
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

DeepChain: Auditable and Privacy-Preserving
Deep Learning with Blockchain-based Incentive

Jiasi Weng, Jian Weng, Member, IEEE, Jilian Zhang, Ming Li, Yue Zhang, Weiqi Luo

Abstract—Deep learning can achieve higher accuracy than traditional machine learning algorithms in a variety of machine learning
tasks. Recently, privacy-preserving deep learning has drawn tremendous attention from information security community, in which
neither training data nor the training model is expected to be exposed. Federated learning is a popular learning mechanism, where
multiple parties upload local gradients to a server and the server updates model parameters with the collected gradients. However,
there are many security problems neglected in federated learning, for example, the participants may behave incorrectly in gradient
collecting or parameter updating, and the server may be malicious as well. In this paper, we present a distributed, secure, and fair deep
learning framework named DeepChain to solve these problems. DeepChain provides a value-driven incentive mechanism based on
Blockchain to force the participants to behave correctly. Meanwhile, DeepChain guarantees data privacy for each participant and
provides auditability for the whole training process. We implement a prototype of DeepChain and conduct experiments on a real
dataset for different settings, and the results show that our DeepChain is promising.

Index Terms—Deep learning, Privacy-preserving training, Blockchain, Incentive

F

1 INTRODUCTION

R ECENT advances in deep learning based on artificial
neural networks have witnessed unprecedented accu-

racy in various tasks, e.g., speech recognition [1], image
recognition [2], drug discovery [3] and gene analysis for
cancer research [4], [5]. In order to achieve even higher
accuracy, huge amount of data must be fed to deep learning
models, incurring excessively high computational overhead
[6], [7]. This problem, however, can be solved by employing
distributed deep learning technique that has been inves-
tigated extensively in recent years. Unfortunately, privacy
issue worsens in the context of distributed deep learning,
as compared to conventional standalone deep learning sce-
nario.

Privacy-preserving deep learning thus arises to deal with
privacy concerns in deep learning, and various models have
been around in the past few years [8], [9], [10], [11], [12],
[13], [14], [15], [16]. Among these existing work, federated
learning is the widely adopted system context. Federated
learning, also known as collaborative learning and distributed
learning, is essentially the combination of deep learning and
distributed computation, where there is a server, called pa-
rameter server, maintaining a deep learning model to train
and multiple parties that take part in the distributed training
process. First, the training data is partitioned and stored at
each of the parties. Then, each party trains a deep learning

• J. S. Weng, J. Weng, J. L. Zhang, M. Li, Y. Zhang and W. Q. Luo are with
the College of Information Science and Technology in Jinan University,
and Guangdong/Guangzhou Key Laboratory of Data Security and Privacy
Preserving, and National-Local Joint Engineering Research Center of
Cyber Security Detection and Protection Technology, Guangzhou 510632,
China.
E-mail addresses: wengjiasi@gmail.com (J. S. Weng), cryp-
tjweng@gmail.com (J. Weng), jilian.z.2007@smu.edu.sg(J. L. Zhang),
limjnu@gmail.com (M. Li), zyueinfosec@gmail.com (Y. Zhang),
lwq@jnu.edu.cn (W. Q. Luo).
Jian Weng is the corresponding author.

model (the same one as maintained at the parameter server)
on her local data individually, and uploads intermediate
gradients to the parameter server. Upon receipt of the gra-
dients from all the parties, the parameter server aggregates
those gradients and updates the learning model parameters
accordingly, after which each of the parties downloads the
updated parameters from the server and continues to train
her model on the same local data again with the down-
loaded parameters. This training process repeats until the
training error is smaller than the pre-specified threshold.

This federated learning framework, however, cannot
protect the privacy of the training data, even the training
data is divided and stored separately. Some researchers
show that the intermediate gradients can be used to infer
important information about the training data [17], [18],
for example. Shokri et. al [11] applied differential privacy
technique by adding noises in the gradients to upload,
achieving a trade-off between data privacy and training ac-
curacy. Hitaj et. al [19] pointed out that Shokri’s work failed
to protect data privacy and demonstrated that a curious
parameter server can learn private data through GAN (Gen-
erative Adversarial Network) learning. Orekondy et. al [20]
exploited the intermediate gradients to launch linkability
attack on training data, since the gradients contain sufficient
data features.

Phong et. al [21] proposed to use homomorphic en-
cryption technique to protect training data privacy from
curious parameter server. The drawback of their scheme is
that they assumed the collaborative participants are honest
but not curious, hence their scheme may fail in scenario
where some participants are curious. To prevent curious
participants, Bonawitz et. al [14] employed a secret sharing
and symmetric encryption mechanism to ensure confiden-
tiality of the gradients of participants. They assumed that
(1) participants and parameter server cannot collude at all,
and (2) the aggregated gradients in plain text reveal nothing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

about the participants’ local data. The second assumption,
unfortunately, is no longer valid since membership inference
attack on aggregated location data is now available [22].

Despite the fact that extensive research is underway on
distributed deep learning, there are two serious problem-
s that receive less attention so far. The first one is that
existing work generally considered privacy threats from
curious parameter server, neglecting the fact that there exist
other security threats from dishonest behaviors in gradient
collecting and parameter updating that may disrupt the
collaborative training process. For example, the parameter
server may drop gradients of some parties deliberately, or
wrongly update model parameters on purpose. Recently,
Bagdasaryan et. al [23] demonstrated the existence of this
problem that dishonest parties can poison the collaborative
model by replacing the updating model with its exquisitely
designed one. Therefore, it is crucial for distributed deep
learning framework to guarantee not only the confidential-
ity of gradients, but also the auditability of the correctness
of gradient collecting and parameter updating.

The second problem is that in existing schemes the
parties are assumed to have enough local data for train-
ing and are willing to cooperate in the first place, which
are not always true in real applications. For example, in
healthcare applications, companies or research institutes are
usually facing the difficulty in collecting enough personal
medical data, due to privacy regulations such as HIPAA
[24], people’s unwillingness to share and malicious attacks
like identifying inference attacks against HCUPnet [25]. As
a consequence, lack of training data will result in poor
deep learning models in general [26]. On the other hand, in
business applications some companies may be reluctant to
participate in collaborative training, because they are very
concerned about possible disclosure of their valuable data
during distributed training [11]. Thus, it is vital to ensure
data privacy and bring in some incentive mechanism for
distributed deep learning, so that more parties can actively
involved in collaborating training.

Traditional incentive mechanisms include reputation-
based [27], tit-for-tat [28] and payment-based mechanism
[29], [30]. Usually, these mechanisms, except for tit-for-tat,
need a trusted centralized authority to audit participant
behaviors and arbitrate their payoff. Unfortunately, they fail
to provide public auditability and decision fairness [28].
Although there is no trusted centralized party in tit-for-tat, it
is not suitable for our setting, because a party’s contribution
is not symmetric to that of her counterparts. It is worth
noting that Blockchain, originated from decentralized cur-
rencysystem, enables distrustful nodes to share a common
transaction ledger without the need of a trusted third party,
by employing a consensus protocol and financial incentives.
This motivates us to introduce a payment-based incentive
mechanism that guarantees public authority and fairness.

In this paper, we propose DeepChain, a secure and de-
centralized framework based on Blockchain incentive mech-
anism and cryptographic primitives for privacy-preserving
distributed deep learning, which can provide data confiden-
tiality, computation auditability, and incentives for parties
to participate in collaborative training. The system models
of traditional distributed deep learning and our DeepChain
are given in Fig. 1. Specifically, DeepChain can securely

Fig. 1. The left corresponds to traditional distributed deep training frame-
work, while the right is our DeepChain. Here, Trading Contract and
Processing Contract are smart contract in DeepChain, together guiding
the secure training process, while Tx refers to transaction.

aggregate local intermediate gradients from untrusted par-
ties through launching transactions, while local training and
parameter updating are performed by workers (an entity in
DeepChain that will be defined shortly) who are incented
to process the transactions. To summarize, in this paper we
made the following contributions:

• We propose DeepChain, a collaborative training
framework with an incentive mechanism that en-
courages parties to jointly participate in deep learn-
ing model training and share the obtained local gra-
dients.

• DeepChain preserves the privacy of local gradients
and guarantees auditability of the training process.
By employing incentive mechanism and transactions,
participants are pushed to behave honestly, particu-
larly in gradient collecting and parameter updating,
thus maintaining fairness during collaboration train-
ing.

• We implement DeepChain prototype and evaluate
its performance in terms of cipher size, throughput,
training accuracy and training time. We believe that
DeepChain can benefit AI and machine learning
communities, for example, it can audit the collabo-
rative training process and the trained model, which
represents the learned knowledge. Well-trained mod-
els can be used for paid services when the model-
based pricing market is mature. In addition, making
the best use of this learned knowledge by combining
transfer learning technique can improve both the
learning efficiency and accuracy.

The rest of the paper is organized as follows. In Section 2,
we give a brief introduction of Blockchain and deep learning
model training. Then, we describe the threat model and
security requirements in Section 3. In Section 4, we present
our DeepChain, a framework for auditable and privacy-
preserving deep learning, and analyze security properties of
DeepChain in Section 5. We give implementation details of
DeepChain in Section 6, and conduct extensive experiments
to evaluate its performance. Finally, we conclude the paper
in Section 7.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

2 BACKGROUND

Our work is closely related to Blockchain and deep learning
training, and we give background knowledge in this section.

2.1 Blockchain technology

Blockchain has arisen a surge of interests both in research
community and industry [31]. It is an emerging technology
as a decentralized, immutable, sharing and time-ordered
ledger. Transactions are stored in blocks that contain times-
tamps and references (i.e., the hash of previous block),
which are maintained as a chain of blocks. In Bitcoin,
transactions which imply money transfers are created by
pseudonymous participants and competitively collected to
build a new block by an entity called worker. The worker
who generates a new and valid block can gain some amount
of rewards, hence the chain is continuously lengthened
by workers. To achieve this, proof of work (PoW)-based
consensus protocol and incentive mechanism are required.

There are a wide variety of consensus protocols, such as
proof of stake (PoS)-based, byzantine fault tolerance (BFT)-
based and hybrid protocols. In general, when introducing a
new consensus protocol for a Blockchain setting, one needs
to consider six problems: (1) leader selection, i.e., how to select
a new block leader in each round; (2) network model, i.e.,
the message communication mode, such as asynchronous,
synchronous and semi-synchronous; (3) system model, i.e.,
permissioned or permissionless system model, explaining
whether a party can join the system freely; (4) communication
complexity, reflecting the communication cost to propagate a
new block to all parties in the system in each round; (5)
adversary assumption, defining the probability of tolerating
fault parties in the system; (6) consensus property, corre-
sponding to the Agreement-Validity-Termination properties
defined in classic consensus protocols [32].

The latest Algorand protocol [33], [34] is a hybrid con-
sensus protocol based on PoS and BFT. Different from PoW-
based consensus protocol, Algorand can guarantee consen-
sus finality with overwhelming probability in terms of con-
sensus property. Here, consensus finality means that a valid
block appended to the chain will never be removed in the
future, which is especially suitable for our problem. Without
block data abandonment, we avoid spending excessive time
and computation power to retrain a huge model. Also, Al-
gorand protocol works in permissioned environment with
the assumption of a synchronous network, which can be
adapted to our setting.

Some latest Blockchain techniques, such as Ethereum
and Hyperledger, introduce smart contract that support-
s Turing-complete programmability. These techniques are
used to solve specific security issues in different application
scenarios such as software-update management [35], cloud
storage [36], [37] and machine learning [38]. On the other
hand, a series of work on transaction privacy apply crypto-
graphic tools in Blockchain, such as Zerocash [39], Zerocoin
[40] and Hawk [41]. In general, consensus protocol and
incentive mechanism in Blockchain are key ingredients for
us to solve our problems, i.e., absence of incentive function
and collaboration fairness guarantee.

