New Configurations of Grain Ciphers: Security Against Slide Attacks

Diana Maimuts ${ }^{1}$ and George Teşeleanu ${ }^{1,3}$
${ }^{1}$ Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania
diana.maimut@dcti.ro
${ }^{2}$ Department of Computer Science
"Al.I.Cuza" University of Iaşi 700506 Iaşi, Romania,
george.teseleanu@info.uaic.ro

Abstract

STREAM brought to the attention of the cryptographic community a number of stream ciphers including Grain v0 and its revised version Grain v1. The latter was selected as a finalist of the competition's hardware-based portfolio. The Grain family includes two more instantiations, namely Grain 128 and Grain 128a. The scope our paper is to provide an insight on how to obtain secure configurations of the Grain family of stream ciphers. We propose different variants for Grain and analyze their security with respect to slide attacks. More precisely, as various attacks against initialization algorithms of Grain were discussed in the literature, we study the security impact of various parameters which may influence the LFSR's initialization scheme.

1 Introduction

The Grain family of stream ciphers consists of four instantiations Grain v0 [12], Grain v1 [13], Grain128 [11] and Grain-128a [18]. Grain v1 is a finalist of the hardware-based eSTREAM portfolio [1], a competition for choosing both hardware and software secure and efficient stream ciphers.

The design of the Grain family of ciphers includes an LFSR. The loading of the LFSR consists of an initialization vector (IV) and a certain string of bits P whose lengths and structures depend on the cipher's version. Following the terminology used in [6], we consider the IV as being padded with P. Thus, throughout this paper, we use the term padding to denote P. Note that Grain v1 and Grain-128 make use of periodic IV padding and Grain-128a uses aperiodic IV padding.

A series of attacks against the Grain family padding techniques appeared in the literature [$5,6,8,16]$ during the last decade. In the light of these attacks, our paper proposes the first security analysis ${ }^{3}$ of generic IV padding schemes for Grain ciphers in the periodic as well as the aperiodic cases.

In this context, the concerns that arise are closely related to the security impact of various parameters of the padding, such as the position and structure of the padding block. Moreover, we consider both compact and fragmented padding blocks in our study. We refer to the original padding schemes of the Grain ciphers as being compact (i.e. a single padding block is used). We denote as fragmented padding the division of the padding block into smaller blocks of equal length ${ }^{4}$.

By examining the structure of the padding and analyzing its compact and especially fragmented versions, we actually study the idea of extending the key's life. The latter could be achieved by introducing a variable padding according to suitable constraints. Hence, the general question that

[^0]arises is the following: what is to be loaded in the LFSRs of Grain ciphers in order to obtain secure settings?. Note that our study is preliminary, taking into account only slide attacks. We consider other types of attacks as future work.

We stress that finding better attacks than the ones already presented in the literature is outside the scope of our paper, as our main goal is to establish sound personalized versions of the Grain cipher. Hence, our work does not have any immediate implication towards breaking any cipher of the Grain family. Nevertheless, our observations become meaningful either in the lightweight cryptography scenario or in the case of an enhanced security context (e.g. secure government applications).

Lightweight cryptography [17] lies at the crossroad between cryptography, computer science and electrical engineering. Thus, trade-offs between performance, security and cost must be considered. Given such constraints and the fact that embedded devices operate in hostile environments, there is an increasing need for new and varied security solutions, mainly constructed in view of the current ubiquitous computing tendency. As the Grain family lies precisely within the lightweight primitives' category, we believe that the study presented in the current paper is of interest for the industry and, especially, government organizations.

When dealing with security devices for which the transmission and processing of the IV is neither so costly nor hard to handle (e.g. the corresponding communication protocols easily allow the transmission), shrinking the padding up to complete removal might be considered. More precisely, we suggest the use of a longer IV in such a context in order to increase security. Moreover, many Graintype configurations could be obtained if our proposed padding schemes are used. Such configurations could be considered as personalizations of the main algorithm and, if the associated parameters are kept secret, the key's life can be extended.

Structure of the Paper. We introduce notations and give a quick reminder of the Grain family technical specifications in Section 2. Section 3 describes generic attacks against the Grain ciphers. In Section 4 we discuss the core results of our paper: a security analysis of IV padding schemes for Grain ciphers. We conclude and mention various interesting ideas as future work in Section 5. We recall Grain v1 in Appendix A, Grain-128 in Appendix B and Grain-128a in Appendix C. We do not recall the corresponding parameters of Grain v0, even though the results presented in the current paper still hold in that case. In Appendices D and E we provide test values for our proposed algorithms.

2 Preliminaries

Notations. During the following, capital letters will denote padding blocks and small letters will refer to certain bits of the padding. We use the big-endian convention. Hexadecimal strings are marked by the prefix 0 x .

$M S B_{\ell}(Q)$	stands for the most significant ℓ bits of Q	
$L S B_{\ell}(Q)$	stands for the least significant ℓ bits of Q	
$M I D_{\left[\ell_{1}, \ell_{2}\right]}$	stands for the bits of Q between position ℓ_{1} and ℓ_{2}	
$x \\| y$	represents the string obtained by concatenating y to x	
\in_{R}	selecting an element uniformly at random	
$\|x\|$	the bit-length of x	
b^{t}	stands for t consecutive bits of b	
$N U L L$	stands for an empty variable	

2.1 Grain Family

Grain is a hardware-oriented stream cipher initially proposed by Hell, Johansson and Meier [12] and whose main building blocks are an n bit linear feedback shift register (LFSR), an n bit non-linear feedback shift register (NFSR) and an output function. Because of a weakness in the output function, a key recovery attack [7] and a distinguishing attack [14] on Grain v0 were proposed. To solve these security issues, Grain v1 [13] was introduced. Also, Grain 128 [11] was proposed as a variant of Grain v1. Grain 128 uses 128 -bit keys instead of 80 -bit keys. Grain 128a [18] was designed to address cryptanalysis results $[4,9,10,15,19]$ against the previous version. Grain 128a offers optional authentication. We stress that, in this paper, we do not address the authentication feature of Grain 128a.

Let $X_{i}=\left[x_{i}, x_{i+1}, \ldots, x_{i+n-1}\right]$ denote the state of the NFSR at time i and let $g(x)$ be the nonlinear feedback polynomial of the NFSR. $g\left(X_{i}\right)$ represents the corresponding update function of the NFSR. In the case of the LFSR, let $Y_{i}=\left[y_{i}, y_{i+1}, \ldots, y_{i+n-1}\right]$ be its state, $f(x)$ the linear feedback polynomial and $f\left(Y_{i}\right)$ the corresponding update function. The filter function $h\left(X_{i}, Y_{i}\right)$ takes inputs from both the states X_{i} and Y_{i}.

We shortly describe the generic algorithms KLA, KSA and PRGA below. As KSA is invertible, a state $S_{i}=X_{i} \| Y_{i}$ can be rolled back one clock to S_{i-1}. We further refer to the transition function from S_{i} to S_{i-1} as KSA^{-1}.

Figure 1: Output Generator and Key Initialization of Grain ciphers

Key Loading Algorithm (KLA). The Grain family uses an n-bit key K, an m-bit initialization vector $I V$ with $m<n$ and some fixed padding $P \in\{0,1\}^{\alpha}$, where $\alpha=n-m$. The key is loaded in the NFSR, while the pair $(I V, P)$ is loaded in the LFSR using a one-to-one function further denoted as $\operatorname{Load}_{I V}(I V, P)$.

Key Scheduling Algorithm (KSA). After running KLA, the output ${ }^{5} z_{i}$ is XOR-ed to both the LFSR and NFSR update functions, i.e., during one clock the LFSR and the NFSR bits are updated as $y_{i+n}=z_{i}+f\left(Y_{i}\right), x_{i+n}=y_{i}+z_{i}+g\left(X_{i}\right)$.

[^1]Pseudorandom Keystream Generation Algorithm (PRGA). After performing KSA routine for $2 n$ clocks, z_{i} is no longer XOR-ed to the LFSR and NFSR update functions, but it is used as the output keystream bit. During this phase, the LFSR and NFSR are updated as $y_{i+n}=f\left(Y_{i}\right)$, $x_{i+n}=y_{i}+g\left(X_{i}\right)$.

Figure 1 depicts an overview of KSA and PRGA. Common features are depicted in black. In the case of Grain v1, the pseudorandom keystream generation algorithm does not include the green path. The red paths correspond to the key scheduling algorithm.

The corresponding parameters of Grain v1 are described in Appendix A, while Grain 128 is tackled in Appendix B and Grain 128a in Appendix C. The appendices also include the Load ${ }_{\text {IV }}$ functions and the KSA^{-1} algorithms for all versions.

Security Model. In the Chosen IV - Related Key setting (according to [6, Section 2.1]), an adversary is able to query an encryption oracle with access to the key K in order to obtain valid ciphertexts. For each query i, the adversary can choose the oracle's parameters: an initialization vector $I V_{i}$, a function $\mathcal{F}_{i}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and a message m_{i}. The oracle encrypts m_{i} using the Key-IV pair $\left(\mathcal{F}_{i}(K), I V_{i}\right)$. The adversary's task is to distinguish the keystream output from a random stream.

Assumptions. Based on the results of the experiments we conducted, we further assume that the output of KSA, KSA^{-1} and PRGA is independently uniformly distributed. More precisely, all previous algorithms were statistically tested applying the NIST Test Suite [2]. During our experiments we used the following setup:

1. X_{i} is a randomly generated n-bit state using the GMP library [3];
2. $Y_{i}^{\prime \prime}$ is either $0^{2 \alpha}$ or $1^{2 \alpha}$;
3. $Y_{i}=Y_{i}^{\prime} \| Y_{i}^{\prime \prime}$, where Y_{i}^{\prime} is a randomly generated $(m-\alpha)$-bit state using the GMP library.

3 Generic Grain Attacks

As already mentioned in Section 2, the Grain family uses an NFSR and a nonlinear filter (which takes input from both shift registers) to introduce nonlinearity. If after the initialization process, the LFSR is in an all zero state, only the NFSR is actively participating to the output. As already shown in the literature, NFSRs are vulnerable to distinguishing attacks [7,15, 20].

Weak Key-IV pair. If the LFSR reaches the all zero state after $2 n$ clocks we say that the pair $(K, I V)$ is a weak Key-IV pair. An algorithm which produces weak Key-IV pairs for Grain v1 is presented in [20]. We refer the reader to Algorithm 1 for a generalization of this algorithm to any of the Grain ciphers.

Given a state V, we define it as valid if there exists an $I V \in\{0,1\}^{m}$ such that $\operatorname{Load}_{I V}(I V, P)=$ V, where P is the fixed padding. We further use a function $\operatorname{Extract}_{I V}(V)$ which is the inverse of $\operatorname{Load}_{I V}(\cdot, P)$. The probability to obtain a weak Key-IV pair by running Algorithm 1 is $1 / 2^{\alpha}$.

