least with the probability ϵ.

Proof. The proof is similar to the proof for Theorem 2,
so it is omitted.

5.2.3 User assert display
We call data possessed by a user as his assert, and its value is
recognized by DeepChain, which is the essential for creating
collaborative value. A user who uses DeepChain to find
cooperators and accomplish his AI tasks, needs to display
his assert first. The user displays assert while protecting
data privacy that claims which AI tasks his data is related to.
Formally, the user displays his assert via a record which is
represented as a transaction including four parts. Note that
a transaction is launched by a pseudo public key address.
The pseudo public key address is generated by the user
according to his wishes. The process to generate pseudo
public keys is shown as follows.

pkpsu
P ∈ {gskP

1 , gskP
2 , ..., gskP

n }

It indicates P wishes to have n (n is an integer) public keys.
P selects a secret key skP (∈ Z∗

q ) and generates a series
of public keys gskP

i (∈ G1) where gi means that a random
element ri ∈ Z∗

q pow g, as well as i is in [1, n]. Note that
q (prime) and g (a generator in G1) are system parameters
on DeepChain while ri is secretly selected by individual
parties. Thus, party assert display of a party (P1) can be
represented via the following transaction with the address
pkpsuP1

.

pkpsu
P1

→
{(

pkdata P1 = gH1(data P1),

σj P1 = (H2(j) · gH1(dataj P1
))H1(data P1)

)
,

”Keywords”
}

The first part pkdata P1 without leaking the value of
H(data P1) is regarded as the assert proof that P1 indeed
possesses data H(data P1). Particularly, σj P1 contains l
components since data P1 is divided into l blocks, each
of which is dataj P1 where j is in [1, l]. The second part
announces ”Keywords” as the description for the raw da-
ta data P1, which helps a user to find cooperators with
the similar AI tasks. When implemented, ”Keywords” are
formed with the JSON style which include 4 fields: data
size, data format, data topic and data description. Then, P1

submits his assert transaction as TranP1 . We assume that
displayed data in the first time on DeepChain are authentic
which is reasonable in the setting of Blockchain.

5.2.4 Collaborative training
Due to the phase of user assert display, parties who have
similar AI tasks can constitute a group for collaborative
training. In this phase, we introduce the life-cycle of a
collaborative training group with four steps, (1) collabo-
rative group establishment; (2) collaborative information
commitment; (3) gradient collecting via Trading Contract; (4)
parameter updating via Processing Contract.
• Collaborative group establishment. Note that key-

words related to AI tasks are displayed in the prior phase.
Parties establish a collaborative group Group according to
similar ”Keywords”. They may get more information about
”Keywords” by off-line interactions and further confirm
their collaboration, the details of which are omitted in the
paper. In this step, pre-cooperative parties can audit coop-
erators’ data to ensure the authenticity of data possession.
The auditing process is executed based on their displayed
data which includes the data proof. Concretely, we present
this auditing process in DataVerifying Contract. Assume that
a party Pk (pkpsuPk

) wants to audit P1’s data. First, the party s-
elects a subset from l, i.e., set ⊂ [1, l], and requests P1 to give
a proof of {j, vj}|set| where vj is randomly selected from Z∗

q

and j is ∈ set. Then, P1 needs to use vj and compute the
proof

(
α, β

)
for required σj where j ∈ set. After gaining the

proof, Pk can accomplish the auditing by verifying whether
the equation e(α, β) = e(Πj∈set(H2(j)

vj ) · gβ , pkdata P1)
holds or not. With the accomplishment of security auditing,
N parties P1, P2, ..., PN constitute Group with pseudonymi-
ty, i.e, pseudo public keys pkpsuP1

, pkpsuP2
, ..., pkpsuPN

, and their
secret keys skP1 , skP2 , ..., skPN are privately possessed, re-
spectively. Since parties may launch transactions by using
different pseudo public keys, the transactions signed by the
same secret key skPi can be verified that those transactions
are from the same cooperative member.

Algorithm 1: DataVerifying(pkpsuPk
, {j, vj}|set|)

receive(pkpsuPk
, {j, vj}|set|) #j ∈ set

checkT imeout(Ta1)
getInfoFromDeepChain()→
{pkdata P1 = gH1(data P1), σj P1 =
(H2(j) · gH1(dataj P1 ))H1(data P1)}|set|
computeProof()→
{α = Πσ

vj
j P1

, β = Σvj ·H1(dataj)}|set|
checkT imeout(Ta2)
verifyProof(pkdata P1 , α, β)→ Y es or No
checkT imeout(Ta3)

• Collaborative information commitment. After Group
establishment, parties agree on their collaborative informa-
tion for securely training a common deep learning model as
follows. In this step, we assume a trusted component only
for the setup phase in Threshold Paillier algorithm, and it
does not take part in other processes. If there exists no such
a trusted component, we can accomplish the setup phase by
a distributed way [42].

