New Configurations of Grain Ciphers: Security Against Slide Attacks

Diana Maimuț¹ and George Teşeleanu^{1,3}

Advanced Technologies Institute 10 Dinu Vintilă, Bucharest, Romania diana.maimut@dcti.ro
Department of Computer Science
"Al.I.Cuza" University of Iaşi 700506 Iaşi, Romania, george.teseleanu@info.uaic.ro

Abstract. eSTREAM brought to the attention of the cryptographic community a number of stream ciphers including Grain v0 and its revised version Grain v1. The latter was selected as a finalist of the competition's hardware-based portfolio. The Grain family includes two more instantiations, namely Grain 128 and Grain 128a.

The scope our paper is to provide an insight on how to obtain secure configurations of the Grain family of stream ciphers. We propose different variants for Grain and analyze their security with respect to slide attacks. More precisely, as various attacks against initialization algorithms of Grain were discussed in the literature, we study the security impact of various parameters which may influence the LFSR's initialization scheme.

1 Introduction

The Grain family of stream ciphers consists of four instantiations Grain v0 [12], Grain v1 [13], Grain-128 [11] and Grain-128a [18]. Grain v1 is a finalist of the hardware-based eSTREAM portfolio [1], a competition for choosing both hardware and software secure and efficient stream ciphers.

The design of the Grain family of ciphers includes an LFSR. The loading of the LFSR consists of an initialization vector (IV) and a certain string of bits P whose lengths and structures depend on the cipher's version. Following the terminology used in [6], we consider the IV as being padded with P. Thus, throughout this paper, we use the term padding to denote P. Note that Grain v1 and Grain-128 make use of periodic IV padding and Grain-128a uses aperiodic IV padding.

A series of attacks against the Grain family padding techniques appeared in the literature [5,6,8,16] during the last decade. In the light of these attacks, our paper proposes the first security analysis³ of generic IV padding schemes for Grain ciphers in the *periodic* as well as the *aperiodic* cases.

In this context, the concerns that arise are closely related to the security impact of various parameters of the padding, such as the position and structure of the padding block. Moreover, we consider both *compact* and *fragmented* padding blocks in our study. We refer to the original padding schemes of the Grain ciphers as being compact (*i.e.* a single padding block is used). We denote as fragmented padding the division of the padding block into smaller blocks of equal length⁴.

By examining the structure of the padding and analyzing its compact and especially fragmented versions, we actually study the idea of extending the key's life. The latter could be achieved by introducing a variable padding according to suitable constraints. Hence, the general question that

³ against slide attacks

⁴ we consider these smaller blocks as being spread among the linear feedback register's data

arises is the following: what is to be loaded in the LFSRs of Grain ciphers in order to obtain secure settings?. Note that our study is preliminary, taking into account only slide attacks. We consider other types of attacks as future work.

We stress that finding better attacks than the ones already presented in the literature is outside the scope of our paper, as our main goal is to establish sound personalized versions of the Grain cipher. Hence, our work does not have any immediate implication towards breaking any cipher of the Grain family. Nevertheless, our observations become meaningful either in the lightweight cryptography scenario or in the case of an enhanced security context (e.g. secure government applications).

Lightweight cryptography [17] lies at the crossroad between cryptography, computer science and electrical engineering. Thus, trade-offs between performance, security and cost must be considered. Given such constraints and the fact that embedded devices operate in hostile environments, there is an increasing need for new and varied security solutions, mainly constructed in view of the current ubiquitous computing tendency. As the Grain family lies precisely within the lightweight primitives' category, we believe that the study presented in the current paper is of interest for the industry and, especially, government organizations.

When dealing with security devices for which the transmission and processing of the IV is neither so costly nor hard to handle (e.g. the corresponding communication protocols easily allow the transmission), shrinking the padding up to complete removal might be considered. More precisely, we suggest the use of a longer IV in such a context in order to increase security. Moreover, many Graintype configurations could be obtained if our proposed padding schemes are used. Such configurations could be considered as personalizations of the main algorithm and, if the associated parameters are kept secret, the key's life can be extended.

Structure of the Paper. We introduce notations and give a quick reminder of the Grain family technical specifications in Section 2. Section 3 describes generic attacks against the Grain ciphers. In Section 4 we discuss the core results of our paper: a security analysis of IV padding schemes for Grain ciphers. We conclude and mention various interesting ideas as future work in Section 5. We recall Grain v1 in Appendix A, Grain-128 in Appendix B and Grain-128a in Appendix C. We do not recall the corresponding parameters of Grain v0, even though the results presented in the current paper still hold in that case. In Appendices D and E we provide test values for our proposed algorithms.

2 Preliminaries

Notations. During the following, capital letters will denote padding blocks and small letters will refer to certain bits of the padding. We use the big-endian convention. Hexadecimal strings are marked by the prefix 0x.

```
MSB_{\ell}(Q)
              stands for the most significant \ell bits of Q
LSB_{\ell}(Q)
              stands for the least significant \ell bits of Q
MID_{[\ell_1,\ell_2]}
              stands for the bits of Q between position \ell_1 and \ell_2
              represents the string obtained by concatenating y to x
   x||y
    \in_R
              selecting an element uniformly at random
              the bit-length of x
    |x|
    b^t
              stands for t consecutive bits of b
 NULL
              stands for an empty variable
```

2.1 Grain Family

Grain is a hardware-oriented stream cipher initially proposed by Hell, Johansson and Meier [12] and whose main building blocks are an n bit linear feedback shift register (LFSR), an n bit non-linear feedback shift register (NFSR) and an output function. Because of a weakness in the output function, a key recovery attack [7] and a distinguishing attack [14] on Grain v0 were proposed. To solve these security issues, Grain v1 [13] was introduced. Also, Grain 128 [11] was proposed as a variant of Grain v1. Grain 128 uses 128-bit keys instead of 80-bit keys. Grain 128a [18] was designed to address cryptanalysis results [4,9,10,15,19] against the previous version. Grain 128a offers optional authentication. We stress that, in this paper, we do not address the authentication feature of Grain 128a.

Let $X_i = [x_i, x_{i+1}, \dots, x_{i+n-1}]$ denote the state of the NFSR at time i and let g(x) be the nonlinear feedback polynomial of the NFSR. $g(X_i)$ represents the corresponding update function of the NFSR. In the case of the LFSR, let $Y_i = [y_i, y_{i+1}, \dots, y_{i+n-1}]$ be its state, f(x) the linear feedback polynomial and $f(Y_i)$ the corresponding update function. The filter function $h(X_i, Y_i)$ takes inputs from both the states X_i and Y_i .

We shortly describe the generic algorithms KLA, KSA and PRGA below. As KSA is invertible, a state $S_i = X_i || Y_i$ can be rolled back one clock to S_{i-1} . We further refer to the transition function from S_i to S_{i-1} as KSA⁻¹.

Figure 1: Output Generator and Key Initialization of Grain ciphers

Key Loading Algorithm (KLA). The Grain family uses an n-bit key K, an m-bit initialization vector IV with m < n and some fixed padding $P \in \{0,1\}^{\alpha}$, where $\alpha = n - m$. The key is loaded in the NFSR, while the pair (IV, P) is loaded in the LFSR using a one-to-one function further denoted as $Load_{IV}(IV, P)$.

Key Scheduling Algorithm (KSA). After running KLA, the output⁵ z_i is XOR-ed to both the LFSR and NFSR update functions, i.e., during one clock the LFSR and the NFSR bits are updated as $y_{i+n} = z_i + f(Y_i)$, $x_{i+n} = y_i + z_i + g(X_i)$.

⁵ during one clock

Pseudorandom Keystream Generation Algorithm (PRGA). After performing KSA routine for 2n clocks, z_i is no longer XOR-ed to the LFSR and NFSR update functions, but it is used as the output keystream bit. During this phase, the LFSR and NFSR are updated as $y_{i+n} = f(Y_i)$, $x_{i+n} = y_i + g(X_i)$.

Figure 1 depicts an overview of KSA and PRGA. Common features are depicted in black. In the case of Grain v1, the pseudorandom keystream generation algorithm does not include the green path. The red paths correspond to the key scheduling algorithm.

The corresponding parameters of Grain v1 are described in Appendix A, while Grain 128 is tackled in Appendix B and Grain 128a in Appendix C. The appendices also include the Load_{IV} functions and the KSA⁻¹ algorithms for all versions.

Security Model. In the Chosen IV - Related Key setting (according to [6, Section 2.1]), an adversary is able to query an encryption oracle with access to the key K in order to obtain valid ciphertexts. For each query i, the adversary can choose the oracle's parameters: an initialization vector IV_i , a function $\mathcal{F}_i : \{0,1\}^n \to \{0,1\}^n$ and a message m_i . The oracle encrypts m_i using the Key-IV pair $(\mathcal{F}_i(K), IV_i)$. The adversary's task is to distinguish the keystream output from a random stream.

Assumptions. Based on the results of the experiments we conducted, we further assume that the output of KSA, KSA⁻¹ and PRGA is independently uniformly distributed. More precisely, all previous algorithms were statistically tested applying the NIST Test Suite [2]. During our experiments we used the following setup:

- 1. X_i is a randomly generated *n*-bit state using the GMP library [3];
- 2. Y_i'' is either $0^{2\alpha}$ or $1^{2\alpha}$;
- 3. $Y_i = Y_i'' ||Y_i''|$, where Y_i' is a randomly generated $(m \alpha)$ -bit state using the GMP library.