2.2 Deep learning and distributed deep learning
2.2.1 Deep learning
Deep learning enables a deep learning model to learn the
abstractive representations of data. A typical deep learning
model consists of three layers, namely input layer, hidden
layer and output layer. A deep learning model can contain
multiple hidden layers, where the number of layers is called
depth of the model. Each hidden layer can have certain
number of neurons, and neurons at different layers can
learn hierarchical features of the input training data, which
represents different levels of abstraction. Each neuron has
multiple inputs and a single output. Generally, the output of
neuron i at layer l − 1 connects to the input of each neuron
at layer l. For the connection between two neurons, there
is a weight assigned to it. For example, wi,j is a weight
assigned to the connection between neuron i at layer l − 1
and neuron j at layer l. Each neuron i also has a bias bi.
These weights and bias are called model parameters, which
need to be learned during the training.

Back-Propagation (BP) [42] is the most popular learning
method for deep learning, which consists of feed forward
step and back-propagation step. Specifically, in feed forward
step, the outputs at each layer are calculated based on
parameters at previous layer and current layer, respectively.

A key component in deep neural network training is
called activation, which is the output of each neuron. Ac-
tivation is used to learn non-linear features of inputs via
function Act(·). To compute the output value of a neuron
i at layer l, Act(·) takes all the n inputs of i from layer
l−1 as the input. In addition, we assume that weight wj,i is
associated with the connection between neurons j at layer
l − 1 and neurons i at layer l, and bi is the bias of neuron
i. Then, the value of neuron i at layer l can be obtained by
Acti(l) = Acti(Σ

n
j=1(wj,i ∗Actj(l − 1)) + bi).

The back-propagation step employs gradient descent
method, which gradually reduces the model error Etotal,
i.e., the gap between model output value Voutput and the
target value Vtarget. Assume that there are n output units at
the output layer. Then, the gap can be calculated by Etotal =
1
2Σni=1(Vtargeti−Voutputi)2. OnceEtotal is available, weights
wj,i can be updated through wj,i = wj,i− η ∗ ∂Etotal

∂wj,i
, where

η is the learning rate and ∂Etotal

∂wj,i
is the partial derivative of

Etotal with respect to wj,i. This is the main idea of gradient
descent method. The learning process repeats until the pre-
specified number of iterations to train is reached.

2.2.2 Distributed deep learning
When training a complex and multi-layer deep learning
model, the aforementioned training procedure requires high
computational overhead. To alleviate this problem, dis-
tributed deep learning training has been proposed recently,
and some research work [43], [44], [45], [46], [47] and sys-
tem implementations have been around, such as DistBelief
[48], Torch [49], DeepImage [50] and Purine [51]. Generally,
there are two approaches for distributed training, namely,
model parallelism and data parallelism, where the former
partitions a training model among multiple machines and
the latter splits up the whole training dataset.

Our work focuses on the data parallelism approach, i.e.,
we have multiple machines and each machine maintains

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

a copy of the training model while keeping a subset of
the whole dataset as model input. These machines share
the same parameters of the training model, by upload-
ing/downloading parameters to/from a centralized param-
eter server. Then, machines upload their local training gradi-
ents, based on which the training model is updated by using
SGD (Stochastic Gradient Descent). They download updat-
ed parameters from the parameter server and continue to
train the local model. This process repeats until machines
obtain the final trained model.

3 THREATS AND SECURITY GOALS

In this section, we discuss threats to collaborative learning,
and security goals that DeepChain can achieve to tackle
those threats.

Threat 1: Disclosure of local data and model. Although
in distributed deep training each party only uploads her
local gradients to the parameter server, adversaries still can
infer through those gradients important information about
the party’s local data by initiating an inference attack or
membership attack [18]. On the other hand, based on the
gradients, adversaries may also launch parameter inferring
attack to obtain sensitive information of the model [19].

Security Goal: Confidentiality of local gradients. As-
sume that participants do not expose their own data and
at least t participants are honest (i.e., no more than t
participants colluded to disclose parameters). Then each
party’s local gradients cannot be exposed to anyone else,
unless at least t participants collude. In addition, if in any
circumstance participants do not disclose the downloaded
parameters from the collaborative model, then adversaries
could not gain any information about the parameters. To
achieve this goal, in DeepChain each participant individu-
ally encrypts and then uploads gradients obtained from her
local model. All gradients are used to update parameters
of the collaborative model encrypted collaboratively by all
participants, who then obtain updated parameters via col-
laborative decryption in each iteration. Here, collaborative
decryption means that at least t participants provide their
secret shares to decrypt a cipher.

Threat 2: Participants with inappropriate behaviors.
Consider a situation that participants may have malicious
behaviors during collaborative training. They may choose
their inputs at will and thus generate incorrect gradients,
aiming to mislead the collaborative training process. As a
consequence, when updating parameters of collaborative
model using the uploaded gradients, it is inevitable that
we will get erroneous results. On the other hand, in collab-
orative decryption phase dishonest participants may give
a problematic decryption share and they may be selfish,
aborting local training process early to save their cost for
training. In addition, dishonest participants may delay trad-
ing or terminate a contract for her own benefit, which makes
the honest ones suffer losses. All these malicious behaviors
may fail the collaborative training task.

Security Goal 1: Auditability of gradient collecting
and parameter updating. In DeepChain, assume that ma-
jority of the participants and at least 2

3 of the workers
are honest in gradient collecting and parameter updating,

respectively. During gradient collecting, participants’ trans-
actions contain encrypted gradients and correctness proofs,
allowing the third party to audit whether a participant
gives a correctly encrypted construction of gradients. For
parameter updating, on the other hand, workers claim com-
putation results through transactions that will be recorded
in DeepChain. These transactions are auditable as well, and
computation results are guaranteed to be correct only if
at least 2

3 workers are honest. After parameters are up-
dated, participants download and collaboratively decrypt
the parameters by providing their decryption shares and
corresponding proofs for correctness verification. Again,
any third party can audit whether the decryption shares are
correct or not.

Security Goal 2: Fairness guarantee for partici-
pants. DeepChain provides fairness for participants through
timeout-checking and monetary penalty mechanism. Specif-
ically, for each function with smart contracts DeepChain
defines a time point for it. At the time point after function
execution, results of the function are verified. If the verifi-
cation failed, it means that (1) there exist participants not
being punctual by the time point, and (2) some participants
may incorrectly execute the function. For either of the two
cases, DeepChain applies the monetary penalty mechanism,
revoking the pre-frozen deposit of dishonest participants
and re-allocating it to the honest participants. Therefore,
fairness can be achieved, because penalty will never be
imposed on honest participants who behave punctually
and correctly, and they will be compensated if there exist
dishonest participants.

4 THE DEEPCHAIN MODEL

In this section, we present DeepChain, a secure and decen-
tralized framework for privacy-preserving deep learning.
DeepChain achieves collaborative training by introducing
incentive mechanism and transaction processing. In the
process of collaborative training, data confidentiality and
auditability are guaranteed by using cryptographic tech-
niques.

4.1 System overview
Before introducing DeepChain, we give definitions of relat-
ed concepts and terms used in DeepChain.

Party: In DeepChain, a party is the same entity as defined
in traditional distributed deep learning model, who has
similar needs but unable to perform the whole training
task alone due to resource constraints such as insufficient
computational power or limited data.

Trading: When a party gets her local gradients, she sends
out the gradients by launching a transaction to a smart
contract called trading contract to DeepChain. This process is
called trading. Those contracts can be downloaded to process
by worker (an entity in DeepChain that will be defined
shortly).

Cooperative group: A cooperative group is a set of parties
who have the same deep learning model to train.

Local model training: Each party trains her local model
independently, and at the end of a local iteration the party
generates a transaction by attaching her local gradients to
the contract.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Collaborative model training: Parties of a cooperative
group train a deep learning model collaboratively. Specif-
ically, after deciding a same deep learning model and pa-
rameter initialization, the model is trained in an iterative
manner. In each iteration, all parties trade their gradients,
and workers download and process the gradients. The pro-
cessed gradients are then sent out by workers to the smart
contract called processing contract. These correctly processed
gradients are used to update parameters of the collaborative
model by the leader selected from the workers. Parties
download the updated parameters of the collaborative mod-
el and update their local models accordingly. After that
parties begin the next iteration of model training.

Worker: Similar to miners in BitCoin, workers are incented
to process transactions that contain training weights for
collaborative model update. Workers compete to work on
a block, and the first one finishes the job is a leader. The
leader will gain block rewards that can be consumed in the
future, for example, she may use rewards to pay for usage
fee of trained models in DeepChain.

Iteration: Deep learning model training consists of multi-
ple steps called iterations, where at the end of each iteration
all the weights of neurons of the model are updated once.

Round: In DeepChain, a round refers to the process of the
creation of a new block.

DeepCoin: DeepCoin, denoted as $Coin, is a kind of
asset in DeepChain. In particular, for each newly generated
block DeepChain will generate certain amount of $Coin as
rewards. Participants in DeepChain consist of parties and
workers, where the former gain $Coin for their contribu-
tions to local model training, and the latter are rewarded
with $Coin for helping parties update training models.
Meanwhile, a well-trained model will cost $Coin for those
who have no capability to train the model by themselves
and want to use the model. This setting is reasonable
because recent work on model-based pricing for machine
learning has found applications in some scenarios [52], [38].
We define a validity value for $Coin, which essentially is
the time interval of a round. Validity value is related to
consensus mechanism in DeepChain, and we will discuss
it in detail in Section 4.2.2.

DeepChain combines together Blockchain techniques
and cryptographic primitives to achieve secure, distributed
and privacy-preserving deep learning. Suppose there are
N parties Pj , j ∈ {1, ..., N}, and they agree on some
pre-defined information such as a concrete collaborative
model and initial parameters of the collaborative model.
The information is attached to a transaction Tx0

co signed
by all parties. Assume that the address corresponding to
transaction Tx0

co is pkit0 , where it0 is the initial iteration.
At the end of iteration i, the updated model in Txico is
attached to a new address pkiti . All addresses are known
to the parties.

Intermediate gradients from party Pj are enveloped in
transaction TxiPj

, and all those transactions are collected by
a trading contract at round i. Note that intermediate gradi-
ents are local weights CPj

(4Wi,j), where C is a cipher used
by party Pj to encrypt the weights. When all transactions
{TxiPj

} at round i have been collected, trading contract
uploads them to DeepChain. After that, workers download
those transactions {TxiPj

} to process via processing contrac-

t. Specifically, workers update the weights by computing
C(Wi+1) = 1

N ·C(Wi) ·
∏N
j=1 CPj

(4Wi,j), where C(Wi) is
the encrypted weight at round i in Txico, and C(Wi+1) is the
updated encrypted weights that will be attached to Txi+1

co

for updating the local models in the next round i+ 1.

4.2 Building blocks of DeepChain
DeepChain consists of two main building blocks including
incentive mechanism and consensus protocol, which sup-
port the collaborative learning in DeepChain. The main
procedures of collaborative learning will be introduced in
the next subsection.

4.2.1 Incentive mechanism
An incentive acts as a driving force for participants to
actively and honestly take part in a collaborative training
task, and the goal of incentive mechanism is to produce and
distribute value, so that a participant gets rewards or penal-
ties based on her contribution. The introduction of incentive
mechanism is crucial for collaborative deep learning, due
to the following reasons. First, for those parties who want
a deep learning model but have insufficient data to train
the model on their own, incentive can motivate them to join
the collaborative training with their local data. Second, with
reward and penalty, incentive mechanism ensures that (1)
parties behave honestly in local model training and gradient
trading, and (2) workers behave honestly in processing
parties’ transactions.

