
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

DeepChain: Auditable and Privacy-Preserving
Deep Learning with Blockchain-based Incentive

Jia-Si Weng, Jian Weng, Member, IEEE, Jilian Zhang, Ming Li, Yue Zhang, Weiqi Luo,

Abstract—Deep learning technology has achieved the high-accuracy of state-of-the-art algorithms in a variety of AI tasks. Its
popularity has drawn security researchers’ attention to the topic of privacy-preserving deep learning, in which neither training data nor
model is expected to be exposed. Recently, federated learning becomes promising for the development of deep learning where
multi-parties upload local gradients and a server updates parameters with collected gradients, the privacy issues of which have been
discussed widely. In this paper, we explore additional security issues in this case, not merely the privacy. First, we consider that the
general assumption of honest-but-curious server is problematic, and the malicious server may break privacy. Second, the malicious
server or participants may damage the correctness of training, such as incorrect gradient collecting or parameter updating. Third, we
discover that federated learning lacks an effective incentive mechanism for distrustful participants due to privacy and financial
considerations. To address the aforementioned issues, we introduce a value-driven incentive mechanism based on Blockchain.
Adapted to this incentive setting, we migrate the malicious threats from server and participants, and guarantee the privacy and
auditability. Thus, we propose to present DeepChain which gives mistrustful parties incentives to participate in privacy-preserving
learning, share gradients and update parameters correctly, and eventually accomplish iterative learning with a win-win result. At last,
we give an implementation prototype by integrating deep learning module with a Blockchain development platform (Corda V3.0). We
evaluate it in terms of encryption performance and training accuracy, which demonstrates the feasibility of DeepChain.

Index Terms—Deep learning, Privacy-preserving training, Blockchain, Incentive

F

1 INTRODUCTION

Recent advances in deep learning based on artificial
neural networks have witnessed unprecedented accuracy in
various tasks, e.g., speech recognition [1], image recognition
[2], drug discovery [3] and gene analysis for cancer research
[4], [5]. In order to achieve even higher accuracy, huge
amount of data must be fed to deep learning models, incur-
ring excessively high computational overhead [6], [7]. This
problem, however, can be solved by employing distributed
deep learning technique that has been investigated exten-
sively in recent years. Unfortunately, privacy issue worsens
in the context of distributed deep learning, as compared to
conventional standalone deep learning scenario.

Privacy-preserving deep learning thus arises to deal with
privacy concerns in deep learning, and various models have
been around in the past few years [8], [9], [10], [11], [12], [13],
[14], [15], [16]. Among these existing work, federated learning
is the widely adopted system context. Federated learning,
also known as collaborative learning, distributed learning, is
essentially the combination of deep learning and distribut-
ed computation, where there is a server, called parameter
server, maintaining a deep learning model to train and
multiple parties that take part in the distributed training
process. First, the training data is partitioned and stored at
each of the parties. Then, each party trains a deep learning

• J. S. Weng, J. Weng, J. L. Zhang, M. Li, Y. Zhang and W. Q. Luo
are with the College of Information Science and Technology in Jinan
University, and Guangdong/Guangzhou Key Laboratory of Data Security
and Privacy Preserving, Guangzhou 510632, China.
E-mail addresses: wengjiasi@gmail.com (J. S. Weng), cryp-
tjweng@gmail.com (J. Weng), jilian.z.2007@smu.edu.sg(J. L. Zhang),
limjnu@gmail.com (M. Li), zyueinfosec@gmail.com (Y. Zhang),
lwq@jnu.edu.cn (W. Q. Luo).
Jian Weng is the corresponding author.

model (the same one as maintained at the parameter server)
on her local data individually, and uploads intermediate
gradients to the parameter server. Upon receipt of the gra-
dients from all the parties, the parameter server aggregates
those gradients and updates the learning model parameters
accordingly, after which each of the parties downloads the
updated parameters from the server and continues to train
her model on the same local data again with the down-
loaded parameters. This training process repeats until the
training errors are smaller than pre-specified thresholds.

This federated learning framework, however, cannot
protect the privacy of the training data, even the training
data is divided and stored separately. For example, some re-
searchers show that the intermediate gradients can be used
to infer important information about the training data [17],
[18]. Shokri et. al [11] applied differential privacy technique
by adding noises in the gradients to upload, achieving a
trade-off between data privacy and training accuracy. Hitaj
et. al [19] pointed out that Shokri’s work failed to protect
data privacy and demonstrated that a curious parameter
server can learn private data through GAN (Generative
Adversarial Network) learning.

Phong et. al [16] proposed to use homomorphic en-
cryption technique to protect training data privacy from
curious parameter server. The drawback of their scheme is
that they assumed the collaborative participants are honest
but not curious, hence their scheme may fail in scenario
where some participants are curious. To prevent curious
participants, Bonawitz et. al [14] employed a secret sharing
and symmetric encryption mechanism to ensure confiden-
tiality of the gradients of participants. They assumed that
(1) participants and parameter server cannot collude at all,
and (2) the aggregated gradients in plain text reveal nothing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

about the participants’ local data. The second assumption,
unfortunately, is no longer valid since membership inference
attack on aggregated location data is now available [21].

Despite extensive research is underway on distributed
deep learning, there are two serious problems that receive
less attention so far. The first one is that existing work gen-
erally considered privacy threats from curious parameter
server, neglecting the fact that there exist other security
threats from dishonest behaviors in gradient collecting and
parameter update that may disrupt the collaborative train-
ing process. For example, the parameter server may drop
gradients of some parties deliberately, or wrongly update
model parameters on purpose. Recently, Bagdasaryan et.
al [22] demonstrated the existence of this problem that
dishonest parties can poison the collaborative model by
replacing the updating model with its exquisitely designed
one. Therefore, it is crucial for distributed deep learning
framework to guarantee not only confidentiality of gradi-
ents, but auditability of the correctness of gradient collecting
and parameter update.

The second problem is that in existing schemes those
parties are assumed to have enough local data for training
and are willing to cooperate in the first place, which are not
always true in real applications. For example, in healthcare
applications, companies or research institutes are usually
facing the difficulty in collecting enough personal medical
data, due to privacy regulations such as HIPAA [23] and
people’s unwillingness to share. As a consequence, lack of
training data will result in poor deep learning models in
general [24]. On the other hand, in business applications
some companies may be reluctant to participate in collab-
orative training, because they are very concerned about
possible disclosure of their valuable data during distributed
training [11]. Obviously, it is vital to ensure data privacy
and bring in some incentive mechanism for distributed
deep learning, so that more parties can actively involved
in collaborating training.

In this paper, we propose DeepChain, a secure and
decentralized framework based on Blockchain-based incen-
tive mechanism and cryptographic primitives for privacy-
preserving distributed deep learning, which can provide
data confidentiality, computation auditability, and incen-
tives for parties to participate in collaborative training. The
system models of traditional distributed deep learning and
our DeepChain are given in Fig. 1. Specifically, DeepChain
can securely aggregate local intermediate gradients from un-
trusted parties through launching transactions, while local
training and parameter update are performed by workers
(an entity in DeepChain that will be defined shortly) who
are incented to process the transactions. Through trans-
action processing and incentive mechanism, DeepChain
achieves collaborative training. Meanwhile, by using cryp-
tographic techniques we ensure data confidentiality and
auditability of the collaborative training process as well. To
summarize, in this paper we made the following contribu-
tions:

• We propose DeepChain, a collaborative training
framework with an incentive mechanism that en-
courages parties to jointly participate in deep learn-
ing model training and share the obtained local gra-

Fig. 1. The left corresponds to traditional distributed deep training frame-
work, while the right is our DeepChain. Here, Trading Contract and
Processing Contract are smart contract in DeepChain, together guiding
the secure training process, while Tx refers to transaction.

dients.
• DeepChain preserves the privacy of local gradients

and guarantees auditability of the training process.
By employing incentive mechanism and transactions,
participants are pushed to behave honestly, partic-
ularly in gradient collecting and parameter update,
thus maintaining fairness during collaboration train-
ing.

• We implement DeepChain prototype and evaluate its
performance in terms of encryption efficiency and
training accuracy. We believe that DeepChain can
benefit AI and machine learning communities, for
example, it can audit collaborative training process
and the trained model, which represents the learned
knowledge. Making the best use of this learned
knowledge by combining transfer learning technique
can improve both the learning efficiency and accura-
cy.

The rest of the paper is organized as follows. In Section 2,
we give a brief introduction of Blockchain and deep learning
model training. Then, we describe the threat model and
security requirements in Section 3. In Section 4, we present
our DeepChain, a framework for auditable and privacy-
preserving deep learning, and analyze security properties of
DeepChain in Section 5. We give implementation details of
DeepChain in Section 6, and conduct extensive experiments
to evaluate its performance. Finally, we conclude the paper
in Section 7.

2 BACKGROUND

Our work is closely related to Blockchain and deep learning
training, and we give background knowledge in this section.