(1) The number of cooperative parties, N .
(2) The current round index, round.
(3) Setup parameters of Threshold Paillier algorithm:
PKmodel = (nmodel, gmodel, θ = as, V =

(v, {vi}i∈[1,...,N ])) where gmodel ∈ Z∗
n2
model

and
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a, s, θ, v, vi ∈ Z∗
nmodel

. SKmodel = s which is randomly
divided into N parts where s = f(s1 + ... + sN ) (f
means a function for secret sharing protocol). Each party
owns a part of secure key si. v and {vi}i∈[1,...,N ]) are
public verification information, and vi is in respect to si.
A threshold t (∈ {N/2, ..., N}) is set that more than t
parties can together decrypt a cipher. Note that training
gradients to be encrypted are vectors with multi-element,
such as △Wi,j = (w1

i,j , ..., w
ω
i,j) where the length of

△Wi,j is ω. Note that i represents the iteration index of
training and j is ∈ {1, ..., N}. Considering the problem of
the cipher expansion, we encrypt a vector into a cipher
instead of multiple ciphers with respected to multiple
elements. Then, to choose a ω-length super increasing
sequence α⃗ = (α1 = 1, ..., αω) that simultaneously meets
two conditions. Suppose that each value of w1

i,j , ..., w
ω
i,j

is not larger than the value d. The two conditions are∑i−1
l=1 α·N ·d < αi(i = 2, ..., ω) and

∑ω
i=1 αi ·N ·d < nmodel.

Then compute (g1model, ..., g
ω
model) = (gα1

model, ..., g
αω

model).
(4) A common deep learning model modelcom attached

to a commonly coordinated address pkpsucom is publicly
recorded as a transaction Trancom on DeepChain.

Trancom = pkpsucom → modelcom

For modelcom, they agree on which kinds of training net-
works, which kinds of training algorithms and what con-
figurations of networks (such as the number of network
layer, the number of neuron each layer, the size of mini-
batch and the times of iteration). Beside these information,
they also agree on the initial weights W0 of modelcom.
The weights are protected by applying Paillier.Encrypt
algorithm C(W0) = gW0

model · (k0)nmodel where k0 is ran-
domly selected from Z∗

nmodel
. Note that we compute gW0

model
with the help of the chosen super increasing sequence that
gW0

model = g
α1·w1

0+...+αω·wω
0

model so that we generate a cipher for a
vector.

(5) A commitment on SKmodel = s is combined with
individual parties’ commitments on their individual secret
keys si.

commitSKmodel =(Enc(s1||indexr||Sign(s1||indexr)),

..., Enc(sN ||indexr||Sign(sN ||indexr)))

(6) Individual parties’ initial weights W0,j are provid-
ed in the encryption form by Paillier.Encrypt algorith-
m. C(W0,j) = g

W0,j

model · (kj)nmodel where kj are random-
ly selected from Z∗

nmodel
by individual parties Pj where

j ∈ {1, ..., N}.
(7) Each cooperative party is required to commit

amounts of deposits $deposit for secure computation. Dur-
ing the cooperation, if a party behaves badly, the deposits
would be forfeited and compensated other honest parties. If
not, those deposits would be refunded.

(8) Another component $Coin is committed by each
party according to the quantity of data they share. This com-
ponent can be coordinated off-chain and different parties
may commit different amounts of $Coin with agreement.

We note that two kinds of roles are defined for parties in
Group, trader and manager, which will be further discussed.
All collaborative information are recorded in a transaction
Trancom1 being uploaded to DeepChain.

After the aforementioned steps, we next introduce how
collaborative training is securely accomplished via two
smart contracts, Trading Contract and Processing Contract.
Note that collaborative training contains two main func-
tionalities, i.e., iteratively gradient collecting and param-
eters updating. In DeepChain, traders (parties) iteratively
trade their gradients to Trading Contract executed by the
manager. The trading gradients are honestly encrypted by
each trader and meanwhile the correct proofs of encryption
are attached, which indicates two security requirements
(confidentiality and auditability). In terms of confidentiality,
only if a trader does not disclose his gradients, no one can
gain any information. Traders (at most t parties) in addition
need to cooperatively decrypt parameters after they are
updated in the contract. We assume the manager cannot
disclose what he knows, as the work [31] promised. In terms
of auditability, each trader sending his encrypted gradients
also needs to give a correct proof for it. When cooperatively
decrypting, each trader also presents his decryption proof.
Those proofs are non-interactively public on DeepChain and
auditable for any party. On the other hand, the behaviors
of traders and the manager are forced to be authentic and
fair by utilizing the timeout-checking and monetary penalty
mechanisms. Even if the manager colludes with traders, the
outcome of Trading Contract cannot be modified [31]. On
the other hand, Processing Contract is responsible for pa-
rameter updating. Workers process transactions by casting
up gradients in respect to a group, and send computation
results to Processing Contract. Processing Contract verifies
correct computation results and updates model parameters
for this group. For accomplishing the whole training, these
two contracts are called for multiple times. Concretely, we
give more detail descriptions for these two contracts in the
following steps.
• Gradient collecting via Trading Contract. As shown