3 Generic Grain Attacks

As already mentioned in Section 2, the Grain family uses an NFSR and a nonlinear filter (which takes input from both shift registers) to introduce nonlinearity. If after the initialization process, the LFSR is in an all zero state, only the NFSR is actively participating to the output. As already shown in the literature, NFSRs are vulnerable to distinguishing attacks [7, 15, 20].

Weak Key-IV pair. If the LFSR reaches the all zero state after 2n clocks we say that the pair (K, IV) is a weak Key-IV pair. An algorithm which produces weak Key-IV pairs for Grain v1 is presented in [20]. We refer the reader to Algorithm 1 for a generalization of this algorithm to any of the Grain ciphers.

Given a state V, we define it as valid if there exists an $IV \in \{0,1\}^m$ such that $\mathsf{Load}_{IV}(IV,P) = V$, where P is the fixed padding. We further use a function $\mathsf{Extract}_{IV}(V)$ which is the inverse of $\mathsf{Load}_{IV}(\cdot,P)$. The probability to obtain a weak Key-IV pair by running Algorithm 1 is $1/2^{\alpha}$.

A refined version of the attack from [20] is discussed in [5] and generalized in Algorithm 2. The authors of [5] give precise differences between keystreams generated using the output of Algorithm 2 for Grain v1 (see Theorem 1), Grain-128 (see Theorem 2) and Grain-128a (see Theorem 3).

Theorem 1. For Grain v1, two initial states S_0 and $S_{0,\Delta}$ which differ only in the 79th position of the LFSR, produce identical output bits in 75 specific positions among the initial 96 key stream bits obtained during the PRGA.

Algorithm 1. Generic Weak Key-IV Attack

```
Output: A Key-IV pair (K', IV')

1 Set s \leftarrow 0

2 while s = 0 do

3 | Choose K \in_R \{0,1\}^n and let V \in \{0,1\}^n be the zero LFSR state (0,...,0)

4 | Run KSA<sup>-1</sup>(K||V) routine for 2n clocks and produce state S' = K'||V'

5 | if V' is valid then

6 | Set s \leftarrow 1 and IV' \leftarrow \text{Extract}_{IV}(V')

7 | return (K', IV')

8 | end

9 end
```

Remark 1. More precisely, the 75 positions are the following ones:

```
k \in [0,95] \setminus \{15,33,44,51,54,57,62,69,72,73,75,76,80,82,83,87,90,91,93-95\}.
```

Theorem 2. For Grain 128, two initial states S_0 and $S_{0,\Delta}$ which differ only in the 127th position of the LFSR, produce identical output bits in 112 specific positions among the initial 160 key stream bits obtained during the PRGA.

Remark 2. More precisely, the 112 positions are the following ones:

```
k \in [0, 159] \setminus \{\ 32, 34, 48, 64, 66, 67, 79 - 81, 85, 90, 92, 95, 96, 98, 99, 106, 107, 112, 114, 117, 119, \\ 122, 124 - 126, 128, 130 - 132, 138, 139, 142 - 146, 148 - 151, 153 - 159\}.
```

Theorem 3. For Grain 128a, two initial states S_0 and $S_{0,\Delta}$ which differ only in the 127th position of the LFSR, produce identical output bits in 115 specific positions among the initial 160 key stream bits obtained during the PRGA.

Remark 3. More precisely, the 115 positions are the following ones:

```
k \in [0, 159] \setminus \{33, 34, 48, 65 - 67, 80, 81, 85, 91, 92, 95, 97 - 99, 106, 107, 112, 114, 117, 119, 123 - 125, 127 - 132, 138, 139, 142 - 146, 149 - 151, 154 - 157, 159\}.
```

We further present an algorithm that checks which keystream positions produced by the states S and S_{Δ} are identical (introduced in Algorithm 2). Note that if we run Algorithm 3 we obtain less positions than claimed in Theorems 1 to 3, as shown in Appendix E. This is due to the fact that Algorithm 3 is prone to producing internal collisions and, thus, eliminate certain positions that are identical in both keystreams. Note that Theorem 4 is a refined version of Remarks 1 to 3 in the sense that it represents an automatic tool for finding identical keystream positions.

Modified Pseudorandom Keystream Generation Algorithm (PRGA'). To obtain our modified PRGA we replace + (XOR) and \cdot (AND) operations in the original PRGA with | (OR) operations.

Theorem 4. Let r be a position of Grain's internal state, q_1 the number of desired identical positions in the keystream and q_2 the maximum number of search trials. Then, Algorithm 3 finds at most q_1 identical positions in a maximum of q_2 trials.

Algorithm 2. Search for Key-IV pairs that produce almost similar initial keystream

```
Input: An integer r \in \{0, 2n\}
   Output: Key-IV pairs (K, IV) and (K', IV')
 1 Set s \leftarrow 0
   while s = 0 do
        Choose K \in_R \{0,1\}^n and IV \in_R \{0,1\}^m
        Run KSA(K||IV) routine for 2n clocks to obtain an initial state S_0 \in \{0,1\}^{2n}
        Construct S_{0,\Delta} from S_0 by flipping the bit on position r
 5
        Run KSA<sup>-1</sup>(S_{0,\Delta}) routine for 2n clocks and produce state S' = K' ||V'|
 6
        if V' is valid then
 7
             Set s \leftarrow 1 and IV' \leftarrow \texttt{Extract}_{IV}(V')
             return (K, IV) and (K', IV')
        end
10
11 end
```

Proof (sketch). We note that in Algorithm 3 the bit b_r on position r is set. If b_r is taken into consideration while computing the output bit of PRGA then the output of PRGA' is also set due to the replacement of the original operations (+ and ·) with | operations. The same argument is valid if a bit of Grain's internal state is influenced by b_r .

The above statements remain true for each internal state bit that becomes set during the execution of Algorithm 3.

Remark 4. Experimentally, we observed that if we run Algorithm 3 with at least two bits b_{r_1}, b_{r_2}, \ldots flipped while constructing S_{Δ} the propagation of flipped bits is exponential in $b_{r_1} + b_{r_2} + \ldots$

Algorithm 3. Search for identical keystream position in Grain

```
Input: Integers r \in \{0, 2n\} and q_1, q_2 > 0

Output: Keystream positions \varphi

1 Set s \leftarrow 0 and \varphi \leftarrow \varnothing

2 Let S \in \{0, 1\}^{2n} be the zero state (0, \dots, 0)

3 Construct S_{\Delta} from S by flipping the bit on position r

4 while |\varphi| \leq q_1 and s < q_2 do

5 Set b \leftarrow \operatorname{PRGA}'(S_{\Delta}) and update state S_{\Delta} with the current state

6 if b = 0 then

7 | Update \varphi \leftarrow \varphi \cup \{s\}

8 end

9 | Set s \leftarrow s + 1

10 end

11 return \varphi
```

4 Proposed Ideas

4.1 Compact Padding

Attacks that exploit the periodic padding used in Grain 128 where first presented in [8, 16] and further improved in [5]. We generalize and simplify these attacks below.

Setup. Let $Y_1 = [y_0, \dots, y_{d_1-1}]$, where $|Y_1| = d_1$, let $Y_2 = [y_{d_1+\alpha}, \dots, y_{n-1}]$, where $|Y_2| = d_2$ and let $IV = Y_1 ||Y_2|$. We define

$$Load_{IV}(IV, P) = Y_1 || P || Y_2.$$

Let $S = [s_0, \ldots, s_{n-1}]$ be a state of the LFSR, then we define

$$\text{Extract}_{IV}(S) = s_{d_1} \| \dots \| s_{d_1 + \alpha - 1}.$$

Padding. Let $\alpha = \lambda \omega$ and $|P_0| = \ldots = |P_{\omega-1}| = \lambda$, then we define $P = P_0 \| \ldots \| P_{\omega-1}$. We say that P is a periodic padding of order λ if λ is the smallest integer such that $P_0 = \ldots = P_{\omega-1}$.

Periodic padding of order α is further referred to as aperiodic padding.

Theorem 5. Let P be a periodic padding of order λ and let i = 1, 2 denote an index. For each (set of) condition(s) presented in Column 2 of Table 1 there exists an attack whose corresponding success probability is presented in Column 3 of Table 1.

	Conditions	Success Probability
1.	$d_1 \ge \lambda \text{ or } d_2 \ge \lambda$	$1/2^{\lambda}$
2.	$d_1 \ge \lambda$ and $d_2 \ge \lambda$	$1/2^{\lambda-1}$
3.	$d_i < \lambda$	$1/2^{2\lambda - d_i}$

Table 1: Attack Parameters for Theorem 5

- *Proof.* 1. The proof follows directly from Algorithms 5 and 7. Given the assumptions in Section 2, the probability that the first λ keystream bits are zero is $1/2^{\lambda}$.
- 2. The proof is a direct consequence of Item 1.
- 3. The proof is straightforward in the light of Algorithms 8 and 9. Given the assumptions in Section 2, the probability that $V_1' = P_0$ is $1/2^{\lambda d_1}$ and the probability that $V_2' = P_{\omega 1}$ is $1/2^{\lambda d_2}$. Also, the probability that the first λ keystream bits are zero is $1/2^{\lambda}$. Since the two events are independent, we obtain the desired success probability.

Algorithm 4. Pair₁ (σ, S)

Input: Number of clocks σ and a state S.