A refined version of the attack from [20] is discussed in [5] and generalized in Algorithm 2. The authors of [5] give precise differences between keystreams generated using the output of Algorithm 2 for Grain v1 (see Theorem 1), Grain-128 (see Theorem 2) and Grain-128a (see Theorem 3).
Theorem 1. For Grain v1, two initial states S_{0} and $S_{0, \Delta}$ which differ only in the $79^{\text {th }}$ position of the LFSR, produce identical output bits in 75 specific positions among the initial 96 key stream bits obtained during the PRGA.

```
Algorithm 1. Generic Weak Key-IV Attack
    Output: A Key-IV pair \(\left(K^{\prime}, I V^{\prime}\right)\)
    Set \(s \leftarrow 0\)
    while \(s=0\) do
        Choose \(K \in_{R}\{0,1\}^{n}\) and let \(V \in\{0,1\}^{n}\) be the zero LFSR state \((0, \ldots, 0)\)
        Run \(\mathrm{KSA}^{-1}(K \| V)\) routine for \(2 n\) clocks and produce state \(S^{\prime}=K^{\prime} \| V^{\prime}\)
        if \(V^{\prime}\) is valid then
            Set \(s \leftarrow 1\) and \(I V^{\prime} \leftarrow \operatorname{Extract}_{I V}\left(V^{\prime}\right)\)
            return \(\left(K^{\prime}, I V^{\prime}\right)\)
        end
    end
```

Remark 1. More precisely, the 75 positions are the following ones:

$$
k \in[0,95] \backslash\{15,33,44,51,54,57,62,69,72,73,75,76,80,82,83,87,90,91,93-95\} .
$$

Theorem 2. For Grain 128, two initial states S_{0} and $S_{0, \Delta}$ which differ only in the $127^{\text {th }}$ position of the LFSR, produce identical output bits in 112 specific positions among the initial 160 key stream bits obtained during the PRGA.

Remark 2. More precisely, the 112 positions are the following ones:

$$
\begin{aligned}
k \in[0,159] \backslash\{ & \{32,34,48,64,66,67,79-81,85,90,92,95,96,98,99,106,107,112,114,117,119 \\
& 122,124-126,128,130-132,138,139,142-146,148-151,153-159\} .
\end{aligned}
$$

Theorem 3. For Grain 128a, two initial states S_{0} and $S_{0, \Delta}$ which differ only in the $127^{\text {th }}$ position of the LFSR, produce identical output bits in 115 specific positions among the initial 160 key stream bits obtained during the PRGA.

Remark 3. More precisely, the 115 positions are the following ones:

$$
\begin{aligned}
k \in[0,159] \backslash\{ & 33,34,48,65-67,80,81,85,91,92,95,97-99,106,107,112,114,117,119, \\
& 123-125,127-132,138,139,142-146,149-151,154-157,159\} .
\end{aligned}
$$

We further present an algorithm that checks which keystream positions produced by the states S and S_{Δ} are identical (introduced in Algorithm 2). Note that if we run Algorithm 3 we obtain less positions than claimed in Theorems 1 to 3, as shown in Appendix E. This is due to the fact that Algorithm 3 is prone to producing internal collisions and, thus, eliminate certain positions that are identical in both keystreams. Note that Theorem 4 is a refined version of Remarks 1 to 3 in the sense that it represents an automatic tool for finding identical keystream positions.

Modified Pseudorandom Keystream Generation Algorithm (PRGA'). To obtain our modified PRGA we replace $+(\mathrm{XOR})$ and $\cdot(\mathrm{AND})$ operations in the original PRGA with \mid (OR) operations.

Theorem 4. Let r be a position of Grain's internal state, q_{1} the number of desired identical positions in the keystream and q_{2} the maximum number of search trials. Then, Algorithm 3 finds at most q_{1} identical positions in a maximum of q_{2} trials.

```
Algorithm 2. Search for Key-IV pairs that produce almost similar initial keystream
    Input: An integer \(r \in\{0,2 n\}\)
    Output: Key-IV pairs \((K, I V)\) and ( \(K^{\prime}, I V^{\prime}\) )
    Set \(s \leftarrow 0\)
    while \(s=0\) do
        Choose \(K \in_{R}\{0,1\}^{n}\) and \(I V \in_{R}\{0,1\}^{m}\)
        Run \(\operatorname{KSA}(K \| I V)\) routine for \(2 n\) clocks to obtain an initial state \(S_{0} \in\{0,1\}^{2 n}\)
        Construct \(S_{0, \Delta}\) from \(S_{0}\) by flipping the bit on position \(r\)
        Run \(\mathrm{KSA}^{-1}\left(S_{0, \Delta}\right)\) routine for \(2 n\) clocks and produce state \(S^{\prime}=K^{\prime} \| V^{\prime}\)
        if \(V^{\prime}\) is valid then
            Set \(s \leftarrow 1\) and \(I V^{\prime} \leftarrow \operatorname{Extract}_{I V}\left(V^{\prime}\right)\)
            return \((K, I V)\) and \(\left(K^{\prime}, I V^{\prime}\right)\)
        end
    end
```

Proof (sketch). We note that in Algorithm 3 the bit b_{r} on position r is set. If b_{r} is taken into consideration while computing the output bit of PRGA then the output of PRGA' is also set due to the replacement of the original operations (+ and \cdot) with | operations. The same argument is valid if a bit of Grain's internal state is influenced by b_{r}.

The above statements remain true for each internal state bit that becomes set during the execution of Algorithm 3.

Remark 4. Experimentally, we observed that if we run Algorithm 3 with at least two bits $b_{r_{1}}, b_{r_{2}}, \ldots$ flipped while constructing S_{Δ} the propagation of flipped bits is exponential in $b_{r_{1}}+b_{r_{2}}+\ldots$

```
Algorithm 3. Search for identical keystream position in Grain
    Input: Integers \(r \in\{0,2 n\}\) and \(q_{1}, q_{2}>0\)
    Output: Keystream positions \(\varphi\)
    Set \(s \leftarrow 0\) and \(\varphi \leftarrow \varnothing\)
    Let \(S \in\{0,1\}^{2 n}\) be the zero state \((0, \ldots, 0)\)
    Construct \(S_{\Delta}\) from \(S\) by flipping the bit on position \(r\)
    while \(|\varphi| \leq q_{1}\) and \(s<q_{2}\) do
        Set \(b \leftarrow \operatorname{PRGA}^{\prime}\left(S_{\Delta}\right)\) and update state \(S_{\Delta}\) with the current state
        if \(b=0\) then
            Update \(\varphi \leftarrow \varphi \cup\{s\}\)
        end
        Set \(s \leftarrow s+1\)
    end
    return \(\varphi\)
```


4 Proposed Ideas

4.1 Compact Padding

Attacks that exploit the periodic padding used in Grain 128 where first presented in $[8,16]$ and further improved in [5]. We generalize and simplify these attacks below.

Setup. Let $Y_{1}=\left[y_{0}, \ldots, y_{d_{1}-1}\right]$, where $\left|Y_{1}\right|=d_{1}$, let $Y_{2}=\left[y_{d_{1}+\alpha}, \ldots, y_{n-1}\right]$, where $\left|Y_{2}\right|=d_{2}$ and let $I V=Y_{1} \| Y_{2}$. We define

$$
\operatorname{Load}_{I V}(I V, P)=Y_{1}\|P\| Y_{2} .
$$

Let $S=\left[s_{0}, \ldots, s_{n-1}\right]$ be a state of the LFSR, then we define

$$
\operatorname{Extract}_{I V}(S)=s_{d_{1}}\|\ldots\| s_{d_{1}+\alpha-1}
$$

Padding. Let $\alpha=\lambda \omega$ and $\left|P_{0}\right|=\ldots=\left|P_{\omega-1}\right|=\lambda$, then we define $P=P_{0}\|\ldots\| P_{\omega-1}$. We say that P is a periodic padding of order λ if λ is the smallest integer such that $P_{0}=\ldots=P_{\omega-1}$.

Periodic padding of order α is further referred to as aperiodic padding.
Theorem 5. Let P be a periodic padding of order λ and let $i=1,2$ denote an index. For each (set of) condition(s) presented in Column 2 of Table 1 there exists an attack whose corresponding success probability is presented in Column 3 of Table 1.

	Conditions	Success Probability
1.	$d_{1} \geq \lambda$ or $d_{2} \geq \lambda$	$1 / 2^{\lambda}$
2.	$d_{1} \geq \lambda$ and $d_{2} \geq \lambda$	$1 / 2^{\lambda-1}$
3.	$d_{i}<\lambda$	$1 / 2^{2 \lambda-d_{i}}$

Table 1: Attack Parameters for Theorem 5

Proof. 1. The proof follows directly from Algorithms 5 and 7. Given the assumptions in Section 2, the probability that the first λ keystream bits are zero is $1 / 2^{\lambda}$.
2. The proof is a direct consequence of Item 1.
3. The proof is straightforward in the light of Algorithms 8 and 9. Given the assumptions in Section 2, the probability that $V_{1}^{\prime}=P_{0}$ is $1 / 2^{\lambda-d_{1}}$ and the probability that $V_{2}^{\prime}=P_{\omega-1}$ is $1 / 2^{\lambda-d_{2}}$. Also, the probability that the first λ keystream bits are zero is $1 / 2^{\lambda}$. Since the two events are independent, we obtain the desired success probability.

```
Algorithm 4. Pair \(_{1}(\sigma, S)\)
    Input: Number of clocks \(\sigma\) and a state \(S\).
    Output: A Key-IV pair \(\left(K^{\prime}, I V^{\prime}\right)\) or \(\perp\)
    Run \(\mathrm{KSA}^{-1}(S)\) routine for \(\sigma\) clocks and produce state \(S^{\prime}=\left(K^{\prime}\left\|V_{1}^{\prime}\right\| P\left\|P_{\omega-1}\right\| V_{2}^{\prime}\right)\), where \(\left|V_{1}^{\prime}\right|=d_{1}\) and
        \(\left|V_{2}^{\prime}\right|=d_{2}-\lambda\)
    Set \(I V^{\prime} \leftarrow V_{1}^{\prime}\left\|P_{\omega-1}\right\| V_{2}^{\prime}\)
    if ( \(K^{\prime}, I V^{\prime}\) ) produces all zero keystream bits in the first \(\lambda\) PRGA rounds then
            return \(\left(K^{\prime}, I V^{\prime}\right)\)
    end
    return \(\perp\)
```

```
Algorithm 5. Constructing Key-IV pairs that generate \(\lambda\) bit shifted keystream
    Output: Key-IV pairs ( \(K^{\prime}, I V^{\prime}\) ) and ( \(K, I V\) )
    Set \(s \leftarrow 0\)
    while \(s=0\) do
        Choose \(K \in_{R}\{0,1\}^{n}, V_{1} \in_{R}\{0,1\}^{d_{1}-\lambda}\) and \(V_{2} \in_{R}\{0,1\}^{d_{2}}\)
        Set \(I V \leftarrow V_{1}\left\|P_{0}\right\| V_{2}, S \leftarrow K\left\|V_{1}\right\| P_{0}\|P\| V_{2}\) and output \(\leftarrow \operatorname{Pair}_{1}(\lambda, S)\)
        if output \(\neq \perp\) then
            Set \(s \leftarrow 1\)
            return \((K, I V)\) and output
        end
    end
```

```
Algorithm 6. \(\operatorname{Pair}_{2}(\sigma, S)\)
    Input: Number of clocks \(\sigma\) and a state \(S\).
    Output: A Key-IV pair ( \(K^{\prime}, I V^{\prime}\) ).
    Run \(\operatorname{KSA}(S)\) routine for \(\sigma\) clocks and produce state \(S^{\prime}=\left(K^{\prime}\left\|V_{1}^{\prime}\right\| P_{0}\|P\| V_{2}^{\prime}\right)\), where \(\left|V_{1}^{\prime}\right|=d_{1}-\lambda\) and \(\left|V_{2}^{\prime}\right|=d_{2}\)
    Set \(I V^{\prime} \leftarrow V_{1}^{\prime}\left\|P_{0}\right\| V_{2}^{\prime}\)
    return \(\left(K^{\prime}, I V^{\prime}\right)\)
```

Remark 5. Let $d_{2}=0, \lambda=1, P_{0}=1$. If $\alpha=16$, then the attack described in [16] is the same as the attack we detail in Algorithm 9. The same is true for [8] if $\alpha=32$. Also, if $\alpha=32$ then Algorithm 5 is a simplified version of the attack presented in [5].