2.1 Blockchain technology

Blockchain was first technology has arisen a surge of in-
terests both in the research community and industry [25].
It becomes an emerging technology as a decentralized,
immutable, sharing and time-order ledger. Transactions are
stored into blocks containing timestamps and references
(i.e., the hash of a previous block) which are maintained as a
chain. In Blockchain, transactions are created by pseudony-
mous participants and competitively collected to build a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

new block by an entity called worker. The worker who builds
a new and valid block can gain amount of rewards so
that the chain is continuously lengthened by competitive
workers. That presents the incentive mechanism in the
Blockchain setting. In addition, pro-developing Blockchain
technologies introducing smart contract support Turing-
complete programmability, such as Ethereum and Hyper-
ledger. On the other hand, a series of works on transaction
privacy are popular by applying cryptographic tools into
Blockchain, such as Zerocash [26], Zerocoin [27] and Hawk
[28]. Therefore, Blockchain technology’s incentive feature
and its pro-developing technologies inspire us to solve our
scenario issues, such as the absence of incentive function
and collaboration fairness.

2.2 Deep learning model and training
A typical deep learning model consists of three layers,
namely input layer, hidden layer and output layer. A deep
learning model can contain multiple hidden layers, where
the number of layers is called depth of the model. Each
hidden layer can have certain amount of neurons, and
neurons at different layers can learn hierarchical features of
the input training data, which represent different levels of
abstraction. Each neuron has multiple inputs and a single
output. Generally, the output of neuron i at layer l − 1
connects to the input of each neuron at layer l. For the
connection between two neurons, there is a weight assigned
to it. For example, wi,j is the weight associated to the
connection between neuron i at layer l − 1 and neuron j
at layer l. Each neuron i also has a bias bi. Collectively,
weights and bias are called model parameters, which need
to be learned during the training.

Back-Propagation (BP) [29] is the most popular learning
method for deep learning, which consists of feed forward
step and back-propagation step. Specifically, in feed forward
step, the outputs at each layer are calculated based on
parameters at previous layer and current layer, respectively.

A key component in deep network training is called
activation, which is the output of each neuron. Activation
is used to learn non-linear features of inputs via a function
Act(·). For computing the output value of a neuron i in
layer l, Act(·) takes all inputs n of i from layer l − 1
as input. Additionally, we assume weights wj,i link to
the connections between neurons j in layer l − 1 and
neurons i in layer l and bi links to the bias of neuron
i. Then, the value of neuron i in layer l is calculated as
Acti(l) = Acti(Σ

n
j=1(wj,i ∗ Actj(l − 1)) + bi). On the other

hand, the second step is back-propagation algorithm by
using gradient descent. It is to shrink the error Etotal which
are the gaps between model output values Voutput and target
values Vtarget. Assume that there are n output units in the
output layer. Then, Etotal = Σni=11/2(Vtargeti − Voutputi)2

is computed. With the error Etotal, weights wj,i can be
updated via wj,i = wj,i − η ∗ ∂Etotal

∂wj,i
so that its gradient

decreases. η means the learning rate and ∂Etotal

∂wj,i
is the

partial derivative of Etotal with respect to wj,i. The learning
procedure is repeated until the pre-set iteration to train is
reached.

When training a rather complex and multi-layer deep
learning model, the aforementioned training procedure

needs high computation-consuming and time-cost. In order
to migrate this problem, distributed deep learning training
has been widely discussed, and most of developed excellent
systems and architectures exhibit attractive performance,
such as DistBelief [30], Torch [31], DeepImage [32] and
Purine [33]. There are two approaches for distributed train-
ing: model parallelism and data parallelism. The former
partitions a total model while the latter partitions the whole
training dataset on multiple machines. Our work focuses on
the latter one where multiple machines maintain the copy of
the training model and process different data subsets being
partitioned. These machines share the common parameters
of the training model, by uploading and downloading pa-
rameters, on a centralized parameter server. Then, multiple
machines upload their local training gradients, with which
the commonly maintaining model is updated by using SGD.
They download updated parameters from the parameter
server and continue to train the local model. With iteratively
training, those machines at the end together gain the trained
model. Recently, a series of works on distributed deep
learning training are continue to be proposed [34], [35], [36],
[37], [38], which showed us the feasibility to research on
collaborative training a deep learning model.

3 THREATS AND SECURITY GOALS

In this section, we discuss threats to collaborative learning,
and security goals that DeepChain can achieve to tackle
those threats.

Threat 1: Disclosure of local data and model. Although
in distributed deep training each party only uploads her
local gradients to the parameter server, still adversaries can
infer through those gradients important information about
the party’s local data by initiating an inference attack or
membership attack [18]. On the other hand, based on the
gradients adversaries may also launch parameter inferring
attack to obtain sensitive information of the model [19].

Security Goal: Confidentiality of local gradients. As-
sume that participants do not expose their own data and
at least t participants are honest (i.e., no more than t
participants colluded to disclose parameters). Then each
party’s local gradients cannot be exposed to anyone else,
unless at least t participants collude. In addition, if in any
circumstance participants do not disclose the downloaded
parameters from the collaborative model, then adversaries
could not gain any information about the parameters. To
achieve this goal, in DeepChain each participant individ-
ually encrypts and then uploads gradients obtained from
her local model. All gradients are used to update param-
eters of the collaborative model encrypted collaboratively
by all participants, who then obtain updated parameters
via collaborative decryption in each iteration (collaborative
decryption refers to at least t participants provide their
secret shares to decrypt a cipher).

Threat 2: Participants with inappropriate behaviors.
Consider a situation that participants may have malicious
behaviors during collaborative training. They may choose
their inputs at will and thus generate incorrect gradients,
aiming to mislead the collaborative training process. As a
consequence, when updating parameters of collaborative
model using the uploaded gradients, it is inevitable that

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

we will get erroneous results. On the other hand, in collab-
orative decryption phase dishonest participants may give
a problematic decryption share and they may be selfish,
aborting local training process early to save their cost for
training. In addition, dishonest participants may delay trad-
ing or terminate a contract for her own benefit, which makes
the honest suffer losses. All these malicious behaviors may
fail the collaborative training task.

Security Goal 1: Auditability of gradient collecting and
parameter update. In DeepChain, assume that majority of
the participants and more than 2

3 of the workers are honest
in gradient collecting and parameter update, respectively.
During gradient collecting, participants’ transactions con-
tain encrypted gradients and correctness proofs, allowing
the third party to audit whether a participant gives a correct-
ly encrypted construction of gradients. For parameter up-
date, on the other hand, workers claim computation results
through transactions that will be recorded in DeepChain.
These transactions are auditable as well, and computation
results are guaranteed to be correct only if 2

3 workers are
honest. After parameters are updated, participants down-
load and collaboratively decrypt the parameters by provid-
ing their decryption shares and corresponding proofs for
correctness verification. Again, anyone third party can audit
whether the decryption shares are correct or not.

Security Goal 2: Fairness guarantee of participants.
DeepChain provides fairness for participants through
timeout-checking and monetary penalty mechanism. Specif-
ically, for each function with smart contracts DeepChain
defines a time point for it. At the time point after function
execution, results of the function are verified. If the verifi-
cation failed, it means that (1) there exist participants not
being punctual by the time point, and (2) some participants
may incorrectly execute the function. For either of the two
cases, DeepChain applies the monetary penalty mechanism,
revoking the pre-frozen deposit of dishonest participants
and re-allocating it to the honest participants. Therefore,
fairness can be achieved, because penalty will never be
imposed on honest participants behaved punctually and
correctly, and they will be compensated if there exist dis-
honest participants.

4 THE DEEPCHAIN MODEL

In this section, we present DeepChain, a secure and decen-
tralized framework for privacy-preserving deep learning.

4.1 System overview

Before introducing DeepChain, we give definitions of relat-
ed concepts and terms used in DeepChain.
• Party: In DeepChain, a party is the same entity as

defined in traditional distributed deep learning model, who
has similar needs but unable to perform the whole training
task alone due to resource constraints such as insufficient
computational power or limited data.
• Trading: When a party got her local gradients, she

sends out the gradients through a smart contract called
trading contract to DeepChain. This process is called trading.
Those contracts can be downloaded to process by worker (an
entity in DeepChain that will be defined shortly).