Output: A Key-IV pair (K', IV') or \bot

- 1 Run KSA⁻¹(S) routine for σ clocks and produce state $S' = (K'||V_1'||P||P_{\omega-1}||V_2'|)$, where $|V_1'| = d_1$ and $|V_2'| = d_2 \lambda$
- 2 Set $IV' \leftarrow V_1' || P_{\omega-1} || V_2'$
- **3 if** (K', IV') produces all zero keystream bits in the first λ PRGA rounds **then**
- 4 | return (K', IV')
- 5 end
- $_{6}$ return \perp

Algorithm 5. Constructing Key-IV pairs that generate λ bit shifted keystream

```
Output: Key-IV pairs (K', IV') and (K, IV)

1 Set s \leftarrow 0

2 while s = 0 do

3 | Choose K \in_R \{0, 1\}^n, V_1 \in_R \{0, 1\}^{d_1 - \lambda} and V_2 \in_R \{0, 1\}^{d_2}

4 | Set IV \leftarrow V_1 \|P_0\|V_2, S \leftarrow K \|V_1\|P_0\|P\|V_2 and output \leftarrow \operatorname{Pair}_1(\lambda, S)

5 | if output \neq \bot then

6 | Set s \leftarrow 1

7 | return (K, IV) and output

8 | end

9 end
```

Algorithm 6. Pair₂ (σ, S)

Input: Number of clocks σ and a state S. **Output:** A Key-IV pair (K', IV').

- 1 Run KSA(S) routine for σ clocks and produce state $S' = (K' ||V_1'|| P_0 ||P|| V_2')$, where $|V_1'| = d_1 \lambda$ and $|V_2'| = d_2$
- 2 Set $IV' \leftarrow V_1' || P_0 || V_2'$
- з return (K', IV')

Remark 5. Let $d_2 = 0$, $\lambda = 1$, $P_0 = 1$. If $\alpha = 16$, then the attack described in [16] is the same as the attack we detail in Algorithm 9. The same is true for [8] if $\alpha = 32$. Also, if $\alpha = 32$ then Algorithm 5 is a simplified version of the attack presented in [5].

Remark 6. To minimize the impact of Theorem 5, one must choose a padding value such that $\lambda = \alpha$ and either $d_1 < \alpha$ or $d_2 < \alpha$. In this case, because of the generic attacks described in Section 3, the success probability can not drop below $1/2^{\alpha}$. The designers of Grain 128a have chosen $d_2 = 0$ and P = 0xffffffe. In [6], the authors introduce an attack for Grain 128a, which is a special case of the attack we detail in Algorithm 5.

Theorem 6. Let P be an aperiodic padding, $1 \le \gamma < \alpha/2$ and $d_2 < \alpha$. Also, let i = 1, 2 denote an index. If $LSB_{\gamma}(P) = MSB_{\gamma}(P)$, then for each condition presented in Column 2 of Table 2 there exists an attack whose corresponding success probability is presented in Column 3 of Table 2.

	Condition	Success Probability
1.	$d_i \ge \alpha - \gamma$	$1/2^{\alpha-\gamma}$
2.	$d_i < \alpha - \gamma$	$1/2^{2\alpha-2\gamma-d_i}$

Table 2: Attack Parameters for Theorem 6

Proof. 1. The first part of proof follows from Algorithm 5 with the following changes:

- (a) λ is replaced by $\alpha \gamma$;
- (b) P_0 is replaced by $MSB_{\alpha-\gamma}(P)$;
- (c) $P_{\omega-1}$ is replaced by $LSB_{\alpha-\gamma}(P)$.

Therefore, the probability that the first $\alpha - \gamma$ keystream bits are zero is $1/2^{\alpha-\gamma}$. Similarly, the second part follows from Algorithm 7.

2. To prove the first part, we use the above changes on Algorithm 8, except that instead of replacing $P_{\omega-1}$ we replace $LSB_{d_1}(P_0)$ with $MID_{[\gamma+d_1-1,\gamma]}(P)$. Thus, we obtain the probability $1/2^{\alpha-\gamma}$. Similarly, for the second part we use Algorithm 9.

Algorithm 7. Constructing Key-IV pairs that generate λ bit shifted keystream

```
Output: Key-IV pairs (K', IV') and (K, IV)

1 Set s \leftarrow 0

2 while s = 0 do

3 | Choose K \in_R \{0,1\}^n, V_1 \in_R \{0,1\}^{d_1} and V_2 \in_R \{0,1\}^{d_2-\lambda}

4 | Set IV \leftarrow V_1 || P_{\omega-1} || V_2

5 | if (K, IV) produces all zero keystream bits in the first \lambda PRGA rounds then

6 | Set s \leftarrow 1 and S \leftarrow (K ||V_1|| P ||P_{\omega-1}|| V_2)

7 | return (K, IV) and Pair<sub>2</sub>(\lambda, S)

8 | end

9 end
```

Algorithm 8. Constructing Key-IV pairs that generate λ bit shifted keystream

```
Output: Key-IV pairs (K'', IV'') and (K, IV)
 1 Set s \leftarrow 0
 2 while s = 0 do
         Choose K \in_R \{0,1\}^n and V_2 \in_R \{0,1\}^{d_2}
 3
         Set IV \leftarrow LSB_{d_1}(P_0)||V_2||
 4
         Run KSA<sup>-1</sup>(K||LSB_{d_1}(P_0)||P||V_2) routine for \lambda - d_1 clocks and produce state S' = (K'||V_1'||P||V_2'), where
 5
          |V_1'| = \lambda and |V_2'| = d_2 - \lambda + d_1
         if V_1' = p_0 then
 6
              Set S \leftarrow K' ||P_0||P||V_2' and output \leftarrow \mathtt{Pair}_1(d_1, S)
 7
              if output \neq \bot then
 8
                   Set s \leftarrow 1
 9
                   return (K, IV) and output
10
              end
11
         end
13 end
```

Remark 7. To prevent the attacks presented in the proof of Theorem 6, the padding must be chosen such that $MSB_{\gamma}(P) \neq LSB_{\gamma}(P)$, $\forall \ 0 \leq \gamma < \alpha/2$. Grain 128a uses such a padding P = 0xffffffffe. Another example was suggested in [8] to counter their proposed attacks: P = 0x00000001.

Constraints. Taking into account all the previous remarks, we may conclude that $good^6$ compact padding schemes are aperiodic and, in particular, satisfy $MSB_{\gamma}(P) \neq LSB_{\gamma}(P)$, $\forall \ 0 \leq \gamma < \alpha/2$. Also, another constraint is the position of the padding, i.e. $d_1 < \alpha$ or $d_2 < \alpha$ must be satisfied.

4.2 Fragmented Padding

Setup. Let $\alpha = c \cdot \beta$, where c > 1. Also, let $IV = B_0 ||B_1|| \dots ||B_c||$ and $P = P_0 ||P_1|| \dots ||P_{c-1}||$, where $|B_0| = d_1$, $|P_0| = \dots = |P_{c-1}| = |B_1| = \dots = |B_{c-1}| = \beta$ and $|B_c| = d_2$. In this case, we define

$$Load_{IV}(IV, P) = B_0 ||P_0||B_1||P_1|| \dots ||B_{c-1}||P_{c-1}||B_c.$$

Let $S = S_0 \| \dots \| S_{2c}$ be a state of the LFSR, such that $|S_0| = d_1$, $|S_1| = \dots = |S_{2c-1}| = \beta$ and $|S_{2c}| = d_2$. Then we define

$$\text{Extract}_{IV}(S) = S_0 || S_2 || \dots || S_{2c}.$$

⁶ resistant to the aforementioned attacks

Algorithm 9. Constructing Key-IV pairs that generate λ bit shifted keystream

```
Output: Key-IV pairs (K'', IV'') and (K, IV)
 1 Set s \leftarrow 0
 2 while s = 0 do
        Choose K \in_R \{0,1\}^n and V_1 \in_R \{0,1\}^{d_1}
3
         Set IV \leftarrow V_1 || MSB_{d_2}(P_{\omega-1})
        if K, IV produces all zero keystream bits in the first \lambda PRGA rounds then
 5
              Run KSA(K||V_1||P||MSB_{d_2}(P_{\omega-1})) routine for \lambda - d_2 clocks and produce state S' = (K'||V_1'||P||V_2'),
 6
               where |V_1'| = d_1 - \lambda + d_2 and |V_2'| = \lambda
              if V_2' = P_{\omega-1} then
 7
                  Set s \leftarrow 1 and S \leftarrow (K'||V_1'||P||P_{\omega-1})
 8
                  return (K, IV) and Pair_2(d_2, S)
9
10
              end
        end
11
12 end
```

Theorem 7. Let i = 1, 2 denote an index. In the previously mentioned setting, for each (set of) condition(s) presented in Column 2 of Table 3 there exists an attack whose corresponding success probability is presented in Column 3 of Table 3.

	Conditions	Success Probability
1.	$d_1 \ge \beta \text{ or } d_2 \ge \beta$	$1/2^{eta}$
2.	$d_1 \ge \beta$ and $d_2 \ge \beta$	$1/2^{\beta-1}$
3.	$d_i < \beta$	$1/2^{2\beta-d_i}$

Table 3: Attack Parameters for Theorem 7

- *Proof.* 1. We only prove the case i=1 as the case i=2 is similar in the light of Algorithm 7. The proof follows directly from Algorithm 12. Given the assumptions in Section 2, the probability that the first β keystream bits are zero is $1/2^{\beta}$.
- 2. The proof is a direct consequence of Item 1.
- 3. Again, we only prove the case i=1. The proof is straightforward in the light of Algorithm 16. Given the assumptions in Section 2, the probability that $V_1'=P_0$ is $1/2^{\beta-d_1}$. Also, the probability that the first β keystream bits are zero is $1/2^{\beta}$. Since the two events are independent, we obtain the desired success probability.