Remark 6. To minimize the impact of Theorem 5, one must choose a padding value such that $\lambda=\alpha$ and either $d_{1}<\alpha$ or $d_{2}<\alpha$. In this case, because of the generic attacks described in Section 3, the success probability can not drop below $1 / 2^{\alpha}$. The designers of Grain 128a have chosen $d_{2}=0$ and $P=0 x f f f f f f f e$. In [6], the authors introduce an attack for Grain 128a, which is a special case of the attack we detail in Algorithm 5.

Theorem 6. Let P be an aperiodic padding, $1 \leq \gamma<\alpha / 2$ and $d_{2}<\alpha$. Also, let $i=1,2$ denote an index. If $L S B_{\gamma}(P)=M S B_{\gamma}(P)$, then for each condition presented in Column 2 of Table 2 there exists an attack whose corresponding success probability is presented in Column 3 of Table 2.

	Condition	Success Probability
1.	$d_{i} \geq \alpha-\gamma$	$1 / 2^{\alpha-\gamma}$
2.	$d_{i}<\alpha-\gamma$	$1 / 2^{2 \alpha-2 \gamma-d_{i}}$

Table 2: Attack Parameters for Theorem 6
Proof. 1. The first part of proof follows from Algorithm 5 with the following changes:
(a) λ is replaced by $\alpha-\gamma$;
(b) P_{0} is replaced by $\operatorname{MSB}_{\alpha-\gamma}(P)$;
(c) $P_{\omega-1}$ is replaced by $L S B_{\alpha-\gamma}(P)$.

Therefore, the probability that the first $\alpha-\gamma$ keystream bits are zero is $1 / 2^{\alpha-\gamma}$. Similarly, the second part follows from Algorithm 7.
2. To prove the first part, we use the above changes on Algorithm 8, except that instead of replacing $P_{\omega-1}$ we replace $L S B_{d_{1}}\left(P_{0}\right)$ with $M I D_{\left[\gamma+d_{1}-1, \gamma\right]}(P)$. Thus, we obtain the probability $1 / 2^{\alpha-\gamma}$. Similarly, for the second part we use Algorithm 9.

```
Algorithm 7. Constructing Key-IV pairs that generate \(\lambda\) bit shifted keystream
    Output: Key-IV pairs ( \(K^{\prime}, I V^{\prime}\) ) and ( \(K, I V\) )
    Set \(s \leftarrow 0\)
    while \(s=0\) do
        Choose \(K \in_{R}\{0,1\}^{n}, V_{1} \in_{R}\{0,1\}^{d_{1}}\) and \(V_{2} \in_{R}\{0,1\}^{d_{2}-\lambda}\)
        Set \(I V \leftarrow V_{1}\left\|P_{\omega-1}\right\| V_{2}\)
        if \((K, I V)\) produces all zero keystream bits in the first \(\lambda\) PRGA rounds then
            Set \(s \leftarrow 1\) and \(S \leftarrow\left(K\left\|V_{1}\right\| P\left\|P_{\omega-1}\right\| V_{2}\right)\)
            return \((K, I V)\) and \(\operatorname{Pair}_{2}(\lambda, S)\)
        end
    end
```

```
Algorithm 8. Constructing Key-IV pairs that generate \(\lambda\) bit shifted keystream
    Output: Key-IV pairs ( \(K^{\prime \prime}, I V^{\prime \prime}\) ) and ( \(K, I V\) )
    Set \(s \leftarrow 0\)
    while \(s=0\) do
        Choose \(K \in_{R}\{0,1\}^{n}\) and \(V_{2} \in_{R}\{0,1\}^{d_{2}}\)
        Set \(I V \leftarrow L S B_{d_{1}}\left(P_{0}\right) \| V_{2}\)
        Run \(\mathrm{KSA}^{-1}\left(K\left\|L S B_{d_{1}}\left(P_{0}\right)\right\| P \| V_{2}\right)\) routine for \(\lambda-d_{1}\) clocks and produce state \(S^{\prime}=\left(K^{\prime}\left\|V_{1}^{\prime}\right\| P \| V_{2}^{\prime}\right)\), where
            \(\left|V_{1}^{\prime}\right|=\lambda\) and \(\left|V_{2}^{\prime}\right|=d_{2}-\lambda+d_{1}\)
        if \(V_{1}^{\prime}=p_{0}\) then
            Set \(S \leftarrow K^{\prime}\left\|P_{0}\right\| P \| V_{2}^{\prime}\) and output \(\leftarrow \operatorname{Pair}_{1}\left(d_{1}, S\right)\)
            if output \(\neq \perp\) then
                Set \(s \leftarrow 1\)
                    return \((K, I V)\) and output
            end
        end
    end
```

Remark 7. To prevent the attacks presented in the proof of Theorem 6, the padding must be chosen such that $\operatorname{MSB}_{\gamma}(P) \neq L S B_{\gamma}(P), \forall 0 \leq \gamma<\alpha / 2$. Grain 128a uses such a padding $P=0 x f f f f f f f e$. Another example was suggested in [8] to counter their proposed attacks: $P=0 \times 00000001$.

Constraints. Taking into account all the previous remarks, we may conclude that good ${ }^{6}$ compact padding schemes are aperiodic and, in particular, satisfy $\operatorname{MSB}_{\gamma}(P) \neq L S B_{\gamma}(P), \forall 0 \leq \gamma<\alpha / 2$. Also, another constraint is the position of the padding, i.e. $d_{1}<\alpha$ or $d_{2}<\alpha$ must be satisfied.

4.2 Fragmented Padding

Setup. Let $\alpha=c \cdot \beta$, where $c>1$. Also, let $I V=B_{0}\left\|B_{1}\right\| \ldots \| B_{c}$ and $P=P_{0}\left\|P_{1}\right\| \ldots \| P_{c-1}$, where $\left|B_{0}\right|=d_{1},\left|P_{0}\right|=\ldots=\left|P_{c-1}\right|=\left|B_{1}\right|=\ldots=\left|B_{c-1}\right|=\beta$ and $\left|B_{c}\right|=d_{2}$. In this case, we define

$$
\operatorname{Load}_{I V}(I V, P)=B_{0}\left\|P_{0}\right\| B_{1}\left\|P_{1}\right\| \ldots\left\|B_{c-1}\right\| P_{c-1} \| B_{c}
$$

Let $S=S_{0}\|\ldots\| S_{2 c}$ be a state of the LFSR, such that $\left|S_{0}\right|=d_{1},\left|S_{1}\right|=\ldots=\left|S_{2 c-1}\right|=\beta$ and $\left|S_{2 c}\right|=d_{2}$. Then we define

$$
\operatorname{Extract}_{I V}(S)=S_{0}\left\|S_{2}\right\| \ldots \| S_{2 c}
$$

[^2]```
Algorithm 9. Constructing Key-IV pairs that generate \(\lambda\) bit shifted keystream
 Output: Key-IV pairs (\(K^{\prime \prime}, I V^{\prime \prime}\)) and (\(K, I V\))
 Set \(s \leftarrow 0\)
 while \(s=0\) do
 Choose \(K \in_{R}\{0,1\}^{n}\) and \(V_{1} \in_{R}\{0,1\}^{d_{1}}\)
 Set \(I V \leftarrow V_{1} \| M S B_{d_{2}}\left(P_{\omega-1}\right)\)
 if \(K, I V\) produces all zero keystream bits in the first \(\lambda\) PRGA rounds then
 Run \(\operatorname{KSA}\left(K\left\|V_{1}\right\| P \| M S B_{d_{2}}\left(P_{\omega-1}\right)\right)\) routine for \(\lambda-d_{2}\) clocks and produce state \(S^{\prime}=\left(K^{\prime}\left\|V_{1}^{\prime}\right\| P \| V_{2}^{\prime}\right)\),
 where \(\left|V_{1}^{\prime}\right|=d_{1}-\lambda+d_{2}\) and \(\left|V_{2}^{\prime}\right|=\lambda\)
 if \(V_{2}^{\prime}=P_{\omega-1}\) then
 Set \(s \leftarrow 1\) and \(S \leftarrow\left(K^{\prime}\left\|V_{1}^{\prime}\right\| P \| P_{\omega-1}\right)\)
 return \((K, I V)\) and \(\operatorname{Pair}_{2}\left(d_{2}, S\right)\)
 end
 end
 end
```

Theorem 7. Let $i=1,2$ denote an index. In the previously mentioned setting, for each (set of) condition(s) presented in Column 2 of Table 3 there exists an attack whose corresponding success probability is presented in Column 3 of Table 3.

|  | Conditions | Success Probability |
| :---: | :---: | :---: |
| 1. | $d_{1} \geq \beta$ or $d_{2} \geq \beta$ | $1 / 2^{\beta}$ |
| 2. | $d_{1} \geq \beta$ and $d_{2} \geq \beta$ | $1 / 2^{\beta-1}$ |
| 3. | $d_{i}<\beta$ | $1 / 2^{2 \beta-d_{i}}$ |

Table 3: Attack Parameters for Theorem 7
Proof. 1. We only prove the case $i=1$ as the case $i=2$ is similar in the light of Algorithm 7. The proof follows directly from Algorithm 12. Given the assumptions in Section 2, the probability that the first $\beta$ keystream bits are zero is $1 / 2^{\beta}$.
2. The proof is a direct consequence of Item 1 .
3. Again, we only prove the case $i=1$. The proof is straightforward in the light of Algorithm 16. Given the assumptions in Section 2, the probability that $V_{1}^{\prime}=P_{0}$ is $1 / 2^{\beta-d_{1}}$. Also, the probability that the first $\beta$ keystream bits are zero is $1 / 2^{\beta}$. Since the two events are independent, we obtain the desired success probability.

