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Abstract. Secure sketch produces public information of its input w without revealing it, yet, allows
the exact recovery of w given another value w′ that is close to w. Therefore, it can be used to reliably
reproduce any error-prone biometric data stored in a database, without jeopardizing the user privacy.
In addition to this, secure sketch enables fuzzy extractor, by using a randomness extractor to convert
the noisy reading w′ of its original value w into the same uniform key R. Standard secure sketch should
work on all type of available input sources. However, some sources have lower entropy compared to
the error itself, formally called “more error than entropy”, a standard secure sketch cannot show its
security promise perfectly to these kinds of sources. Besides, when same input is reused for multiple
sketches generation, the complex error process of the input further results to security uncertainty, and
offer no security guarantee. Fuller et al., (Asiacrypt 2016) defined the fuzzy min-entropy is necessary
to show security for different kind of sources over different distributions. This paper focuses on secure
sketch. We propose a new technique to generate re-usable secure sketch. We show security to low entropy
sources and enable error correction up to Shannon bound. Our security defined information theoretically
with min-entropy under distribution uncertain setting. In particular, our new technique offers security
guarantee for all family of input distributions, as long as the sources possessing “meaningful amount”
of min-entropy that is equivalent to the min-entropy of some random distributions over a larger metric
space, parametrized by a chosen error correction code.
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1 Introduction

Traditional cryptography systems rely on uniformly distributed and recoverable random strings for secret.
For example, random passwords, tokens, and keys, all are commonly used secrets for deterministic crypto-
graphic applications, i.e., encryption/decryption and password authentication. These secrets must present
exactly on every query for a user to be authenticated and get accessed into the system. Besides, it must
also consist of high enough entropy, thus making it very long and complicated, further resulted in the dif-
ficulty in memorizing it. On the other hand, there existed plentiful non-uniform strings to be utilized for
secrets in practice. For instance, biometrics (i.e., human iris, fingerprint) which can be used for human
recognition/identification purpose. Similarly, long passphrase (S. N. Porter, 1982 [Por82]), answering several
questions for secure access (Niklas Frykholm et al., 2001 [FJ01]) or personal entropy system (Ellison et al.,
2000 [EHMS00]), and list of favorite movies (Juels and Sudan, 2006 [JS06]), all are non-uniformly distributed
random strings that can be utilized for secrets.

As a solution by utilizing non-uniform input for secrets, it raised several security and practicability
concerns. Firstly, since it is not truly random and uniform, this increased the risk where an adversary may
easily be guessed and compromised it, thus reveals the underlying secret. Secondly, most of the available
non-uniform strings are not exactly recoverable. Therefore, they cannot be used for a typical deterministic
cryptographic application. For instance, human biometric data, it is well understood that two biometric
readings sourced from the same individual are rarely to be identical. Additionally, precise answer to multiple



questions or entering a password through keyboard consistently, from time to time, would be a challenge for
human memory although the provided answers are likely to be similar.

Nevertheless, these non-uniform measurements that always selected by human or naturally existing are
believed to offer a higher entropy than human-memorable password. Especially, higher security level can be
achieved by using longer/more complex human biological measurements, i.e., fingerprint, voice, retina scan,
handwriting signature, and others. (N. Frykholm, 2000 [FJ01]), (Jain et al., 2016 [JNR16]). Most importantly,
it is memory-free and somewhat difficult to steal, or loss compared to using external key storage, e.g., smart
card, token, keys.

The availability of non-uniform information prompted the generation of uniform random string from
non-uniform materials. Started by Bennette et al., (1988) [BBR88], identified two major approaches to
derive a uniform string from noisy non-uniform sources. The first approach is information-reconciliation,
by tolerating the errors in the sources without leaking any information. The second approach refers to the
privacy amplification, which converts high entropy input into a uniform random input. The information-
reconciliation process can be classified into interactive (includes multi messages) and non-interactive (only
includes single message) versions. For non-interactive line of work, it has been first defined by Dodis et al.,
(2004) [DRS04] called the fuzzy extractor. Likewise, the fuzzy extractor used two approaches to accomplish
the task, which are the secure sketch - for error tolerance, and randomness extractor - for uniform string
generation.