Algorithm 10. Update₁()

```
Output: Variable value

1 Set value \leftarrow P_0

2 for i = 1 to c - 1 do

3 | Update value \leftarrow value ||P_i||P_i

4 end

5 return value
```

Algorithm 11. Pair₃ (σ, S)

```
Input: Number of clocks \sigma and a state S.

Output: A Key-IV pair (K', IV') or \bot

Run KSA^{-1}(S) routine for \sigma clocks and produce state S' = (K'||V_1'||value||V_2'), where |V_1'| = d_1 and |V_2'| = d_2 - \beta

2 Set IV' \leftarrow V_1'||P||V_2'

3 if (K', IV') produces all zero keystream bits in the first \beta PRGA rounds then

4 | return (K', IV')

5 end

6 return \bot
```

Algorithm 12. Constructing Key-IV pairs that generate β bit shifted keystream

```
Output: Key-IV pairs (K', IV') and (K, IV)

1 Set s \leftarrow 0

2 while s = 0 do

3 | Choose K \in_R \{0,1\}^n, V_1 \in_R \{0,1\}^{d_1-\beta} and V_2 \in_R \{0,1\}^{d_2}

4 | Set value \leftarrow P_0 \| \mathbb{U}pdate_1(), IV \leftarrow V_1 \| P \| V_2, S \leftarrow K \| V_1 \| value \| V_2  and output \leftarrow \operatorname{Pair}_3(\beta, S)

5 | if output \neq \bot then

6 | Set s \leftarrow 1

7 | return (K, IV) and output

8 | end

9 end
```

Remark 8. Let $\delta < \beta$ and $\beta > 1$. To prevent the attacks presented in Theorem 7, we have to slightly modify the structure of the IV. We need at least one block $|B_i| = \delta$, where $1 \le i \le c - 1$. We further consider that $|B_i| = \delta$, $\forall 1 \le i \le c - 1$.

Theorem 8. Let $|B_i| = \delta$, $\forall 1 \leq i \leq c-1$. Also, let $1 \leq \gamma \leq \beta$, $1 \leq t \leq c$ and $0 \leq j \leq t-1$. If $LSB_{\gamma}(P_{c-1-j}) = MSB_{\gamma}(P_{t-1-j}) \ \forall j$ then for each (set of) condition(s) presented in Column 2 of Table 4 there exists an attack whose corresponding success probability is presented in Column 3 of Table 4.

	Conditions	Success Probability
1.	$d_1 \ge \beta - \gamma + (\beta + \delta)(c - t), \ \delta \ge \beta - \gamma$	$1/2^{\beta-\gamma+(\beta+\delta)(c-t)}$
2.	$d_1 \ge \beta - \gamma + (\beta + \delta)(c - t), \ \delta < \beta - \gamma,$ $MSB_{\beta - \gamma - \delta}(P_{c - 1 - j}) = LSB_{\beta - \gamma - \delta}(P_{t - 2 - j}) \ \forall j$	$1/2^{\beta-\gamma+(\beta+\delta)(c-t)}$
3.	$d_1 < \beta - \gamma + (\beta + \delta)(c - t), \ \delta \ge \beta - \gamma$	$1/2^{2\beta-2\gamma+2(\beta+\delta)(c-t)-d_1}$
4.	$d_1 < \beta - \gamma + (\beta + \delta)(c - t), \ \delta < \beta - \gamma,$ $MSB_{\beta - \gamma - \delta}(P_{c - 1 - j}) = LSB_{\beta - \gamma - \delta}(P_{t - 2 - j}) \ \forall j$	$1/2^{2\beta-2\gamma+2(\beta+\delta)(c-t)-d_1}$

Table 4: Attack Parameters for Theorem 8

Proof. 1. The proof follows directly from Algorithm 19 (described in the last appendix of our paper). Given the assumptions in Section 2, the probability that the first $\beta - \gamma + (\beta + \delta)(c - t)$ keystream bits are zero is $1/2^{\beta - \gamma + (\beta + \delta)(c - t)}$.

The proofs for the remaining cases presented in Table 4 follow directly from previous results. Thus, we omit them. \Box

Theorem 9. Let $|B_i| = \delta$, $\forall 1 \leq i \leq c-1$. Also, let $1 \leq \gamma \leq \beta$, $1 \leq t \leq c$ and $0 \leq j \leq t-2$. If $\delta \geq \beta - \gamma$ then for each (set of) condition(s) presented in Column 2 of Table 5 there exists an attack whose corresponding success probability is presented in Column 3 of Table 5.

	Conditions	Success Probability
1.	$d_1 \ge \delta - \beta + \gamma + \beta(c - t + 1) + \delta(c - t),$ $MSB_{\gamma}(P_{c-1-j}) = LSB_{\gamma}(P_{t-2-j}) \forall j$	$1/2^{\delta-\beta+\gamma+\beta(c-t+1)+\delta(c-t)}$
2.	$\begin{vmatrix} d_1 < \delta - \beta + \gamma + \beta(c - t + 1) + \delta(c - t), \\ MSB_{\gamma}(P_{c-1-j}) = LSB_{\gamma}(P_{t-1-j}) \forall j \end{vmatrix}$	$1/2^{2\delta-2\beta+2\gamma+2\beta(c-t+1)+2\delta(c-t)-d_1}$

Table 5: Attack Parameters for Theorem 9

Proof. 1. The proof follows directly from Algorithm 20 (described in the last appendix of our paper). Given the assumptions in Section 2, the probability that the first $\delta - \beta + \gamma + \beta(c - t + 1) + \delta(c - t)$ keystream bits are zero is $1/2^{\delta - \beta + \gamma + \beta(c - t + 1) + \delta(c - t)}$.

2. The proof is similar to the proof of Theorem 7, Item 3.

Remark 9. Taking into account the generic attacks described in Section 3, any probability bigger than $1/2^{\alpha}$ is superfluous. As an example, when $\alpha = 32$ we obtain a good padding scheme for the following parameters $d_2 = 0$, $\beta = 32$, $\delta = 14$, $P_0 = 0$ x8000, $P_1 = 0$ x7fff.

5 Conclusion

We analyzed the security of various periodic and aperiodic IV padding methods⁷ for the Grain family of stream ciphers, proposed corresponding attacks and discussed their success probability.

Future Work. A closely related study which naturally arises is analyzing the security of breaking the padding into aperiodic blocks. Another idea would be to find an algorithm for randomly generating the padding according to some well established constraints. A different direction is to study how do the proposed padding techniques interfere with the security of the authentication feature of Grain-128a. A question that arises is if the occurrence of slide pairs may somehow be converted into a distinguishing or key recovery attack. Another interesting point would be to investigate what would happen to the security of the Grain family with respect to differential, linear or cube attacks in the various padding scenarios we outlined. One more future work idea could be to analyze various methods of preventing the all zero state of Grain's LFSR.

⁷ compact and fragmented

References

- 1. eSTREAM: the ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/stream/.
- 2. NIST SP 800-22: Download Documentation and Software. https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software.
- 3. The GNU Multiple Precision Arithmetic Library. https://gmplib.org/.
- Jean-Philippe Aumasson, Itai Dinur, Luca Henzen, Willi Meier, and Adi Shamir. Efficient FPGA Implementations
 of High-Dimensional Cube Testers on the Stream Cipher Grain-128. https://eprint.iacr.org/2009/218.pdf,
 2009.
- 5. Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. Some Results on Related Key-IV Pairs of Grain. In Proceedings of the 2nd International Conference on Security, Privacy, and Applied Cryptography Engineering – SPACE'12, volume 7644 of Lecture Notes in Computer Science, pages 94–110. Springer, 2012.
- 6. Subhadeep Banik, Subhamoy Maitra, Santanu Sarkar, and Turan Meltem Sönmez. A Chosen IV Related Key Attack on Grain-128a. In *Proceedings of the 18th Australasian Conference on Information Security and Privacy ACISP'13*, volume 7959 of *Lecture Notes in Computer Science*, pages 13–26. Springer, 2013.
- 7. Côme Berbain, Henri Gilbert, and Alexander Maximov. Cryptanalysis of Grain. In *Proceedings of the 18th International Workshop on Fast Software Encryption FSE'06*, volume 4047 of *Lecture Notes in Computer Science*, pages 15–29. Springer, 2006.
- 8. Christophe Cannière, Özgül Küçük, and Bart Preneel. Analysis of Grain's Initialization Algorithm. In *Progress in Cryptology AFRICACRYPT'08*, volume 5023 of *Lecture Notes in Computer Science*, pages 276–289. Springer, 2008.
- 9. Itai Dinur, Tim Güneysu, Christof Paar, Adi Shamir, and Ralf Zimmermann. An Experimentally Verified Attack on Full Grain-128 Using Dedicated Reconfigurable Hardware. In *Advances in Cryptology ASIACRYPT'11*, volume 7073 of *Lecture Notes in Computer Science*, pages 327–343. Springer, 2011.
- 10. Itai Dinur and Adi Shamir. Breaking Grain-128 with Dynamic Cube Attacks. In *Proceedings of the 18th International Workshop on Fast Software Encryption FSE'11*, volume 6733 of *Lecture Notes in Computer Science*, pages 167–187. Springer, 2011.
- 11. Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A Stream Cipher Proposal: Grain-128. In *International Symposium on Information Theory ISIT'06*, pages 1614–1618. IEEE, July 2006.
- 12. Martin Hell, Thomas Johansson, and Willi Meier. Grain A Stream Cipher for Constrained Environments. http://www.ecrypt.eu.org/stream, 2005. ECRYPT Stream Cipher Project Report.
- 13. Martin Hell, Thomas Johansson, and Willi Meier. Grain: A Stream Cipher for Constrained Environments. *International Journal of Wireless and Mobile Computing*, 2(1):86–93, May 2007.
- 14. Shahram Khazaei, Mehdi Hassanzadeh, and Mohammad Kiaei. Distinguishing Attack on Grain. http://www.ecrypt.eu.org/stream/papersdir/071.pdf, 2005. ECRYPT Stream Cipher Project Report.
- 15. Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional Differential cryptanalysis of NLFSR-Based Cryptosystems. In *Advances in Cryptology ASIACRYPT'10*, volume 6477 of *Lecture Notes in Computer Science*, pages 130–145. Springer, 2010.
- 16. Özgül Küçük. Slide Resynchronization Attack on the Initialization of Grain 1.0. http:www.ecrypt.eu.org/stream, 2006.
- 17. Diana Maimuţ. Authentication and Encryption Protocols: Design, Attacks and Algorithmic Tools. PhD thesis, École normale supérieure, 2015.
- 18. Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: A New Version of Grain-128 with Optional Authentication. *International Journal of Wireless and Mobile Computing*, 5(1):48–59, December 2011.
- 19. Paul Stankovski. Greedy Distinguishers and Nonrandomness Detectors. In *Progress in Cryptology IN-DOCRYPT'10*, volume 6498 of *Lecture Notes in Computer Science*, pages 210–226. Springer, 2010.
- Haina Zhang and Xiaoyun Wang. Cryptanalysis of Stream Cipher Grain Family. https://eprint.iacr.org/ 2009/109.pdf, 2009.