For ease of understanding the incentive mechanism, we
give an example consisting of two parties. These two parties
contribute their data to collaborative training by launching
transactions. Suppose the data possessed by the two parties
is not equal in quantity. Each party can launch transactions
and pay transaction fee based on the amount of data she
owned. Generally, the larger amount of data a party has,
the less fee she will pay. The two parties agree on the total
amount of fees for collaboratively training the model. The
worker who successfully creates a new block when process-
ing transactions can be the leader and earn the rewards.
Note that transaction issuing and processing are verifiable,
meaning that if some party poses an invalid transaction, the
party would be punished, i.e., being fined. On the other
hand, if a leader incorrectly processes a transaction, she
will be punished accordingly. When collaborative training
finished, parties themselves can benefit from the trained
model that can bring revenue for them through charged
services to those users who want to use the trained model.

To give a formal description of the incentive mechanism,
we first introduce two properties, i.e., compatibility and
liveness of the incentive mechanism for participants. Then,
we further explain that parties and workers have incentive
to behave honestly. Assume that we guarantee data privacy
and security of the consensus protocol (explained in Section
4.2.2). We use vc and vi to denote the value of the collabo-
ratively trained model and the trained individual model i,
respectively, and we assume that vc is greater than vi.

First, we say the incentive mechanism exhibits compati-
bility if each participant can obtain the best result according
to their contributions. Meanwhile, it has liveness only if
each party is willing to update her local training model

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 2. The incentive mechanism of DeepChain, where ωP and ωW

represent the contribution of a party and a worker for maintaining vc,
respectively, and πP and πW represent their payoffs, respectively.

with value vi by continuously launching transactions and
each worker also has incentive to update the parameters
of the collaborative training model with value vc. Below we
describe the importance of these two properties with respect
to participant’s true contribution and the corresponding
payoff. Let ωP and ωW be the contributions of a party and a
worker to the final trained model, respectively, and πP and
πW be their corresponding payoffs, respectively. At first, we
assume that participant’s contribution originates from her
correct behaviors with a high probability, and later we will
explain that this assumption is reasonable.

Liveness: both the party and the worker have the same
common interest to obtain a trained collaborative model.
Because if a party costs vi during the whole training process,
then she would gain vc in the end, which is attractive for her
because vc is greater than vi. On the other hand, a worker
will process transactions for collaboratively constructing the
training model in order to earn rewards with probability,
with which she could pay for the deep learning services
in DeepChain. Note that the probability a worker obtains
reward depends on the quantity of rewards she has already
earned. The larger the quantity, the higher the probability
she can get reward. As a result, both the party and the work-
er are incented to build the collaborative training model.

Compatibility: the more a party contributes ωP , the
more she will gain πP . This holds for a worker too. During
the collaborative training process, both party and worker are
incentivized to do their best to contribute to building a train-
ing model Max(ωP)

∧
Max(ωW), where the maximum

total payoff is Max(πP) +Max(πW). If any participant did
not perform well, i.e., (ωP = 0)

∨
(ωW = 0), then there is no

reward, i.e., (πP = 0)
∧

(πW = 0). Here,
∧

means ’and’ and∨
means ’or’. So we have
Payoff={
Max(πP) +Max(πW) If Max(ωP)

∧
Max(ωW)

(πP = 0)
∧

(πW = 0) If (ωP = 0)
∨

(ωW = 0)

Next, we explain the assumption that participant’s con-
tribution originates from her correct behaviors with a high
probability. We show that each party or worker is value-
driven to behave correctly in each round so that she could
obtain the highest payoff, if each of them is rational [53].
Yet, there may exist irrational malicious parties or workers
who can behave incorrectly, but they would be punished
if being caught. In our setting, we only consider fully-

independent malicious behaviors. Other complex malicious
behaviors can refer to the work [52]. If the probability that a
party’s behavior is correct is Prc(P), then the corresponding
value is V alue(Prc(P)). Clearly, if the party’s behavior is
correct with probability Prc(P)=1, then she will obtain the
highest value, i.e., V alue(1). Similarly, a worker can get
value V alue(Prc(W)) if she behaves correctly with prob-
ability Prc(W). Assume that a method verifies a party’s
malicious behavior to be correct with probability Prv(P),
then the probability that a dishonest party is caught is
Prvc(P) = Prv(P)∗(1−Prc(P)). Once the dishonest party
is caught, she is punished by forfeiting her deposit and the
loss is denoted as fP , i.e, a fine.

Thus, the final value according to the party’s correct
behavior can be computed as

V alue(Prc(P)) =πP ∗ (1− Prvc(P))− fP ∗ Prvc(P)

− ωP ∗ Prc(P)

where Prvc(P) = Prv(P) ∗ (1−Prc(P)). The above value
reaches maximum only when the party behaves honestly,
i.e., Prc(P) = 1. Therefore, V alue(1) = πP − ωP (1) holds.
This indicates the importance of the incentive mechanism.
Specifically, the values of Prv(P), πP , and fP can be deter-
mined through the following theorems.
Theorem 1. If fP /πP > (1 − Prvc(P))/Prvc(P), where

Prvc(P) = Prv(P) ∗ (1 − θ), then a party is honest at
least with probability θ.

Proof. We need to prove that for any Prc
′(P) < θ,

V alue(Prc
′(P)) is smaller than V alue(θ). Without the

loss of generality, we prove that for any Prc
′(P) < θ,

we have V alue(Prc
′(P)) < 0. In other words, we have

V alue(Prc
′(P)) = πP ∗ (1 − Prvc′(P)) − fP ∗ Prvc′(P) −

ωP (Prc
′(P)) < 0. When we set fP /πP > 1/Prvc

′(P) − 1,
then we have πP ∗(1−Prvc′(P))−fP ∗Prvc′(P) < 0. Thus,
V alue(Prc

′(P)) < 0 holds.
Even if there are 1

3 fully-colluding malicious parties
(adapted to the security threshold of DeepChain), fP /πP
still can be properly set under a practical value, i.e., no more
than 2, which can refer to the implementation part in work
[54]. Also, it is worth noting that blockchain here can serve
as a trust bank guaranteeing the fair distribution of rewards
and fines.

For a worker, analysis of the incentive mechanism is
similar to the above analysis for a party, expect that the
worker’s payoff is obtained with probability. We denote
this probability by Prleader, then we could determine the
relationship between the four values Prleader, Prv(W), πW ,
and fW by the following theorem, so as to encourage a
worker to be honest.
Theorem 2. If fW /πW ∗Prleader > (1−Prvc(W))/Prvc(W),

where Prvc(W) = Prv(W) ∗ (1− ε), then a worker will
be honest at least with probability ε.

Proof. The proof is similar to the proof of Theorem 1, so
we omit it.

4.2.2 Consensus protocol
Consensus protocol is essential in DeepChain, since it en-
ables all participants to make a consensus upon some event
in a decentralized environment. In this section, we introduce
blockwise-BA protocol of DeepChain, based on the work

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

of Algorand [33], [34]. The blockwise-BA protocol includes
three main steps — (1) A leader who creates a new block
is randomly selected by using cryptographic sortition, (2) A
committee, consisting of participants whose transactions are
included in the new block, verifies and agrees on the new
block by executing a Byzantine agreement protocol [32], and
(3) Each verifier in the committee tells his neighbors the new
block by using a gossip protocol [55], [56], so that the new
block is known to all participants in DeepChain.

Our consensus protocol possesses three properties, i.e.,
safety, correctness and liveness. In particular, safety means
that all honest parties agree on a same transaction history
in DeepChain, whereas correctness requires that any trans-
action agreed by a honest party comes from a honest party.
Liveness says that parties and workers are willing to contin-
uously perform in DeepChain, hence keeping DeepChain
alive. Based on these three properties, we assume that
message transmission is synchronous and there are no more
than 1

3 malicious parties. In this setting, all parties agree on
a chain with the largest amount of assets. We give details
of the three steps of our consensus protocol below. Suppose
block blocki is created at round ri.

Leader selection. At round ri, a leader leaderi is ran-
domly chosen from workers who collect transactions and
put them into block blocki. To choose a leader, we invoke
the sortition function of Algorand [33], which includes two
functions leader selection and leader verification, as follows.

Sortition(sk, seedi, τ = 1, role = worker,

w,wtotal)→ 〈hash, π, j〉
V erifySort(pk, hash, π, seedi, τ, role = worker,

w,wtotal)→ j

Here, sk and pk are owned by workers, and seedi is
a random seed selected based on seedi−1, i.e., seedi =
H(seedi−1||ri), where H is a hash function. τ = 1 mean-
s that only one leader is selected from workers role =
worker. w represents the amount of $Coins that the par-
ticipant possesses. Parameter wtotal is the total amount of
$Coins in DeepChain. It is worth mentioning that w is
crucial, because it is used to control the probability that
worker can gain reward according to the amount of rewards
she has already earned (see Section 4.2.1).

Our definition of w is different from that of Alogrand,
in that in our Leader Selection w only contains $Coins that
have available validity value, while those without validity
value are not considered. In this way, we can eliminate
the phenomenon of wealth accumulation, in which a rich
participant may become richer because she has a high-
er probability than her peers to be chosen as the leader.
Through the two functions, we can randomly select a leader
and all participants can also verify whether the selected
leader leaderi is legitimate.

Committee agreement. After leader verification, the se-
lected block blocki is sent to the committee. Each participant
in the committee verifies the transactions processed by
leaderi, i.e., to verify whether weight update operations
are correct or not. If the committee admits that blocki is
right based on a majority voting policy, then participants
sign blocki on behalf of the committee; otherwise, blocki is
rejected. Note that blocki is valid only if more than 2

3 of
the committee members signed and agreed on it. If blocki

TABLE 1
Summary of notations

Notation Description
pkpsuP a pseudo-generated public key of party P
skP a secret key of the party P
q a randomly selected big prime
G1 cyclic multiplicative cyclic groups of prime order q
g a generator of group G1

Z∗
q {1,2, ..., q-1}

H1 a collision-resistant hash function mapping
any string into an element in Z∗

q

H2 a collision-resistant hash function mapping
any string into an element in G1

C() a cipher generated by Paillier.Encrypt algorithm
Enc() the encryption by individual parties
modelco collaborative deep learning model

(collaborative model for short) to train
ΣPK correctness proof for a ciphertex that

is indeed encrypted by a party’s public key
ΣCD correctness proof for a decryption share

is valid, then leaderi gains $Coins from block reward and
transaction coins of blocki; otherwise, blocki is discarded
and a new empty block is created to replace blocki in
DeepChain. This process repeats until the committee agrees
on blocki.

Neighbor gossip. Suppose blocki has been agreed on
by the committee, then participants in the committee are
responsible for telling their neighbors blocki, by using the
popular gossip protocol [55], [56]. Therefore, after this step
all participants arrive at a consensus in DeepChain.

4.3 Procedures of DeepChain

In order to achieve privacy-preserving collaborative learn-
ing, we introduce three procedures, namely, DeepChain
bootstrapping, asset statement and cooperative training.

4.3.1 DeepChain bootstrapping

DeepChain bootstrapping consists of two steps, i.e., Deep-
Coin distribution and genesis block generation. Assume that
all parties and workers have registered (i.e., have a valid
account) in DeepChain, where each one uses an address
pk that corresponds to a DeepCoin unit for launching a
transaction.

In the first step, DeepCoin distribution realizes Deep-
Coin allocation among parties and workers, and initially
each party or worker is allocated with the same amount
of DeepCoins. Then in the second step, a genesis block is
generated at round 0, which contains initial transactions
recording ownership statements for each DeepCoin.