• Cooperative group: A cooperative group is a set of
parties who have a same deep learning model to train.
• Local model training: Each party trains her local

model independently, and at the end of a local iteration the
party generates a contract to trade by attaching her local
gradients to the contract.
• Collaborative model training: Parties of a cooper-

ative group train a deep learning model collaboratively.
Specifically, after deciding a same deep learning model and
parameter initialization, the model is trained in an iterative
manner. In each iteration, all parties trades their gradients,
and workers download the contracts to process the gradi-
ents. The processed gradients then send out by workers
through smart contract called processing contract. The correct
processed gradients are picked out and used to update pa-
rameters of the collaborative model on DeepChain. Parties
download the updated parameters from the collaborative
model and update their local models accordingly. After that
the parties begin next training iteration.
• Worker: Similar to miners in BitCoin, workers are in-

cented to process transactions that contain training weights
for collaborative model update. Workers compete to work
on a block, and the first one finishes the job is a leader.
The leader will gain block rewards which can be consumed
in the future. Maybe he can exchange them with trained
models in DeepChain for accomplishing his AI task.
• Iteration: Deep learning model training consists of

multiple steps called iterations, where at the end of each
iteration all the weights of neurons of the model are updated
once.
• Round: In DeepChain, a round refers to the process of

the creation of a new block.
• DeepCoin: DeepCoin, denoted as $Coin, is a kind of

asset on DeepChain. In particular, for each newly generated
block DeepChain will generate certain amount of $Coin as
rewards. Participants in DeepChain consist of parties and
workers, where the former gain $Coin for their contribu-
tions to local model training, and the latter are rewarded
with $Coin for helping parties update training models.
Meanwhile, a well-trained model will cost $Coin for those
who have no capability to train the model by themselves
and want to use the model. This setting is reasonable
because recent work on model-based pricing for machine
learning has found applications in some scenarios [39], [40].
We define a validity value for $Coin, which essentially is
the time interval of a round. Validity value is related to
consensus mechanism in DeepChain, and we will discuss
it in detail in 4.2.5.

DeepChain combines together Blockchain techniques
and cryptographic primitives to achieve secure, distributed,
and privacy-preserving deep learning. Suppose there are N
parties Pj , j = 1, ..., N , and they agree on some pre-defined
information such as a concrete collaborative model and ini-
tial parameters for the collaborative model. The information
is attached to a transaction Tx0

co (co is the short name for
’collaborative‘) signed by all parties. Assume an address
corresponding to transaction Tx0

co is pkit0 , where it0 is the
initial iteration. At the end of iteration i, the updated model
in Txico is attached to a new address pkiti . All addresses are
known to the parties.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Intermediate gradients from party Pj are enveloped in
transaction TxiPj

, and all those transactions are collected
by a trading contract at iteration i. Note that intermedi-
ate gradients are local weights CPj

(4Wi,j), where C is
a cipher used by party Pj to encrypt the weights. When
all transactions {TxiPj

} at iteration i have been collected,
trading contract uploads them to DeepChain. After that,
workers download those transactions {TxiPj

} to process via
processing contract. Specifically, workers update the weights
by computing C(Wi+1) = 1

N · C(Wi) ·
∏N
j=1 CPj (4Wi,j),

where C(Wi) is the weight at iteration i in Txico, and
C(Wi+1) is the updated weights that will be attached to
Txi+1

co for updating the local models in next iteration i+ 1.

4.2 Components of DeepChain
DeepChain consists of five building blocks that collectively
achieve distributed and privacy-preserving deep learning,
namely, DeepChain bootstrapping, incentive mechanism,
assert statement, cooperative training and consensus pro-
tocol.

4.2.1 DeepChain bootstrapping(NOT YET DONE)
DeepChain bootstrapping performs two tasks, i.e., Deep-
Coin distribution and genesis block generation that is cru-
cial for running DeepChain. Assume that all parties and
workers have registered in DeepChain, where each one uses
an address pk that corresponds to a DeepCoin unit for
launching a transaction.

DeepCoin distribution realizes DeepCoin allocation for
parties and workers, and at initial stage each party and
worker are allocated with the same amount of DeepCoins.
The genesis block contains initial transactions referring to
DeepCoin possession statements after the step of DeepCoin
distribution. Assume that the round begins with 0 and gen-
erates the genesis block. When the genesis block is generat-
ed, a random seed seed0 also is public. seed0 is randomly
chosen by initial users via using distributed random number
generation. We note that seed0 is the base random seed
for DeepChain. Particularly, seed0 is one of components to
choose the random seed seed1 in the round with the index
1 and the rest of rounds can be done in the same manner.
The seeds are crucial to guarantee the randomness to select
a new leader who creates a new block. This follows the
idea of cryptographic sortition from Algorand [41], [42]. We
will introduce it in section 4.2.5 for the stable running of
DeepChain.

4.2.2 Incentive mechanism
An incentive can act as a driving force for participants to
actively and honestly take part in a collaborative training
task, and the goal of incentive mechanism is to produce and
distribute value, so that participant gets rewards or penal-
ties based on her contribution. The introduction of incentive
mechanism is crucial for collaborative deep learning, due
to the following reasons. First, for those parties who want
a deep learning model but have insufficient data to train
the model on their own, incentive can motivate them to
join the collaborative training with their local data. Second,
with reward and penalty, incentive mechanism ensures that
(1) parties are honest in local model training and gradient

trading, and (2) workers are honest in processing parties’
transactions.

For ease of understanding incentive mechanism, we give
an example consisting of two parties. These two parties
contribute their data to collaborative training via launching
transactions. Suppose the data possessed by the two parties
is not equal in quantity. Each party can launch transactions
and pay transaction fee that is based on the amount of data
she owned. Generally, the large amount of data a party has,
the less fee she will pay. The two parties agree on the total
amount of fees for collaboratively training the model. The
worker who successfully creates a new block when process-
ing transactions can be the leader and earns the rewards.
Note that transaction issuing and processing are verifiable,
meaning that if some party poses an invalid transaction, the
party would be punished. On the other hand, if a leader
incorrectly processes a transaction, she will be punished.
When the collaborative training finished, parties themselves
can benefit from the trained model than can bring revenue
for them through changed services to those users who want
to use the model.

To give a formalized description of the incentive mecha-
nism, we first introduce two properties, i.e., compatibility
and liveness of the incentive mechanism for parties and
workers. Then, we further explain that parties and workers
have incentive to behave honestly. Assume that we guaran-
tee data privacy and the security of the consensus protocol
(we will explain it later). We also assume that the value vc
of the trained collaboratively model is higher than the value
vi of trained individual model.

Fig. 2. The incentive mechanism of DeepChain, where ωP and ωW

represent the contributions of a party and a worker for maintaining vc,
respectively, and πP and πW represent their payoffs, respectively.

First, we say the incentive mechanism has compatibility
if each participant (including party and worker) can obtain
the best result according to their true contributions. Mean-
while, it has liveness only if each party is continuously
willing to transform vi by launching transactions for vc,
and each worker also has incentives at vc. We next depict
the significance of these two properties from the aspects
of participants’ true contributions and the corresponding
payoffs. Suppose that we use ωP and ωW to represent the
true contributions of party and worker for vc, respectively;
and πP and πW represent their corresponding payoffs,
respectively. We at first assume participants’ contributions
originate from their correct behaviors with an overwhelm-
ing probability, and then we will explain that is reasonable.
In terms of liveness, we say both party and worker have

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

the same common propensity to gain well-trained models
represented as vc. If party consumes her vi, which has
a lower value, she would gain vc, which has a higher
value. For a worker, she should process transactions for
vc, to earn rewards with probability. Money she earned
enables her to pay AI services on DeepChain. Note that
the probability is said that a worker has a probability to
gain rewards according to the quantity of money she has
earned, i.e., the larger the quantity is, the higher probability
would be. As a result, party and worker in order to create
value trend to maintain vc. In terms of compatibility, the
more party contributes ωP , the more he gains πP and that
rule also holds for a worker. Then, within a collaborative
training, both sides play incentively to a well-trained model
Max(ωP)

∧
Max(ωW), the total payoff is highest gained

by them Max(πP , πW). If any participant can not perform
well (ωP = 0)

∨
(ωW = 0), nothing would be output that is

(πP = 0)
∧

(πW = 0) where
∧

means ’and’ and
∨

means
’or’.

Payoff={
Max(πP

∧
πW) If Max(ωP)

∧
Max(ωW)

(πP = 0)
∧

(πW = 0) If (ωP = 0)
∨

(ωW = 0)

Second, we explain the aforementioned assumption. We
show each party and worker are value-driven to behave
correctly in each iteration so that they can obtain the highest
payoff, in which the theory derives from the work [43]. We
formalize it as V alue(1) = πP − ωP (1) for party. We say
that ωP is correctly provided with the probability Prc(P).
Then, ωP (Prc(P)) is used to represent her true perfor-
mance. Further, V alue(Prc(P)) is related to Prc(P) due
to ωP (Prc(P)). We set the method which verifies party’s
malicious behavior is correct with the probability Prv(P).
We also get the probability Prv(P) ∗ (1 − Prc(P)) that a
dishonest party would be caught. Once the dishonest party
is caught, she is punished by forfeiting her deposit, the
loss of which is defined as fP . Thus, the returned value
according to the party’s true behavior can be represented as

V alue(Prc(P)) =

πP ∗ (1− Prvc(P))− fP ∗ Prvc(P)− ωP ∗ Prc(P)
(1)

where Prvc(P) = Prv(P) ∗ (1 − Prc(P)). We expect that
the value is max only when the party behaves honestly
Prc(P) = 1 and then V alue(1) = πP−ωP (1) can hold. This
indicates the significance of the incentive mechanism. We
can achieve this expectation by setting the values of Prv(P),
πP , and fP as following.