Algorithm 2: Trading(Trani
P1

,...,Trani
PN

) #being
called by iterations

-receiveGradientTX()
-checkTimeout(Tt1)
-updateTime() #T ‘

t1 = Tt1 + |Ti+1 − Ti|
-verifyGradientTX()
-checkTimeout(Tt2)
-updateTime() #T ‘

t2 = Tt2 + |Ti+1 − Ti|
-uploadGradientTX()#attaching to the address pkpsucom

-checkTimeout(Tt3)
-updateTime() #T ‘

t3 = Tt3 + |Ti+1 − Ti|
-downloadUpdatedParam()#from the address pkpsucom

-checkTimeout(Tt4)
-updateTime() #T ‘

t4 = Tt4 + |Ti+1 − Ti|
-decryptUpdatedParam()
-checkTimeout(Tt5)
-updateTime() #T ‘

t5 = Tt5 + |Ti+1 − Ti|
-return()
-checkTimeout(Tt6)
-updateTime() #T ‘

t6 = Tt6 + |Ti+1 − Ti|

in Algorithm 2, it defines six major functions. With those
functions being invoked iteratively, gradient transactions for
training modelcom are securely collected and processed. For



10

the purpose of time-out checking, there declares time points
Tt1 , Tt2 , Tt3 , Tt4 , Tt5 , Tt6 following functions, respectively.
We stress that the intervals between the time points Tt1 and
Tt6 are declared according to the interval from the time of
one iteration i to the time of its next iteration i + 1, i.e.,
|Tt6 − Tt1 | ≤ |Ti+1 − Ti|. The time points are set meeting
Tt1 < Tt2 < Tt3 < Tt4 < Tt5 < Tt6 . At a defined time
point, checkT imeout is responsible for checking whether
each party behaves honestly or not before the defined time
point. If not, the monetary penalty mechanism performs by
forfeiting deposits of the malicious parties, and the failed
step is re-executed. With being iteratively invoked, time
points are updated, e.g., T ‘

t1 = Tt1 + |Ti+1 − Ti|.
In particular, in ith iteration, parties launch trans-

actions with encrypted gradients adding publicly au-
ditable proofs for encryption correctness, and send them
to receiveGradientTX(). Transactions are formulated as
follows.

Trani
Pj

= {pkpsuPj
: (C(△Wi,j), P roofPKi,j )→ pkpsucom}

ProofPKi,j = fsprove1(ΣPK ;C(△Wi,j);△Wi,j , kj ; pk
psu
Pj

)

Then, verifyGradientTX() verifies the correctness of en-
cryption via fsver1(ΣPK ;C(△Wi,j);ProofPKi,j ; pk

psu
Pj

).
It verifies whether C(△Wi,j) is really an encryption of
△Wi,j with the randomness of kj or not. Here, pkpsuPj

is the identity information attached to the proof, which
resists the attack of replay proof by malicious parties.
Before the time point Tt3 , uploadGradientTX() upload-
s the transactions which are verified to be true. In Pro-
cessing Contract, we will introduce how those transaction-
s are processed making gradients

∑N
j=1△Wi,j be con-

tributed to the model modelcom. When model parameters
are updated, downloadUpdatedParam undertakes to pull
the latest parameters. Suppose the latest iteration at the
current moment is i, the cipher of the latest parameters
is C(Wi) from C(modelcomi) (and simply noted as Ci).
decryptUpdatedParam() enables parties to perform indi-
vidual decryption shares on Ci, combining with a proof of
correct decryption.

Ci,j = C
2∆sj
i

ProofCDi,j
= fsprove2(ΣCD; (Ci, Ci,j , v, vj);∆sj ; pk

psu
Pj

)

The proof ProofCDi,j supports to be verified the validity
of decryption shares, i.e., ∆sj = logC4

i
(C2

i,j) = logv(vj)
via fsver2(ΣCD; (Ci, Ci,j , v, vj);ProofCDi,j ; pk

psu
Pj

). If ma-
jority of parties |H| >= N/2 are honest, then
Ci can be correctly recovered by ((Πj∈HC

2µj

i,j −
1)/nmodel)(4∆

2θ)−1mod nmodel where µj is Lagrange in-
terpolation coefficient in respect to Pj , and the cleartext is
pushed to parties by return.
• Parameter updating via Processing Contract. Suppose

that in ith iteration for modelcom, incentive workers compet-
itively execute update operations with all parties’ gradients
△Wi,j uploaded by Trading Contract. Note that to protect
the confidentiality of individuals’ gradients is one of our
goals. Update operations actually are executed on encrypted
parameters as follows. Wi = Wi−1 − 1/N ×

∑N
j=1△Wi,j ,

it actually is computed in encrypted values as follows.