A Grain v1

In the case of Grain v1, n = 80 and m = 64. The padding value is P = Oxffff. The values IV and P are loaded in the LFSR using the function LoadIV(IV, P) = IV || P. Given $S \in \{0, 1\}^{80}$, we define $ExtractIV(S) = MSB_{64}(S)$.

We denote by $f_1(x)$ the primitive feedback of the LFSR:

$$f_1(x) = 1 + x^{18} + x^{29} + x^{42} + x^{57} + x^{67} + x^{80}$$

We denote by $g_1(x)$ the nonlinear feedback polynomial of the NFSR:

$$g_{1}(x) = 1 + x^{18} + x^{20} + x^{28} + x^{35} + x^{43} + x^{47} + x^{52} + x^{59} + x^{66} + x^{71} + x^{80} + x^{17}x^{20} + x^{43}x^{47} + x^{65}x^{71} + x^{20}x^{28}x^{35} + x^{47}x^{52}x^{59} + x^{17}x^{35}x^{52}x^{71} + x^{20}x^{28}x^{43}x^{47} + x^{17}x^{20}x^{59}x^{65} + x^{17}x^{20}x^{28}x^{35}x^{43} + x^{47}x^{52}x^{59}x^{65}x^{71} + x^{28}x^{35}x^{43}x^{47}x^{52}x^{59}.$$

The boolean filter function $h_1(x_0, \ldots, x_4)$ is

$$h_1(x_0, \dots, x_4) = x_1 + x_4 + x_0x_3 + x_2x_3 + x_3x_4 + x_0x_1x_2 + x_0x_2x_3 + x_0x_2x_4 + x_1x_2x_4 + x_2x_3x_4.$$

The output function is

$$z_i^1 = \sum_{j \in \mathcal{A}_1} x_{i+j} + h_1(y_{i+3}, y_{i+25}, y_{i+46}, y_{i+64}, x_{i+63}), \text{ where } \mathcal{A}_1 = \{1, 2, 4, 10, 31, 43, 56\}.$$

Algorithm 13. KSA⁻¹ routine for Grain v1

```
Input: State S_i = (x_0, \dots, x_{79}, y_0, \dots, y_{79})

Output: The preceding state S_{i-1} = (x_0, \dots, x_{79}, y_0, \dots, y_{79})

1 v = y_{79} and w = x_{79}

2 for t = 79 to 1 do

3 y_t = y_{t-1} and x_t = x_{t-1}

4 end

5 z = \sum_{j \in \mathcal{A}_1} x_j + h_1(y_3, y_{25}, y_{46}, y_{64}, x_{63})

6 y_0 = z + v + y_{13} + y_{23} + y_{38} + y_{51} + y_{62}

7 x_0 = z + w + y_0 + x_9 + x_{14} + x_{21} + x_{28} + x_{33} + x_{37} + x_{45} + x_{52} + x_{60} + x_{62} + x_{63}x_{60} + x_{37}x_{33} + x_{15}x_{9} + x_{60}x_{52}x_{45} + x_{33}x_{28}x_{21} + x_{63}x_{45}x_{28}x_{9} + x_{60}x_{52}x_{37}x_{33} + x_{63}x_{60}x_{21}x_{15} + x_{63}x_{60}x_{52}x_{45}x_{37} + x_{33}x_{28}x_{21}
```

B Grain 128

In the case of Grain 128, n = 128 and m = 96. The padding value is P = 0xfffffffff. The values IV and P are loaded in the LFSR using the function LoadIV(IV, P) = IV || P. Given $S \in \{0, 1\}^{128}$, we define $ExtractIV(S) = MSB_{96}(S)$.

We denote by $f_{128}(x)$ the primitive feedback of the LFSR:

$$f_{128}(x) = 1 + x^{32} + x^{47} + x^{58} + x^{90} + x^{121} + x^{128}$$

We denote by $g_{128}(x)$ the nonlinear feedback polynomial of the NFSR:

$$g_{128}(x) = 1 + x^{32} + x^{37} + x^{72} + x^{102} + x^{128} + x^{44}x^{60} + x^{61}x^{125} + x^{63}x^{67} + x^{69}x^{101} + x^{80}x^{88} + x^{110}x^{111} + x^{115}x^{117}.$$

The boolean filter function $h_{128}(x_0, \ldots, x_8)$ is

$$h_{128}(x_0,\ldots,x_8) = x_0x_1 + x_2x_3 + x_4x_5 + x_6x_7 + x_0x_4x_8.$$

The output function is

$$z_i^{128} = \sum_{j \in \mathcal{A}_{128}} x_{i+j} + y_{i+93} + h_{128}(x_{i+12}, y_{i+8}, y_{i+13}, y_{i+20}, x_{i+95}, y_{i+42}, y_{i+60}, y_{i+79}, y_{i+95}),$$

where $\mathcal{A}_{128} = \{2, 15, 36, 45, 64, 73, 89\}.$

Algorithm 14. KSA⁻¹ routine for Grain 128

```
Input: State S_i = (x_0, \dots, x_{127}, y_0, \dots, y_{127})
```

Output: The preceding state $S_{i-1} = (x_0, ..., x_{127}, y_0, ..., y_{127})$

- 1 $v = y_{127}$ and $w = x_{127}$
- **2** for t = 127 to 1 do
- $y_t = y_{t-1} \text{ and } x_t = x_{t-1}$
- 4 end

5
$$z = \sum_{j \in A_{128}} x_{i+j} + y_{93} + h_{128}(x_{12}, y_8, y_{13}, y_{20}, x_{95}, y_{42}, y_{60}, y_{79}, y_{95}),$$

- 6 $y_0 = z + v + y_7 + y_{38} + y_{70} + y_{81} + y_{96}$
- $7 \ \ x_0 = z + w + y_0 + x_{26} + x_{56} + x_{91} + x_{96} + x_{84}x_{68} + x_{65}x_{61} + x_{48}x_{40} + x_{59}x_{27} + x_{18}x_{17} + x_{13}x_{11} + x_{67}x_{31} + x_{12}x_{11} + x_{13}x_{11} + x_{13}x_{12} + x_{14}x_{13} + x_{15}x_{14} + x_{15}x_{15} + x_$

C Grain 128a

In the case of Grain 128a, n = 128 and m = 96. The padding value is P = Oxfffffffe. The values IV and P are loaded in the LFSR using the function LoadIV(IV, P) = IV || P. Given $S \in \{0, 1\}^{128}$, we define $ExtractIV(S) = MSB_{96}(S)$.

We denote by $f_{128a}(x)$ the primitive feedback of the LFSR:

$$f_{128a}(x) = 1 + x^{32} + x^{47} + x^{58} + x^{90} + x^{121} + x^{128}$$

We denote by $g_{128a}(x)$ the nonlinear feedback polynomial of the NFSR:

$$g_{128a}(x) = 1 + x^{32} + x^{37} + x^{72} + x^{102} + x^{128} + x^{44}x^{60} + x^{61}x^{125} + x^{63}x^{67} + x^{69}x^{101} + x^{80}x^{88} + x^{110}x^{111} + x^{115}x^{117} + x^{46}x^{50}x^{58} + x^{103}x^{104}x^{106} + x^{33}x^{35}x^{36}x^{40}.$$

The boolean filter function $h_{128a}(x_0,\ldots,x_8)$ is

$$h_{128a}(x_0,\ldots,x_8) = x_0x_1 + x_2x_3 + x_4x_5 + x_6x_7 + x_0x_4x_8.$$

The output function is

$$z_i^{128a} = \sum_{j \in \mathcal{A}_{128a}} x_{i+j} + y_{i+93} + h_{128a}(x_{i+12}, y_{i+8}, y_{i+13}, y_{i+20}, x_{i+95}, y_{i+42}, y_{i+60}, y_{i+79}, y_{i+94}),$$

where $\mathcal{A}_{128a} = \{2, 15, 36, 45, 64, 73, 89\}.$

Algorithm 15. KSA⁻¹ routine for Grain 128a

```
Input: State S_i = (x_0, \dots, x_{127}, y_0, \dots, y_{127})

Output: The preceding state S_{i-1} = (x_0, \dots, x_{127}, y_0, \dots, y_{127})

1 v = y_{127} and w = x_{127}

2 for t = 127 to 1 do

3 y_t = y_{t-1} and x_t = x_{t-1}

4 end

5 z = \sum_{j \in A_{128a}} x_j + y_{93} + h_{128a}(x_{12}, y_8, y_{13}, y_{20}, x_{95}, y_{42}, y_{60}, y_{79}, y_{94})

6 y_0 = z + v + y_7 + y_{38} + y_{70} + y_{81} + y_{96}

7 x_0 = z + w + y_0 + x_{26} + x_{56} + x_{91} + x_{96} + x_3x_{67} + x_{11}x_{13} + x_{17}x_{18} + x_{27}x_{59} + x_{40}x_{48} + x_{61}x_{65} + x_{68}x_{84} + x_{88}x_{92}x_{93}x_{95} + x_{22}x_{24}x_{25} + x_{70}x_{78}x_{82}
```

D Examples

Within Tables 6 to 8, the padding is written in blue, while the red text denotes additional data necessary to mount the proposed attacks. Test vectors presented in this section are expressed as hexadecimal strings. For simplicity, we omit the 0x prefix.