After the genesis block is created, a random seed seed0

is also publicly known, which is randomly chosen by regis-
tered users through a routine for distributed random num-
ber generation. When DeepChain keeps running, at round
i, seedi−1 is used for generating seedi. It is worth men-
tioning that these random seeds are crucial for DeepChain,
because they guarantee randomness when selecting a leader
to create a new block at each round. The idea of introducing
random seeds is motivated by Algorand’s cryptographic
sortition [33], [34], and details is given in Section 4.2.2.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

4.3.2 Asset statement

For ease of presentation, we list related cryptographic no-
tations used in this section in Table 1. A party needs to
state her asset, which enables her to find cooperators and
accomplish her deep learning task. Asset statement does
not reveal the content of asset, since it is simply some
description of the asset, e.g., what kind of deep learning
tasks the asset can be used for. Specifically, party P states
an asset by sending an asset transaction, which will be
introduced later.

We recall the formation of a transaction. Note that a
transaction is launched by a pseudo public key address
pkpsuP generated by P according to her wish in the following
form.

pkpsuP ∈ {gskP
1 , gskP

2 , ..., gskP
n }

Here, n is an integer. P selects a secret key skP ∈ Z∗q and
generates n public keys gskPi ∈ G1, i ∈ [1, n]. q and g are
pre-specified parameters, and gi equals to gri , where ri is
a random element in Z∗q . Suppose that party P1 sends a
transaction with her address pkpsuP1

to state her asset data P1

as follows

TranP1 = pkpsuP1
→
{(
pkdata P1 = gH1(data P1),

σj P1 = (H2(j) · gH1(dataj P1
))H1(data P1)

)
,

”Keywords”
}
.

In this transaction, the first part in the braces consists of
pkdata P1 and σj P1 , which is the statement proof that party
P1 indeed possesses asset H1(data P1) without leaking the
content of data P1. In particular, σj P1 contains l compo-
nents, where data P1 is divided into l blocks represented
by dataj P1 , j ∈ [1, l]. The second part ”Keywords” is the
description of the asset data P1. In our implementation,
”Keywords” is in JSON form that includes four fields, i.e.,
data size, data format, data topic and data description. With
this transaction TranP1 , P1 can fulfill her asset statement.
We assume that the first stated asset is authentic, which is
reasonable in Blockchain.

4.3.3 Collaborative training

Based on stated assets, parties who have similar deep
learning task can constitute a collaborative group, and the
collaborative training process consists of the following four
steps.

Collaborative group establishment. According to simi-
lar ”Keywords”, parties can establish a collaborative group.
It is worth noting that parties may get more detailed in-
formation about ”Keywords” through off-line interactions
and this is not the focus of our paper. Before forming a
collaborative group, parties can audit cooperators’ asset to
ensure authenticity of the asset ownership. The auditing
process can be done by using the method in [57], and we
omit the details for brevity.

Suppose there are N (N > 3) parties P1, P2, ..., PN that
constitute a group with pseudonymity, i.e., pseudo public
keys pkpsuP1

, pkpsuP2
, ..., pkpsuPN

and their corresponding secret
keys skP1

, skP2
, ..., skPN

are kept in private, respectively.
Since different party launches transactions using her own

TABLE 2
Example of Threshold Configuration for maximum number of

adversaries

Number of parties Maximum number Threshold
of adversaries

n = 4 1 t ∈ {2, 3, 4}
n = 5 1 t ∈ {2, 3, 4, 5}
n = 6 1 t ∈ {2, 3, 4, 5, 6}
n = 7 2 t ∈ {3, 4, 5, 6, 7}
n = 8 2 t ∈ {3, 4, 5, 6, 7, 8}

pseudo public key pkpsuPi
, transactions signed by the corre-

sponding secret key skPi can be verified to ensure that those
transactions are from the same cooperative party Pi.

Collaborative information commitment. After the col-
laborative group is formed, parties agree on the information
for securely training a deep learning model. In this step, we
assume that a trusted component (e.g., a trusted hardware
like Intel SGX [58]) only takes part in the setup phase in
Threshold Paillier algorithm [59], and it is not involved in
any other process. If there does not exist such a trusted
component, we can accomplish the setup phase by using
a distributed method such as the one in [60]. Parties agree
on the following information.

(1) Number of cooperative parties, N .
(2) Index of the current round, r.
(3) Parameters of Threshold Paillier algorithm.
We have the following equation

PKmodel = (nmodel, gmodel, θ = as, V = (v, {vi}i∈[1,...,N]))

where modulus nmodel is the product of two selected safe
primes, and gmodel ∈ Z∗

n2
model

, a, s, θ, v, vi ∈ Z∗nmodel
. And

SKmodel = s is randomly divided into N parts, where
s = f(s1 + ... + sN) and f is a function of secret sharing
protocol (i.e., Shamir’s secret sharing protocol [61]). Each
party owns a proportion of secure key si as well as v and
{vi}, i ∈ [1, ..., N] are public verification information, where
vi corresponds to si. A threshold t ∈ {N3 + 1, ..., N} is
set as such that at least t parties together can decrypt a
cipher. Specifically, we give the threshold configuration with
respect to the number of adversaries in Table 2.

Note that training gradients to be encrypted are vec-
tors with multiple elements, i.e., 4Wi,j = (w1

i,j , ..., w
l
i,j)

where the length of 4Wi,j is l, i is the index of current
training iteration, and j ∈ {1, ..., N}. Due to the problem
of cipher expansion, we encrypt a vector into one cipher
instead of multiple ciphers with respect to multiple ele-
ments. Suppose that each value w1

i,j , ..., w
l
i,j is no larger

than integer d, d > 0. We choose a l-length super increas-
ing sequence ~α = (α1 = 1, ..., αl) that simultaneously
meets conditions (1)

∑i−1
l=1 αl · N · d < αi, i = 2, ..., l,

and (2)
∑l
i=1 αi · N · d < nmodel. We then compute

(g1
model, ..., g

l
model) = (gα1

model, ..., g
αl

model).
(4) A collaborative model modelco to be trained.
For a collaborative model modelco, parties agree on

the training neural network, the training algorithms, and
configurations of the network such as number of network
layers, number of neurons per layer, size of mini-batch
and number of iterations. Beside those information, they
also reach a consensus on initial weights W0 of modelco.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Note that weights Wi would be updated to Wi+1 after
the i-th iteration of training. They protect W0 by applying
Paillier.Encrypt algorithm, i.e.,C(W0) = gW0

model ·(k0)nmodel ,
where k0 is randomly selected from Z∗nmodel

. Note that we
compute gW0

model with the help of the chosen super increasing

sequence, i.e., gW0

model = g
α1·w1

0+...+αl·wl
0

model , so that we generate
a cipher for weight vector W0 = (w1

0, ..., w
l
0).

(5) A commitment on SKmodel = s, with respect to
PKmodel.

Commitment commitSKmodel
is obtained by combining

parties’ commitments on their secret shares si. Recall that r
is the index number of the current round. We have

commitSKmodel = (Enc(s1||r||Sign(s1||r)),
..., Enc(sN ||r||Sign(sN ||r)))

here, || denotes concatenation.
(6) The initial weights W0,j of local model of party j.
Each party provides her local model’s initial weights that

are encrypted by Paillier.Encrypt algorithm, i.e.,C(W0,j) =

g
W0,j

model · (kj)nmodel , where kj ∈ Z∗nmodel
, j ∈ {1, ..., N}.

(7) Amount of deposits d($Coin).
Each cooperative party is required to commit some

amount of deposits for secure computation. During col-
laborative training, if a party misbehaves on purpose, her
deposit d($Coin) would be forfeited and compensated for
other honest parties. Otherwise, those deposits would be
refunded after the training process finished.

All the above collaborative information are recorded
in a transaction Tranco that is uploaded to DeepChain.
Specifically, Tranco is in the following form and is attached
to a commonly coordinated address pkpsuco .

Tranco = pkpsuco →
{
N, r, PKmodel, d, ~α,modelco,

commitSKmodel , C(W0,j), d($Coin)
}
.

In addition, two roles called trader and manager are defined
for parties in a collaborative group, which will be explained
shortly. Next we introduce how collaborative training is
securely accomplished through the remaining two steps,
namely, Gradient collecting via Trading Contract and Parameter
updating via Processing Contract.

First of all, parties iteratively trade their gradients
through Trading Contracts that are executed by a manager
selected from cooperative parties. The trading gradients
are honestly encrypted by each trader and meanwhile the
correct proofs of encryption are attached that indicate two
security requirements, i.e., confidentiality and auditability.
Herein, we say gradient transactions are generated. In terms
of confidentiality, if a trader does not disclose her gradients,
then no one can gain information about the gradients. In
addition, traders (at most t parties) need to cooperatively
decrypt the updated parameters. Similar to [41], we assume
that the manager does not disclose what she knows. In
terms of auditability, there exist proofs of correct encryption
which can be auditable. When cooperatively decrypting,
each trader presents her own decryption proof. Those proofs
are generated non-interactively and publicly auditable by
any party in DeepChain.

Through timeout-checking and monetary penalty mech-
anism, behaviors of the traders and the manager are forced
to be authentic and fair. Even if the manager colludes with

traders, the outcome of Trading Contract cannot be modified
[41]. In addition to Trading Contract, Processing Contract is re-
sponsible for parameter updating. Workers process transac-
tions by adding up gradients, and send computation results
to Processing Contract. Processing Contract verifies correct
computation results and updates model parameters for the
group. Note that once smart contract is defined, it can be
automatically executed in response to some trigger event. In
this setting, ’computation results sent to Processing Contract’
is the trigger event, and Processing Contract has a pre-defined
function to verify those computation results by the rule of
majority voting. These two contracts are iteratively invoked,
so as to accomplish the whole training process. Details of the
two steps are given below.

Gradient collecting via Trading Contract. As shown in
Algorithm 1, Trading Contract invokes six functions, i.e., line
1, 4, 7, 10, 13 and 16 of Algorithm 1, for training modelco.
At the end of each of the functions, we declare a time
point Tti to check time-out events, and these six time points
satisfy Tti < Tti+1

, i = 1, 2, ..., 5. We set up the time points
according to Greenwich Mean Time. The time interval be-
tween Tt1 and Tt6 can be determined according to the time
interval between two consecutive training iterations, e.g.,
for iteration i and i+ 1, we have |Tt6 − Tt1 | ≤ |Ti+1 − Ti|.

By the end of a time point Tti , function checkT imeout
checks whether the parties finish the events or not by Tti .
If some party is caught, the monetary penalty mechanism
will be performed to forfeit deposit of the party, and the
failed step is re-executed. During collaborative training, the
six time points are updated accordingly with iterations, e.g.,
T ′t1 = Tt1 + |Ti+1 − Ti|.

Algorithm 1: Trading(TraniP1
,...,TraniPN

)

1 receiveGradientTX()
2 checkTimeout(Tt1)
3 updateTime() // T ′t1 = Tt1 + |Ti+1 − Ti|
4 verifyGradientTX()
5 checkTimeout(Tt2)
6 updateTime() // T ′t2 = Tt2 + |Ti+1 − Ti|
7 uploadGradientTX()#attaching to the address pkpsuco

8 checkTimeout(Tt3)
9 updateTime() // T ′t3 = Tt3 + |Ti+1 − Ti|

10 downloadUpdatedParam()#from the address pkpsuco

11 checkTimeout(Tt4)
12 updateTime() // T ′t4 = Tt4 + |Ti+1 − Ti|
13 decryptUpdatedParam()
14 checkTimeout(Tt5)
15 updateTime() // T ′t5 = Tt5 + |Ti+1 − Ti|
16 return()
17 checkTimeout(Tt6)
18 updateTime() // T ′t6 = Tt6 + |Ti+1 − Ti|

Algorithm 1 works as follows. As shown in line 1, at
the i-th iteration each party Pj , j ∈ {1, ..., N} sends a
gradient transaction TraniPj

to receiveGradientTX(). A
publicly auditable proof ProofPKi,j

is also attached to the
transaction to guarantee encryption correctness. We have

TraniPj
= {pkpsuPj

: (C(4Wi,j), P roofPKi,j
)→ pkpsuco }

ProofPKi,j
= fsprove1(ΣPK ;C(4Wi,j);4Wi,j , kj ; pk

psu
Pj

)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Then in line 4, function verifyGradientTX() veri-
fies correctness of the encrypted gradients via function
fsver1(ΣPK ;C(4Wi,j);ProofPKi,j

; pkpsuPj
). Specifically, it

verifies whether C(4Wi,j) is indeed the encryption of
4Wi,j with random number kj . Here, pkpsuPj

can be re-
garded as the identity information attached to the proof,
avoiding replay attack by a malicious party. In line 7, function
uploadGradientTX() uploads the transactions that have
been verified successfully. When model parameter updating
finished, downloadUpdatedParam() retrieves the latest pa-
rameters, as can be seen in line 10. Recall that Processing Con-
tract computes gradients

∑N
j=14Wi,j for model modelco.