C(Wi) = C(Wi−1)·
1/N × (C(−△Wi,1) · C(−△Wi,2)·

...... · C(−△Wi,N ))

According this, workers make transactions including the

Algorithm 3: Processing()
-updateTX()
-checkTimeout(Tt7)
-updateTime() #T ‘

t7 = Tt7 + Tr

-verifyTX()
-checkTimeout(Tt8)
-updateTime() #T ‘

t8 = Tt8 + Tr

-appendTX()
-checkTimeout(Tt9)
-updateTime() #T ‘

t9 = Tt9 + Tr

newly updated parameters and send them to Processing
Contract ahead of Tt7. In the meantime, a leader is ran-
domly chosen from those workers via the consensus pro-
tocol on DeepChain. Note that this time the reward for
the leader is frozen before verifying his computation work.
With verifyTX , the correctness of the leader’s work is
verified by the method that the minority is subordinate
to the majority. That is, the result of C(Wi) given by the
leader will be compared with the ones of other competitive
workers, and the result is regarded to be correct if the
values of the majority are equal to it. If it is incorrect, the
leader would be punished according the monetary penalty
mechanism, which reduces his reputation on DeepChain,
and he gains no reward. Moreover, adapted to DeepChain’s
consensus protocol (introduced by section 5.2.5), the be-
havior history influences the probability for him to be a
leader on DeepChain. In this case, a leader is re-chosen
with his correct computation which is able to be check
ahead of Tt8. At the end, the leader’s block collecting correct
transactions with correctly updated parameters is appended
to DeepChain. For training, the next iteration (i+1)th begins
and modeli+1 is generated based on modeli.

Fig. 4. Configurations on time points. From top to bottom: the timeline
of the iterative training, the timeline of trading (in Trading Contract), the
timeline of block creation (in Processing Contract).

As shown in Trading Contract and Processing Contrac-
t, the importance of the trusted time lock mechanism is
presented. We go back to stress that in Processing Con-
tract, time points Tt7, Tt8, Tt9 will be updated by T ‘

t7 =



11

Algorithm 4: F ∗
ct where ct means collaborative training.

Gradient Collecting
- Wait to receive a message (input, sid, Tt, pk

psu
Pj

, C(△W), P roofPKj , d($Coin)) from pkpsuPj
for all j ∈ {1, ..., N}.

Assert time Tt < Tt1 . Here, sid means session identifier and d($Coin) means amount of deposits. Then, wait to
receive a message (input, sid, Tt, pk

psu
Pj
∈ C, C(△W), P roofPKj , H ′, h′ × d($Coin)) from S (adversary). Assert time

Tt < Tt1 . Here, H ′ means the set of the remaining honest parties and |H ′| = h′.
- Compute fsver1(C(△W), P roofPKj ) for all pkpsuPj

where j ∈ {1, ..., N}.
- Record the correct parties as {1, ..., N} \ C′ according to the computation results.
- Send(return, d($Coin)) to pkpsuPj

for all j ∈ {1, ..., N} \ C′ after Tt1 ;
- If S returns (continue, H ′′) where H ′′ means H ′ \ C′, then send (output, Y es or No) to all pkpsuPj

where
j ∈ {1, ..., N}, and send (payback, (h− h′′)d($Coin)) to S where |H ′′| = h′′, and send (extrapay, d($Coin)) to pkpsuPj

where j ∈ H ′′.
- Else if S returns (abort), send (penalty, d($Coin)) to pkpsuPj

for all j ∈ {1, ..., N}.
Collaborative decryption
-Wait to receive a message (input, sid, Tt, pk

psu
Pj

, C, Cj , P roofCDj , d($Coin)) from pkpsuPj
for all j ∈ {1, ..., N}. Assert

time Tt < Tt5 . Then, wait to receive a message (input, sid, Tt, pk
psu
Pj
∈ C, C,Cj , P roofCDj , H ′, h′ ∗ d($Coin)) from S

(adversary). Assert time Tt < Tt5 .
- Compute fsver2(C,Cj , P roofCDj ) for all pkpsuPj

where j ∈ {1, ..., N}.
- Record the correct parties as {1, ..., N} \ C′ according to the computation result.
- Send(return, d($Coin)) to pkpsuPj

for all j ∈ {1, ..., N} \ C′ after Tt5 ;
- If S returns (continue, H ′′) where H ′′ means H ′ \ C′, then send (output, Y es or No) to all pkpsuPj

where
j ∈ {1, ..., N}, and send (payback, (h− h′′)d($Coin)) to S where |H ′′| = h′′, and send (extrapay, d($Coin)) to pkpsuPj

where j ∈ H ′′.
- Else if S returns (abort), send (penalty, d($Coin)) to pkpsuPj

for all j ∈ {1, ..., N}.

Tt7 + Tr, T
‘
t8 = Tt8 + Tr, T

‘
t9 = Tt9 + Tr, respectively. Tr

means the interval creating a new block within two rounds
on DeepChain, as shown in Fig. 4 which depicts the time
point configurations involving two contracts. Suppose dur-
ing ith iteration, defined time points are configured meeting
Tt1 < Tt2 < Tt3 <= Tt7 < Tt8 < Tt9 <= Tt4 < Tt5 < Tt6 .
Meanwhile, the relationship among these three time-lines
also shows Tr ≤ |Tt6 − Tt1 | ≤ |Ti+1 − Ti|.