Theorem 1. If fP /πP > (1 − Prvc(P))/Prvc(P) where
Prvc(P) = Prv(P) ∗ (1 − θ) is set, then a party will
be honest at least with the probability θ.

Proof. It can be significant by proving that for any
Prc

′
(P) < θ, V alue(Prc

′
(P)) is lower than V alue(θ).

Without the loss of generality, we prove for any
Prc

′
(P) < θ, V alue(Prc

′
(P)) is lower than 0. That is

V alue(Prc
′
(P)) = πP ∗ (1− Prvc

′
(P))− fP ∗ Prvc

′
(P)−

ωP (Prc
′
(P)) is lower than 0. When we set fP /πP >

1/Prvc
′
(P)−1, the result πP ∗(1−Prvc

′
(P))−fP ∗Prvc

′
(P)

is lower than 0. Thus, in this case, V alue(Prc
′
(P)) is lower

than 0 that holds.

TABLE 1
Notations and implications

Notations Implications
pkpsuP a pseudo-generated public key of party P
skP a secret key of the party P
q a randomly selected big prime
G1 cyclic multiplicative cyclic groups of prime order q
G2 cyclic multiplicative cyclic groups of prime order q
g a generator of group G1

Z∗
q {1,2, ..., q-1}

e a bilinear map e: G1 ×G1 → G2

H1 a collision-resistant hash function mapping
any string into an element in Z∗

q

H2 a collision-resistant hash function mapping
any string into an element in G1

C() a cipher generated by Paillier.Encrypt algorithm
Enc() the encryption by individual parties
modelco the collaborative deep learning model

(collaborative model for short), on which a group
of participants agree to train

For a worker, the incentive analysis is similar to the
analysis for a party, expect that her payoff has probability
to gain. We set this probability is Prleader. Thus, we should
set the relationship of four values Prleader, Prv(W), πW ,
and fW to encourage a worker to be honest.
Theorem 2. If fW /πW ∗Prleader > (1−Prvc(W))/Prvc(W)

where Prvc(W) = Prv(W)∗ (1− ε) is set, then a worker
will be honest at least with the probability ε.

Proof. The proof is similar to the proof for Theorem 2,
so it is omitted.

4.2.3 Asset statement
For ease of presentation, we list related cryptographic no-
tations in TABLE 1. Party needs to state her asset, which
enables her to find cooperators and accomplish her AI task.
Asset statement does not reveal the contents of asset but
some description for it, e.g., the asset could be useful for
which kinds of AI tasks. Formally, party P states an asset
that is to send an asset transaction which will include two
parts.

We recall the generation of a transaction. Note that a
transaction is launched by a pseudo public key address
pkpsuP which can be generated by party P according to her
wish as the following forms.

pkpsuP ∈ {gskP
1 , gskP

2 , ..., gskP
n }

Here, let n be an integer, P selects a secret key skP ∈ Z∗q
and generates n public keys gskPi ∈ G1, i ∈ [1, n]. By setting
system parameters q and g, gi equals gri , where ri is a
random element in Z∗q .

Suppose that party P1 sends a transaction with her
address pkpsuP1

to state her asset data P1 as following:

TranP1 = pkpsuP1
→
{(
pkdata P1 = gH1(data P1),

σj P1 = (H2(j) · gH1(dataj P1
))H1(data P1)

)
,

”Keywords”
}
.

In this transaction, the first part consists of pkdata P1 and
σj P1 , which is the statement proof that party P1 indeed
possesses asset H(data P1) while not leaking the content of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

data P1. In detail, σj P1
contains l components (j ∈ [1, l]),

where data P1 is divided into l blocks represented as
dataj P1

(j ∈ [1, l]). The second part ”Keywords” gives
a description for the asset data P1. When implemented,
”Keywords” is formed using JSON style including four
fields, i.e., data size, data format, data topic and data
description. With this transaction named TranP1

, P1 ac-
complishes her asset statement. We assume that the first
stated asset is authentic, which is reasonable in the setting
of Blockchain.

4.2.4 Collaborative training

Based on stated asset, parties who have similar deep learn-
ing task can constitute a collaborative group, and the collab-
orative training consists of the following four steps.
• Collaborative group establishment. Note that the

keyword descriptions have been given for assets in the
asset statement phase. According to similar ”Keywords”,
parties can establish a collaborative group. (Parties may get
more information about ”Keywords” by off-line interactions
and this is not the focus of our paper). Before setting
up a group, parties can audit cooperators’ asset to ensure
authenticity of asset ownership. The auditing process can
be referred to the full paper [44]. Suppose N parties P1,
P2, ..., PN constitute a group with pseudonymity, i.e, pseu-
do public keys pkpsuP1

, pkpsuP2
, ..., pkpsuPN

and their secret keys
skP1

, skP2
, ..., skPN

are privately possessed, respectively.
Since a party may launch transactions by using different
pseudo public keys, the transactions signed by the same se-
cret key skPi

can be verified to ensure that those transactions
are from the same cooperative party.
• Collaborative information commitment. After the col-

laborative group formed, parties agree on their information
for securely training a common deep learning model, as
follows. In this step, we assume that a trusted component
only takes part in the setup phase in Threshold Paillier
algorithm, and it does not involve in other process. If there
does not exist such a trusted component, we can accomplish
the setup phase by using a distributed method [45].

(1) The number of cooperative parties, N .
(2) The current round index, r.
(3) Parameters of Threshold Paillier algorithm.
We have the following equation

PKmodel = (nmodel, gmodel, θ = as, V = (v, {vi}i∈[1,...,N]))

, where the modulus nmodel is the product of two selected
safe primes, and gmodel ∈ Z∗

n2
model

, a, s, θ, v, vi ∈ Z∗nmodel
.

And SKmodel = s is randomly divided into N parts, where
s = f(s1 + ... + sN), f means a function of secret sharing
protocol. Each party owns a part of secure key si. v and
{vi}, i ∈ [1, ..., N] are public verification information, where
vi corresponds to si. A threshold t ∈ {N2 , ..., N} is set as
such that more than t parties can together decrypt a cipher.
Note that training gradients to be encrypted are vectors with
multiple elements, i.e., 4Wi,j = (w1

i,j , ..., w
ω
i,j) where the

length of 4Wi,j is ω, i represents training iteration index
and j = 1, ..., N . Due to the problem of cipher expansion,
we encrypt a vector into a cipher instead of multiple ciphers
with respect to multiple elements. Suppose that each value
w1
i,j , ..., w

ω
i,j is no larger than the value d (d can be an integer

and larger than 0). We choose a ω-length super increasing
sequence ~α = (α1 = 1, ..., αω) that simultaneously meets
two conditions, as described below: (1)

∑i−1
l=1 αl · N · d <

αi(i = 2, ..., ω) and (2)
∑ω
i=1 αi · N · d < nmodel. We then

compute (g1
model, ..., g

ω
model) = (gα1

model, ..., g
αω

model).
(4) A collaborative model modelco to be trained.
For modelco, parties agree on the training network, the

training algorithms and the configurations for the network,
such as the number of network layer, the number of neu-
ron each layer, the size of mini-batch and the iterations.
Beside those information, they also reach a consensus on
the initial weights W0 of modelco. Note that the weights
W0 would turn into W1 after the 1st iteration of training.
They protect W0 by applying Paillier.Encrypt algorithm
C(W0) = gW0

model · (k0)nmodel , where k0 is randomly se-
lected from Z∗nmodel

. Note that we compute gW0

model with
the help of the chosen super increasing sequence that
gW0

model = g
α1·w1

0+...+αω·wω
0

model so that we generate a cipher for
the vector W0 = (w1

0, ..., w
ω
0).

(5) A commitment on SKmodel = s (in respect to
PKmodel).

The commitment is combined with individual parties’
commitments on their individual secret shares si. Recall that
r means the index of the current round.

commitSKmodel =(Enc(s1||r||Sign(s1||r)),
..., Enc(sN ||r||Sign(sN ||r)))

(6) The initial weights W0,j of each local model.
Each party provides individual local model’s initial

weights which are encrypted by Paillier.Encrypt algorithm,
i.e, C(W0,j) = g

W0,j

model · (kj)
nmodel , where kj ∈ Z∗nmodel

,
Pj∈{1,...,N}.

(7) A amount of deposits d($Coin).
Each cooperative party is required to commit amounts of

deposits for secure computation. During the process of col-
laborative training, if a party behaves badly, her d($Coin)
would be forfeited and compensated other honest parties. If
not, those deposits would be refunded after accomplishing
the training.