Table 6: Examples of Generic Attacks.

	Cipher	Key	LFSR Loading
	Grain v1	a8af910f2755c064d713	1c60b94e09512adbffff
Algorithm 1	Grain 128	525c3676953ecec2bc5388f1474cdc61	b78d3637b64425015fa3ef63fffffff
Algorithm	Grain 128a	a04f944e6ca1e1406537a0ef215689a3	aaaebb010224478f48567997ffffffe

Table 7: Examples of Compact Padding Attacks (index i=1).

	Cipher	Key	LFSR Loading	Keystream	
	O1	7e72b6f960cf9165b891	1007bc3594e0 <mark>7f7f</mark> 7fa5	004e2da99a27392383696e9e7120370a	
	Grain v1	72b6f960cf9165b89145	07bc3594e0 <mark>7f7f7f</mark> a580	4e2da99a27392383696e9e7120370a48	
		00166499157d39c9	4a9a37ef1e3dfc13	00007675555464520286555770640205	
Theorem 5	Grain 128	5a723b601eccfffb	7fff7fff7fffeb05	000076755ac4cd53028caa577964929e	
Condition 1	Giaiii 126	6499157d39c95a72	37ef1e3dfc13 <mark>7fff</mark>	76755ac4cd53028caa577964929ef1c0	
(Algorithm 5)		3b601eccfffb2fd1	7fff7fffeb05d636	10155ac4cd55026caa511964929e11c0	
(Algorithm 5)		b9e20a7619a8d622	ef53aafa3c6c47ca	0000bac1203a11b554d69fd7f9f27b7f	
	Grain 128a	5152cfa83eb73361	7fff7fff7ffff5cd	000000000000000000000000000000000000000	
	Grain 120a	0a7619a8d6225152	aafa3c6c47ca <mark>7fff</mark>	bac1203a11b554d69fd7f9f27b7fd545	
		cfa83eb7336175a5	7fff7ffff5cd98ba	bac1203a11b554d691d719127b71d545	
	Grain v1	455b5df993b367e37b60	07f7f7fe9b4a3044efd1	0095e584ea234610f7ec250a948a8267	
	Grain vi	5b5df993b367e37b604d	f7f7fe9b4a3044efd139	95e584ea234610f72ec250a948a8267c	
		9302f6b9d7136599	8d7fff7fff7fff10	00007ca563c6831b63868259f547cdff	
Theorem 5	Grain 128	ac1caee130c596bb	d59595e5568beb11	000070456506651b6566625915470411	
Condition 3	Giaiii 120	f6b9d7136599ac1c	ff7fff7fff10d595	7ca563c6831b63868259f547cdff695b	
(Algorithm 8)		aee130c596bb0dc8	95e5568beb11628c	/Ca505C0651b05006259154/Cd11695b	
(Algorithm 6)		0f478aa147938251	cd7fff7fff7fffed	000059362a172d8748185e0850be7cb8	
	Grain 128a	5e0a94d3357764f4	bb0e00ddcb18d1eb	00003930241120014010300030001000	
		8aa1479382515e0a	ff7fff7fffedbb0e	59362a172d8748185e0850be7cb824a	
		94d3357764f4b8bb	00ddcb18d1eb0416	33302a172d0740103e0030be7Cb024a0	
	Grain v1	4febc079167f99bdb1db	bd4710804f9eff0ff0fa	000575b77251f3946864d1bdc2510212	
		bc079167f99bdb1db338	710804f9eff0ff0fa272	575b77251f3946864d1bdc251021229b	
	Grain 128	5a0d4b3907f65ce5	0bbd00872ecb0732	0000006b2014ecdee8d499646ba08a9f	
		f036b3671614244b	ffff00ffff00fffe	000000002014ecdee0d499040ba00a91	
Theorem 6	Gram 120	3907f65ce5f036b3	872ecb0732 ffff00	6b2014ecdee8d499646ba08a9fd93085	
Condition 1		671614244be57112	ffff00fffeaf68a2	Obzoliecueeouijooiobaooajiuoooo	
		6472c21093cd2225	2c9c47771ed4f648	0000009e196e7e866193867ea31b1df0	
	Grain 128a	4118e1a69230e0ac	ffff00ffff00ffde	0000003e130e7e000133007ea0131410	
	Grain 120a	1093cd22254118e1	771ed4f648 <mark>ffff00</mark>	9e196e7e866193867ea31b1df09f306a	
		a69230e0ac668222	ffff00ffdeb9f179	3e130e1e000133001ea31b1a1031300a	
	Grain v1	701aa599737c957a0b5e	07ff0ff0fdedd9bd4d1b	000f9b9045f817c551a7c56c18e4ec02	
	Grain VI	aa599737c957a0b5eb77	f0ff0fdedd9bd4d1b1bf	f9b9045f817c51a7c56c18e4ec025d85	
	Grain 128	30bfe11f3b7080be	aafdffff00ffff00	0000008a735f3adf71728258dcaf47fd	
	Grain 126	47396a37f889b57c	ff38ff5b14da5371	0000000a75515au171720250uca1471u	
Theorem 6		1f3b7080be47396a	ff00ffff00ff38ff	8a735f3adf71728258dcaf47fd6edad1	
Condition 2		37f889b57cac5367	5b14da53715a4291	oarootoaurrirzozooucar4/ruoedadi	
[Grain 128a	c4b8607e854abc5f	950bffff00ffff00	000000681060aa4bf10c0181bd7e4d95	
	Grain 120a	7a74eba33d563ad1	ff7182c277b77e8f	0000000010000a401100010100704095	
		7e854abc5f7a74eb	ff00ffff00ff7182	681060aa4bf10c0181bd7e4d957b5f2e	
		a33d563ad125aaff	c277b77e8f5db61f	b81UbUaa4b11UcU181bd/e4d957b5f2e	

Table 8: Examples of Fragmented Padding Attacks (index i=1).