In addition to the trusted time lock mechanism, we
employ the secure monetary penalty mechanism to present
fairness for the procedures of gradient collecting and collab-
orative decryption. we introduce the formalized methodol-
ogy proposed by Bentov et. al and Kumaresan et. al [43],
[44] into the Algorithm 4 F ∗

ct based on Trading Contract. In
particular, in the process of Gradient collecting, fairness
is guaranteed twofold: 1) honest collaborative parties must
launch gradient transactions which are verified to be cor-
rect ahead of the defined time; 2) dishonest parties who
launch incorrect transactions or time-out transactions are
to be penalized and meanwhile the remained honest are
to be compensated. Meanwhile, fairness for collaborative
decryption are provided in the process of Collaborative
decryption, which depicts twofold: 1) a party who gives
a correct decryption share at a defined time point never has
to pay any penalty; 2) If the adversary successfully decrypt,
but a party cannot, then the party should be compensated.

5.2.5 Consensus protocol

Consensus protocol is the essential protocol where all par-
ties make consensus on the same and correct values in the
decentralized setting. In the blockchain setting, it enlivens
and secures the running of a blockchain. In other word,

consensus protocol plays an important role on making
blockchain be a trusted decentralized public leger.

Particularly, we build the consensus protocol on
DeepChain stemmed from Algorand [39], [40] which is a
promising blockwise-BA protocol. There exist three main
steps: (1) To randomly select a leader who creates a new
block by calling cryptographic sortition. (2) A committee
verifies and agrees on the new block by executing a Byzan-
tine agreement protocol. The committee is constituted by
transaction participants whose transactions are included
inside the new block. (3) Each verifier in (2) step tells neigh-
bors the new block via gossip protocol so that the new block
is known by all participants on DeepChain. The consensus
protocol on DeepChain demonstrates three properties in-
cluding safety, correctness and liveness, which guarantees
the health of DeepChain. Specifically, safety means that
all honest parties agree on the same transaction history
on DeepChain. Correctness represents that any transaction
agreed by any honest party comes from a honest party. Last,
liveness says that parties and workers are willing to con-
tinuously act on DeepChain, thereby keeping DeepChain
living. In order to achieve these three properties, we assume
that DeepChain enables synchronous message transmission.
With the synchronous network assumption, all parties agree
on a chain with the most asserts. With the implementation
of step (1), we also assume at most available 2/3 $Coin are
possessed by honest parties. As following we demonstrate
the aforementioned three steps, which also demonstrate
how the functionalities V (·), I(·), and R(·) (introduced in
Section 5.1) work. We define that ri is referred to the round
which creates the block blocki.
• Leader selection A leader selection means that a block

selection. At the round ri, a leader leaderi is randomly
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chosen from workers who create the block blocki. Before
ri beginning, which leaderi being chosen is unpredictable
and random, and after ri ending, leaderi is public. We call
the sortition method of Algorand as form

Algorand.Sortition(sk, seedi, τ = 1, role =
worker, w,W ) −→< hash, π, j >

and
Algorand.V erifySort(pk, hash, π, seedi, τ, role =

worker, w,W ) −→ j
for leader selection and leader verification, respectively.

Specifically, a pair of sk and pk is owning to a participant.
seedi is random selected based on seedi−1 that is seedi =
H(seedi−1||ri). τ = 1 means we select only one leader from
workers role = worker. w means amounts of $Coins with
the available validity value the participant possess and those
$Coins without validity value do not be considered, which
are different from Alogrand’s. W presents the total amounts
of $Coins on DeepChain. Thus, we can randomly select a
leader and all participants also enable to verify the selected
leader leaderi. We set the property of validity value is to
limit the trend that is wealth accumulation. It may happen
that participants become more rich by accumulating more
money due to the higher probability being a leader.
• Committee agreement After leader verification, the

block blocki built by leaderi is sent to the committees whose
transactions are processed inside blocki. The participants in
a committee verify the procession done by leaderi, i.e., to
verify whether the update operation is right or not. If a com-
mittee recognizes it right, a signature on the blocki signed by
the committee. If not, the blocki is rejected. Then, the blocki
is valid on DeepChain only if more than 2/3 committees
sign and agree on the blocki. leaderi gains $Coins from
block rewards and blocki’ transaction coins. Otherwise, the
blocki is abandoned, and an empty block as the new blocki
replacing the old blocki is built on DeepChain. Meanwhile,
the reputation of the leader decrease one value. Finally, the
committees agree on the new blocki.
• Neighbor gossip The blocki has been agreed on by the

committees. In this step, participants in these committees are
responsible to tell their neighbors the blocki via the popular
gossip protocol. Eventually, all participants make consensus
on DeepChain.