All aforementioned collaborative information are record-
ed in a transaction Tranco being uploaded to DeepChain.
Attached to a commonly coordinated address pkpsuco , it is
publicly recorded as the following form:

Tranco = pkpsuco →
{
N, r, PKmodel, d, ~α,modelco,

commitSKmodel , C(W0,j), d($Coin)
}
.

In addition, two kinds of roles, called trader and manager,
are defined for parties in a Group, which will be further
discussed.

We next introduce how collaborative training is securely
accomplished following the remaining two steps: Gradient
collecting via Trading Contract and Parameter updating
via Processing Contract. First of all, parties iteratively trade
their gradients to Trading Contract executed by the manager
who can be selected from cooperative parties. The trading
gradients are honestly encrypted by each trader and mean-
while the correct proofs of encryption are attached, which
indicates two security requirements (confidentiality and au-
ditability). In terms of confidentiality, only if a trader does

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

not disclose his gradients, no one can gain any information.
Traders (at most t parties) in addition need to cooperatively
decrypt parameters which have been updated. We constrain
the manager cannot disclose what he knows, as the work
[28] promised. In terms of auditability, there exist encryp-
tion correct proofs to be auditable. When cooperatively
decrypting, each trader also presents her decryption proof.
Those proofs are non-interactively public on DeepChain and
auditable for any party. By utilizing the timeout-checking
and monetary penalty mechanisms, the behaviors of traders
and the manager also are forced to be authentic and fair.
Even if the manager colludes with traders, the outcome
of Trading Contract cannot be modified [28]. In addition to
Trading Contract, Processing Contract is responsible for pa-
rameter updating. Workers process transactions by casting
up gradients in respect to a group, and send computation
results to Processing Contract. Processing Contract verifies
correct computation results and updates model parameters
for this group. For finishing the whole training, these two
contracts are called for multiple times. Concretely, we give
more detail descriptions for these two contracts as below.
• Gradient collecting via Trading Contract. As shown

in Algorithm 1, Trading Contract invokes six major func-
tions to collect gradient transactions for training modelco.
Following each function, there declares six respective time
points Tt1 , Tt2 , Tt3 , Tt4 , Tt5 , Tt6 on purpose to check time-
out events. We stress that the interval between the two time
points Tt1 and Tt6 are declared according to the interval
between the two time points of two adjacent iterations (e.g.,
from iteration ith to i + 1th), i.e., |Tt6 − Tt1 | ≤ |Ti+1 − Ti|.
Moreover, six time points are set meeting the requirement
that Tt1 < Tt2 < Tt3 < Tt4 < Tt5 < Tt6 . At a de-
fined time point, function checkT imeout is responsible to
checking which parties do not abide by the defined time
point. Once some party is caught, the monetary penalty
mechanism will perform by forfeiting deposits of the party,
and the failed step is re-executed. With functions being
iteratively invoked for training, time points are updated,
e.g., T ‘

t1 = Tt1 + |Ti+1 − Ti|.

Algorithm 1: Trading(TraniP1
,...,TraniPN

)

1 receiveGradientTX()
2 checkTimeout(Tt1)
3 updateTime() #T ‘

t1 = Tt1 + |Ti+1 − Ti|
4 verifyGradientTX()
5 checkTimeout(Tt2)
6 updateTime() #T ‘

t2 = Tt2 + |Ti+1 − Ti|
7 uploadGradientTX()#attaching to the address pkpsuco

8 checkTimeout(Tt3)
9 updateTime() #T ‘

t3 = Tt3 + |Ti+1 − Ti|
10 downloadUpdatedParam()#from the address pkpsuco

11 checkTimeout(Tt4)
12 updateTime() #T ‘

t4 = Tt4 + |Ti+1 − Ti|
13 decryptUpdatedParam()
14 checkTimeout(Tt5)
15 updateTime() #T ‘

t5 = Tt5 + |Ti+1 − Ti|
16 return()
17 checkTimeout(Tt6)
18 updateTime() #T ‘

t6 = Tt6 + |Ti+1 − Ti|

Suppose that in ith iteration, each party Pj ∈
{1, ..., N} sends an encrypted gradient transaction TraniPj

to receiveGradientTX(). The transaction additionally at-
tach a publicly auditable proof for encryption correctness
ProofPKi,j

.

TraniPj
= {pkpsuPj

: (C(4Wi,j), P roofPKi,j)→ pkpsuco }
ProofPKi,j

= fsprove1(ΣPK ;C(4Wi,j);4Wi,j , kj ; pk
psu
Pj

)

Then, before Tt2 , verifyGradientTX() verifies
the correctness of the encrypted gradients via
fsver1(ΣPK ;C(4Wi,j);ProofPKi,j

; pkpsuPj
). It verifies

whether C(4Wi,j) is really an encryption of 4Wi,j

with the randomness of kj or not. Here, pkpsuPj
can be

regarded as the identity information attached to the proof,
which avoids the replayed proof by the malicious party.
Before Tt3 , uploadGradientTX() uploads the transactions
which are verified to be true. When model parameters
are updated, downloadUpdatedParam undertakes to
pull the latest parameters. Recall that Processing Contract
makes gradients

∑N
j=14Wi,j be contributed to the model

modelco. Suppose that the latest iteration at the current
moment is ith, the cipher of the latest parameters is
C(Wi) from C(modelcomi

) (and simply noted as Ci).
Then, decryptUpdatedParam() collects parties’ decryption
shares on Ci for collaborative decryption, which generates
into Ci,j(j ∈ 1, ..., N). Meanwhile, the corresponding
proofs for correct shares ProofCDi,j

are also provided.

Ci,j = C
2∆sj
i

ProofCDi,j
= fsprove2(ΣCD; (Ci, Ci,j , v, vj); ∆sj ; pk

psu
Pj

)

The proof ProofCDi,j supports to be verified the validity
of decryption shares, i.e., ∆sj = logC4

i
(C2

i,j) = logv(vj)
via fsver2(ΣCD; (Ci, Ci,j , v, vj);ProofCDi,j

; pkpsuPj
). If ma-

jority of parties |H| >= N/2 are honest, then
Ci can be correctly recovered by ((Πj∈HC

2µj

i,j −
1)/nmodel)(4∆2θ)−1mod nmodel where µj is Lagrange in-
terpolation coefficient in respect to Pj , and the cleartext is
pushed to parties by return.

Algorithm 2: Processing()

1 updateTX()
2 checkTimeout(Tt7)
3 updateTime() #T ‘

t7 = Tt7 + Tr
4 verifyTX()
5 checkTimeout(Tt8)
6 updateTime() #T ‘

t8 = Tt8 + Tr
7 appendTX()
8 checkTimeout(Tt9)
9 updateTime() #T ‘

t9 = Tt9 + Tr

• Parameter updating via Processing Contract. Process-
ing Contract contains three functions shown in Algorithm
2. Suppose that in ith iteration for modelco, local gradients
C(4Wi,j)(j ∈ {1, ..., N}) have been uploaded. Incentive
workers competitively execute update operations by

C(Wi) = C(Wi−1) · 1/N × (C(−4Wi,1) · C(−4Wi,2)·
...... · C(−4Wi,N)).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

This is regarded as workers’ computation work. Workers
then send the newly updated results via transactions to
the function updateTX in Processing Contract ahead of Tt7.
In the meantime, a leader is randomly chosen from those
workers via the consensus protocol on DeepChain. Note
that at this time the reward given to the leader is frozen at
first, before verifying his computation work. By verifyTX ,
the correctness of the leader’s work is verified by the
method where the minority is subordinate to the majority. In
other words, the leader’s computation result C(Wi) will be
compared with the ones of other competitive workers, and
finally his result is determined to be correct if the results
from the majority of workers are equal to his. Otherwise,
the leader would be punished according the monetary
penalty mechanism and gain no reward. Moreover, adapted
to DeepChain’s consensus protocol (introduced by section
4.2.5), the history of his punished behavior influences the
probability for him to be a leader on DeepChain. Then, a
leader is re-chosen from the remaining workers who have
correct computation results ahead of Tt8. At the end, before
the time point of Tt9, the leader’s block with correctly
updated results is appended to DeepChain. Continuously,
the next iteration (i+1)th begins and modeli+1 is generated
based on modeli.

Fig. 3. Configurations on time points. From top to bottom: the timeline
of the iterative training, the timeline of trading (in Trading Contract), the
timeline of block creation (in Processing Contract).

According to the aforementioned description for Trad-
ing Contract and Processing Contract, the importance of the
trusted time lock mechanism is presented. We need to stress
that in Processing Contract, time points Tt7, Tt8, Tt9 will be
updated by T ‘

t7 = Tt7 + Tr, T
‘
t8 = Tt8 + Tr, T

‘
t9 = Tt9 + Tr ,

respectively, where Tr means the interval creating a new
block within two rounds on DeepChain. As shown in Fig.
3, it depicts the time point configurations involving two
contracts. Suppose that during ith iteration, the time points
are configured as Tt1 < Tt2 < Tt3 <= Tt7 < Tt8 < Tt9 <=
Tt4 < Tt5 < Tt6 . In the meantime, the relationship among
three time intervals is Tr ≤ |Tt6 − Tt1 | ≤ |Ti+1 − Ti|.