```
Algorithm 10. Update }\mp@subsup{}{1}{()
 Output: Variable value
 Set value}\leftarrow\mp@subsup{P}{0}{
 for }i=1\mathrm{ to }c-1\mathrm{ do
 Update value }\leftarrow\mathrm{ value| |Pi|P
 end
 return value
```

```
Algorithm 11. Pair (}\sigma,S
 Input: Number of clocks }\sigma\mathrm{ and a state S.
 Output: A Key-IV pair (}\mp@subsup{K}{}{\prime},I\mp@subsup{V}{}{\prime})\mathrm{ or }
 Run KSA }\mp@subsup{}{(1)}{(S)}\mathrm{ routine for }\sigma\mathrm{ clocks and produce state }\mp@subsup{S}{}{\prime}=(\mp@subsup{K}{}{\prime}|\mp@subsup{V}{1}{\prime}|value|\mp@subsup{V}{2}{\prime})\mathrm{ , where |V
 |\mp@subsup{V}{2}{\prime}|=\mp@subsup{d}{2}{}-\beta
 Set }I\mp@subsup{V}{}{\prime}\leftarrow\mp@subsup{V}{1}{\prime}|P|\mp@subsup{V}{2}{\prime
 if (}\mp@subsup{K}{}{\prime},I\mp@subsup{V}{}{\prime})\mathrm{ produces all zero keystream bits in the first }\beta\mathrm{ PRGA rounds then
 return (}\mp@subsup{K}{}{\prime},I\mp@subsup{V}{}{\prime}
 end
 return }
```

```
Algorithm 12. Constructing Key-IV pairs that generate \(\beta\) bit shifted keystream
 Output: Key-IV pairs (\(K^{\prime}, I V^{\prime}\)) and (\(K, I V\))
 Set \(s \leftarrow 0\)
 while \(s=0\) do
 Choose \(K \in_{R}\{0,1\}^{n}, V_{1} \in_{R}\{0,1\}^{d_{1}-\beta}\) and \(V_{2} \in_{R}\{0,1\}^{d_{2}}\)
 Set value \(\leftarrow P_{0} \|\) Update \(_{1}(), I V \leftarrow V_{1}\|P\| V_{2}, S \leftarrow K\left\|V_{1}\right\|\) value \(\| V_{2}\) and output \(\leftarrow \operatorname{Pair}_{3}(\beta, S)\)
 if output \(\neq \perp\) then
 Set \(s \leftarrow 1\)
 return \((K, I V)\) and output
 end
 end
```

Remark 8. Let $\delta<\beta$ and $\beta>1$. To prevent the attacks presented in Theorem 7, we have to slightly modify the structure of the $I V$. We need at least one block $\left|B_{i}\right|=\delta$, where $1 \leq i \leq c-1$. We further consider that $\left|B_{i}\right|=\delta, \forall 1 \leq i \leq c-1$.

Theorem 8. Let $\left|B_{i}\right|=\delta, \forall 1 \leq i \leq c-1$. Also, let $1 \leq \gamma \leq \beta, 1 \leq t \leq c$ and $0 \leq j \leq t-1$. If $L S B_{\gamma}\left(P_{c-1-j}\right)=M S B_{\gamma}\left(P_{t-1-j}\right) \forall j$ then for each (set of) condition(s) presented in Column 2 of Table 4 there exists an attack whose corresponding success probability is presented in Column 3 of Table 4.

|  | Conditions | Success Probability |
| :---: | :---: | :---: |
| 1. | $d_{1} \geq \beta-\gamma+(\beta+\delta)(c-t), \delta \geq \beta-\gamma$ | $1 / 2^{\beta-\gamma+(\beta+\delta)(c-t)}$ |
| 2. | $d_{1} \geq \beta-\gamma+(\beta+\delta)(c-t), \delta<\beta-\gamma$, <br> $M S B_{\beta-\gamma-\delta}\left(P_{c-1-j}\right)=L S B_{\beta-\gamma-\delta}\left(P_{t-2-j}\right) \forall j$ | $1 / 2^{\beta-\gamma+(\beta+\delta)(c-t)}$ |
| 3. | $d_{1}<\beta-\gamma+(\beta+\delta)(c-t), \delta \geq \beta-\gamma$ | $1 / 2^{2 \beta-2 \gamma+2(\beta+\delta)(c-t)-d_{1}}$ |
| 4. | $d_{1}<\beta-\gamma+(\beta+\delta)(c-t), \delta<\beta-\gamma$, <br> $M S B_{\beta-\gamma-\delta}\left(P_{c-1-j}\right)=L S B_{\beta-\gamma-\delta}\left(P_{t-2-j}\right) \forall j$ | $1 / 2^{2 \beta-2 \gamma+2(\beta+\delta)(c-t)-d_{1}}$ |

Table 4: Attack Parameters for Theorem 8

Proof. 1. The proof follows directly from Algorithm 19 (described in the last appendix of our paper). Given the assumptions in Section 2, the probability that the first $\beta-\gamma+(\beta+\delta)(c-t)$ keystream bits are zero is $1 / 2^{\beta-\gamma+(\beta+\delta)(c-t)}$.
The proofs for the remaining cases presented in Table 4 follow directly from previous results. Thus, we omit them.

Theorem 9. Let $\left|B_{i}\right|=\delta, \forall 1 \leq i \leq c-1$. Also, let $1 \leq \gamma \leq \beta, 1 \leq t \leq c$ and $0 \leq j \leq t-2$. If $\delta \geq \beta-\gamma$ then for each (set of) condition(s) presented in Column 2 of Table 5 there exists an attack whose corresponding success probability is presented in Column 3 of Table 5.

|  | Conditions | Success Probability |
| :---: | :---: | :---: |
| 1. | $d_{1} \geq \delta-\beta+\gamma+\beta(c-t+1)+\delta(c-t)$, <br> $M S B_{\gamma}\left(P_{c-1-j}\right)=L S B_{\gamma}\left(P_{t-2-j}\right) \forall j$ | $1 / 2^{\delta-\beta+\gamma+\beta(c-t+1)+\delta(c-t)}$ |
| 2. | $d_{1}<\delta-\beta+\gamma+\beta(c-t+1)+\delta(c-t)$, <br> $M S B_{\gamma}\left(P_{c-1-j}\right)=L S B_{\gamma}\left(P_{t-1-j}\right) \forall j$ | $1 / 2^{2 \delta-2 \beta+2 \gamma+2 \beta(c-t+1)+2 \delta(c-t)-d_{1}}$ |

## Table 5: Attack Parameters for Theorem 9

Proof. 1. The proof follows directly from Algorithm 20 (described in the last appendix of our paper). Given the assumptions in Section 2, the probability that the first $\delta-\beta+\gamma+\beta(c-t+1)+\delta(c-t)$ keystream bits are zero is $1 / 2^{\delta-\beta+\gamma+\beta(c-t+1)+\delta(c-t)}$.
2. The proof is similar to the proof of Theorem 7, Item 3.

Remark 9. Taking into account the generic attacks described in Section 3, any probability bigger than $1 / 2^{\alpha}$ is superfluous. As an example, when $\alpha=32$ we obtain a good padding scheme for the following parameters $d_{2}=0, \beta=32, \delta=14, P_{0}=0 \times 8000, P_{1}=0 x 7 f f f$.

## 5 Conclusion

We analyzed the security of various periodic and aperiodic IV padding methods ${ }^{7}$ for the Grain family of stream ciphers, proposed corresponding attacks and discussed their success probability.

Future Work. A closely related study which naturally arises is analyzing the security of breaking the padding into aperiodic blocks. Another idea would be to find an algorithm for randomly generating the padding according to some well established constraints. A different direction is to study how do the proposed padding techniques interfere with the security of the authentication feature of Grain-128a. A question that arises is if the occurrence of slide pairs may somehow be converted into a distinguishing or key recovery attack. Another interesting point would be to investigate what would happen to the security of the Grain family with respect to differential, linear or cube attacks in the various padding scenarios we outlined. One more future work idea could be to analyze various methods of preventing the all zero state of Grain's LFSR.

[^3]
## References

1. eSTREAM: the ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/stream/.
2. NIST SP 800-22: Download Documentation and Software. https://csrc.nist.gov/Projects/ Random-Bit-Generation/Documentation-and-Software.
3. The GNU Multiple Precision Arithmetic Library. https://gmplib.org/.
4. Jean-Philippe Aumasson, Itai Dinur, Luca Henzen, Willi Meier, and Adi Shamir. Efficient FPGA Implementations of High-Dimensional Cube Testers on the Stream Cipher Grain-128. https://eprint.iacr.org/2009/218.pdf, 2009.
5. Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. Some Results on Related Key-IV Pairs of Grain. In Proceedings of the $2^{\text {nd }}$ International Conference on Security, Privacy, and Applied Cryptography Engineering SPACE'12, volume 7644 of Lecture Notes in Computer Science, pages 94-110. Springer, 2012.
6. Subhadeep Banik, Subhamoy Maitra, Santanu Sarkar, and Turan Meltem Sönmez. A Chosen IV Related Key Attack on Grain-128a. In Proceedings of the $18^{\text {th }}$ Australasian Conference on Information Security and Privacy ACISP'13, volume 7959 of Lecture Notes in Computer Science, pages 13-26. Springer, 2013.
7. Côme Berbain, Henri Gilbert, and Alexander Maximov. Cryptanalysis of Grain. In Proceedings of the 18th International Workshop on Fast Software Encryption - FSE'06, volume 4047 of Lecture Notes in Computer Science, pages 15-29. Springer, 2006.
8. Christophe Cannière, Özgül Küçük, and Bart Preneel. Analysis of Grain’s Initialization Algorithm. In Progress in Cryptology - AFRICACRYPT'08, volume 5023 of Lecture Notes in Computer Science, pages 276-289. Springer, 2008.
9. Itai Dinur, Tim Güneysu, Christof Paar, Adi Shamir, and Ralf Zimmermann. An Experimentally Verified Attack on Full Grain-128 Using Dedicated Reconfigurable Hardware. In Advances in Cryptology - ASIACRYPT'11, volume 7073 of Lecture Notes in Computer Science, pages 327-343. Springer, 2011.
10. Itai Dinur and Adi Shamir. Breaking Grain-128 with Dynamic Cube Attacks. In Proceedings of the 18 th International Workshop on Fast Software Encryption - FSE'11, volume 6733 of Lecture Notes in Computer Science, pages 167-187. Springer, 2011.
11. Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A Stream Cipher Proposal: Grain-128. In International Symposium on Information Theory - ISIT'06, pages 1614-1618. IEEE, July 2006.
12. Martin Hell, Thomas Johansson, and Willi Meier. Grain - A Stream Cipher for Constrained Environments. http://www.ecrypt.eu.org/stream, 2005. ECRYPT Stream Cipher Project Report.
13. Martin Hell, Thomas Johansson, and Willi Meier. Grain: A Stream Cipher for Constrained Environments. International Journal of Wireless and Mobile Computing, 2(1):86-93, May 2007.
14. Shahram Khazaei, Mehdi Hassanzadeh, and Mohammad Kiaei. Distinguishing Attack on Grain. http://www. ecrypt.eu.org/stream/papersdir/071.pdf, 2005. ECRYPT Stream Cipher Project Report.
15. Simon Knellwolf, Willi Meier, and María Naya-Plasencia. Conditional Differential cryptanalysis of NLFSR-Based Cryptosystems. In Advances in Cryptology - ASIACRYPT'10, volume 6477 of Lecture Notes in Computer Science, pages 130-145. Springer, 2010.
16. Özgül Küçük. Slide Resynchronization Attack on the Initialization of Grain 1.0. http:www.ecrypt.eu.org/stream, 2006.
17. Diana Maimut. Authentication and Encryption Protocols: Design, Attacks and Algorithmic Tools. PhD thesis, École normale supérieure, 2015.
18. Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: A New Version of Grain-128 with Optional Authentication. International Journal of Wireless and Mobile Computing, 5(1):48-59, December 2011.
19. Paul Stankovski. Greedy Distinguishers and Nonrandomness Detectors. In Progress in Cryptology - INDOCRYPT'10, volume 6498 of Lecture Notes in Computer Science, pages 210-226. Springer, 2010.
20. Haina Zhang and Xiaoyun Wang. Cryptanalysis of Stream Cipher Grain Family. https://eprint.iacr.org/ 2009/109.pdf, 2009.

## A Grain v1

In the case of Grain v1, $n=80$ and $m=64$. The padding value is $P=0 x f f f f$. The values $I V$ and $P$ are loaded in the LFSR using the function $\operatorname{Load} I V(I V, P)=I V \| P$. Given $S \in\{0,1\}^{80}$, we define ExtractIV $(S)=M S B_{64}(S)$.

We denote by $f_{1}(x)$ the primitive feedback of the LFSR:

$$
f_{1}(x)=1+x^{18}+x^{29}+x^{42}+x^{57}+x^{67}+x^{80} .
$$

We denote by $g_{1}(x)$ the nonlinear feedback polynomial of the NFSR:

$$
\begin{aligned}
g_{1}(x) & =1+x^{18}+x^{20}+x^{28}+x^{35}+x^{43}+x^{47}+x^{52}+x^{59}+x^{66}+x^{71}+x^{80} \\
& +x^{17} x^{20}+x^{43} x^{47}+x^{65} x^{71}+x^{20} x^{28} x^{35}+x^{47} x^{52} x^{59}+x^{17} x^{35} x^{52} x^{71} \\
& +x^{20} x^{28} x^{43} x^{47}+x^{17} x^{20} x^{59} x^{65}+x^{17} x^{20} x^{28} x^{35} x^{43}+x^{47} x^{52} x^{59} x^{65} x^{71} \\
& +x^{28} x^{35} x^{43} x^{47} x^{52} x^{59}
\end{aligned}
$$

The boolean filter function $h_{1}\left(x_{0}, \ldots, x_{4}\right)$ is

$$
h_{1}\left(x_{0}, \ldots, x_{4}\right)=x_{1}+x_{4}+x_{0} x_{3}+x_{2} x_{3}+x_{3} x_{4}+x_{0} x_{1} x_{2}+x_{0} x_{2} x_{3}+x_{0} x_{2} x_{4}+x_{1} x_{2} x_{4}+x_{2} x_{3} x_{4} .
$$

The output function is

$$
z_{i}^{1}=\sum_{j \in \mathcal{A}_{1}} x_{i+j}+h_{1}\left(y_{i+3}, y_{i+25}, y_{i+46}, y_{i+64}, x_{i+63}\right), \text { where } \mathcal{A}_{1}=\{1,2,4,10,31,43,56\}
$$