In this paper, we only focus on the secure sketch. Secure sketch is more demanding because it allows
information-reconciliation, e.g., exact recovery of a noisy secret while offering security assurance to it. More-
over, a secure sketch can be easily extended to fuzzy extractor for uniform string generation by using a
randomness extractor.

There existing various secure sketch constructions in the literature. Some notable constructions involved
the code-offset construction proposed by Juels and Wattenberg (1999) [JW99] that operates perfectly over
hamming matric space. This work generates a sketch through encoding a uniform string with error correction
code, then leaving an offset via performing XOR operation with a noisy string. The uniform string can be
reproduced by another noisy string by means of error tolerance, provided the noise level is lower than a
specified threshold. Besides, Juels and Sudan (2006) [JS06] have also proposed another construction for
metric other than hamming called the fuzzy vault. A fuzzy vault is a vault over a field F×F that protecting
an unorder sets, usually, represented as different genuine points. The genuine points reveal a secret which
is encoded by using an error correction code. Protection of the genuine points can be done by adding extra
chaff points into the vault to conceal the genuine points. Given another set of query points matched with the
genuine points in at least some reasonable number, the secret can be reproduced through error tolerance. An
improved version of the fuzzy vault is proposed by Dodis et al., (2004) [DRS04], and also the Pin-sketch that
relies on syndrome encoding/decoding with t-error correcting BCH code C, which works well for non-fixed
length input over a universe U [DRS04].

1.1 Existing Issues in Secure Sketch

We here review some existing issues in a secure sketch. As a highlight, these issues are mainly due to the
trade-off between security and error tolerance, and they have not considered by the constructions we have
mentioned previously. Alternative approaches have introduced to solve these issues recently by showing
security computationally [CFP+16] [FMR13], yet diverged from the original definition of a secure sketch.

More error than entropy: The secure sketch must contain some information about the sources to
tolerate the errors. More generally, given a point (some value) w, the sketch would allow the acceptance of
its nearby point w′ within distance t. Therefore, if an adversary can predict an accepting w′ with noticeable
probability, the sketch must reveal w to the adversary with noticeable probability as well. The tension
between the security and error tolerance capability is very strong. Precisely, the security is measured in term
of the residual (min-) entropy, which is the starting entropy of w minus the entropy loss. Often, a larger
tolerance distance is needed to tolerate more errors. However, exercising larger tolerance distance will offer
greater advantages to the adversary in predicting w′. In the end, the residual entropy becomes lower by the
increment of t. This consequent to an upper bound of the tolerance distance translated to a lower bound on
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the entropy loss of the input sources. This event is much worsening for some non-uniform sources with low
min-entropy, especially, when the sources consist of more error than entropy itself. Since the source entropy
rate is lower than the error rate, simply deducting the entropy loss from the sources’ min-entropy always
output a negative value, hence, show no security. Some other useful discussion on how the low entropy sources
must be taken into consideration when constructing a fuzzy extractor can be found in [CFP+16], by Canetti
et al., (2016). One typical example of a source with more error than entropy refers to the commonly known
biometric feature - IrisCode (Daugman, 2006) [Dau06]. The IrisCode is said to provide entropy of 249 bits.
Whereas, the IrisCodes generated from the same user of each 2048 bits have showed far more than 249 bits
of errors. Therefore, this more error than entropy problem is indeed restricting the usage of a secure sketch
from all kind of available sources.

Distribution uncertainty: The predictability of nearby point w′ within distance t is not merely en-
tropically connected, but it is also closely tied to the distribution of the sources. A source can be described
using a family of distributions W = {W1, . . . ,Wγ}. Given a source under a random distribution W ∈ W
where all points are far apart, the probability for an adversary to predict any nearby point w′ ∈ W within
distance t will be small. In some condition, the source may only consist of distributions where all points are
far apart with min-distance d. Then, this source must possess a certain quantity of min-entropy m over d,
which identifies the predictability of w′ ∈W . Viewed this way, the distributions of the source determine its
maximum tolerance distance t ≤ d with min-entropy m over the family of distributions W. In particular,
given a source with min-entropy m, larger min-distance between the points allows larger tolerance distance,
which also means, more entropy loss can be compensated by higher min-entropy. However, in some worst
scenario, the points may be distributed very close to each other. Therefore, the value of t is preferably to
be small as well. For any point w′ ∈ W over this ‘worse case’ distribution W , and one has set t > d, the
sketch must lose entropy by means of the number of similar points within distance t for error tolerance. The
entropy loss of the sketch would be bounded that is proportional to this value. Under the case when t > d,
the sketch is said to loss all min-entropy and show no security (e.g., more error than entropy).