In addition to the trusted time lock mechanism, we
employ the secure monetary penalty mechanism to present
fairness for the procedures of gradient collecting and collab-
orative decryption. We introduce the formalized methodol-
ogy proposed by Bentov et. al and Kumaresan et. al [46],
[47] into the Algorithm 3 F ∗ct based on Trading Contract.
Particularly, in the process of Gradient collecting, fairness
is guaranteed twofold: 1) honest collaborative parties must
launch gradient transactions which are verified to be correct

ahead of the defined time; 2) dishonest parties who launch
incorrect transactions or time-out transactions are to be
penalized while the remained honest being compensated.
In a similar way, fairness for collaborative decryption are
provided in the process of Collaborative decryption, which
depicts twofold: 1) a party who gives a correct decryption
sharing at a defined time point never has to pay any penalty;
2) If the adversary successfully decrypts, but a party cannot,
then the party should be compensated.

4.2.5 Consensus protocol

Consensus protocol is the essential protocol where all par-
ties make consensus on the same and correct events in the
decentralized setting. In Blockchain, it enlivens and secures
the running of a Blockchain, which makes the Blockchain be
a trusted decentralized public leger.

Specifically, we build the promising blockwise-BA pro-
tocol on DeepChain stemmed from Algorand [41], [42]. The
protocol includes three main steps: (1) A leader who creates
a new block is randomly selected by calling cryptographic
sortition. (2) A committee verifies and agrees on the new
block by executing a Byzantine agreement protocol. The
committee is constituted by transaction participants whose
transactions are included inside the new block. (3) Each
verifier in (2) step tells neighbors the new block based
the gossip protocol so that the new block is known by
all participants on DeepChain. The consensus protocol has
been demonstrated to meet three properties including safe-
ty, correctness and liveness, which guarantees the health
of DeepChain. In particular, safety means that all honest
parties agree on the same transaction history on DeepChain.
Correctness represents that any transaction agreed by any
honest party comes from a honest party. Last, liveness says
that parties and workers are willing to continuously act on
DeepChain, thereby keeping DeepChain living. Under these
three properties, we assume that message transmission is
synchronous, and at most available 2

3 $Coin are possessed
by honest parties. In this setting, all parties agree on a chain
with the most assets. Next, three steps are introduced as
following. Note that we define that ri is referred to the
round which creates the block blocki.
• Leader selection A leader selection means that a new

block is selected. At the round ri, a leader leaderi is ran-
domly chosen from workers who process transactions into
the block blocki. Before ri beginning, it is unpredictable and
random to choose leaderi; and after ri ending, leaderi is
chosen and public. For this, we invoke the sortition method
of Algorand which includes two functions, leader selection
and leader verification:

Algorand.Sortition(sk, seedi, τ = 1, role = worker, w,W)

−→< hash, π, j >

Algorand.V erifySort(pk, hash, π, seedi, τ, role = worker, w,W)

−→ j.

In detail, the pair of sk and pk is owning to a worker. seedi
is a random seed which is selected based on seedi−1. They
meet seedi = H(seedi−1||ri), where H is an hash function.
τ = 1 means that only one leader is selected from workers
role = worker. Importantly, w is a crucial factor that indi-
cates our former statement that a worker has a probability
to gain rewards according to the quantity of money she

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Algorithm 3: F ∗ct where ct means collaborative training.

1 Gradient Collecting
2 •Wait to receive a message (input, sid, Tt, pk

psu
Pj

, C(4W), P roofPKj
, d($Coin)) from pkpsuPj

for all j ∈ {1, ..., N}.
Assert time Tt < Tt1 . Here, sid means session identifier and d($Coin) means amount of deposits. Then, wait to
receive a message (input, sid, Tt, pk

psu
Pj
∈ C, C(4W), P roofPKj , H ′, h′ × d($Coin)) from S (adversary). Assert time

Tt < Tt1 . Here, H ′ means the set of the remaining honest parties and |H ′| = h′.
3 • Compute fsver1(C(4W), P roofPKj

) for all pkpsuPj
where j ∈ {1, ..., N}.

4 • Record the correct parties as {1, ..., N} \ C′ according to the computation results.
5 • Send(return, d($Coin)) to pkpsuPj

for all j ∈ {1, ..., N} \ C′ after Tt1 ;
6 • If S returns (continue, H ′′) where H ′′ means H ′ \ C′, then send (output, Y es or No) to all pkpsuPj

where
j ∈ {1, ..., N}, and send (payback, (h− h′′)d($Coin)) to S where |H ′′| = h′′, and send (extrapay, d($Coin)) to pkpsuPj

where j ∈ H ′′.
7 • Else if S returns (abort), send (penalty, d($Coin)) to pkpsuPj

for all j ∈ {1, ..., N}.
8 Collaborative decryption
9 •Wait to receive a message (input, sid, Tt, pk

psu
Pj

, C, Cj , P roofCDj , d($Coin)) from pkpsuPj
for all j ∈ {1, ..., N}.

Assert time Tt < Tt5 . Then, wait to receive a message (input, sid, Tt, pk
psu
Pj
∈ C, C,Cj , P roofCDj

, H ′, h′ ∗ d($Coin))
from S (adversary). Assert time Tt < Tt5 .

10 • Compute fsver2(C,Cj , P roofCDj) for all pkpsuPj
where j ∈ {1, ..., N}.

11 • Record the correct parties as {1, ..., N} \ C′ according to the computation result.
12 • Send(return, d($Coin)) to pkpsuPj

for all j ∈ {1, ..., N} \ C′ after Tt5 ;
13 • If S returns (continue, H ′′) where H ′′ means H ′ \ C′, then send (output, Y es or No) to all pkpsuPj

where
j ∈ {1, ..., N}, and send (payback, (h− h′′)d($Coin)) to S where |H ′′| = h′′, and send (extrapay, d($Coin)) to pkpsuPj

where j ∈ H ′′.
14 • Else if S returns (abort), send (penalty, d($Coin)) to pkpsuPj

for all j ∈ {1, ..., N}.

has earned (in section 4.2.2). w represents the amount of
$Coins which the participant possesses. w only contains
$Coins which have the available validity value, while those
without validity value do not be considered. This definition
is different from Alogrand’s, which we intend to limit the
trend of wealth accumulation. Wealth accumulation may
happen that participants become more rich by accumulating
more money due to the higher probability being a leader.
The last factor is W which presents the total amounts
of $Coins on DeepChain. Via the two functions, we can
randomly select a leader and all participants also enable to
verify the selected leader leaderi.

• Committee agreement After leader verification, the se-
lected block blocki is sent to the committees which consist of
a group participants who transactions are inside this block
blocki. The participants in a committee verify each trans-
action done by leaderi, i.e., to verify whether the update
operation is right or not. If the committee recognizes it right
according to the majority rule, participants sign the blocki
on behalf of the committee. If not, the blocki is rejected.
Then, the blocki is valid only if more than 2/3 committees
sign and agree on the blocki. leaderi gains $Coins from
block rewards and blocki’ transaction coins. Otherwise, the
blocki is abandoned, and an empty block as the new blocki
replacing the old blocki is built on DeepChain. Finally, the
committees agree on the new blocki.

• Neighbor gossip The blocki has been agreed on by the
committees. In this step, participants in these committees are
responsible to tell their neighbors the blocki via the popular
gossip protocol [48], [49]. Eventually, all participants make
consensus on DeepChain.