```
Algorithm 13. \(\mathrm{KSA}^{-1}\) routine for Grain v1
 Input: State \(S_{i}=\left(x_{0}, \ldots, x_{79}, y_{0}, \ldots, y_{79}\right)\)
 Output: The preceding state \(S_{i-1}=\left(x_{0}, \ldots, x_{79}, y_{0}, \ldots, y_{79}\right)\)
 \(v=y_{79}\) and \(w=x_{79}\)
 for \(t=79\) to 1 do
 \(y_{t}=y_{t-1}\) and \(x_{t}=x_{t-1}\)
 end
 \(5 z=\sum_{j \in \mathcal{A}_{1}} x_{j}+h_{1}\left(y_{3}, y_{25}, y_{46}, y_{64}, x_{63}\right)\)
 \(6 y_{0}=z+v+y_{13}+y_{23}+y_{38}+y_{51}+y_{62}\)
 \(7 x_{0}=z+w+y_{0}+x_{9}+x_{14}+x_{21}+x_{28}+x_{33}+x_{37}+x_{45}+x_{52}+x_{60}+x_{62}+x_{63} x_{60}+x_{37} x_{33}+x_{15} x_{9}+\)
 \(x_{60} x_{52} x_{45}+x_{33} x_{28} x_{21}+x_{63} x_{45} x_{28} x_{9}+x_{60} x_{52} x_{37} x_{33}+x_{63} x_{60} x_{21} x_{15}+x_{63} x_{60} x_{52} x_{45} x_{37}+x_{33} x_{28} x_{21} x_{15} x_{9}+\)
 \(x_{52} x_{45} x_{37} x_{33} x_{28} x_{21}\)
```


## B Grain 128

In the case of Grain 128, $n=128$ and $m=96$. The padding value is $P=0 x f f f f f f f f$. The values $I V$ and $P$ are loaded in the LFSR using the function $\operatorname{LoadIV}(I V, P)=I V \| P$. Given $S \in\{0,1\}^{128}$, we define $\operatorname{ExtractIV}(S)=\operatorname{MSB}_{96}(S)$.

We denote by $f_{128}(x)$ the primitive feedback of the LFSR:

$$
f_{128}(x)=1+x^{32}+x^{47}+x^{58}+x^{90}+x^{121}+x^{128} .
$$

We denote by $g_{128}(x)$ the nonlinear feedback polynomial of the NFSR:

$$
\begin{aligned}
g_{128}(x) & =1+x^{32}+x^{37}+x^{72}+x^{102}+x^{128}+x^{44} x^{60}+x^{61} x^{125} \\
& +x^{63} x^{67}+x^{69} x^{101}+x^{80} x^{88}+x^{110} x^{111}+x^{115} x^{117}
\end{aligned}
$$

The boolean filter function $h_{128}\left(x_{0}, \ldots, x_{8}\right)$ is

$$
h_{128}\left(x_{0}, \ldots, x_{8}\right)=x_{0} x_{1}+x_{2} x_{3}+x_{4} x_{5}+x_{6} x_{7}+x_{0} x_{4} x_{8}
$$

The output function is

$$
z_{i}^{128}=\sum_{j \in \mathcal{A}_{128}} x_{i+j}+y_{i+93}+h_{128}\left(x_{i+12}, y_{i+8}, y_{i+13}, y_{i+20}, x_{i+95}, y_{i+42}, y_{i+60}, y_{i+79}, y_{i+95}\right)
$$

where $\mathcal{A}_{128}=\{2,15,36,45,64,73,89\}$.

```
Algorithm 14. \(\mathrm{KSA}^{-1}\) routine for Grain 128
 Input: State \(S_{i}=\left(x_{0}, \ldots, x_{127}, y_{0}, \ldots, y_{127}\right)\)
 Output: The preceding state \(S_{i-1}=\left(x_{0}, \ldots, x_{127}, y_{0}, \ldots, y_{127}\right)\)
 \(v=y_{127}\) and \(w=x_{127}\)
 for \(t=127\) to 1 do
 \(y_{t}=y_{t-1}\) and \(x_{t}=x_{t-1}\)
 end
 \({ }_{5} z=\sum_{j \in \mathcal{A}_{128}} x_{i+j}+y_{93}+h_{128}\left(x_{12}, y_{8}, y_{13}, y_{20}, x_{95}, y_{42}, y_{60}, y_{79}, y_{95}\right)\),
 \(6 y_{0}=z+v+y_{7}+y_{38}+y_{70}+y_{81}+y_{96}\)
 \(7 x_{0}=z+w+y_{0}+x_{26}+x_{56}+x_{91}+x_{96}+x_{84} x_{68}+x_{65} x_{61}+x_{48} x_{40}+x_{59} x_{27}+x_{18} x_{17}+x_{13} x_{11}+x_{67} x_{3}\)
```


## C Grain 128a

In the case of Grain 128a, $n=128$ and $m=96$. The padding value is $P=0 x f f f f f f f e$. The values $I V$ and $P$ are loaded in the LFSR using the function $\operatorname{LoadIV}(I V, P)=I V \| P$. Given $S \in\{0,1\}^{128}$, we define ExtractIV $(S)=\operatorname{MSB}_{96}(S)$.

We denote by $f_{128 a}(x)$ the primitive feedback of the LFSR:

$$
f_{128 a}(x)=1+x^{32}+x^{47}+x^{58}+x^{90}+x^{121}+x^{128} .
$$

We denote by $g_{128 a}(x)$ the nonlinear feedback polynomial of the NFSR:

$$
\begin{aligned}
g_{128 a}(x) & =1+x^{32}+x^{37}+x^{72}+x^{102}+x^{128}+x^{44} x^{60}+x^{61} x^{125}+x^{63} x^{67}+x^{69} x^{101} \\
& +x^{80} x^{88}+x^{110} x^{111}+x^{115} x^{117}+x^{46} x^{50} x^{58}+x^{103} x^{104} x^{106}+x^{33} x^{35} x^{36} x^{40}
\end{aligned}
$$

The boolean filter function $h_{128 a}\left(x_{0}, \ldots, x_{8}\right)$ is

$$
h_{128 a}\left(x_{0}, \ldots, x_{8}\right)=x_{0} x_{1}+x_{2} x_{3}+x_{4} x_{5}+x_{6} x_{7}+x_{0} x_{4} x_{8} .
$$

The output function is

$$
z_{i}^{128 a}=\sum_{j \in \mathcal{A}_{128 a}} x_{i+j}+y_{i+93}+h_{128 a}\left(x_{i+12}, y_{i+8}, y_{i+13}, y_{i+20}, x_{i+95}, y_{i+42}, y_{i+60}, y_{i+79}, y_{i+94}\right),
$$

where $\mathcal{A}_{128 a}=\{2,15,36,45,64,73,89\}$.