Fuller et al., (2013) [FMR13] have showed that under the event when the input distribution is precisely
known and the security is defined computationally, the crude entropy loss can be avoided by the measurement
of fuzzy min-entropy, which defined as the min-entropy with maximized chances for a variable of W within
distance t of w′:

Hfuzz
t,∞(W )

def
= − log

(
max
w′

Pr[W ∈ Bt(w′)]
)

where Bt(w
′) denoted a hamming ball of radius t around w′. Conceivably, the fuzzy min-entropy is equivalent

to the residual entropy, it can be bounded by the min-entropy H∞ (W )− log(Bt(w
′)) ≤ Hfuzz

t,∞(W ) minus the
loss signified by the hamming ball Bt(w

′) of radius t, due to error tolerance.
However, it is imprudent to assume the source distribution is precisely known, especially for high entropy

sources. The adversary may have higher computation power to model and exam the distribution compared
to the designer. This leads to another problem called distribution uncertainty.

The distribution uncertainty problem potentially to be resolved by showing security to a family of dis-
tributions rather than a single distribution, which can be easily achieved by using the traditional way of
measurement with min-entropy, e.g., min-entropy minus the loss. Most importantly, the notion of min-entropy
has considered all possible distributions, included the worst case distribution over error tolerance distance
t, which also known as the worst case entropy. In this regard, measuring the entropy loss with min-entropy
certainly captured more relevance security property for a secure sketch. Nonetheless, doing so will reduce to
the precedent more error than entropy problem which is intended to be resolved by using fuzzy min-entropy
measurement.

Reusability1 e-usability property is introduced by Boyen (2004) [Boy04]. Given a user comes with a
noisy input w (i.e., biometric), the user may enroll w for different applications. Each time the user enrolls

1 The reusability property is different to the unlinkability property [KBK+11] [CS08] [GBGRB18]. Unlinkability
property prevents an adversary from differentiating whether two enrollments correspond to the same physical
source, which is not focus in this work.
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using w, he/she must provide slightly different reading wi due to the noise. Therefore, different sketches
ssi and keys Ri can be generated for different applications respectively. The security property of individual
sketches and keys should hold with all existing sketches ss1, ss2, . . . , ssγ . In fact, this property has been well
studied for current constructions of secure sketch and fuzzy extractor, but many of them do not satisfied
reusability [Boy04] [BA13] [BA11] [STP09].

1.2 Our Contributions

We highlighted our main contributions as follow:
Correcting more errors with average fuzzy min-entropy: To correct more errors, larger error

tolerance distance is desired. Unfortunately, larger tolerance distance renders higher probability of success
in predicting w′ within more considerable distance around w. Thus, security diminution cannot be avoided.
For this reason, we noticed merely relying on fuzzy min-entropy of single tolerance distance t′ is insufficient;
additional property is required to correct more errors in a source.

Consider another variable Φ. To allow error tolerance within a larger distance t > t′, one must max-
imize the total probability mass of Φ with larger ball Bt(φ

′)2 around the string φ′. Suppose Φ is corre-
lated with some variable W , if the adversary finds out W 6∈ Bt′(w′), then the predictability of Φ becomes

Ew′←W
[
max
φ′

Pr[Φ ∈ Bt(φ′) |W 6∈ Bt′(w′) ]

]
. On average, the average fuzzy min-entropy is:

H̃
fuzz

t,∞(Φ|W 6∈ Bt′(w′))
def
= − log

(
Ew′←W

[
max
φ′

Pr[Φ ∈ Bt(φ′) |W 6∈ Bt′(w′) ]

])
Intuitively, we meant to look for the fuzzy min-entropy of a variable Φ that is defined by a larger hamming

ball Bt, but it comes with an additional property: only the points outside the smaller ball Bt′ are considered.
In brief, if one can show substantive fuzzy min-entropy for every point outside the ball Bt′ , it implies more
errors can be corrected over larger tolerance distance t > t′. Otherwise, the average fuzzy min-entropy must
offer security according to the maximized probability for a variable Φ ∈ Bt(φ

′) within distance t that is
outside the ball Bt′ , by fuzzy min-entropy definition.