	Cipher	Key	LFSR Loading	Keystream
	Crain v1	cc0d50254f72d88d3c71	3a86d17377777777b2c	04c79ebb4db7bc675644b3d0bf2a59a4
	Grain v1	c0d50254f72d88d3c714	a86d173 <mark>7777777</mark> 77b2cf	4c79ebb4db7bc675644b3d0bf2a59a47
		c506d0ca5bff72e1	63ba70cf067f7f7f	004e2c99a48677b4c217f9e14e620d48
Theorem 7	Grain 128	6ea07fd8f98d7ba3	7f 7f 7f 7f 7f879f9b	
Condition 1	Grain 128	06d0ca5bff72e16e	ba70cf06 <mark>7f7f7f7</mark> f	4e2c99a48677b4c217f9e14e620d4884
(Algorithm 12)		a07fd8f98d7ba368	7f7f7f7f879f9be1	4e2c99a48677b4c21719e14e620d4884
(Algorium 12)		0948bd1a0a5d275c	895ba804147f7f7f	003a5f1e38d9c44670b0dc017377e698
	Grain 128a	54744db3dc27cec8	7f 7f 7f 7f 7f2f9892	0038311e38d3C44070b0dC017377e038
	Giaiii 128a	48bd1a0a5d275c54	5ba80414 <mark>7f7f7f7</mark> f	3a5f1e38d9c44670b0dc017377e698d7
		744db3dc27cec82b	7f7f7f7f2f9892f1	34311630436440700046017377603047
	Grain v1	77a73157cabfa60349dc	77777777318f59ac6aff	0c61bfa06e1c22011dcefe673765acb7
		7a73157cabfa60349dc3	7777777318f59ac6affd	c61bfa06e1c22011dcefe673765acb7f
771 7		9aca3bd2cf312080	7f7f7f7f7f7f7f7f	004624d2271d3420104b2fd1058675fd
Theorem 7	Grain 128	769338bec86f9da6	b6f7e83b3793f746	00402402271034201040210103007310
Condition 3	Gram 120	ca3bd2cf31208076	7f7f7f7f7f7f7fb6	4624d2271d3420104b2fd1058675fd45
(Algorithm 16)		9338bec86f9da63f	f7e83b3793f746ff	10214221140120101021410000101410
		0e9eb1a896077e93	7f7f7f7f7f7f7f7f	007f06d63e3545f6b7c4b50d255b6663
	Grain 128a	5b21de8700f3ef44	29b03ff3e82cda8b	00110000000010100101000020000000
	Grain 120a	9eb1a896077e935b	7f7f7f7f7f7f7f29	7f06d63e3545f6b7c4b50d255b6663ea
		21de8700f3ef4462	b03ff3e82cda8bfc	110000000010100101000000000000000000000
	Grain 128	d3ea84c99a8b1354	ed52bf1b25ff0ff0	0001590b803ff3c9972d96481a6e8ad4
		71d8c320b870e109	fff0ff0f4ed8f575	
Theorem 8		a84c99a8b135471d	2bf1b25 <mark>ff0ff0fff</mark>	1590b803ff3c9972d96481a6e8ad48ee
Condition 1		8c320b870e109120	OffOf4ed8f575dac	
(Algorithm 19)	Grain 128a	9ee02802ccf920e6	ab24f8ab82ff0ff0	00082e1cbbb25fa325518665a17f2efc
		868a8aa46113a406	fff0ff0fd32dc4e9	
		02802ccf920e6868	4f8ab82ff0ff0fff	82e1cbbb25fa325518665a17f2efc2eb
		a8aa46113a40681d 8d89931ae1e13215	0ff0fd32dc4e9473 f18ccfbf3cff0ff0	
			ff0ff0fde5af2b58	000e612c620ae1765ded57a835b713ac
	Grain 128	77bba20640c193a1 9931ae1e1321577b	ccfbf3cff0ff0ff0	
Theorem 8		ba20640c193a13b8	ff0fde5af2b58811	e612c620ae1765ded57a835b713ace4a
Condition 2		626262808f0ca24c	c4ca6f9535ff0ff0	
Condition 2		cc517bb93fb5c3cb	ff0ff0fdfe92e568	0003f5a6d1b7f615dfb32e34cea7cc4a
	Grain 128a	262808f0ca24ccc5	a6f9535 ff0ff0ff0	
		17bb93fb5c3cb22f	ff0fdfe92e568a4f	3f5a6d1b7f615dfb32e34cea7cc4a106
		416ddd14b4c096cb	80ff0ff0ff0ff0f	
		0181ae8830ada69d	d7ef096c7a8700a3	00076a8e9def620dfe704b264988da02
	Grain 128	ddd14b4c096cb018	f0ff0fff0ff0fd7e	
Theorem 8		1ae8830ada69d3b6	f096c7a8700a318f	76a8e9def620dfe704b264988da02cc0
Condition 3		724d58601b44396d	84ff0ff0ff0ff0f	
	G . 100	60e83723a65bfa7b	6c25a1d79af2a85c	0008ab9f20d8a418932150d3ba97400e
	Grain 128a	d58601b44396d60e	f0ff0fff0ff0f6c2	
		83723a65bfa7b973	5a1d79af2a85c626	8ab9f20d8a418932150d3ba97400ebd5

	Grain 128	97516dced374a089	3aff0ff0ff0ff0f1	000a8e820bedfb8cd9d651d8221f3b34
		88ce86acaa2ff1a4	12b72427d44b92f1	000a6e620bed1b6cd9d651d622115b34
	Grain 128	16dced374a08988c	f0ff0ff0ff0f112b	a8e820bedfb8cd9d651d8221f3b34846
Theorem 8		e86acaa2ff1a4399	72427d44b92f1bba	a8e820bed1b8cd9d651d822113b34846
Condition 4		a29ae6fb8b23f747	4bff0ff0ff0ff0fc	000cd469723847db72f6f856e51f9d96
	Grain 128a	f3723e59df0d3a8e	92ace3a64691e733	00000469725647007216165665119096
	Grain 120a	ae6fb8b23f747f37	f0ff0ff0ff0fc92a	cd469723847db72f6f856e51f9d96b38
		23e59df0d3a8eabb	ce3a64691e733a54	Cd469/2384/db/2161856e5119d96b38
		930cb0086c93293e	f767352c26395e8a	0000000a44dcae9a68c7b66389e440eb
	Grain 128	9722a710e28a1375	ffffb0ffff80fffb	00000004440cae9a06c7b06569e440eb
Theorem 9		086c93293e9722a7	2c26395e8affffb0	0a44dcae9a68c7b66389e440ebbdf198
Condition 1		10e28a1375ec5696	ffff80fffbb6fcf2	0a44dcae9a68c7b66389e440ebbd1198
(Algorithm 20)	Grain 128a	270f72277e7540cf	c7df3ee9c792f5d5	000000fd8bbdb3d3a8c885704f43a022
(Algorithm 20)		9a58fa4426e28aae	ffffd0ffff00fff1	0000001400004054545454522
		277e7540cf9a58fa	e9c792f5d5 <mark>ffffd0</mark>	fd8bbdb3d3a8c885704f43a022557a89
		4426e28aaebc06e1	ffff00fff13204c5	1400040340400007041404022007400
		895bea372ffe4e76	a8147ffff80fffffe	0000004b5394f9baf0f6a6ff3d921542
	Grain 128	e84113dd18afa6b9	0fff2cd80e83e74	0000004000041000110001100021042
	Gram 120	372ffe4e76e84113	fff80fffff0fff2c	4b5394f9baf0f6a6ff3d9215422cbdbb
Theorem 9		dd18afa6b9fb5cef	d80e83e74e3d134e	450054155a1010a0110a5210422C5ab5
Condition 2		70a2fecddbc94115	9e132ffff50ffffd	0000002839a6bec77a007d3d12b4d597
	Grain 128a	017b571df0854817	0fff5cf89b04484d	00000020034050011400140412544051
	314III 1204	cddbc94115017b57	fff50ffffd0fff5c	2839a6bec77a007d3d12b4d597c9041b
		1df08548178142d5	f89b04484d01fb4b	20004050011400140412514051050415

Propagation of Single Bit Differentials

Parameters. In Theorem 4, let $q_2=96$ for Grain $v1^8$ and $q_2=160$ for Grain-128 and Grain-128a⁹.

Table 9: Propagation of a Single Bit Differential in the case of Grain v1's LFSR.

Flipped Bit Position	Number of Identical Keystream Bits	Positions of Identical
15	50	0-11, 13-17, 19-30, 33-35, 37, 38, 40-46, 48, 51, 53, 55, 58, 61-63, 71
31	59	0-5, 7-23, 25-27, 29-33, 35-41, 43-46, 49-51, 54, 56-59, 61, 62, 64, 67, 69, 74, 77, 79, 87
47	63	0, 2-21, 23, 24, 26-39, 41, 42, 45-49, 51-53, 55-57, 59, 60, 62, 65, 66, 70, 73-75, 77, 78, 80, 95
63	63	0-16, 18-27, 29-34, 36, 37, 39, 40, 42-45, 47-52, 54, 55, 58, 61-63, 65, 68, 69, 72, 73, 76, 81, 90, 91, 94
79	74	0-14, 16-32, 34-43, 45-50, 52, 53, 55, 56, 58-61, 63-68, 70, 71, 74, 77-79, 81, 84, 85, 88, 89, 92

 $[\]frac{8}{9}$ as in Theorem 1 $\frac{9}{9}$ as in Theorem 2, respectively Theorem 3

Table 10: Propagation of a Single Bit Differential in the case of Grain v1's NFSR.

Flipped Bit Position	Number of Identical Keystream Bits	Positions of Identical Keystream Bits
15	23	0-4, 6-10, 12, 15, 16, 19, 20-22, 26, 27, 28, 29, 31, 33
31	32	1-19, 22-26, 28, 31, 32, 35, 36, 42, 43, 49
47	32	0-15, 17, 18, 20-25, 28, 29, 30, 32, 33, 35, 40, 41, 42
63	25	1-6, 8-16, 19, 21-23, 26, 29-31, 33, 39
79	41	0-15, 17-22, 24-32, 35, 37-39, 42, 45-47, 49, 55

Table 11: Propagation of a Single Bit Differential in the case of Grain 128's LFSR.

Flipped Bit Position	Number of Identical Keystream Bits	Positions of Identical
31	92	0-10, 12-17, 19-22, 24-56, 58, 60-63, 65, 67-69, 71, 72, 74-79, 81-85, 87, 88, 90, 93, 94, 97, 100, 103, 109, 116, 119, 126, 129, 135, 141, 148
55	97	0-12, 14-34, 36-41, 43-46, 48, 49, 51, 53-65, 67-80, 86, 87, 89, 91-93, 95, 96, 100-102, 105-107, 109, 111, 112, 118, 121, 127, 133, 153, 159
79	101	1-18, 20-36, 38-41, 43, 45-57, 60-65, 67-70, 72, 73, 75, 78-88, 92-94, 96-99, 101, 103, 104, 110, 111, 113, 115, 119, 120, 125, 126, 130, 131, 133, 145, 151, 157
103	86	0-7, 9, 11-23, 25-39, 41, 44-54, 58-60, 62-65, 67, 69, 70, 73, 76-81, 84-86, 91, 92, 94, 96, 97, 99, 105, 109, 110-112, 116, 117, 123, 128, 143, 144
127	108	0-31, 33, 35-47, 49-63, 65, 68-78, 82-84, 86-89, 91, 93, 94, 97, 100-105, 108-110, 115, 116, 118, 120, 121, 123, 129, 133-136, 140, 141, 147, 152

Table 12: Propagation of a Single Bit Differential in the case of Grain 128's NFSR.