```
Algorithm 15. \(\mathrm{KSA}^{-1}\) routine for Grain 128a
 Input: State \(S_{i}=\left(x_{0}, \ldots, x_{127}, y_{0}, \ldots, y_{127}\right)\)
 Output: The preceding state \(S_{i-1}=\left(x_{0}, \ldots, x_{127}, y_{0}, \ldots, y_{127}\right)\)
 \(v=y_{127}\) and \(w=x_{127}\)
 for \(t=127\) to 1 do
 \(y_{t}=y_{t-1}\) and \(x_{t}=x_{t-1}\)
 end
 \(z=\sum_{j \in A_{128 a}} x_{j}+y_{93}+h_{128 a}\left(x_{12}, y_{8}, y_{13}, y_{20}, x_{95}, y_{42}, y_{60}, y_{79}, y_{94}\right)\)
 \({ }^{6} y_{0}=z+v+y_{7}+y_{38}+y_{70}+y_{81}+y_{96}\)
 \(7 x_{0}=z+w+y_{0}+x_{26}+x_{56}+x_{91}+x_{96}+x_{3} x_{67}+x_{11} x_{13}+x_{17} x_{18}+x_{27} x_{59}+x_{40} x_{48}+x_{61} x_{65}+x_{68} x_{84}+\)
 \(x_{88} x_{92} x_{93} x_{95}+x_{22} x_{24} x_{25}+x_{70} x_{78} x_{82}\)
```


## D Examples

Within Tables 6 to 8, the padding is written in blue, while the red text denotes additional data necessary to mount the proposed attacks. Test vectors presented in this section are expressed as hexadecimal strings. For simplicity, we omit the 0x prefix.

Table 6: Examples of Generic Attacks.

|  | Cipher | Key | LFSR Loading |
| :---: | :---: | :---: | :---: |
| Algorithm 1 | Grain v1 | a8af910f2755c064d713 | 1c60b94e09512adbffff |
|  | Grain 128 | 525c3676953ecec2bc5388f1474cdc61 | b78d3637b64425015fa3ef63ffffffff |
|  | Grain 128a | a04f944e6ca1e1406537a0ef215689a3 | aaaebb010224478f48567997fffffffe |

Table 7: Examples of Compact Padding Attacks (index $i=1$ ).

|  | Cipher | Key | LFSR Loading | Keystream |
| :---: | :---: | :---: | :---: | :---: |
| Theorem 5 <br> Condition 1 <br> (Algorithm 5) | Grain v1 | 7e72b6f960cf9165b891 | 1007bc3594e07f7f7fa5 | 004e2da99a27392383696e9e7120370a |
|  |  | 72b6f960cf9165b89145 | 07bc3594e07f7f7fa580 | 4e2da99a27392383696e9e7120370a48 |
|  | Grain 128 | 00166499157d39c9 <br> 5a723b601eccfffb | 4a9a37ef1e3dfc13 <br> 7fff7fff7fffeb05 | 000076755ac4cd53028caa577964929e |
|  |  | 6499157d39c95a72 <br> 3b601eccfffb2fd1 | 37ef 1e3dfc137fff <br> 7fff7fffeb05d636 | 76755ac4cd53028caa577964929ef1c0 |
|  | Grain 128a | $\begin{aligned} & \text { b9e20a7619a8d622 } \\ & \text { 5152cfa83eb73361 } \end{aligned}$ | ef53aafa3c6c47ca <br> 7fff7fff7ffff5cd | 0000bac1203a11b554d69fd7f9f27b7f |
|  |  | 0a7619a8d6225152 <br> cfa83eb7336175a5 | aafa3c6c47ca7fff <br> 7fff7ffff5cd98ba | bac1203a11b554d69fd7f9f27b7fd545 |
| Theorem 5 Condition 3 <br> (Algorithm 8) | Grain v1 | 455b5df993b367e37b60 | 07f7f7fe9b4a3044efd1 | 0095e584ea234610f7ec250a948a8267 |
|  |  | 5b5df993b367e37b604d | f7f7fe9b4a3044efd139 | 95e584ea234610f72ec250a948a8267c |
|  | Grain 128 | $\begin{aligned} & 9302 \mathrm{f} 6 \mathrm{~b} 9 \mathrm{~d} 7136599 \\ & \text { ac1caee130c596bb } \end{aligned}$ | 8d7fff7fff7fff10 d59595e5568beb11 | 00007ca563c6831b63868259f547cdff |
|  |  | f6b9d7136599ac1c aee130c596bb0dc8 | ff7fff7fff10d595 95e5568beb11628c | 7ca563c6831b63868259f547cdff695b |
|  | Grain 128a | Of478aa147938251 5e0a94d3357764f4 | cd7fff7fff7fffed <br> bb0e00ddcb18d1eb | 000059362a172d8748185e0850be7cb8 |
|  |  | $\begin{aligned} & \hline \text { 8aa1479382515e0a } \\ & 94 \mathrm{~d} 3357764 \mathrm{f} 4 \mathrm{~b} 8 \mathrm{bb} \end{aligned}$ | ff7fff7fffedbb0e 00ddcb18d1eb0416 | 59362a172d8748185e0850be7cb824a0 |
| Theorem 6 Condition 1 | Grain v1 | 4febc079167f99bdb1db | bd4710804f9eff0ff0fa | 000575b77251f3946864d1bdc2510212 |
|  |  | bc079167f99bdb1db338 | 710804f9eff0ff0fa272 | 575b77251f3946864d1bdc251021229b |
|  | Grain 128 | $\begin{aligned} & \hline \text { 5a0d4b3907f65ce5 } \\ & \text { f036b3671614244b } \end{aligned}$ | Obbd00872ecb0732 ffff00ffff00fffe | 0000006b2014ecdee8d499646ba08a9f |
|  |  | $3907 f 65 c e 5 f 036 \mathrm{~b} 3$ 671614244be57112 | 872ecb0732ffff00 ffff00fffeaf68a2 | 6b2014ecdee8d499646ba08a9fd93085 |
|  | Grain 128a | $\begin{aligned} & \hline 6472 \mathrm{c} 21093 \mathrm{cd2225} \\ & 4118 \mathrm{e} 1 \mathrm{a} 69230 \mathrm{e} 0 \mathrm{ac} \end{aligned}$ | $\begin{aligned} & \text { 2c9c47771ed4f648 } \\ & \text { ffff00ffff00ffde } \end{aligned}$ | 0000009e196e7e866193867ea31b1df0 |
|  |  | $\begin{aligned} & \text { 1093cd22254118e1 } \\ & \text { a69230e0ac668222 } \end{aligned}$ | 771ed4f648ffff00 <br> ffff00ffdeb9f179 | $9 \mathrm{e} 196 \mathrm{e} 7 \mathrm{e} 866193867 \mathrm{ea31b1df09f306a}$ |
| Theorem 6 Condition 2 | Grain v1 | 701aa599737c957a0b5e | 07ff0ff0fdedd9bd4d1b | 000f9b9045f817c551a7c56c18e4ec02 |
|  |  | aa599737c957a0b5eb77 | f0ff0fdedd9bd4d1b1bf | f9b9045f817c51a7c56c18e4ec025d85 |
|  | Grain 128 | 30bfe11f3b7080be 47396a37f889b57c | aafdffff00ffff00 <br> ff38ff5b14da5371 | 0000008a735f3adf71728258dcaf 47 fd |
|  |  | 1f3b7080be47396a 37f889b57cac5367 | $\begin{aligned} & \text { ff00ffff00ff38ff } \\ & \text { 5b14da53715a4291 } \end{aligned}$ | 8a735f3adf71728258dcaf 47fd6edad1 |
|  | Grain 128a | c4b8607e854abc5f <br> 7a74eba33d563ad1 | 950bffff00ffff00 ff7182c277b77e8f | 000000681060aa4bf 10c0181bd7e4d95 |
|  |  | 7e854abc5f7a74eb a33d563ad125aaff | ff00ffff00ff7182 c277b77e8f5db61f | 681060aa4bf10c0181bd7e4d957b5f2e |

Table 8: Examples of Fragmented Padding Attacks (index $i=1$ ).

|  | Cipher | Key | LFSR Loading | Keystream |
| :---: | :---: | :---: | :---: | :---: |
| Theorem 7 Condition 1 (Algorithm 12 ) | Grain v1 | cc0d50254f72d88d3c71 | 3a86d173777777777b2c | 04c79ebb4db7bc675644b3d0bf2a59a4 |
|  |  | c0d50254f72d88d3c714 | a86d173777777777b2cf | 4c79ebb4db7bc675644b3d0bf2a59a47 |
|  | Grain 128 | $\begin{aligned} & \text { c506d0ca5bff72e1 } \\ & 6 e a 07 f d 8 f 98 d 7 b \mathrm{ba} \end{aligned}$ | $\begin{aligned} & \text { 63ba70cf067f7f7f } \\ & 7 f 7 f 7 f 7 f 7879 f 9 b \end{aligned}$ | 004e2c99a48677b4c217f9e14e620d48 |
|  |  | 06d0ca5bff72e16e a07fd8f98d7ba368 | $\begin{aligned} & \text { ba70cf067f7f7f7f } \\ & 7 f 7 f 7 f 7 f 879 f 9 b e 1 \end{aligned}$ | 4e2c99a48677b4c217f9e14e620d4884 |
|  | Grain 128a | 0948bd1a0a5d275c <br> 54744db3dc27cec8 | 895ba804147f7f7f $7 f 7 f 7 f 7 f 7 f 2 f 9892$ | 003a5f1e38d9c44670b0dc017377e698 |
|  |  | 48bd1a0a5d275c54 <br> 744db3dc27cec82b | $\begin{aligned} & 5 b a 804147 f 7 f 7 f 7 f \\ & 7 f 7 f 7 f 7 f 2 f 9892 f 1 \end{aligned}$ | 3a5f1e38d9c44670b0dc017377e698d7 |
| Theorem 7 <br> Condition 3 <br> (Algorithm 16) | Grain v1 | 77a73157cabfa60349dc | 77777777318f59ac6aff | Oc61bfa06e1c22011dcefe673765acb7 |
|  |  | 7a73157cabfa60349dc3 | 7777777318f59ac6affd | c61bfa06e1c22011dcefe673765acb7f |
|  | Grain 128 | $\begin{aligned} & \text { 9aca3bd2cf312080 } \\ & 769338 \mathrm{bec} 86 \mathrm{f} 9 \mathrm{da6} \end{aligned}$ | $7 f 7 f 7 f 7 f 7 f 7 f 7 f 7 f$ b6f7e83b3793f746 | 004624d2271d3420104b2fd1058675fd |
|  |  | ca3bd2cf31208076 9338bec86f9da63f | $\begin{aligned} & \hline 7 \mathrm{fff7f7f7f7f7fb6} \\ & \text { f7e83b3793f746ff } \end{aligned}$ | 4624d2271d3420104b2fd1058675fd45 |
|  | Grain 128a | $\begin{aligned} & \hline \text { 0e9eb1a896077e93 } \\ & \text { 5b21de8700f3ef } 44 \end{aligned}$ | $\begin{aligned} & \hline 7 \mathrm{fff7f7f7f7f7f7f} \\ & \text { 29b03ff3e82cda8b } \end{aligned}$ | 007f06d63e3545f6b7c4b50d255b6663 |
|  |  | $\begin{aligned} & \hline \text { 9eb1a896077e935b } \\ & \text { 21de8700f3ef4462 } \end{aligned}$ | 7f7f7f7f7f7f7f29 b03ff3e82cda8bfc | 7f06d63e3545f6b7c4b50d255b6663ea |
| Theorem 8 Condition 1 (Algorithm 19) | Grain 128 | $\begin{aligned} & \text { d3ea84c99a8b1354 } \\ & 71 d 8 c 320 b 870 e 109 \end{aligned}$ | ed52bf1b25ff0ff0 <br> fff0ff0f4ed8f575 | 0001590b803ff3c9972d96481a6e8ad4 |
|  |  | $\begin{aligned} & \text { a84c99a8b135471d } \\ & 8 c 320 b 870 e 109120 \end{aligned}$ | 2bf1b25ff0ff0fff Off0f4ed8f575dac | 1590b803ff3c9972d96481a6e8ad48ee |
|  | Grain 128a | $\begin{aligned} & 9 e e 02802 \mathrm{ccf920e6} \\ & \text { 868a8aa46113a406 } \end{aligned}$ | ab24f8ab82ff0ff0 <br> fff0ff0fd32dc4e9 | 00082e1cbbb25fa325518665a17f2efc |
|  |  | 02802ccf920e6868 a8aa46113a40681d | 4f8ab82ff0ff0fff 0ff0fd32dc4e9473 | 82e1cbbb25fa325518665a17f2efc2eb |
| Theorem 8 Condition 2 | Grain 128 | $\begin{aligned} & \hline 8 \mathrm{~d} 89931 \mathrm{ae} 1 \mathrm{e} 13215 \\ & 77 \mathrm{bba20640c193a1} \end{aligned}$ | f18ccfbf3cff0ff0 <br> ff0ff0fde5af2b58 | 000e612c620ae1765ded57a835b713ac |
|  |  | $\begin{aligned} & \text { 9931ae1e1321577b } \\ & \text { ba20640c193a13b8 } \end{aligned}$ | ccfbf3cff0ff0ff0 <br> ff0fde5af2b58811 | e612c620ae1765ded57a835b713ace4a |
|  | Grain 128a | 626262808f0ca24c <br> cc517bb93fb5c3cb | c4ca6f9535ff0ff0 <br> ff0ff0fdfe92e568 | 0003f5a6d1b7f615dfb32e34cea7cc4a |
|  |  | $\begin{aligned} & 262808 f 0 c a 24 c c c 5 \\ & 17 \mathrm{bb} 93 f b 5 c 3 c b 22 f \end{aligned}$ | $\begin{aligned} & \text { a6f9535ff0ff0ff0 } \\ & \text { ff0fdfe92e568a4f } \end{aligned}$ | $3 f 5 a 6 d 1 b 7 f 615 d f b 32 e 34 c e a 7 c c 4 a 106$ |
| Theorem 8 Condition 3 | Grain 128 | $\begin{aligned} & \text { 416ddd14b4c096cb } \\ & \text { 0181ae8830ada69d } \end{aligned}$ | 80ff0ff0fff0ff0f d7ef096c7a8700a3 | 00076a8e9def620dfe704b264988da02 |
|  |  | ddd14b4c096cb018 <br> 1ae8830ada69d3b6 | f0ff0fff0ff0fd7e <br> f096c7a8700a318f | 76a8e9def620dfe704b264988da02cc0 |
|  | Grain 128a | $\begin{aligned} & \text { 724d58601b44396d } \\ & 60 \mathrm{e} 83723 \mathrm{a} 65 \mathrm{bfa} \mathrm{~b} \end{aligned}$ | 84ff0ff0fff0ff0f 6c25a1d79af2a85c | 0008ab9f20d8a418932150d3ba97400e |
|  |  | d58601b44396d60e 83723a65bfa7b973 | f0ff0fff0ff0f6c2 <br> 5a1d79af2a85c626 | 8ab9f20d8a418932150d3ba97400ebd5 |


| Theorem 8 Condition 4 | Grain 128 | 97516dced374a089 <br> 88ce86acaa2ff1a4 | 3aff0ff0ff0ff0f1 12b72427d44b92f1 | 000a8e820bedfb8cd9d651d8221f3b34 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 16dced374a08988c e86acaa2ff1a4399 | $\begin{aligned} & \text { f0ff0ff0ff0f112b } \\ & 72427 d 44 b 92 f 1 b b a \end{aligned}$ | a8e820bedfb8cd9d651d8221f3b34846 |
|  | Grain 128a | a29ae6fb8b23f747 <br> f3723e59df0d3a8e | $\begin{aligned} & \text { 4bff0ff0ff0ff0fc } \\ & \text { 92ace3a64691e733 } \end{aligned}$ | 000cd469723847db72f6f856e51f9d96 |
|  |  | ae6fb8b23f747f37 23e59df0d3a8eabb | $\begin{aligned} & \text { f0ff0ff0ff0fc92a } \\ & \text { ce3a64691e733a54 } \end{aligned}$ | cd469723847db72f6f856e51f9d96b38 |
| Theorem 9 Condition 1 (Algorithm 20) | Grain 128 | $\begin{aligned} & \hline 930 c b 0086 c 93293 \mathrm{e} \\ & 9722 \mathrm{a} 710 \mathrm{e} 28 \mathrm{a} 1375 \end{aligned}$ | $\begin{aligned} & \text { f767352c26395e8a } \\ & \text { ffffb0ffff80fffb } \end{aligned}$ | 0000000a44dcae9a68c7b66389e440eb |
|  |  | $\begin{aligned} & 086 \mathrm{c} 93293 \mathrm{e} 9722 \mathrm{a} 7 \\ & 10 \mathrm{e} 28 \mathrm{a} 1375 \mathrm{ec} 5696 \end{aligned}$ | $\begin{aligned} & \text { 2c26395e8affffb0 } \\ & \text { ffff80fffbb6fcf2 } \end{aligned}$ | 0a44dcae9a68c7b66389e440ebbdf 198 |
|  | Grain 128a | 270f72277e7540cf <br> 9a58fa4426e28aae | $\begin{aligned} & \text { c7df3ee9c792f5d5 } \\ & \text { ffffd0ffff00fff1 } \end{aligned}$ | 000000fd8bbdb3d3a8c885704f43a022 |
|  |  | 277e7540cf9a58fa 4426e28aaebc06e1 | e9c792f5d5ffffd0 ffff00fff13204c5 | fd8bbdb3d3a8c885704f43a022557a89 |
| Theorem 9 Condition 2 | Grain 128 | 895bea372ffe4e76 e84113dd18afa6b9 | a8147ffff80fffffe Offf2cd80e83e74 | 0000004b5394f9baf0f6a6ff3d921542 |
|  |  | 372ffe4e76e84113 <br> dd18afa6b9fb5cef | $\begin{aligned} & \text { fff80fffff0fff2c } \\ & \text { d80e83e74e3d134e } \end{aligned}$ | 4b5394f9baf0f6a6ff3d9215422cbdbb |
|  | Grain 128a | $\begin{aligned} & \hline \text { 70a2fecddbc94115 } \\ & \text { 017b571df0854817 } \end{aligned}$ | $\begin{aligned} & \text { 9e132ffff50ffffd } \\ & \text { Offf5cf89b04484d } \end{aligned}$ | 0000002839a6bec77a007d3d12b4d597 |
|  |  | $\begin{aligned} & \text { cddbc94115017b57 } \\ & \text { 1df08548178142d5 } \end{aligned}$ | fff50ffffd0fff5c f89b04484d01fb4b | 2839a6bec77a007d3d12b4d597c9041b |

## E Propagation of Single Bit Differentials

Parameters. In Theorem 4, let $q_{2}=96$ for Grain v1 ${ }^{8}$ and $q_{2}=160$ for Grain-128 and Grain-128a ${ }^{9}$.
Table 9: Propagation of a Single Bit Differential in the case of Grain v1's LFSR.

| Flipped <br> Bit <br> Position | Number of <br> Identical <br> Keystream <br> Bits | Positions of Identical <br> Keystream Bits | | |
|---|---|---|---|---|
| 15 | 50 | $0-11,13-17,19-30,33-35,37,38,40-46,48,51,53,55,58,61-63,71$ |
| 31 | 59 | $0-5,7-23,25-27,29-33,35-41,43-46,49-51,54,56-59,61,62,64,67,69,74,77,79,87$ |
| 47 | 63 | $0,2-21,23,24,26-39,41,42,45-49,51-53,55-57,59,60,62,65,66,70,73-75,77,78,80,95$ |
| 63 | 63 | $0-16,18-27,29-34,36,37,39,40,42-45,47-52,54,55,58,61-63,65,68,69,72,73,76,81$, |
| $90,91,94$ |  |  |, |  |
| :---: |
| 79 |
| 74 |

[^4]Table 10: Propagation of a Single Bit Differential in the case of Grain v1's NFSR.

| Flipped <br> Bit <br> Position | Number of <br> Identical <br> Keystream <br> Bits | Positions of Identical <br> Keystream Bits |
| :---: | :---: | :---: |
| 15 | 23 | $0-4,6-10,12,15,16,19,20-22,26,27,28,29,31,33$ |
| 31 | 32 | $1-19,22-26,28,31,32,35,36,42,43,49$ |
| 47 | 32 | $0-15,17,18,20-25,28,29,30,32,33,35,40,41,42$ |
| 63 | 25 | $1-6,8-16,19,21-23,26,29-31,33,39$ |
| 79 | 41 | $0-15,17-22,24-32,35,37-39,42,45-47,49,55$ |

Table 11: Propagation of a Single Bit Differential in the case of Grain 128's LFSR.

| Flipped <br> Bit <br> Position | Number of <br> Kdentical <br> Keystream <br> Bits | Positions of Identical <br> Keystream Bits |
| :---: | :---: | :---: |
| 31 | 92 | $0-10,12-17,19-22,24-56,58,60-63,65,67-69,71,72,74-79,81-85,87,88,90,93,94,97,100, ~$ <br> $103,109,116,119,126,129,135,141,148$ |
| 55 | 97 | $0-12,14-34,36-41,43-46,48,49,51,53-65,67-80,86,87,89,91-93,95,96,100-102,105-107$, <br> $109,111,112,118,121,127,133,153,159$ |
| 79 | 101 | $1-18,20-36,38-41,43,45-57,60-65,67-70,72,73,75,78-88,92-94,96-99,101,103,104,110$, <br> $111,113,115,119,120,125,126,130,131,133,145,151,157$ |
| 103 | 86 | $0-7,9,11-23,25-39,41,44-54,58-60,62-65,67,69,70,73,76-81,84-86,91,92,94,96,97,99$, |
| $105,109,110-112,116,117,123,128,143,144$ |  |  |$|$

Table 12: Propagation of a Single Bit Differential in the case of Grain 128's NFSR.

| Flipped <br> Bit <br> Position | Number of <br> Identical <br> Keystream <br> Bits | Positions of Identical <br> Keystream Bits |
| :---: | :---: | :---: |
| 31 | 52 | $0-15,17,18,20-28,30-36,39-42,45,48-50,54-56,58,62,63,65,66,71,72$ |
| 55 | 65 | $0-9,11-18,20-39,41,42,44,45,47,49-52,55-60,63-66,69,73,74,82,87,89,95,96$ |
| 79 | 55 | $0-5,7-14,16-33,35-42,46,48,49,52,54,55,58,60,61,63,65,68,71,74,80$ |
| 103 | 63 | $0-7,9-13,15-29,31-38,41-44,47-50,53-57,59-61,63-66,70,73,79,85,87,92,98$ |
| 127 | 87 | $0-31,33-37,39-53,55-62,65-68,71-74,77-81,83-85,87-90,94,97,103,109,111,116,122$ |

Table 13: Propagation of a Single Bit Differential in the case of Grain 128a's LFSR.
\(\left.$$
\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { Flipped } \\
\text { Bit } \\
\text { Position }\end{array} & \begin{array}{c}\text { Number of } \\
\text { Identical } \\
\text { Keystream } \\
\text { Bits }\end{array} & \begin{array}{c}\text { Positions of Identical } \\
\text { Keystream Bits }\end{array}
$$ <br>
\hline 31 \& 83 \& 0-10,12-17,19-22,24-57,60-63,67-69,71,72,74-79,81-85,87-89,93,94,109,111,115 <br>
\hline 55 \& 94 \& 0-12,14-34,36-41,43-46,48-50,53-65,67-81,86,87,91-93,95,96,100-102,105-108,111, <br>

112,118,133,139\end{array}\right]\)| 10 |
| :---: |
| 79 |
| 100 |
| 123 |

Table 14: Propagation of a Single Bit Differential in the case of Grain 128a's NFSR.

| Flipped <br> Bit <br> Position | Number of <br> Identical <br> Keystream <br> Bits | Positions of Identical <br> Keystream Bits |
| :---: | :---: | :---: |
| 31 | 44 | $0-15,17,18,20-28,30-36,41,49,50,54-56,58,63,65,66$ |
| 55 | 55 | $0-9,11-18,20-39,41,42,44,45,47,49-52,55-60,65,74$ |
| 79 | 48 | $0-5,7-14,16-33,35-39,41,46,49,52,54,55,58,60,61,63,68$ |
| 103 | 43 | $0-7,9-13,15-29,31-38,42,53,55-57,59,61$ |
| 127 | 67 | $0-31,33-37,39-53,55-62,66,77,79-81,83,85$ |

## F Algorithms