Suppose that the latest iteration is i, the cipher of the lat-
est parameters is C(Wi) and we denote it as Ci for brevity.
Then decryptUpdatedParam() collects parties’ decryption
shares on Ci for collaborative decryption, which generates
Ci,j , j ∈ 1, ..., N . Meanwhile, the corresponding proofs for
correct shares ProofCDi,j

are also provided, as follows.

Ci,j = C
2∆sj
i

ProofCDi,j
= fsprove2(ΣCD; (Ci, Ci,j , v, vj); ∆sj ; pk

psu
Pj

)

The proof ProofCDi,j
is used to verify validity of the de-

cryption shares, i.e., ∆sj = logC4
i
(C2

i,j) = logv(vj), through
function fsver2(ΣCD; (Ci, Ci,j , v, vj);ProofCDi,j

; pkpsuPj
).

If majority of the parties are honest, then Ci can be correctly
recovered to plaintext by

((Πj∈HC
2µj

i,j − 1)/nmodel)(4∆2θ)−1 mod nmodel

where µj is the Lagrange interpolation coefficient with
respect to Pj , and the plaintext is pushed to parties by
function return() in line 16.

Algorithm 2: Processing()

1 updateTX()
2 checkTimeout(Tt7)
3 updateTime() // T ′t7 = Tt7 + Tr
4 verifyTX()
5 checkTimeout(Tt8)
6 updateTime() // T ′t8 = Tt8 + Tr
7 appendTX()
8 checkTimeout(Tt9)
9 updateTime() // T ′t9 = Tt9 + Tr

• Parameter updating via Processing Contract. Algo-
rithm 2 summarizes the process of Processing Contract, which
contains three functions, as shown in line 1, 4, and 7. Sup-
pose that at the i-th iteration of collaborative training, local
gradients C(4Wi,j), j ∈ {1, ..., N}, have been uploaded,
then workers competitively execute update operations by

C(Wi) = C(Wi−1) ·
1

N
·(C(−4Wi,1) · C(−4Wi,2)·

... · C(−4Wi,N)).

Once update operation finished, workers then send the up-
dated results through transactions to function updateTX()
in Processing Contract, as shown in line 1.

At the meantime, a leader is randomly chosen from the
workers by using the consensus protocol of DeepChain.
Note that at this moment we defer the reward to the leader

until her computational work is verified by using function
verifyTX() as shown in line 4, that employs majority
voting policy. In other words, the leader’s computational
result C(Wi) will be compared against those of the other
workers, and her result is admitted only if the majority
of the workers produce the same result. Otherwise, the
leader would be punished according the monetary penalty
mechanism and she gains no reward. In such case, we repeat
the procedure to chosen a new leader from the remaining
workers. The more often a worker is punished, the lower
probability she will be chosen as a leader. Once we get a
legitimate leader, her block with correctly updated result is
appended to DeepChain through appendTX(), as shown in
line 7.

Fig. 3. Configuration of time points in Processing Contract. From top
to bottom: (1) the timeline of collaborative training, (2) the timeline of
trading (in Trading Contract), (3) the timeline of block creation. Here, the
vertical orange bar refers to the interval between verified gradient trans-
action being uploaded and updated parameters to be downloaded. The
vertical green bar refers to the interval between worker’s transactions
being sent and final updated result being uploaded.

In Processing Contract, time points Tt7, Tt8 and Tt9 will
be updated to T ′t7 = Tt7 + Tr, T

′
t8 = Tt8 + Tr and

T ′t9 = Tt9 + Tr , respectively, where Tr is the time need-
ed to create a new block between consecutive rounds in
DeepChain. Figure 3 gives an example of time point con-
figuration scheme to illustrate relationship of time points
of the trading and processing contracts. Suppose that at
the i-th iteration, the time points are set as such that
Tt1 < Tt2 < Tt3 ≤ Tt7 < Tt8 < Tt9 ≤ Tt4 < Tt5 < Tt6 .
At the meantime, the relationship between the three time
intervals is Tr ≤ |Tt6 − Tt1 | ≤ |Ti+1 − Ti|.

In addition to the above configuration scheme for time
points, we employ secure monetary penalty mechanism to
guarantee fairness in gradient collecting and collaborative
decryption. Specifically, enlightened by the penalty mecha-
nism proposed by Bentov et. al [62] and Kumaresan et. al
[63], we design our secure monetary penalty mechanism
based on Trading Contract, presented in Algorithm 3 and 4.

In particular, in Gradient collecting (Algorithm 3) fairness
is guaranteed due to (1) honest collaborative parties must
launch gradient transactions to be correctly verified before
the pre-specified time point, and (2) dishonest parties who
launch incorrect transactions or delayed transactions will
be penalized, and the honest ones will be compensated for.
In line 1, Trading Contract waits to receive a input message
from pkpsuPj

for all j = 1, ..., N before time Tt1 . By defining
C ⊆ {1, ..., N} as adversarial parties S in the input step,
the contract also waits an input message from S . Here, sid

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Algorithm 3: F ∗GradientCollecting
1 Receive (input,
sid, Tt, pk

psu
Pj

, C(4W), P roofPKj
, d($Coin)) from

pkpsuPj∈{1,...,N}
. Assert time Tt < Tt1 . Receive (input,

sid, Tt, pk
psu
Pj∈C

, C(4W), P roofPKj
, H ′,

h′ × d($Coin)) from S . Assert time Tt < Tt1 .
2 Compute fsver1(C(4W), P roofPKj) for
pkpsuPj∈{1,...,N}

, and record {1, ..., N} \ C′.
3 Send(return, d($Coin)) to pkpsuPj∈{1,...,N}\C′

after Tt1 .
4 If S returns (continue, H ′′), then send (output, Y es or
No) to pkpsuPj∈{1,...,N}

, and send (payback,
(h− h′′)d($Coin)) to S , and send (extrapay, d($Coin))
to pkpsuPj∈H′′

, else if S returns (abort), send (penalty,
d($Coin)) to pkpsuPj∈{1,...,N}

.

Algorithm 4: F ∗CollaborativeDecryption
1 Receive (input,
sid, Tt, pk

psu
Pj

, C, Cj , P roofCDj
, d($Coin)) from

pkpsuPj∈{1,...,N}
. Assert time Tt < Tt5 . Receive (input,

sid, Tt, pk
psu
Pj
∈ C, C,Cj , P roofCDj , H ′,

h′ ∗ d($Coin)) from S . Assert time Tt < Tt5 .
2 Compute fsver2(C,Cj , P roofCDj

) for pkpsuPj∈{1,...,N}

and record {1, ..., N} \ C′.
3 Send(return, d($Coin)) to pkpsuPj∈{1,...,N}\C′

after Tt5 ;
4 If S returns (continue, H ′′), then send (output, Y es or
No) to pkpsuPj∈{1,...,N}

, and send (payback,
(h− h′′)d($Coin)) to S, and send (extrapay, d($Coin))
to pkpsuPj∈H′′

, else if S returns (abort), send (penalty,
d($Coin)) to pkpsuPj∈{1,...,N}

.

is session identifier, d($Coin) is deposit, and H ′ means the
set of the remaining honest parties, where |H ′| = h′. In
line 2, the contract verifies the ciphertext for all pkpsuPj

∈
H ′, and records the correct parties {1, ..., N} \ C′, where C′
refers to corrupted parties in this step. In line 3, the contract
sends return messages to pkpsuPj

for j ∈ {1, ..., N} \ C′. In
line 4, we wait for a return message from S . If the returned
message is continue, then the contract outputs normally to
all pkpsuPj

(j ∈ {1, ..., N}), by sending payback message to
S and extrapay to pkpsuPj

in H
′′

, where H
′′

= H ′ \ C′ and
|H ′′ | = h

′′
; otherwise, the contract sends penalty to pkpsuPj

,
j ∈ {1, ..., N}.

Similarly, fairness is also achieved in Collaborative decryp-
tion (Algorithm 4), since (1) a party who gives a correct
decryption share no later than the pre-defined time point
receives no penalty, and (2) if an adversary successfully
decrypts the cipher but a legitimate party fails to do so,
then the party should be compensated for.

5 SECURITY ANALYSIS

In this section, we revisit our security goals of DeepChain
presented in section 3 and give security analysis accordingly.

5.1 Confidentiality Guarantee for Gradients

Confidentiality guarantees that models gradients do not be
exposed. To achieve this goal, DeepChain employs Thresh-
old Paillier algorithm that provide additive homomorphic
property. We assume there exists a trusted setup (refer to
Section 4.2.4) and the secret key cannot leak without collab-
oration of at least t participants. We also assume that at least
t participants are honest. Without loss of generality, both
local gradients and model parameters W are encrypted with
the Threshold Paillier algorithm, C(W) = gWmodel(k)nmodel .
Based on the following lemma that is derived from the work
[59]’s Theorem 1, we can guarantee confidentiality of local
gradients and model parameters.

Lemma 1. With the Decisional Composite Residuosity
Assumption (DCRA) [64] and the random oracle model
S , Threshold Paillier algorithm is t-robust semantically
secure against active non-adaptive adversaries A with
polynomial time power to attack, if the following are
satisfied

Pr
[
(w0, w1)← A(1λ, F t(·));

b← {0, 1};
C ← S(1λ, wb) :
A(C, 1λ, F t(·)) = b

]
≤ negl(1λ) + 1

2

which indicates that the probability for adversaries to dis-
tinguish between w0 and w1 is negligible, in system security
parameter λ. Here, F t(·) means thatA has at most t corrupt-
ed parties and A learns their information including public
parameters, secret shares of the corrupted parties, public
verification keys, all decryption shares and validity of those
shares. In addition, t-robust means that a Threshold Paillier
ciphertext can be correctly decrypted, even in the case that
A can have up to t corrupted parties. Semantic security is a
general security proof methodology to measure the security
of an encryption algorithm and in our context it measures
confidentiality of the encrypted information by using the
Threshold Paillier algorithm.

5.2 Auditability of Gradient Collecting and Parameter
Update

Auditability ensures that any third party can audit cor-
rectness of encrypted gradients and decryption shares in
gradient collecting stage and parameter updating stage,
receptively. We achieve auditability by following univer-
sally verifiable CDN (UVCDN) protocol [65]. Specifically,
correctness proof provided in UVCDN protocol is based
on
∑

-protocols, where a possible malicious prover proves
correctness to a honest verifier that he indeed knows a
witness w for a certain statement v leading to (v;w) ∈ R
, here R is a binary relation. Generally, a correctness proof
consists of three protocols, namely, announcement (denoted
as
∑
.ann), response (denoted as

∑
.res) and verification

(denoted as
∑
.ver), which are defined according to the

purpose of correctness proof (i.e., R). We will give the
correctness proof by using two procedures fsprove and
fsver for

∑
.ann,

∑
.res and

∑
.ver.