5 SECURITY ANALYSIS

In this section, we recall our security goals in DeepChain
which are presented in section 3. We further give our secu-
rity analyses threefold with respect to three security goals.
• Confidentiality guarantees for training gradients. For

this goal, DeepChain employs Threshold Paillier algorithm
which has the additive homomorphic property. We assume
there exists a trusted setup, and the secret key cannot leak
without the collaboration of at least t participants. We also
assume at leat t participants are honest. Without loss of
generality, both individual gradients and model parame-
ters W are encrypted with the Threshold Paillier.Encrypt
algorithm as the form of C(W) = gWmodel(k)nmodel. Based on
the following lemma (derived from Theorem 1 in [50]), we
state the confidentiality of individual gradients and model
parameters is guaranteed.
Lemma 1. With the Decisional Composite Residuosity

Assumption (DCRA) [51] and in the random oracle
model (served as S), Threshold Paillier algorithm is
t-robust semantically secure against active non-adaptive
adversaries A with polynomial time attack power, if

|Pr[(w0, w1) ← A(1λ, F t(·)); b ← {0, 1};C ←
S(1λ, wb);A(C, 1λ, F t(·)) = b]− 1/2| ≤ negl(1λ)

that is negligible in λ which is the system security param-
eter. In the lemma above, F t(·) is used to represent that
A controls at most t corrupted parties and learns their
information including public parameters, the secret shares
of the corrupted parties, the public verification keys, all
the decryption shares and the validity of those shares. In
addition, t-robust means that a Threshold Paillier ciphertext

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

can be correctly decrypted, even if there exists A actively
corrupts up to t parties. Semantic security is a general
security proof methodology which depicts the security of
an encryption algorithm, and in this setting, it depicts the
confidentiality of encrypted information by the Threshold
Paillier.Encrypt algorithm.
• Public auditability for gradient collecting and pa-

rameter updating. The security goal is that any party can
audit the correctness of encrypted gradients and decryption
shares during the processes of gradient collecting and pa-
rameter updating, respectively. Recall that we introduce the
non-interactive zero-knowledge proof for these two process-
es in the setting of the Threshold Paillier algorithm, such
as fsprove1, fsver1, fsprove2, fsver2, the methodology
of which can be referred to the universally verifiable CDN
(UVCDN) protocol [52]. Under the defined framework of
UVCDN protocol, public auditability can be guaranteed if
there exists a simulator that simulates the correctness proofs
of honest parties and extracts witnesses of corrupted parties.
We next demonstrate this statement with respect to the
correctness proof of encrypted gradients by using Lemma 2
and Lemma 3. Similarly, the correctness proof of decryption
shares can be discussed under the UVCDN framework, and
we omit this part due to the space limitation.
Lemma 2. Given X = C(x), x = 4W, and c ∈ C where C

is a finite set named the challenge space, Then,
{d ∈R Znmodel

; e ∈R Z∗nmodel
; a := gdmodele

nmodelX−c:
(a; c; d, e)}
≈
{a1 ∈R Znmodel

; b1 ∈R Z∗nmodel
; a := ga1modelb

nmodel
1 ; t :=

(a1 + cx)/nmodel; d := a1 + cx; e := b1k
c
jg
t
model:

(a; c; d, e)}

where ≈ denotes that the distributions are statistical
indistinguishable.

Lemma 3. We define X = C(x) = gxmodelr
nmodel , in which

x = 4W, r = k. Given (a; s) which is generated by the
announcement ΣPK .ann, and c a challenge in respect
to the announcement, there exists an extractor E can
extract the witness of an adversary A, if A can present
two conversations for (a; s), that is,

|1 − Pr[A(X;x, r; a; s; c) →
(d, e; d′, e′); E(X; a; d, e; d′, e′) → (x′, r′) = (x, r)]| ≤
negl(1λ)

• Fairness enhancement for collaborative training. Re-
call that we employ two security mechanisms in the setting
of Blockchain to enhance fairness for collaborative training.
The two security mechanisms are the trusted time clock
mechanism and secure monetary penalty mechanism. With
the trusted time clock mechanism, behaviors in a contract
are pushed to be accomplish ahead of a defined time point,
which is demonstrated by the function checkT imeout in
the setting of DeepChain. On the other hand, we define
two secure monetary penalty functions, one of which is
for gradient collecting and another one is for collaborative
decryption. To explain these two mechanisms, we introduce
a notion, secure computation with coins (SCC security) in a
multi-party N setting, which is defined and proven by [46],
[47] in a hybrid model as following.

Lemma 4. Defined input z, security parameter λ, a
distinguisher Z , ideal process IDEAL, ideal adversary S
in IDEAL, and ideal function f ; and meanwhile defined
a protocol π which interact with ideal function g in a
model with adversary A, Then,
{IDEALf,S,Z(λ, z)}λ ∈ N, z ∈ 0, 1∗

≡c
{HYBRIDg,π,A,Z(λ, z)}λ ∈ N, z ∈ 0, 1∗

where ≡c denotes that the distributions are
computationally indistinguishable.

Lemma 5. Let π is a protocol and f s a multiparty function.
We say that π securely computes f with penalties if π
SCC-realizes the functionality f∗.

According to Lemma 5, we require a protocol π SSC-
realizes F as F ∗, which means that F ∗ achieves secure gra-
dient collecting or collaborative decryption with penalties.
With F ∗ and the trusted time clock mechanism, we intent to
implement fairness for gradient collecting and collaborative
decryption by F ∗ct mentioned by Algorithm 4.

6 IMPLEMENTATION AND EVALUATION

In this section, we present a implementation prototype. We
first build the Blockchain setting to simulate DeepChain.
With this setting, Blockchain nodes regarded as parties,
participate in trading, and interact with two defined crucial
smart contracts (i.e., Trading Contract and Processing Con-
tract), in which generated transactions are serialized on the
Blockchain.

First, we choose Corda V3.0 [53] to simulate DeepChain
for adaption and simplification. Corda project is created by
R3CEV, as well as widely applied in bank, financial insti-
tutes and trading areas. It is a decentralized ledger which
absorbs the features of Bitcoin and Ethereum [54] while
creating its characteristics, such as data sharing based on
need-to-know basis, deconflicting transactions with plug-
gable notaries. A Corda network contains multiple notaries
where the consensus protocol introduced in section 4.2.5 can
be executed for them. Though we do not implement this in
this paper, we make it for our further work. Without the loss
of generation, we build nodes and classify them into two
kinds, parties and workers. They constitute into the nodes
of two CorDapps agreeing on the Blockchain, in which we
define different business logic in five components, such as
Flows, States, Contracts, Services and Serialisation whitelists

Second, we build the deep learning environment with
the libraries: Python in version 3.6.4, numpy in version
1.14.0, and tensorflow in version 1.7.0. We select the pop-
ular MINIST dataset which has 55000 training data, 5000
verification data and 10000 testing data. Then, we split
this dataset into multiple groups according to the number
of parties. Our training model derives from CNN, the
structure of which is: Input → Conv → Maxpool →
Fully Connected → Output. The weights and bias pa-
rameter in Conv, Fully Connected and Output layers are
w1 = (10, 1, 3, 3) and b1 = (10, 1), w2 = (1960, 128) and
b2 = (1, 128), w3 = (128, 10) and b3 = (1, 10), respectively.
Additionally, other training parameters are configured as
the table 2 shown.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 2
Training configuration

Parameters values
iteration 1500
epoch 1
learning rate 0.5
mini batch size 64

Third, recalled that we employ Threshold Paillier en-
cryption combining with the super increasing sequence. We
set the number of bits of modulus nmodel to 1024 bits. It
is worth noting that before executing encryption algorithm,
the weight matrixes are assembled as a vector, which makes
only a cipher be generated corresponding to a party.

Fig. 4. Evaluation on the cipher size.

Fig. 5. Evaluation on the encryption throughput.

We implement the aforementioned building blocks
with three modules, CordaDeepChain, TrainAlgorithm and
CryptoSystem, respectively. We evaluated the feasibility of
training on the simulated DeepChain in terms of encryption
and training performance in a multi-party setting. First of
all, we evaluate encryption performance with the imple-
mented program on a desktop which is an Intel(R) Xeon(R)
CPU machine with 3.30 GHz cores and 16 GB memory. Fig.
4 shows the size of cipher is a constant when we encrypt
various amounts of gradients which means the number of

Fig. 6. The comparison on the training accuracy with four parties.

elements in the vector to be encrypted. Then, Fig. 5 shows
the throughput when the encrypt algorithm is executed.

On the other hand, we create four parties participating
in collaborative training and trading. Each party trains the
local model with the training dataset which has the size
of 13750 (by 55000/4). Then, single party gains the aver-
aged gradients shared from the other three parties. we also
create an external party only training on 13750-size dataset
without the sharing averaged gradients, which is regarded
as a baseline party. Through making the training accuracy
comparison between the results from collaborative parties
and the base line party, We demonstrate the accuracy im-
provement for single collaborative parties. The comparison
result is shown in Fig 6.

7 CONCLUSION AND FUTURE WORK

In this paper, we present DeepChain, which is a healthy
and win-win decentralized platform based on Blockchain
for secure deep learning training. In the context of federal
learning, we introduce an incentive mechanism and mean-
while focus on three security goals that are confidentiality,
auditability as well as fairness. In addition, we claim the
value of DeepChain in a long-term way. DeepChain stores
training models where not only iterative training parameter-
s but also trained models are recorded. On the one hand, it
is obvious that trained models create financial values when
the model-based pricing market is promising. This brings
the owners of trained models with long-term benefits, since
their models can serve for those who have AI tasks by the
way of payment. On the other hand, all training processes
and well-trained models are recorded, which could advance
the development of transfer learning. Andrew Ng, in NIPS
2016 tutorial has said: ”Transfer learning will be the next driver of
ML success.“ [55] Thus, we take the first-step consideration
that DeepChain can extend the potential value of models
to transfer learning. Trained models which have gained
knowledge can be applied to a different but related AI task.
Then, the security problem should be re-defined, which will
be discussed in the future work.