```
Algorithm 16. Constructing Key-IV pairs that generate \(\beta\) bit shifted keystream
 Output: Key-IV pairs (\(K^{\prime}, I V^{\prime}\)) and (\(K, I V\))
 Set \(s \leftarrow 0\)
 while \(s=0\) do
 Choose \(K \in_{R}\{0,1\}^{n}\) and \(V_{2} \in_{R}\{0,1\}^{d_{2}}\)
 Set value \(\leftarrow \operatorname{Update}_{1}()\) and \(I V \leftarrow L S B_{\alpha-\beta+d_{1}}(P) \| V_{2}\)
 Run \(\mathrm{KSA}^{-1}\left(K\left\|L S B_{d_{1}}\left(P_{0}\right)\right\|\right.\) value \(\left.\| V_{2}\right)\) routine for \(\beta-d_{1}\) clocks and produce state
 \(S^{\prime}=\left(K^{\prime}\left\|V_{1}^{\prime}\right\|\right.\) value \(\left.\| V_{2}^{\prime}\right)\), where \(\left|V_{1}^{\prime}\right|=\beta\) and \(\left|V_{2}^{\prime}\right|=d_{2}-\beta+d_{1}\)
 if \(V_{1}^{\prime}=P_{0}\) then
 Set \(S \leftarrow K^{\prime}\left\|P_{0}\right\|\) value \(\| V_{2}^{\prime}\) and output \(\leftarrow \operatorname{Pair}_{3}\left(d_{1}, S\right)\)
 if output \(\neq \perp\) then
 Set \(s \leftarrow 1\)
 return \((K, I V)\) and output
 end
 end
 end
```