In Section 4.2.4, to prove the correctness of en-
crypted gradients R = {(C(4Wi,j);4Wi,j , kj)} where

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Algorithm 5: fsprove1(ΣPK ;C(4Wi,j);4Wi,j , kj ;
pkpsuPj

)

#announcement
1 ΣPK .ann(C(4Wi,j);4Wi,j , kj) :=

a1 ∈R Znmodel
, b1 ∈R Z∗nmodel

, a = ga1modelb
nmodel
1 ;

(a; s) = (a; a1, b1)
#challenge

2 c = H(C(4Wi,j)||a||pkpsuPj
)

#response
3 ΣPK .res(C(4Wi,j);4Wi,j , kj ; a; s; c) :=

t =
(a1+c4Wi,j)

nmodel
, d = a1 + c4Wi,j ,

e = b1k
c
jg
t
model; r = (d, e)

4 return ProofPKi,j
:= (a; c; r)

Algorithm 6: fsver1(ΣPK ;C(4Wi,j);ProofPKi,j
; pkpsuPj

)

#verification
#ProofPKi,j := (a; c; r), r = (d, e)

1 ΣPK .ver(C(4Wi,j); a; c; r) :=
(c == H(C(4Wi,j)||a||pkpsuPj

))
∧

(gdmodele
nmodel ==

a(C(4Wi,j))
c)

2 return Yes or No

C(4Wi,j) = g
4Wi,j

model (kj)
nmodel , a publicly auditable proof

ProofPKi,j
is generated by procedure fsprove1. Then, any

party can execute procedure fsver1, by taking ProofPKi,j

as input, to verify whether C(4Wi,j) is indeed the en-
cryption of 4Wi,j with random number kj under public
key PKj (i ∈ {1, ...,#iteration}, j ∈ {1, ..., N}). The con-
crete procedures of fsprove1 and fsver1 for

∑
-protocols

are given in Algorithm 5 and Algorithm 6, respectively.
In addition,

∑
PK refers to the

∑
-protocols achieved by

fsprove1 and fsver1. Correspondingly,
∑
CD is for the

∑
-

protocols realized by fsprove2 (Algorithm 7) and fsver2

(Algorithm 8) for proving decryption correctness. Note that
in Algorithm 6 and Algorithm 8, ’==’ is used to test equality.

Algorithm 7: fsprove2(ΣCD;Ci, Ci,j , v, vj ;4sj ; pkpsuPj
)

#announcement
1 ΣCD.ann(Ci, Ci,j , v, vj ;4sj) :=

u ∈R [0, 22k+2k2], a = C4u
i , b = vu

#k = log2nmodel, k2 is the security param.
#challenge

2 c = H(Ci||Ci,j ||v||vj ||a||b||pkpsuPj
)

#response
3 ΣPK .res(Ci, Ci,j , v, vj ;4sj ; a, b;u, c) :=

r = u+ c4 sj
4 return ProofCDi,j := (a, b; c; r)

Under the framework of UVCDN protocol,
∑
PK guar-

antees public auditability if there exist a simulator that can
simulate correctness proofs of honest parties, and an extrac-
tor that can extract witnesses of corrupted parties which
are illustrated by Lemma 2 and Lemma 3, respectively.
Similarly,

∑
CD also guarantees public auditability shown

by Lemma 4 and Lemma 5.
Lemma 2. Given X = C(x) = gxmodelr

nmodel , x = 4W,

Algorithm 8: fsver2(ΣCD; (Ci, Ci,j , v, vj);ProofCDi,j ;
pkpsuPj

)

#verification
#ProofCDi,j

:= (a, b; c; r)
1 ΣCD.ver(Ci, Ci,j , v, vj ; a, b; c; r) :=

(C4r
i == a(Ci,j)

2c)
∧

(vr == b(vj)
c)

2 return Yes or No

r = kj , and c ∈ C where C is a finite set called the
challenge space, then we have
{d ∈R Znmodel

; e ∈R Z∗nmodel
; a := gdmodele

nmodelX−c:
(a; c; d, e)}
≈
{a1 ∈R Znmodel

; b1 ∈R Z∗nmodel
; a := ga1modelb

nmodel
1 ; t :=

(a1 + cx)/nmodel; d := a1 + cx; e := b1k
c
jg
t
model:

(a; c; d, e)}

where symbol ≈ means that the two distributions
are statistically indistinguishable.

Lemma 3. Let X = C(x) = gxmodelr
nmodel , where x = 4W

and r = k. Given (a; s) that is generated by the
announcement ΣPK .ann and two different challenges
c, c′ with respect to the announcement, there exists an
extractor E that can extract the witness of an adversary
A, if A can present two conversations (d, e) and (d′, e′)
for (a; s), that is,

|1 − Pr[A(X;x, r; a; s; c; c′) →
(d, e; d′, e′); E(X; a; c; c′d, e; d′, e′) → (x′, r′) =
(x, r)]| ≤ negl(1λ)

Lemma 2 and Lemma 3 refer to the property of zero-
knowledgeness and soundness in UVCDN protocol’s Defi-
nition 1, respectively. The concrete proofs can be found in
Section 3.2 of [66]. As described in Lemma 2, a simula-
tor without any knowledge of witness of an honest party
can provide a proof of encryption correctness, which has
statistically indistinguishable distribution compared with
a real one. Lemma 3 means that the probability that the
extractor E fails to extract the witness (x, r) of an adversary
is negligible, with respect to system security parameter λ.

In terms of
∑
CD , the corresponding properties of zero-

knowledge and soundness for public auditability of correct-
ness decryption are described in Lemma 4 and Lemma 5,
respectively. Also, the concrete proofs can refer to Section 4
of reference [67].

Lemma 4. Given (Ci, Ci,j , v, vj), and c ∈ C where C is a
finite set called the challenge space, then we have
{r ∈R [0, 22k+2k2]; a = C4r

i (Ci,j)
−2c, b = vr(vj)

−c:
(a, b; c; r)}
≈
{u ∈R [0, 22k+2k2], a = C4u

i , b = vu; r = u + c 4 sj :
(a, b; c; r)}

where symbol ≈ means that the two distributions
are statistically indistinguishable.

The above formula means that there exists a simulator
without knowledge of 4sj can provide a proof that has a

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

statistically indistinguishable distribution compared with a
real one.

Lemma 5. Given (Ci, Ci,j , v, vj) and (a, b;u) is generated
by the announcement ΣCD.ann. Malicious prover
provides two different challenges c, c′ with respect to
the announcement. There exists an extractor E that can
extract the witness of an adversary A, if A can present
two conversations r and r′ for (a, b;u), that is,

|1 − Pr[A(Ci, Ci,j , v, vj ;4sj ; a, b;u; c; c′) →
(r; r′); E(Ci, Ci,j , v, vj ; a, b; c; c

′; r; r′) → 4sj]| ≤
negl(1λ)

Lemma 5 shows that extractor E can extract the witness
4sj of A with overwhelming probability, with respect to
system security parameter λ.

5.3 Fairness Guarantee for Collaborative Training

Recall that we employ two security mechanisms in
Blockchain, namely, the trusted time clock mechanism and
secure monetary penalty mechanism, to enhance fairness
during collaborative training, by following the work [62].
With the trusted time clock mechanism, operations in a
contract are forced to finish before the respective time point,
as shown in function checkTimeout() in Algorithm 1 and
2. On the other hand, we also define two secure monetary
penalty functions for gradient collecting and collaborative
decryption, respectively.

In order to prove the property of fairness, Bentov et. al
[62] introduced the definition of secure computation with
coins (SCC security) in the multi-party setting in a hybrid
model that involves not only standard secure computation
[68], but also special secure computation dealing with coins.
Here, the goal of security refers to fairness presented in their
paper. Also, they considered universally composable (UC)
security proof for SCC security. In particular, compared to
the initial definition of UC security, the view of environment
in SCC security additionally indicates the distribution of
coins because of the added functionality of monetary penal-
ty.

In DeepChain setting, based on the tutorial in Bentov’s
work [62], the property of fairness for gradient collecting
and collaborative decryption is claimed in Section 4.2.4.
Our work only replaces the general computation with the
special computation to realize functionalities of gradient
collecting and collaborative decryption. Other components
based on Blockchain, including trusted time clock and
monetary penalty exchange, remain unchanged. Thus, the
UC-style SCC security defined in Bentov’s work can be
guaranteed for the specialized functionalities in DeepChain
setting, only if SCC security has been proved according to
UC composition theorem (refer it to Section 5 of reference
[69]). This is demonstrated by Lemma 6, where the environ-
ment Z becomes a distinguisher, by following the UC-style
proof. If Z with non-uniform probabilistic polynomial-time
computation could not distinguish the distribution in the
ideal model from that of the hybrid model, then a protocol
π SCC realizes a function f .

Lemma 6. Given an input z, security parameter λ, a
distinguisher Z , an ideal process IDEAL, an ideal

adversary S in IDEAL, an ideal function f , and a
protocol π that interacts with ideal function g in a model
with adversary A, then we have
{IDEALf,S,Z(λ, z)}λ∈N,z∈0,1∗

≡c
{HYBRIDg,π,A,Z(λ, z)}λ∈N,z∈0,1∗

where ≡c means that the distributions are computation-
ally indistinguishable.

Lemma 7. Let π be a protocol and f a multiparty function.
We say that π securely computes f with penalties if π
SCC-realizes the functionality f∗.

Furthermore, based on Lemma 7 where f is a multiparty
function, the security defined for fairness is extended to the
multi-party setting as shown in Lemma 6 (as shown by
Definition 2 of the work [62]). With protocol π, F is SSC-
realized as F ∗GradientCollecting and F ∗CollaborativeDecryption,
meaning that they achieve secure gradient collecting and
collaborative decryption with penalties, respectively. With
these two functionalities and the trusted time clock mecha-
nism, we can guarantee fairness in gradient collecting and
collaborative decryption, as shown in Algorithm 3 and 4,
respectively.

6 IMPLEMENTATION AND EVALUATION

In this section, we implement the prototype of DeepChain
and evaluate its performance in terms of cipher size,
throughput, training accuracy and training time.

6.1 Implementation
We implement building blocks and collaborative training
procedures of DeepChain to form three modules, i.e., Cor-
daDeepChain, TrainAlgorithm, and CryptoSystem.

First, we build a Blockchain setting for simulating
DeepChain. Blockchain nodes are regarded as parties and
workers, and they participate in trading and interact with
two pre-defined smart contracts, i.e., Trading Contract and
Processing Contract. Generated transactions are serialized
in the Blockchain. Specifically, we use Corda V3.0 [70] to
simulate DeepChain for its adaptability and simplification.
Corda project is created by R3CEV and has been widely
used in banks and financial institutes. It is a decentralized
ledger that has some features of Bitcoin and Ethereum [71],
such as data sharing based on need-to-know basis and
deconflicting transactions with pluggable notaries. A Cor-
da network contains multiple notaries, and our consensus
protocol introduced in section 4.2.2 can be executed on
them. We build nodes and divide them into parties and
workers. Specifically, we set up two CorDapps which agree
on Blockchain. The nodes of one CorDapp serve as parties,
and the nodes of the other CorDapp play the role of work-
ers. According to the application program interface (API)
of Corda, we implement our business logic by integrating
three main components, namely, State, Contract and Flow. In
particular, an instance of State is used to represent a fact of a
kind of data, and it is immutable once an instance of State is
known by all nodes at a specific time point. Contract is used
to instantiate some rules on transactions. A transaction is
considered to be contractually valid if it follows every rule

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE 3
Training configuration

Parameter Value
No. of iterations 1500

No. of epochs 1
Learning rate 0.5

Minimal batch size 64

of the contract. An instance of Flow defines a sequence of
steps for ledger updates, e.g., how to launch a transaction
from a node to another node.