6 SECURITY ANALYSIS

In this section, we recall our security goals in DeepChain
which are presented in section 4. We further give our secu-
rity analyses threefold with respect to three security goals.
• Confidentiality guarantees for training gradients.

Recall that this security goal refers to protecting trading
gradients of participants and parameters of a collaborative
model from disclosing. For this goal, DeepChain employs
Threshold Paillier algorithm which has the additive homo-
morphic property. We assume there exists a trusted setup,
and the secret key cannot leak without the collaboration
of at least t participants. We also assume at leat t partici-
pants are honest. Without loss of generality, both individual
gradients and model parameters W are encrypted with
the Threshold Paillier.Encrypt algorithm as the form of
C(W ) = gWmodel(k)

n
model. Based on the following lemma

(derived from Theorem 1 in [Fouque’00]), we state the con-
fidentiality of individual gradients and model parameters is
guaranteed.
Lemma 1. With the Decisional Composite Residuosity

Assumption (DCRA) [Paillier’99] and in the random
oracle model (served as S), Threshold Paillier algorithm
is t-robust semantically secure against active non-
adaptive adversaries A with polynomial time attack
power, if

|Pr[(w0, w1) ← A(1λ, F t(·)); b ← {0, 1};C ←
S(1λ, wb);A(C, 1λ, F t(·)) = b]− 1/2| ≤ negl(1λ)

that is negligible in λ which is the system security pa-
rameter. In the lemma above, F t(·) is used to represented
that A controls at most t corrupted parties and learns their
information including public parameters, the secret shares
of the corrupted parties, the public verification keys, all
the decryption shares and the validity of those shares. In
addition, t-robust means that a Threshold Paillier ciphertext
can be correctly decrypted, even if there exists A actively
corrupts up to t parties. Semantic security is a general
security proof methodology which depicts the security of
an encryption algorithm, and in this setting, it depicts the
confidentiality of encrypted information by the Threshold
Paillier.Encrypt algorithm.
• Public auditability for gradient collecting and pa-

rameter updating. The security goal is that any party can
audit the correctness of encrypted gradients and decryption
shares during the processes of gradient collecting and pa-
rameter updating, respectively. Recall that we introduce the
non-interactive zero-knowledge proof for these two process-
es in the setting of the Threshold Paillier algorithm, such
as fsprove1, fsver1, fsprove2, fsver2, the methodology
of which can be referred to the universally verifiable CDN
(UVCDN) protocol [45]. Under the defined framework of
UVCDN protocol, public auditability can be guaranteed if
there exists a simulator that simulates the correctness proofs
of honest parties and extracts witnesses of corrupted parties.
We following demonstrate this statement with respect to the
correctness proof of encrypted gradients by using Lemma 2
and Lemma 3. Note that the proof instances are depicted
in Algorithm 5 and Algorithm 6. Similarly, the correctness
proof of decryption shares can be discussed under the
UVCDN framework, and we omit this part due to the space
limitation.

Algorithm 5: fsprove1(ΣPK ;C(△Wi,j);△Wi,j , kj ; pk
psu
Pj

)

#announcement
ΣPK .ann(C(△Wi,j);△Wi,j , kj) := {a1 ∈R
Znmodel

; b1 ∈R Z∗
nmodel

; a := ga1

modelb
nmodel
1 , (a; s) =

(a; a1, b1)}
#challenge
c := H(C(△Wi,j) ∥ a ∥ pkpsuPj

)
#response
ΣPK .res(C(△Wi,j);△Wi,j , kj ; a; a1; b1; c) := {t :=
(a1 + c△Wi,j)/nmodel; d := a1 + c△Wi,j ; e :=
b1k

c
jg

t
model, r := (d, e)}

return ProofPKi,j := (a; c; r)
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Algorithm 6: fsver1(ΣPK ;C(△Wi,j);ProofPKi,j
; pkpsuPj

)

#ProofPKi,j := (a; c; r)
ΣPK .ver(C(△Wi,j); a; c; r) :=
#r := (d, e)
(c == H(C(△Wi,j) ∥ a ∥
pkpsuPj

))
∧
(gdmodele

nmodel == a(C(△Wi,j))
c)

return Yes or No

Lemma 2. Given X = C(x), x = △W, and c ∈ C where C
is a finite set named the challenge space, Then,
{d ∈R Znmodel

; e ∈R Z∗
nmodel

; a := gdmodele
nmodelX−c:

(a; c; d, e)}
≈
{a1 ∈R Znmodel

; b1 ∈R Z∗
nmodel

; a := ga1

modelb
nmodel
1 ; t :=

(a1 + cx)/nmodel; d := a1 + cx; e := b1k
c
jg

t
model:

(a; c; d, e)}

where ≈ denotes that the distributions are statistical
indistinguishable.