Flipped Bit Position	Number of Identical Keystream Bits	Positions of Identical
31	52	0-15, 17, 18, 20-28, 30-36, 39-42, 45, 48-50, 54-56, 58, 62, 63, 65, 66, 71, 72
55	65	0-9, 11-18, 20-39, 41, 42, 44, 45, 47, 49-52, 55-60, 63-66, 69, 73, 74, 82, 87, 89, 95, 96
79	55	0-5, 7-14, 16-33, 35-42, 46, 48, 49, 52, 54, 55, 58, 60, 61, 63, 65, 68, 71, 74, 80
103	63	0-7, 9-13, 15-29, 31-38, 41-44, 47-50, 53-57, 59-61, 63-66, 70, 73, 79, 85, 87, 92, 98
127	87	0-31, 33-37, 39-53, 55-62, 65-68, 71-74, 77-81, 83-85, 87-90, 94, 97, 103, 109, 111, 116, 122

Table 13: Propagation of a Single Bit Differential in the case of Grain 128a's LFSR.

Flipped Bit Position	Number of Identical Keystream Bits	Positions of Identical Keystream Bits
31	83	0-10, 12-17, 19-22, 24-57, 60-63, 67-69, 71, 72, 74-79, 81-85, 87-89, 93, 94, 109, 111, 115
55	94	0-12, 14-34, 36-41, 43-46, 48-50, 53-65, 67-81, 86, 87, 91-93, 95, 96, 100-102, 105-108, 111, 112, 118, 133, 139
79	100	1-18, 20-36, 38-42, 45-57, 60-65, 67-70, 72-74, 78-89, 92-94, 96-100, 103, 104, 110, 111, 115, 119, 120, 125, 126, 130-132, 136, 157
103	93	0-8, 11-23, 25-40, 44-55, 58-60, 62-66, 69, 70, 72, 76-81, 84-87, 91, 92, 94, 96-98, 102, 109, 110-113, 116, 117, 123, 124, 128, 134, 143, 144, 149, 156
127	113	0-32, 35-47, 49-64, 68-79, 82-84, 86-90, 93, 94, 96, 100-105, 108-111, 115, 116, 118, 120-122, 126, 133-137, 140, 141, 147, 148, 152, 158

Table 14: Propagation of a Single Bit Differential in the case of Grain 128a's NFSR.

Flipped Bit Position	Number of Identical Keystream Bits	Positions of Identical
31	44	$0\text{-}15,\ 17,\ 18,\ 20\text{-}28,\ 30\text{-}36,\ 41,\ 49,\ 50,\ 54\text{-}56,\ 58,\ 63,\ 65,\ 66$
55	55	0-9, 11-18, 20-39, 41, 42, 44, 45, 47, 49-52, 55-60, 65, 74
79	48	0-5, 7-14, 16-33, 35-39, 41, 46, 49, 52, 54, 55, 58, 60, 61, 63, 68
103	43	0-7, 9-13, 15-29, 31-38, 42, 53, 55-57, 59, 61
127	67	0-31, 33-37, 39-53, 55-62, 66, 77, 79-81, 83, 85

F Algorithms

Algorithm 16. Constructing Key-IV pairs that generate β bit shifted keystream

```
Output: Key-IV pairs (K', IV') and (K, IV)
 1 Set s \leftarrow 0
 2 while s = 0 do
         Choose K \in_R \{0,1\}^n and V_2 \in_R \{0,1\}^{d_2}
         Set value \leftarrow \mathtt{Update}_1() and IV \leftarrow LSB_{\alpha-\beta+d_1}(P) ||V_2||
         Run KSA<sup>-1</sup>(K||LSB_{d_1}(P_0)||value||V_2) routine for \beta - d_1 clocks and produce state
 5
           S' = (K'||V_1'||value||V_2'), where |V_1'| = \beta and |V_2'| = d_2 - \beta + d_1
         if V_1' = P_0 then
              Set S \leftarrow K' || P_0 || value || V_2' and output \leftarrow \texttt{Pair}_3(d_1, S)
 7
              if output \neq \bot then
 8
                    Set s \leftarrow 1
                    return (K, IV) and output
10
              end
11
         end
12
13 end
```

Algorithm 17. Update₂(start, stop)

```
Input: Indexes start and stop
Output: Variable value

1 Set value \leftarrow NULL
2 for i = start to stop do
3 | Choose C_i \in_R \{0, 1\}^{\delta}
4 | Update value \leftarrow value ||C_i||P_i
5 end
6 return value
```

Algorithm 18. Update₃ $(value_1, value_2)$

```
Input: Variables value_1 and value_2
Output: Variable value

1 for i = t to c - 1 do
2 | Choose B_i \in_R \{0, 1\}^{\delta}
3 | Update value_1 \leftarrow value_1 \|B_i\|P_i and value_2 \leftarrow value_2 \|B_i
4 end
5 Set value \leftarrow value_1 \|value_2
6 return value
```

Algorithm 19. Constructing Key-IV pairs that generate $\beta - \gamma + (\beta + \delta)(c - t)$ bit shifted keystream

```
Output: Kev-IV pairs (K', IV') and (K, IV)
 1 Set s \leftarrow 0
 2 while s = 0 do
          Choose K \in_R \{0,1\}^n, V_1 \in_R \{0,1\}^{d_1-\beta+\gamma-(\beta+\delta)(c-t)} and V_2 \in_R \{0,1\}^{d_2}
          Set value_1 \leftarrow P_0 \| \texttt{Update}_2(0, c-t-2) \| C_{c-t-1} \| MSB_{\beta-\gamma}(P_{c-t}) \text{ and } value_2 \leftarrow value_1
 5
          Update value_1 \leftarrow value_1 || P_0
          for i = 1 to t - 1 do
 6
               Choose B_i \in_R \{0,1\}^{\delta-\beta+\gamma}
 7
               Update value_1 \leftarrow value_1 ||B_i||MSB_{\beta-\gamma}(P_{c-t+i})||P_i| and value_2 \leftarrow value_2 ||B_i||MSB_{\beta-\gamma}(P_{c-t+i})
 8
 9
          Set value_1 || value_2 \leftarrow \texttt{Update}_3(value_1, value_2) \text{ and } IV \leftarrow V_1 || value_2 || V_2
10
          Run KSA<sup>-1</sup>(K||V_1||value_1||V_2) routine for \beta - \gamma + (\beta + \delta)(c - t) clocks and produce state
11
            S' = (K'||V_1'||value_1||V_2'), where |V_1'| = d_1 and |V_2'| = d_2 - \beta + \gamma - (\beta + \delta)(c - t)
          Set IV' \leftarrow V_1' ||value_1||V_2'
12
          if (K', IV') produces all zero keystream bits in the first \beta - \gamma + (\beta + \delta)(c - t) PRGA rounds then
13
14
               return (K, IV) and (K', IV')
15
          end
16
17 end
```

Algorithm 20. Constructing Key-IV pairs that generate $\delta - \beta + \gamma + \beta(c - t + 1) + \delta(c - t)$ bit shifted keystream

```
Output: Key-IV pairs (K', IV') and (K, IV)
     1 Set s \leftarrow 0
               while s = 0 do
                                    Choose K \in_R \{0,1\}^n, V_1 \in_R \{0,1\}^{d_1-\delta+\beta-\gamma-\beta(c-t+1)-\delta(c-t)}, V_2 \in_R \{0,1\}^{d_2} \text{ and } C_{c-t+1} \in_R \{0,1\}^{\delta-\beta+\gamma-\beta(c-t+1)-\delta(c-t)}, V_3 \in_R \{0,1\}^{d_3-\delta+\beta-\gamma-\beta(c-t+1)-\delta(c-t)}, V_4 \in_R \{0,1\}^{d_3-\delta+\beta-\gamma-\beta(c-t+1)-\delta(c-t)}, V_5 \in_R \{0,1\}^{d_3-\delta+\beta-\gamma-\beta(c-t+1)-\delta(c-t)}, V_6 \in_R \{0,1\}^{d_3-\delta+\beta-\gamma-\beta(c-t+1)-\delta(c-t)}, V_7 \in_R \{0,1\}^{d_3-\delta+\beta-\gamma-\beta(c-t+1)-\delta(c-t)}, V_8 \in_R \{0,1\}
                                    Set value_1 \leftarrow P_0 \| \text{Update}_2(1, c - t) \| C_{c-t+1} \text{ and } value_2 \leftarrow value_1
                                    Update value_1 \leftarrow value_1 || P_0
    5
     6
                                    for i = 1 to t - 1 do
                                                        Choose B_i \in_R \{0,1\}^{\delta-\beta+\gamma}
     7
                                                        Update value_1 = value_1 ||LSB_{\beta-\gamma}(P_{c-t+i})||B_i||P_i and value_2 = value_2 ||LSB_{\beta-\gamma}(P_{c-t+i})||B_i||P_i
     8
10
                                    Set value_1 || value_2 \leftarrow Update_3(value_1, value_2) and IV \leftarrow V_1 || value_2 || V_2
                                     Run KSA<sup>-1</sup>(K||V_1||value_1||V_2) routine for \delta - \beta + \gamma + \beta(c-t+1) + \delta(c-t) clocks and produce state
11
                                          S' = (K'||V_1'||value_1||V_2'), where |V_1'| = d_1 and |V_2'| = d_2 - \delta + \beta - \gamma - \beta(c - t + 1) - \delta(c - t)
                                    Set IV' \leftarrow V_1' ||value_1||V_2'
12
                                    if (K', IV')
13
                                           produces all zero keystream bits in the first \delta - \beta + \gamma + \beta(c - t + 1) + \delta(c - t) PRGA rounds then
                                                        Set s \leftarrow 1
14
                                                        return (K, IV) and (K', IV')
15
                                    end
16
17 end
```