Undoubtedly, correcting more errors means higher entropy loss. Therefore, in some sense, average fuzzy

min-entropy H̃
fuzz

t,∞(Φ|W 6∈ Bt′(w′)) reveals the entropy loss from the fuzzy min-entropy of W over smaller
tolerance distance t′. This can be argued by knowing some values outside the ballBt′(w

′) must add advantages
of predicting a value inside the ballBt′(w

′). In addition to this, since the min-entropy should be lower bounded
to the fuzzy min-entropy, the minimum security can offer by average fuzzy min-entropy over t implies the
minimum entropy loss of the min-entropy over the worst case distribution. In light of this, the average-fuzzy
min-entropy is useful for better monitoring the loss of the min-entropy measured under smaller tolerance
distance while providing optimal resilience. We obtain its definition by merely combined the average min-
entropy and fuzzy min-entropy notions.

Showing info. theoretic security with min-entropy over larger metric space: Info. theoretic
secure sketch is always desired. Because it does not introduce additional assumption of computational limits
to the attacker, thus offers better security assurance. It also shows security to all family of input distribution,
without putting extra stringent distribution requirement to the sources, i.e., by min-entropy measurement.
Notwithstanding its security robustness, the cost imposed by info. theoretic secure sketch to the source
entropy requirement is too high, which is at least half of the length itself [DW09]. It means that if the
entropy is less than half of its input length, it achieves nothing where the underlying secret can be easily
revealed due to exhaustive entropy loss caused by error tolerance. We constructed a pair of sketching and
recover algorithm that offers info. theoretical security, which frees from the stiff constraint where the source
entropy must be at least half of its input length. The new construction is capable of achieving security bound
that merely depends upon the input entropy rather than its input length. Notably, it shows the best possible

2 Sometime, we omit φ′ or w′ to describe the ball Bt or Bt′ , when they are not depend upon their center φ′ and w′

respectively
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security which is at most half of the input entropy could offer (i.e., m/2), regardless of its input length. Our
construction relies on Local Sensitive Hashing (LSH) to generate a resilient vector pair (trivially, a pair of
longer strings with resilience property) for sketching and recover instead of using the original input string.
Doing so would allow us to apply the average fuzzy min-entropy notion and correct more errors over a larger
metric space. In fact, in our exposition, we show that the min-entropy of the resilient vectors is bounded by
the min-entropy of the sources regardless to any chosen error correction code (not parametrized by the code
length or the input length). Our works supported a statement: high min-entropy is necessary and sufficient
for a source to show meaningful security. On the other hand, high input length is necessary for better error
tolerance.

Reusable secure sketch: Apart from this, the new construction offers extra security property, which is
the reusability. In the beginning, our design is meant to provide better security bound to the secure sketch,
through the insertion of additional random error during the sketching phase. Eventually, we find out the
error included implicitly allows reusability. We defined our reusability in information theoretical sense, with a
group of computational unbounded adversaries. Our results imply the flexibility of independent re-enrollment
of a single source with multiple providers, yet offer security assurance to each of them, as long as the error is
kept within specified range. Our reusability emphasizes the case when the providers are not communicating
with each other hence it supports security to all of them individually.

1.3 Our Technique

Some notation need to know : This work focus on binary hamming metric where M1 = {0, 1}l, and M2 =
{0, 1}n denoted two different sizes of metric spaces with n > l. The distance between different binary string
w and w′ is the binary hamming distance (e.g., the number of disagree elements) denoted as ‖w ⊕ w′‖ where
‖.‖ is the hamming weight that counts the number of non-zero elements, and ⊕ is the addition modulo two
operation (XOR). Besides, the error rate of w and w′ is denoted as ‖w ⊕ w′‖ / |w| which is simply the nor-
malized hamming distance, given their size (length) |w| = |w′|. For error correction code notation, since we
are more interested in tolerating the errors of a codeword c′, we used t instead of d to explicitly represent an
[n, k, t]2 binary code Cξ with the tolerance rate denoted as ξ = tn−1 over larger binary metric space {0, 1}n.
At the same point, we let t(+) = b(ξ + ε)lc and t(−) = b(ξ − ε)lc to describe the error tolerance distances

over the smaller binary metric space {0, 1}l, with some error parameter ε ∈ (0, 1/2− ξ).