Lemma 3. We define X = C(x) = gxmodelr
nmodel , in which

x = △W, r = k. Given (a; s) which is generated by the
announcement ΣPK .ann, and c a challenge in respect
to the announcement, there exists an extractor E can
extract the witness of an adversary A, if A can present
two conversations for (a; s), that is,

|1 − Pr[A(X;x, r; a; s; c) →
(d, e; d′, e′); E(X; a; d, e; d′, e′) → (x′, r′) = (x, r)]| ≤
negl(1λ)

• Fairness enhancement for collaborative training. Re-
call that we employ two security mechanisms in the setting
of Blockchain to enhance fairness for collaborative training.
The two security mechanisms are trusted time clock and
secure monetary penalty mechanisms. Based on the exact
timestamp attached to each block which is decentralizedly
maintained, to assume the trusted time clock mechanism
makes sense. With the mechanism, behaviors in a contract
are pushed to be accomplish ahead of a defined time point,
which is demonstrated by the function checkT imeout in
the setting of DeepChain. On the other hand, we define
two secure monetary penalty mechanisms we need, from
which one is for gradient collecting and another one is for
collaborative decryption. To explain these two mechanisms,
we introduce a notion, secure computation with coins (SCC
security) in a multi-party N setting, which is defined and
proven by [43], [44] in a hybrid model as following.

Lemma 4. Defined input z, security parameter λ, a
distinguisher Z, ideal process IDEAL, ideal adversary S
in IDEAL, and ideal function f ; and meanwhile defined
a protocol π which interact with ideal function g in a
model with adversary A, Then,
{IDEALf,S,Z(λ, z)}λ ∈ N, z ∈ 0, 1∗

≡c

{HYBRIDg,π,A,Z(λ, z)}λ ∈ N, z ∈ 0, 1∗

where ≡c denotes that the distributions are
computationally indistinguishable.

Lemma 5. Let π is a protocol and f s a multiparty function.
We say that π securely computes f with penalties if π
SCC-realizes the functionality f∗.

According to Lemma 5, we require a protocol π SSC-
realizes F as F ∗ that means F ∗ achieves secure gradient
collecting or collaborative decryption with penalties. With
F ∗ and the trusted time clock mechanism, we intent to
implement fairness for gradient collecting and collaborative
decryption by F ∗

ct mentioned by Algorithm 4.

7 IMPLEMENTATION AND EVALUATION

In this section, we present a implementation prototype for
DeepChain, which demonstrates our feasibility. We first
build the blockchain setting to simulate DeepChain. With
this setting, nodes which are regarded as parties participate
in trading, and interact with two defined crucial smart con-
tracts (i.e., Trading Contract and Processing Contract), in which
generated transactions are serialized on the blockchain.
Trading parties agree on a common deep learning model at
first. This model is encrypted and stored on the blockchain.
Then, the parties locally train the model based on indi-
vidual dataset. They iteratively collect updated gradients
into transactions, and send them to the first smart contract.
When the training is accomplished, trading interactions also
end. During this process, updated gradients in transactions
are individually encrypted by each trading parties. With
the help of the second smart contract, updated gradients
then are used to update the parameters of the common
deep learning model. Updated parameters are returned back
and collaboratively decrypted by trading parties. Until the
model training is accomplished, trading parties iteratively
launch transactions as the above processes.

First, we choose Corda project to simulate DeepChain
for adaption and simplification. Corda project is created
by R3CEV, as well as widely applied in bank, financial
institutes and trading areas. It is a decentralized ledger
which absorbs the features of Bitcoin and Ethereum while
creating its characteristics, such as data sharing based on
need-to-know basis, deconflicting transactions with plug-
gable notaries. A Corda network contains multiple notaries
where the consensus protocol introduced in section 5.2.5 can
be executed for them. Though we do not implement this
in this paper, we make it for our further work. Without
the loss of generation, we build nodes and classify them
into two kinds, parties and workers. They constitute into
the nodes of two CorDapps agreeing on the blockchain, in
which we define different business logic in five components,
such as Flows, States, Contracts, Services and Serialisation
whitelists.

Second, we build the deep learning environment with
the libraries: Python in version 3.6.4, numpy in version
1.14.0, and tensorflow in version 1.7.0. We select the pop-
ular MINIST dataset which has 55000 training data, 5000
verification data and 10000 testing data. Then, we split
this dataset into multiple groups according to the number
of parties. Our training model derives from CNN, the
structure of which is: Input → Conv → Maxpool →
Fully Connected → Output. The weights and bias pa-
rameter in Conv, Fully Connected and Output layers are
w1 = (10, 1, 3, 3) and b1 = (10, 1), w2 = (1960, 128) and
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TABLE 2
Training configuration

Parameters values
iteration 1500
epoch 1
learning rate 0.5
mini batch size 64

b2 = (1, 128), w3 = (128, 10) and b3 = (1, 10), respectively.
Additionally, other training parameters are configured as
the table 2 shown.