Second, we build the deep learning environment with
Python (version 3.6.4), Numpy (version 1.14.0), and Tensor-
flow (version 1.7.0). We select the popular MNIST dataset
[72] which contains 55, 000 training samples, 5, 000 veri-
fication samples and 10, 000 test samples. Then, we split
randomly this dataset into 10 equi-sized subsets, i.e., each
contains 55, 000/10 = 5, 500 samples. Then, we conduct
multiple training experiments with 4, 5, 6, 7, 8, 9 and 10 par-
ties, denoted as E-4, E-5, E-6, E-7, E-8, E-9 and E-10, respec-
tively. In each experiment, each party possesses one subset
of the dataset. Our training model derives from Convolution
Neural Network (CNN) with structure: Input → Conv →
Maxpool → Fully Connected → Output. The weights
and bias parameters in Conv layer, Fully Connected layer
and Output layer are w1 = (10, 1, 3, 3) and b1 = (10, 1),
w2 = (1960, 128) and b2 = (1, 128), w3 = (128, 10) and
b3 = (1, 10), respectively. We summarize other training
parameters in Table 3.

Third, threshold Paillier algorithm is implemented in
JAVA. We set the number of bits of modulus nmodel to
1024 bits, which corresponds to security level of 80 bits.
It is worth noting that before executing the encryption
algorithm, the weight matrices are assembled into a vector,
so that only one cipher is generated for a party.

Fig. 4. Impact of No. of gradients on cipher size.

6.2 Evaluation

We evaluate the feasibility of model training in DeepChain
in a multi-party setting by using 4 metrics, that is cipher
size, throughput, training accuracy and total cost of time. In
particular, we evaluate DeepChain on a desktop computer
with 3.3GHz Intel(R) Xeon(R) CPU and 16GB memory.
Then, for each metric we average the final results over 10
trails. As can be seen in Figure 4, the size of cipher remains

Fig. 5. Impact of No. of gradients on throughput.

Fig. 6. Training accuracy for the case of four parties.

constant when we encrypt different amounts of gradients.
On the other hand, as the number of gradients increases,
the throughput decrease steadily, as shown in Figure 5.

In terms of training accuracy, we show that the more
parties participate in collaborative training, the higher the
training accuracy. We create 7 experimental scenarios with
4, 5, 6, 7, 8, 9, and 10 parties, respectively. Each party trains
the local model with her training dataset that contains 5,500
samples. Obviously, the more parties in a scenario, the larger
the size of the total dataset, for example, the size of the total
dataset is 5,500×4 for E-4, and 5,500×10 for E-10.

By sharing gradients in DeepChain, each individual par-
ty obtains updated parameters contributed by the gradients
from other parties. Specifically, the updated parameters are

Fig. 7. Training accuracy for the case of ten parties.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

TABLE 4
Interpretations of time variants

Variant Interpretation
t15 iteration time of 15 iterations
tencrypt time to encrypt gradients

tuploadByParty time to upload gradients
tdownloadByWorker time to download gradients from

all parties
taverage time to average all gradients

tuploadByWorker time to upload updated parameters
tdownloadByParty time to download parameters

tdecrypt time to decrypt parameters

Fig. 8. Interaction in the entire collaborative training process.

calculated by taking the average of the gradients of all
parties. We also create an external party, denoted as baseline
party, who only trains the local model on her dataset with
5,500 samples, without taking into account the gradients
from other parties. For space limitation, we only give the
results for E-4 and E-10.

As shown in Fig. 6 and 7, we can see that for both
cases collaborative parties achieve higher training accuracy
than the baseline party. Specifically, in Fig. 6 the baseline
party has an accuracy of 96.75%, whereas Party 1, Party
2, Party 3, and Party 4 achieve 97.08%, 96.96%, 97.20%
and 97.32% accuracy, respectively. Similarly, in Fig. 7, the
accuracy of the baseline party is 96.51%, while the accuracy
numbers of Party 1 to Party 10 are 96.72%, 97.02%, 96.63%,
97.12%, 97.14%, 96.62%, 96.75%, 97.14%, 96.90%, 97.02%,
respectively.

Next, we investigate the time costs of the implemented
prototype. Note that we use the same training model on
MNIST dataset for each experiment E-4, E-5, E-6, E-7, E-
8, E-9 and E-10. The total execution time is the time spent
by a party in the entire collaborative training process in
DeepChain. We depict the training process in Fig. 8 by using
an interaction diagram. It is worth noting that for efficiency,
parties only share gradients with 100 times, i.e., every 15
iterations, instead of No. of iterations in each experiment.
This assumption follows some researcher’s suggestion that
training accuracy is still acceptable when averaging gradi-
ents every 10 to 20 iterations [73].

Let the frequency of sharing gradient be #share, the
number of iteration be #iteration, the period of shar-
ing be #period ∈ [10, 20] and the number of parties
be N . Then, the total time cost can be computed as

Fig. 9. Total time cost with increasing number of parties.

Time ≈ #iteration
#period × (t15 iteration) + #share × (tencrypt +

tuploadByParty + N × tdownloadByWorker + N × taverage +
tuploadByWorker +×tdownloadByParty + tdecrypt). For ease of
explanation, we summarize all the time-related variables in
Table 4.

We assume that in the above formula all the time-
related variables achieve their corresponding time costs
when N = 1. When number of parties N increases, the total
time cost also increases slightly, since tdownloadByWorker and
taverage become greater after multiplication. On the other
hand, tuploadByParty , tuploadByWorker and tdownloadByParty
grow a little bit withN , but their growth rates are negligible.
The reason is that the time used to synchronize State in Cor-
da platform is very short, so that tuploadByParty increases
slightly with N . For tuploadByWorker and tdownloadByParty ,
no matter how large N is, all parties’ ciphers are aggregated
into one cipher that is uploaded/downloaded by work-
ers/parties by using relatively constant time. It is worth
noting that the time cost is also determined by the size of
the training model. Hence, both the number of iterations
and the time for cryptographic operations increase with the
size of the training model.

From Fig. 9 we can see that the total time cost grows
steadily with the number of parties. Specifically, the to-
tal time costs for E-4, E-5, E-6, E-7, E-8, E-9, and E-10
are 391, 861 s, 392, 359 s, 394, 533 s, 394, 287 s, 395, 938 s,
397, 252 s and 398, 079 s, respectively. The reasons for this
trend are that (1) when the number of parties increases,
tuploadByParty , tdownloadByWorker, taverage, tuploadByWorker

and tdownloadByParty also increase, but the increments are
not obvious in the total time, (2) more parties need longer
waiting time to synchronize when sharing gradients, and
(3) tencrypt and tdecrypt dominate the large proportion
of the total time cost that depends on the size of the
training model instead of on the number of parties. In
addition, based on our experiments it is expected that
when the number of parties is more than 1306, the total
time would increase significantly with N , because the time
N × (tdownloadByWorker + taverage) is greater than time
(tencrypt + tdecrypt).

7 CONCLUSION AND FUTURE WORK

In this paper we present DeepChain, a decentralized frame-
work based on Blockchain for secure collaborative deep

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

training. We introduce an incentive mechanism and achieve
three security goals, namely confidentiality, auditability, and
fairness. Specifically, we formalize the incentive mechanism
based on Blockchain, which possesses compatibility and
liveness properties. Through our incentive mechanism we
demonstrate that participants are incentivized to behave
correctly with high probability.

For confidentiality of local gradients, we employ Thresh-
old Paillier algorithm. In particular, by combining a care-
fully designed component into the encryption algorithm,
we achieve the goal that only one cipher is generated
for a party. In addition to confidentiality, our DeepChain
provides auditability and fairness. We use non-interactive
zero-knowledge to prove auditability of the collaborative
training process. We also design timeout-checking and mon-
etary penalty mechanisms to guarantee fairness among the
participants. We implement a prototype of DeepChain and
evaluate it on real dataset, with respect to cipher size,
throughput, training accuracy and training time.

Our DeepChain may also have some impact on model-
based pricing market. Since DeepChain stores not only the
training parameters, but also the trained models, they can be
used for paid deep learning services when the model-based
pricing market is mature. Participants who possess the
trained models may have long-term financial benefits, since
they can provide deep learning services to those who are
unable to build the model by themselves but willing to pay
for the services. On the other hand, all training processes
and the model parameters are recorded, which could be
used in transfer learning. For example, some information of
the trained models could be re-used to train a new similar
model. Of course, for transfer learning case, the security
problems should be re-defined and analyzed, which are left
in our future work.

ACKNOWLEDGEMENT

Jian Weng was supported by National Natural Science
Foundation of China (Grant Nos. 61825203, U1736203 and
No. 61732021), Guangdong Provincial Special Funds for
Applied Technology Research and Development and Trans-
formation of Key Scientific and Technological Achievements
(Grant No. 2016B010124009), and Science and Technology
Program of Guangzhou of China (Grant No. 201802010061).
Jiasi Weng was supported by National Key R&D Pro-
gram of China (Grant No. 2018YFB1402600). Jilian Zhang
was supported by National Key R&D program of Chi-
na (Grant No. 2018YFB1003701), National Natural Science
Foundation of China (Grant No. 61972177) and Communi-
cation and Computer Network Lab of Guangdong (Grant
No. CCNL201903). Ming Li was supported by National
Key Research and Development Plan of China (Grant No.
2017YFB0802203), and Graduate School of Jinan University.
Yue Zhang was supported by National Natural Science
Foundation of China (Grant No. 61872153). Weiqi Luo was
supported by National Natural Science Foundation of Chain
(Grant No. 61877029), Guangdong Provincial Special Funds
for Applied Technology Research and Development and
Transformation of Key Scientific and Technological Achieve-
ments (Grant No. 2017B010124002).

REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” IEEE Signal processing
magazine, vol. 29, no. 6, pp. 82–97, 2012.

[2] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “Pcanet:
A simple deep learning baseline for image classification?” IEEE
Transactions on Image Processing, vol. 24, no. 12, pp. 5017–5032, 2015.

[3] E. Gawehn, J. A. Hiss, and G. Schneider, “Deep learning in drug
discovery,” Molecular informatics, vol. 35, no. 1, pp. 3–14, 2016.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, p. 436, 2015.

[5] P. Danaee, R. Ghaeini, and D. A. Hendrix, “A deep learning
approach for cancer detection and relevant gene identification,”
in PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017. World
Scientific, 2017, pp. 219–229.

[6] S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime
tradeoff in distributed deep learning: A systematic study,” in Data
Mining (ICDM), 2016 IEEE 16th International Conference on. IEEE,
2016, pp. 171–180.

[7] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: building an efficient and scalable deep learning training
system,” in Usenix Conference on Operating Systems Design and
Implementation, 2016, pp. 571–582.

[8] T. Chen and S. Zhong, “Privacy-preserving backpropagation
neural network learning,” IEEE Transactions on Neural Networks,
vol. 20, no. 10, p. 1554, 2009.

[9] A. Bansal, T. Chen, and S. Zhong, “Privacy preserving back-
propagation neural network learning over arbitrarily partitioned
data,” Neural Computing Applications, vol. 20, no. 1, pp. 143–150,
2011.

[10] J. Yuan and S. Yu, “Privacy preserving back-propagation learning
made practical with cloud computing,” IEEE Transactions on Paral-
lel Distributed Systems, vol. 25, no. 1, pp. 212–221, 2014.

[11] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,”
in Allerton Conference on Communication, Control, and Computing,
2015, pp. 909–910.

[12] P. Li, J. Li, Z. Huang, C. Z. Gao, W. B. Chen, and K. Chen, “Privacy-
preserving outsourced classification in cloud computing,” Cluster
Computing, no. 1, pp. 1–10, 2017.

[13] Q. Zhang, L. Yang, and Z. Chen, “Privacy preserving deep com-
putation model on cloud for big data feature learning,” IEEE
Transactions on Computers, vol. 65, no. 5, pp. 1351–1362, 2016.

[14] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggre-
gation for privacy-preserving machine learning,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 1175–1191.