Main idea: Suppose Alice wishes to conceal a noisy non-uniform string w ∈ {0, 1}l while allows exact
recovery of w from another noisy string w′ ∈ {0, 1}l that is close to w. Then, Alice has to generate a
secure sketch which able to tolerate the error in w′. To do so, we invoke the use of error correction code for
conventional secure sketch generation, but comes with additional random errors (of different weights) adding
to the noisy input w and w′ for sketching and recovery respectively. This random error can be added by
simply an XOR operation in between w or w′ with some random error vector e ∈ {0, 1}l i.e., we = w ⊕ e.
Given a [n, k, t]2 code Cξ is chosen over {0, 1}n, in contrary to direct encoding w with Cξ, Alice encodes a
longer string v ∈ {0, 1}k by padding w with additional random bits string r ∈ {0, 1}k−l drawn uniformly at
random, i.e., v = w‖r. The output of the encoding process is a codeword c ∈ Cξ. After this, she conceals c
by generating a sketch ss = c⊕ δ which is then made public and leaving the offset δ in the clear. The offset
δ is characterized by a pair of resilient vectors φ, φ′ ∈ {0, 1}n, which is generated from a pair of noisy strings
w′e, we ∈ {0, 1}l (with additional error vector e) through LSH. The resilient vectors offer resilience for the
recovery of w from w′ if ‖δ‖ ≤ t.

Likewise the code-offset construction [JW99], our idea is conceptual simpler but comes with some crucial
differences in term of operations. Firstly, the code-offset construction concealing a random and uniform string
(called as the witness of w); our construction concealing a non-uniform input padded with additional random
bits. Therefore the concealed object is not entirely random and uniform in our case. Secondly, despite the
code-offset construction does not limit to particular types of error correction code (i.e., not necessary to be
linear), the sketch size is always bounded by the size of the input w. Comparatively, in our case, Alice is free
to choose any error correction code as she like, but with new liberty, i.e., the sizes of the concealed object and
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output sketch have not bounded but parametrized by the selected [n, k, t]2 code Cξ. Thirdly, of course, our
operation comes with additional random error added to the input w and w′ during sketching and recovery.

In our work, for resilient vector generation, we only focus on a particular LSH family called hamming-
hash [GIM+99]. The hamming hash is considered as one of the easiest ways to construct an LSH family by
bit sampling technique. Since it will be a core element in our proposal, it is worth sketching in details on
how it works.
Hamming hash strategy. Let [l] = {1, . . . , l}. For Alice with w ∈ {0, 1}l and Bob with w′ ∈ {0, 1}l. Alice
and Bob agreed on this strategy as follow:

1. They are told to each other a common random integer N ∈ [l].
2. They separately output ‘0’ or ‘1’ depend upon their private string w and w′, i.e., Alice output ‘1’ if the
N -th bit of w is ‘1’, else output ‘0’.

3. They win if they got the same output, i.e., w(N) = w′(N).

Based on above strategy, we are interested in the probability for Alice and Bob output the same value
which can be described with a similarity function S(w,w′) = P with probability P ∈ [0, 1].

Theorem 1. A hamming hash strategy is a LSH with similarity function S(w,w′) = 1− ‖w ⊕ w′‖l−1.

Theorem 1 concluded that Alice and Bob always win with probability described as P = 1−‖w ⊕ w′‖l−1.
Observe that, the similarity function for hamming hash correspond to the hamming distance between w and
w′.

By repeat step 1 and step 2 of hamming hash strategy n times, with different random integers, Alice
and Bob able to output a n bits string φ, φ′ ∈ {0, 1}n respectively, which we have earlier named as resilient
vectors.

Theorem 2. Suppose two resilient vectors φ, φ′ ∈ {0, 1}n are generated from w,w′ ∈ {0, 1}l respectively by
hamming hash strategy with a random integer string N ∈ [l]

n
, the expected hamming distance is E[‖φ⊕ φ′‖ ] =

n ‖w ⊕ w′‖ l−1.