Third, recalled that we employ Threshold Paillier en-
cryption combining with the super increasing sequence. We
set the number of bits of modulus nmodel to 1024 bits. It
is worth noting that before executing encryption algorithm,
the weight matrixes are assembled as a vector, which makes
only a cipher be generated corresponding to a party.

Fig. 5. The interaction activities within the implemented modules.

We implement the aforementioned building blocks
with three modules, CordaDeepChain, TrainAlgorithm and
CryptoSystem, respectively. For accomplish a training pro-
cess, their interaction activities are as shown in Fig. 5.
We evaluated the feasibility of training on the simulated
DeepChain in terms of encryption and training performance
in a multi-party setting. First of all, we evaluate encryption
performance with the implemented program on a desktop
which is an Intel(R) Xeon(R) CPU machine with 3.30 GHz
cores and 16 GB memory. Fig. 6 shows the size of cipher is
a constant when we encrypt various amounts of gradients
which means the number of elements in the vector to be
encrypted. Then, Fig. 7 shows the throughput when the
encrypt algorithm is executed.

On the other hand, we create four parties participating
in collaborative training and trading. Each party trains the
local model with the training dataset which has the size
of 13750 (by 55000/4). Then, single party gains the aver-
aged gradients shared from the other three parties. We also
create an external party only training on 13750-size dataset
without the sharing averaged gradients, which is regarded
as a baseline party. Through making the training accuracy
comparison between the results from collaborative parties
and the base line party, We demonstrate the accuracy im-
provement for single collaborative parties. The comparison

Fig. 6. Evaluation on the cipher size.

Fig. 7. Evaluation on the encryption throughput.

result is shown in Fig 8.

Fig. 8. The comparison on the training accuracy.

8 CONCLUSION AND FUTURE WORK

In this paper, we present DeepChain, which is a healthy
and win-win decentralized platform based on Blockchain
for secure deep learning training. In the setting of federal
learning, we introduce an incentive mechanism and mean-
while focus three security goals that are confidentiality, au-
ditability as well as fairness. In addition, we claim the value
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of DeepChain in a long-term way. DeepChain stores training
models where not only iterative training parameters but
also trained models are recorded. On the one hand, it is
obvious that trained models create financial values when
the model-based pricing market is promising. This brings
the owners of trained models with long-term benefits, since
their models can serve for those who have AI tasks by the
way of payment. On the other hand, all training processes
and well-trained models are recorded, which could advance
the development of transfer learning. Andrew Ng, in NIPS
2016 tutorial has said: ”Transfer learning will be the next
driver of ML success.“ [46] Thus, we take the first-step
consideration that DeepChain can extend model values to
transfer learning. Trained models which have gained knowl-
edge solving one problem can be applied to a different but
related problem. Then, the security problem, such as the
privacy issue can be modeled, and in the case of model-to-
model this issue could be discussed in the future work.

ACKNOWLEDGEMENT

This work was supported by National Science Founda-
tion of China (Grant Nos. 61472165 and 61373158), Guang-
dong Provincial Engineering Technology Research Center
on Network Security Detection and Defence (Grant No.
2014B090904067), Guangdong Provincial Special Funds for
Applied Technology Research and development and Trans-
formation of Important Scientific and Technological Achieve
(Grant No. 2016B010124009), the Zhuhai Top Discipline–
Information Security.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, p. 436, 2015.

[2] S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime
tradeoff in distributed deep learning: A systematic study,” in
Data Mining (ICDM), 2016 IEEE 16th International Conference on.
IEEE, 2016, pp. 171–180.

[3] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: building an efficient and scalable deep learning training
system,” in Usenix Conference on Operating Systems Design and
Implementation, 2016, pp. 571–582.

[4] T. Chen and S. Zhong, “Privacy-preserving backpropagation neu-
ral network learning,” IEEE Transactions on Neural Networks,
vol. 20, no. 10, p. 1554, 2009.

[5] A. Bansal, T. Chen, and S. Zhong, “Privacy preserving back-
propagation neural network learning over arbitrarily partitioned
data,” Neural Computing Applications, vol. 20, no. 1, pp. 143–150,
2011.

[6] J. Yuan and S. Yu, “Privacy preserving back-propagation learning
made practical with cloud computing,” IEEE Transactions on
Parallel Distributed Systems, vol. 25, no. 1, pp. 212–221, 2014.

[7] R. Shokri and V. Shmatikov, “Privacy-preserving deep learn-
ing,” in Allerton Conference on Communication, Control, and
Computing, 2015, pp. 909–910.

[8] P. Li, J. Li, Z. Huang, C. Z. Gao, W. B. Chen, and K. Chen, “Privacy-
preserving outsourced classification in cloud computing,” Cluster
Computing, no. 1, pp. 1–10, 2017.

[9] Q. Zhang, L. Yang, and Z. Chen, “Privacy preserving deep com-
putation model on cloud for big data feature learning,” IEEE
Transactions on Computers, vol. 65, no. 5, pp. 1351–1362, 2016.

[10] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning mod-
els that remember too much,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 587–601.

[11] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under the
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