[15] P. Mohassel and Y. Zhang, “Secureml: A system for scalable
privacy-preserving machine learning,” in Security and Privacy (SP),
2017 IEEE Symposium on. IEEE, 2017, pp. 19–38.

[16] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving
deep learning via additively homomorphic encryption,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 5, pp.
1333–1345, 2018.

[17] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning
models that remember too much,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 587–601.

[18] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Infer-
ence attacks against collaborative learning,” arXiv preprint arX-
iv:1805.04049, 2018.

[19] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under the
gan: information leakage from collaborative deep learning,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 603–618.

[20] T. Orekondy, S. J. Oh, B. Schiele, and M. Fritz, “Understanding
and controlling user linkability in decentralized learning,” arXiv
preprint arXiv:1805.05838, 2018.

[21] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai,
“Privacy-preserving deep learning via additively homomorphic
encryption,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 5, pp. 1333–1345, 2018.

[22] A. Pyrgelis, C. Troncoso, and E. De Cristofaro, “Knock knock,
who’s there? membership inference on aggregate location data,”
arXiv preprint arXiv:1708.06145, 2017.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

[23] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” arXiv preprint arXiv:1807.00459,
2018.

[24] “Health insurance portability and accountability act,” http-
s://www.hhs.gov/hipaa/index.html.

[25] J. Vaidya, B. Shafiq, X. Jiang, and L. Ohno-Machado, “Identify-
ing inference attacks against healthcare data repositories,” AMIA
Summits on Translational Science Proceedings, vol. 2013, p. 262, 2013.

[26] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato,
M. Devin, and J. Dean, “Multilingual acoustic models using dis-
tributed deep neural networks,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE,
2013, pp. 8619–8623.

[27] R. Jurca and B. Faltings, “An incentive compatible reputation
mechanism,” in EEE International Conference on E-Commerce, 2003.
CEC 2003. IEEE, 2003, pp. 285–292.

[28] U. Shevade, H. H. Song, L. Qiu, and Y. Zhang, “Incentive-aware
routing in dtns,” in 2008 IEEE International Conference on Network
Protocols. IEEE, 2008, pp. 238–247.

[29] S. Zhong, J. Chen, and Y. R. Yang, “Sprite: A simple, cheat-
proof, credit-based system for mobile ad-hoc networks,” in IEEE
INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE
Computer and Communications Societies (IEEE Cat. No. 03CH37428),
vol. 3. IEEE, 2003, pp. 1987–1997.

[30] B. B. Chen and M. C. Chan, “Mobicent: a credit-based incentive
system for disruption tolerant network,” in 2010 Proceedings IEEE
INFOCOM. IEEE, 2010, pp. 1–9.

[31] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[32] M. Ben-Or and A. Hassidim, “Fast quantum byzantine agreemen-
t,” in Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing. ACM, 2005, pp. 481–485.

[33] S. Micali, “Algorand: The efficient and democratic ledger,” arXiv
preprint arXiv:1607.01341, 2016.

[34] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,”
in Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 2017, pp. 51–68.

[35] K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, N. Gailly, L. Gasser,
I. Khoffi, J. Cappos, and B. Ford, “{CHAINIAC}: Proactive
software-update transparency via collectively signed skipchain-
s and verified builds,” in 26th {USENIX} Security Symposium
({USENIX} Security 17), 2017, pp. 1271–1287.

[36] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching
an encrypted cloud meets blockchain: A decentralized, reliable
and fair realization,” in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE, 2018, pp. 792–800.

[37] Y. Zhang, C. Xu, J. Ni, H. Li, and X. S. Shen, “Blockchain-assisted
public-key encryption with keyword search against keyword
guessing attacks for cloud storage,” IEEE Transactions on Cloud
Computing, 2019.

[38] A. B. Kurtulmus and K. Daniel, “Trustless machine learning con-
tracts; evaluating and exchanging machine learning models on the
ethereum blockchain,” arXiv preprint arXiv:1802.10185, 2018.

[39] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments
from bitcoin,” in Security and Privacy (SP), 2014 IEEE Symposium
on. IEEE, 2014, pp. 459–474.

[40] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin:
Anonymous distributed e-cash from bitcoin,” in Security and Pri-
vacy (SP), 2013 IEEE Symposium on. IEEE, 2013, pp. 397–411.

[41] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving
smart contracts,” in Security and Privacy (SP), 2016 IEEE Symposium
on. IEEE, 2016, pp. 839–858.

[42] S. Haykin, Neural networks: a comprehensive foundation. Prentice
Hall PTR, 1994.

[43] H. Cui, G. R. Ganger, and P. B. Gibbons, “Scalable deep learning
on distributed gpus with a gpu-specialized parameter server,” pp.
1–16, 2016.

[44] H. Ma, F. Mao, and G. W. Taylor, “Theano-mpi: A theano-based
distributed training framework,” CoRR, pp. 800–813, 2016.

[45] Poseidon: An Efficient Communication Architecture for Distributed
Deep Learning on GPU Clusters.

[46] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin,
“Distributed deep learning models for wireless signal classifica-

tion with low-cost spectrum sensors,” CoRR, vol. abs/1707.08908,
2017.

[47] Distributed deep learning on edge-devices: Feasibility via adaptive com-
pression, 2017.

[48] J. Dean, G. Corrado, Monga et al., “Large scale distributed deep
networks,” in Advances in neural information processing systems,
2012, pp. 1223–1231.

[49] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and
Y. LeCun, “Fast convolutional nets with fbfft: A gpu performance
evaluation,” arXiv preprint arXiv:1412.7580, 2014.

[50] R. Wu, S. Yan, Y. Shan, Q. Dang, and G. Sun, “Deep image: Scaling
up image recognition,” arXiv preprint arXiv:1501.02876, vol. 7,
no. 8, 2015.

[51] M. Lin, S. Li, X. Luo, and S. Yan, “Purine: A bi-graph based deep
learning framework,” arXiv preprint arXiv:1412.6249, 2014.

[52] L. Chen, P. Koutris, and A. Kumar, “Model-based pricing for
machine learning in a data marketplace,” arXiv preprint arX-
iv:1805.11450, 2018.

[53] M. Belenkiy, M. Chase, C. C. Erway, J. Jannotti, A. Küpçü, and
A. Lysyanskaya, “Incentivizing outsourced computation,” in Pro-
ceedings of the 3rd international workshop on Economics of networked
systems. ACM, 2008, pp. 85–90.

[54] A. Küpçü, “Incentivized outsourced computation resistant to ma-
licious contractors,” IEEE Transactions on Dependable and Secure
Computing, vol. 14, no. 6, pp. 633–649, 2015.

[55] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing. ACM, 1987,
pp. 1–12.

[56] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, 2016.

[57] J.-S. Weng, J. Weng, M. Li, Y. Zhang, and W. Luo, “Deepchain:
Auditable and privacy-preserving deep learning with blockchain-
based incentive,” Cryptology ePrint Archive, Report 2018/679,
2018, https://eprint.iacr.org/2018/679.

[58] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions
and software model for isolated execution.” HASP@ ISCA, vol. 10,
2013.

[59] P.-A. Fouque, G. Poupard, and J. Stern, “Sharing decryption in
the context of voting or lotteries,” in International Conference on
Financial Cryptography. Springer, 2000, pp. 90–104.

[60] T. Nishide and K. Sakurai, “Distributed paillier cryptosystem
without trusted dealer,” in International Workshop on Information
Security Applications. Springer, 2010, pp. 44–60.

[61] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[62] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair
protocols,” in International Cryptology Conference. Springer, 2014,
pp. 421–439.

[63] R. Kumaresan and I. Bentov, “How to use bitcoin to incentivize
correct computations,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2014,
pp. 30–41.

[64] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 1999, pp. 223–
238.

[65] B. Schoenmakers and M. Veeningen, “Universally verifiable multi-
party computation from threshold homomorphic cryptosystems,”
in International Conference on Applied Cryptography and Network
Security. Springer, 2015, pp. 3–22.

[66] I. B. Damgård and M. J. Jurik, “Efficient protocols based on
probabilistic encryption using composite degree residue classes,”
BRICS Report Series, vol. 7, no. 5, 2000.

[67] V. Shoup, “Practical threshold signatures,” 1999.
[68] O. Goldreich, Foundations of cryptography: volume 2, basic applica-

tions. Cambridge university press, 2009.
[69] R. Canetti, “Universally composable security: A new paradigm

for cryptographic protocols,” in Proceedings 2001 IEEE International
Conference on Cluster Computing. IEEE, 2001, pp. 136–145.

[70] “Corda: an open source distributed ledger platform,” http-
s://docs.corda.net/.

[71] W. Gavin, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

[72] C. J. B. Yann LeCun, Corinna Cortes, “The mnist database of
handwritten digits,” http://yann.lecun.com/exdb/mnist/.

[73] H. Su and H. Chen, “Experiments on parallel training of deep
neural network using model averaging,” arXiv preprint arX-
iv:1507.01239, 2015.

Jiasi Weng received the B.S. degree in software
engineering from South China Agriculture Uni-
versity in June 2016. Currently, she is a Ph.D.
student in the Colledge of Information Science
and Technology & College of Cyber Security at
Jinan University. Her research interests include
applied cryptography, blockchain and privacy.

Jian Weng is a professor and the Executive
Dean with College of Information Science and
Technology in Jinan University. He received B.S.
degree and M.S. degree from South China U-
niversity of Technology in 2001 and 2004 re-
spectively, and Ph.D. degree at Shanghai Jiao
Tong University in 2008. His research areas in-
clude public key cryptography, cloud security,
blockchain, etc. He has published 80 papers
in international conferences and journals such
as CRYPTO, EUROCRYPT, ASIACRYPT, TC-

C, PKC, CT-RSA, IEEE TPAMI, IEEE TDSC, etc. He also serves as
associate editor of IEEE Transactions on Vehicular Technology. He
received the Young Scientists Fund of the National Natural Science
Foundation of China in 2018, and the Cryptography Innovation Award
from Chinese Association for Cryptologic Research (CACR) in 2015. He
served as General Co-Chair for SecureComm 2016, TPC Co-Chairs for
RFIDsec’13 Asia and ISPEC 2011, and program committee members
for more than 40 international cryptography and information security
conferences. He also serves as associate editor of IEEE Transactions
on Vehicular Technology.

Jilian Zhang received his M.S. degree from
Guangxi Normal University, China in 2006, and
Ph.D degree from Singapore Management U-
niversity in 2014. He is currently an associate
professor with College of Cyber Security, Ji-
nan University, Guangzhou China. Jilian Zhang’s
research interests include data management,
query processing, and database security. His
work has been published on international jour-
nals and conferences, including IEEE TKDE,
ACM SIGMOD, VLDB, and IJCAI.

Ming Li received his B.S. in electronic informa-
tion engineering from University of South China
in 2009, and M.S. in information processing from
Northwestern Polytechnical University in 2012.
From 2016, he becomes a Ph.D. student in the
Colledge of Information Science and Technology
& College of Cyber Security at Jinan Universi-
ty. His research interests include crowdsourcing,
blockchain and its privacy and security.

Yue Zhang is a Ph.D. student in the Colledge
of Information Science and Technology & Col-
lege of Cyber Security at Jinan University. His
research focuses on system security, especially
IoT security. He has published papers in inter-
national conference and journals, such as IEEE
TDSC, IEEE TPDS, IEEE TVT, RAID, etc.

Weiqi Luo received his B.S. degree and M.S.
degree from Jinan University in 1982 and 1985
respectively, and Ph.D. degree from South China
University of Technology in 1999. Currently, he is
a professor with School of Information Science
and Technology in Jinan University. His research
interests include network security, big data, artifi-
cial intelligence, etc. He has published more than
100 high-quality papers in international journals
and conferences.