```
Algorithm 17. Update \({ }_{2}\) (start, stop)
 Input: Indexes start and stop
 Output: Variable value
 Set value \(\leftarrow N U L L\)
 for \(i=\) start to stop do
 Choose \(C_{i} \in_{R}\{0,1\}^{\delta}\)
 Update value \(\leftarrow\) value \(\left\|C_{i}\right\| P_{i}\)
 end
 return value
```

```
Algorithm 18. Update \(_{3}\) (value \(_{1}\), value \(_{2}\))
 Input: Variables value \(_{1}\) and value \(_{2}\)
 Output: Variable value
 for \(i=t\) to \(c-1\) do
 Choose \(B_{i} \in_{R}\{0,1\}^{\delta}\)
 Update value \({ }_{1} \leftarrow\) value \(_{1}\left\|B_{i}\right\| P_{i}\) and value \(_{2} \leftarrow\) value \(_{2} \| B_{i}\)
 end
 Set value \(\leftarrow\) value \(_{1} \|\) value \(_{2}\)
 return value
```

```
Algorithm 19. Constructing Key-IV pairs that generate \(\beta-\gamma+(\beta+\delta)(c-t)\) bit shifted
keystream
 Output: Key-IV pairs \(\left(K^{\prime}, I V^{\prime}\right)\) and (\(K, I V\))
 Set \(s \leftarrow 0\)
 while \(s=0\) do
 Choose \(K \in_{R}\{0,1\}^{n}, V_{1} \in_{R}\{0,1\}^{d_{1}-\beta+\gamma-(\beta+\delta)(c-t)}\) and \(V_{2} \in_{R}\{0,1\}^{d_{2}}\)
 Set value \({ }_{1} \leftarrow P_{0} \|\) Update \(_{2}(0, c-t-2)\left\|C_{c-t-1}\right\| M S B_{\beta-\gamma}\left(P_{c-t}\right)\) and value \(_{2} \leftarrow\) value \(_{1}\)
 Update value \({ }_{1} \leftarrow\) value \(_{1} \| P_{0}\)
 for \(i=1\) to \(t-1\) do
 Choose \(B_{i} \in_{R}\{0,1\}^{\delta-\beta+\gamma}\)
 Update value ver \(_{1} \leftarrow\) value \(_{1}\left\|B_{i}\right\| M S B_{\beta-\gamma}\left(P_{c-t+i}\right) \| P_{i}\) and value \({ }_{2} \leftarrow\) value \(_{2}\left\|B_{i}\right\| M S B_{\beta-\gamma}\left(P_{c-t+i}\right)\)
 end
 Set value \({ }_{1} \|\) value \(_{2} \leftarrow\) Update \(_{3}\left(\right.\) value \(_{1}\), value \(\left._{2}\right)\) and \(I V \leftarrow V_{1} \|\) value \(_{2} \| V_{2}\)
 Run \(\mathrm{KSA}^{-1}\left(K\left\|V_{1}\right\|\right.\) value \(\left._{1} \| V_{2}\right)\) routine for \(\beta-\gamma+(\beta+\delta)(c-t)\) clocks and produce state
 \(S^{\prime}=\left(K^{\prime}\left\|V_{1}^{\prime}\right\|\right.\) value \(\left._{1} \| V_{2}^{\prime}\right)\), where \(\left|V_{1}^{\prime}\right|=d_{1}\) and \(\left|V_{2}^{\prime}\right|=d_{2}-\beta+\gamma-(\beta+\delta)(c-t)\)
 Set \(I V^{\prime} \leftarrow V_{1}^{\prime}\left\|v^{\prime} a l u e_{1}\right\| V_{2}^{\prime}\)
 if \(\left(K^{\prime}, I V^{\prime}\right)\) produces all zero keystream bits in the first \(\beta-\gamma+(\beta+\delta)(\mathrm{c}-\mathrm{t})\) PRGA rounds then
 Set \(s \leftarrow 1\)
 return \((K, I V)\) and (\(\left.K^{\prime}, I V^{\prime}\right)\)
 end
 end
```

```
Algorithm 20. Constructing Key-IV pairs that generate \(\delta-\beta+\gamma+\beta(c-t+1)+\delta(c-t)\)
bit shifted keystream
 Output: Key-IV pairs (\(K^{\prime}, I V^{\prime}\)) and (\(K, I V\))
 Set \(s \leftarrow 0\)
 while \(s=0\) do
 Choose \(K \in_{R}\{0,1\}^{n}, V_{1} \in_{R}\{0,1\}^{d_{1}-\delta+\beta-\gamma-\beta(c-t+1)-\delta(c-t)}, V_{2} \in_{R}\{0,1\}^{d_{2}}\) and \(C_{c-t+1} \in_{R}\{0,1\}^{\delta-\beta+\gamma}\)
 Set value \({ }_{1} \leftarrow P_{0} \|\) Update \(_{2}(1, c-t) \| C_{c-t+1}\) and value \(2 \leftarrow\) value \(_{1}\)
 Update value \(_{1} \leftarrow\) value \(_{1} \| P_{0}\)
 for \(i=1\) to \(t-1\) do
 Choose \(B_{i} \in_{R}\{0,1\}^{\delta-\beta+\gamma}\)
 Update value \({ }_{1}=\) value \(_{1}\left\|L S B_{\beta-\gamma}\left(P_{c-t+i}\right)\right\| B_{i} \| P_{i}\) and value \(_{2}=\) value \(_{2}\left\|L S B_{\beta-\gamma}\left(P_{c-t+i}\right)\right\| B_{i}\)
 end
 Set value \(\|_{1}\) value \(_{2} \leftarrow\) Update \(_{3}\left(\right.\) value \(_{1}\), value \(\left._{2}\right)\) and \(I V \leftarrow V_{1} \|\) value \(_{2} \| V_{2}\)
 Run \(\mathrm{KSA}^{-1}\left(K\left\|V_{1}\right\|\right.\) value \(\left._{1} \| V_{2}\right)\) routine for \(\delta-\beta+\gamma+\beta(c-t+1)+\delta(c-t)\) clocks and produce state
 \(S^{\prime}=\left(K^{\prime}| | V_{1}^{\prime}| |\right.\) value \(\left._{1} \| V_{2}^{\prime}\right)\), where \(\left|V_{1}^{\prime}\right|=d_{1}\) and \(\left|V_{2}^{\prime}\right|=d_{2}-\delta+\beta-\gamma-\beta(c-t+1)-\delta(c-t)\)
 Set \(I V^{\prime} \leftarrow V_{1}^{\prime} \|\) value \(_{1} \| V_{2}^{\prime}\)
 if \(\left(K^{\prime}, I V^{\prime}\right)\)
 produces all zero keystream bits in the first \(\delta-\beta+\gamma+\beta(\mathrm{c}-\mathrm{t}+1)+\delta(\mathrm{c}-\mathrm{t})\) PRGA rounds then
 Set \(s \leftarrow 1\)
 return (\(K, I V\)) and (\(K^{\prime}, I V^{\prime}\))
 end
 end
```


[^0]:    ${ }^{3}$ against slide attacks
    ${ }^{4}$ we consider these smaller blocks as being spread among the linear feedback register's data

[^1]:    ${ }^{5}$ during one clock

[^2]:    ${ }^{6}$ resistant to the aforementioned attacks

[^3]:    ${ }^{7}$ compact and fragmented

[^4]:    ${ }^{8}$ as in Theorem 1
    ${ }^{9}$ as in Theorem 2, respectively Theorem 3