Proof. Let ‖δ‖ = ‖φ⊕ φ′‖, base on Theorem 1, we know that, for each time in comparing the hamming hash
output (for i = 1, . . . , n), the probability of disagree is described as:

Pr[φ(i) 6= φ′(i)] = ‖w ⊕ w′‖ l−1 = 1− P

Therefore, one has i.i.d variable (or Bernoulli variable) for each offset element, δ(i) = 1 if φ(i) 6= φ′(i) and
δ(i) = 0 if φ(i) = φ′(i). Precisely, ‖δ‖ = ‖φ⊕ φ′‖ =

∑n
i=1 δ(i), thus, ‖δ‖ ∼Bin(n, 1 − P ) follows binomial

distribution of expected distance E[‖δ‖] = n(1−P ) and s.d. σ =
√
nP (1− P ). Hence, E[‖δ‖ ] = n(1−P ) =

n ‖w ⊕ w′‖ l−1 and prove the theorem.

Theorem 2 concluded that, any changes in the input hamming distance ‖w ⊕ w′‖ can be described as
an Bernoulli variable corresponds to the offset elements δ(i). Therefore, by introducing additional error
e ∈ {0, 1}l of weight ‖e‖ = lε to the inputs, where ε ∈ (0, 1/2− ξ) (e.g., adding the error simply equivalent to
‖w ⊕ w′ ⊕ e‖), the probability of disagreeing for each element between the resilient vectors φ, φ′ must shifted
by ε, which can be described as 1− P ± ε.

To make the above argument more precise, we provide the following corollaries to characterize the effect
on the offset ‖δ‖ with ε. To avoid notation clutter, we always refer to the resilient vectors generated from
LSH hamming using the same random integer string N ∈ [l]

n
. The corollaries are given as follow.

Corollary 1. Let W and Φ be some random variable over {0, 1}l and {0, 1}n respectively, let ξ ∈ (0, 1/2)
be the tolerance rate of a [n, k, t]2 code Cξ and ε ∈ (0, 1/2− ξ) be the error parameter. Suppose a resilient
vector φ′ ∈ Φ is generated from strings w′ ∈W . For two hamming ball Bt(φ

′) and Bt(−)
(w′) of radius t(−) =

b(ξ − ε)lc and t > t(−), given a variable W ∈ Bt(−)
(w′), then, one has the average minimum probability to

find any variable Φ ∈ Bt(φ′) described as Ew′←W
[

min
φ′

Pr
[
Φ ∈ Bt(φ′)

∣∣W ∈ Bt(−)
(w′)

]]
≥ 1− exp (−2nε2).
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Proof. For W ∈ Bt(−)
(w′), it means that any string w ∈W must show an error rate of ‖w ⊕ w′‖l−1 ≤ ξ − ε.

Based on Theorem 2, w can be used to produce its corresponding resilient vector φ ∈ Φ that shows an
expected offset with φ′ described as E[‖φ⊕ φ′‖ ] = E[‖δ‖] s.t. E[‖δ‖] ≤ t− nε (by multiplying both sides of
the inequality with n). It follows, there will be a minimum value of tmin s.t. tmin = E[‖δ‖] + nε. Therefore,
By using Hoeffding’s inequality, one able to calculate the average minimum probability:

Ew′←W
[

min
φ′

Pr
[
Φ ∈ Bt(φ′)

∣∣W ∈ Bt(−)
(w′)

]]
= min
t=tmin

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ ≤ t(−)

]
≥ 1− exp (−2nε2) (1)

and complete the prove.

Corollary 2. Let W and Φ be some random variable over {0, 1}l and {0, 1}n respectively, let ξ ∈ (0, 1/2)
be the tolerance rate of a [n, k, t]2 code Cξ and ε ∈ (0, 1/2− ξ) be the error parameter. Suppose a resilient
vector φ′ ∈ Φ is generated from strings w′ ∈ W . For two hamming ball Bt(φ

′) and Bt(+)
(w′) of radius

t(+) = b(ξ + ε)lc and t > t(+), given a variable W 6∈ Bt(+)
(w′), then, one has the average maximum probability

to find any variable Φ ∈ Bt(φ′) described as Ew′←W
[

max
φ′

Pr
[
Φ ∈ Bt(φ′)

∣∣W 6∈ Bt(+)
(w′)

]]
≤ exp (−2nε2).