ACKNOWLEDGEMENT

This work was supported by National Key R&D Plan of
China (Grant No. 2017YFB0802203 and 2018YFB1003701),

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

National Natural Science Foundation of China (Grant
Nos. U1736203, 61732021, 61472165 and 61373158), Guang-
dong Provincial Engineering Technology Research Center
on Network Security Detection and Defence (Grant No.
2014B090904067), Guangdong Provincial Special Funds for
Applied Technology Research and Development and Trans-
formation of Important Scientific and Technological Achieve
(Grant No. 2016B010124009), the Zhuhai Top Discipline–
Information Security, Guangzhou Key Laboratory of Data
Security and Privacy Preserving, Guangdong Key Laborato-
ry of Data Security and Privacy Preserving, National Joint
Engineering Research Center of Network Security Detection
and Protection Technology.

REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” IEEE Signal processing
magazine, vol. 29, no. 6, pp. 82–97, 2012.

[2] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “Pcanet:
A simple deep learning baseline for image classification?” IEEE
Transactions on Image Processing, vol. 24, no. 12, pp. 5017–5032,
2015.

[3] E. Gawehn, J. A. Hiss, and G. Schneider, “Deep learning in drug
discovery,” Molecular informatics, vol. 35, no. 1, pp. 3–14, 2016.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, p. 436, 2015.

[5] P. Danaee, R. Ghaeini, and D. A. Hendrix, “A deep learning
approach for cancer detection and relevant gene identification,”
in PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017. World
Scientific, 2017, pp. 219–229.

[6] S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime
tradeoff in distributed deep learning: A systematic study,” in
Data Mining (ICDM), 2016 IEEE 16th International Conference on.
IEEE, 2016, pp. 171–180.

[7] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: building an efficient and scalable deep learning training
system,” in Usenix Conference on Operating Systems Design and
Implementation, 2016, pp. 571–582.

[8] T. Chen and S. Zhong, “Privacy-preserving backpropagation neu-
ral network learning,” IEEE Transactions on Neural Networks,
vol. 20, no. 10, p. 1554, 2009.

[9] A. Bansal, T. Chen, and S. Zhong, “Privacy preserving back-
propagation neural network learning over arbitrarily partitioned
data,” Neural Computing Applications, vol. 20, no. 1, pp. 143–150,
2011.

[10] J. Yuan and S. Yu, “Privacy preserving back-propagation learning
made practical with cloud computing,” IEEE Transactions on
Parallel Distributed Systems, vol. 25, no. 1, pp. 212–221, 2014.

[11] R. Shokri and V. Shmatikov, “Privacy-preserving deep learn-
ing,” in Allerton Conference on Communication, Control, and
Computing, 2015, pp. 909–910.

[12] P. Li, J. Li, Z. Huang, C. Z. Gao, W. B. Chen, and K. Chen, “Privacy-
preserving outsourced classification in cloud computing,” Cluster
Computing, no. 1, pp. 1–10, 2017.

[13] Q. Zhang, L. Yang, and Z. Chen, “Privacy preserving deep com-
putation model on cloud for big data feature learning,” IEEE
Transactions on Computers, vol. 65, no. 5, pp. 1351–1362, 2016.

[14] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. M-
cMahan, S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical
secure aggregation for privacy-preserving machine learning,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2017, pp. 1175–1191.

[15] P. Mohassel and Y. Zhang, “Secureml: A system for scalable
privacy-preserving machine learning,” in Security and Privacy
(SP), 2017 IEEE Symposium on. IEEE, 2017, pp. 19–38.

[16] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving
deep learning via additively homomorphic encryption,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 5,
pp. 1333–1345, 2018.

[17] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning mod-
els that remember too much,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 587–601.

[18] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “In-
ference attacks against collaborative learning,” arXiv preprint
arXiv:1805.04049, 2018.

[19] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under the
gan: information leakage from collaborative deep learning,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2017, pp. 603–618.

[20] T. Orekondy, S. J. Oh, B. Schiele, and M. Fritz, “Understanding
and controlling user linkability in decentralized learning,” arXiv
preprint arXiv:1805.05838, 2018.

[21] A. Pyrgelis, C. Troncoso, and E. De Cristofaro, “Knock knock,
who’s there? membership inference on aggregate location data,”
arXiv preprint arXiv:1708.06145, 2017.

[22] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” arXiv preprint arXiv:1807.00459,
2018.

[23] “Health insurance portability and accountability act,” http-
s://www.hhs.gov/hipaa/index.html.

[24] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato,
M. Devin, and J. Dean, “Multilingual acoustic models using
distributed deep neural networks,” in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference
on. IEEE, 2013, pp. 8619–8623.

[25] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[26] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments
from bitcoin,” in Security and Privacy (SP), 2014 IEEE Symposium
on. IEEE, 2014, pp. 459–474.

[27] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin:
Anonymous distributed e-cash from bitcoin,” in Security and
Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013, pp. 397–411.

[28] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou,
“Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts,” in Security and Privacy (SP), 2016
IEEE Symposium on. IEEE, 2016, pp. 839–858.

[29] S. Haykin, Neural networks: a comprehensive foundation. Pren-
tice Hall PTR, 1994.

[30] J. Dean, G. Corrado, Monga et al., “Large scale distributed deep
networks,” in Advances in neural information processing systems,
2012, pp. 1223–1231.

[31] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and
Y. LeCun, “Fast convolutional nets with fbfft: A gpu performance
evaluation,” arXiv preprint arXiv:1412.7580, 2014.

[32] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun, “Deep image: Scaling
up image recognition,” arXiv preprint arXiv:1501.02876, vol. 7,
no. 8, 2015.

[33] M. Lin, S. Li, X. Luo, and S. Yan, “Purine: A bi-graph based deep
learning framework,” arXiv preprint arXiv:1412.6249, 2014.

[34] H. Cui, G. R. Ganger, and P. B. Gibbons, “Scalable deep learning
on distributed gpus with a gpu-specialized parameter server,” pp.
1–16, 2016.

[35] H. Ma, F. Mao, and G. W. Taylor, “Theano-mpi: A theano-based
distributed training framework,” CoRR, pp. 800–813, 2016.

[36] Poseidon: An Efficient Communication Architecture for
Distributed Deep Learning on GPU Clusters.

[37] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin,
“Distributed deep learning models for wireless signal classifica-
tion with low-cost spectrum sensors,” CoRR, vol. abs/1707.08908,
2017.

[38] Distributed deep learning on edge-devices: Feasibility via
adaptive compression, 2017.

[39] L. Chen, P. Koutris, and A. Kumar, “Model-based pricing
for machine learning in a data marketplace,” arXiv preprint
arXiv:1805.11450, 2018.

[40] A. B. Kurtulmus and K. Daniel, “Trustless machine learning con-
tracts; evaluating and exchanging machine learning models on the
ethereum blockchain,” arXiv preprint arXiv:1802.10185, 2018.

[41] S. Micali, “Algorand: The efficient and democratic ledger,” arXiv
preprint arXiv:1607.01341, 2016.

[42] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,”

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

in Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, 2017, pp. 51–68.

[43] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü,
and A. Lysyanskaya, “Incentivizing outsourced computation,” in
Proceedings of the 3rd international workshop on Economics of
networked systems. ACM, 2008, pp. 85–90.

[44] J.-S. Weng, J. Weng, M. Li, Y. Zhang, and W. Luo, “Deepchain:
Auditable and privacy-preserving deep learning with blockchain-
based incentive,” Cryptology ePrint Archive, Report 2018/679,
2018, https://eprint.iacr.org/2018/679.

[45] T. Nishide and K. Sakurai, “Distributed paillier cryptosystem
without trusted dealer,” in International Workshop on Information
Security Applications. Springer, 2010, pp. 44–60.

[46] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair
protocols,” in International Cryptology Conference. Springer,
2014, pp. 421–439.

[47] R. Kumaresan and I. Bentov, “How to use bitcoin to incentivize
correct computations,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM,
2014, pp. 30–41.

[48] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms
for replicated database maintenance,” in Proceedings of the sixth
annual ACM Symposium on Principles of distributed computing.
ACM, 1987, pp. 1–12.

[49] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, 2016.

[50] P.-A. Fouque, G. Poupard, and J. Stern, “Sharing decryption in
the context of voting or lotteries,” in International Conference on
Financial Cryptography. Springer, 2000, pp. 90–104.

[51] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 1999,
pp. 223–238.

[52] B. Schoenmakers and M. Veeningen, “Universally verifiable mul-
tiparty computation from threshold homomorphic cryptosystem-
s,” in International Conference on Applied Cryptography and
Network Security. Springer, 2015, pp. 3–22.

[53] “Corda: an open source distributed ledger platform,” http-
s://docs.corda.net/.

[54] W. Gavin, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[55] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial net-
works,” arXiv preprint arXiv:1701.00160, 2016.