Proof. This proof is instantiated from the proof of Corollary 1. For W 6∈ Bt(+)
(w′), it means that any

string w ∈ W must show error rate of ‖w ⊕ w′‖l−1 ≥ ξ + ε. More precisely, ‖w ⊕ w′‖ ≥ b(ξ + ε)lc > t(+).
According to Theorem 2, w is capable to produce its corresponding resilient vector φ ∈ Φ that will show
an expected offset with φ′ described as E [‖δ‖] ≥ t+ nε. Thus, there will be a maximum value of tmax s.t.
tmax = E[‖δ‖]− nε. Therefore, By using Hoeffding’s inequality, one able to calculate the average maximum
probability, by symmetry:

Ew′←W
[

max
φ′

Pr
[
Φ ∈ Bt(φ′)

∣∣W 6∈ Bt(+)
(w′)

]]
= max
t=tmax

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ > t(+)

]
≤ exp (−2nε2) (2)

and complete the prove.

The results obtained from Corollary 1 and Corollary 2 imply the following statement: Once the error is
introduced into the input, the probability to find any resilient vector φ′ ∈ Φ close to its original reading φ
within the ball Bt(φ

′) will be bounded due to the error effect. These bounds are conditioned on the input
W , whether W ∈ Bt(−)

(w′) or W 6∈ Bt(+)
(w′), that can be proven in either way by minimizing/maximizing

the value of t = tmin/tmax respectively. Accordingly, we have the average fuzzy min-entropy described as

H̃
fuzz

t,∞(Φ|W 6∈ Bt(+)
(w′)) ≥ − log(exp(−2nε2)) (3)

by definition.

2 Preliminaries

In this section, we briefly highlight and recall some classical notions used in our constructions.

Metric Spaces: A metric space defined M as finite set along with a distance function dis : M ×
M → R+ = [0,∞). The distance function can take any non-negative real values and obey symmetric e.g.,
= dis(A,B) = dis(B,A), and triangle inequality, e.g., dis(A,C) ≤ dis(A,B) + dis(B,C).
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Min-Entropy: For security, one is always interested in the probability for an adversary to predict a
random value, i.e., guessing a secret. For a random variable W , max

w
Pr[W = w ] is the adversary’s best

strategy to guess the most likely value, also known as the predictability of W . The min-entropy thus defined
as

H∞ (W ) = − log (max
w

Pr[W = w ])

min-entropy also viewed as worst case entropy.

Average min-entropy: Given pair of random variable W , and W ′ (possible correlated), given an ad-
versary find out w′ of W , the predictability of W is now conditioned as max

w
Pr[W = w |W ′ = w′ ]. The

average min-entropy of W given W ′ is defined as

H̃∞ (W |W ′ ) = − log
(
Ew′←W ′

[
max
w

Pr[W = w |W ′ = w′ ]
])

Fuzzy min-entropy: Given an adversary try to find w′ that is within distance t of w, the fuzzy min-
entropy is the total maximized probability mass of W within the ball Bt(w

′) of radius t around w defined
as:

Hfuzz
t,∞(W ) = − log

(
max
w′

Pr[W ∈ Bt(w′)]
)

high fuzzy min-entropy is a necessary for strong key derivation.

Secure sketch [DRS04] A (M,m, m̃, t)-secure sketch is a pair of randomized procedures “sketch” (SS)
and “Recover” (Rec), with the following properties:

SS: takes input w ∈M returns a secure sketch (e.g., helper string) ss ∈ {0, 1}∗.
Rec: takes an element w′ ∈M and ss. If dis(w,w′) ≤ t, then Rec(w′, ss) = w with high probability 1−β.
If dis(w,w′) > t, then no guarantee is provided about the output of Rec.

The security property of secure sketch guarantees that for any distribution W overM with min-entropy
m, the values of W can be recovered by the adversary who observes ss with probability no greater than
2−m̃. That is the residual entropy H̃∞ (W |W ′ ) ≥ m̃.

Error correction code [Gur04]: Let q ≥ 2 be an integer, let [q] = {1, . . . , q}, we called an (n, k, d)q-ary
code C consist of following properties:

– C is a subset of [q]n, where n is an integer referring to the blocklength of C.
– The dimension of code C can be represented as |C| = [q]k = V
– The rate of code C to be the normalized quantity k

n
– The min-distance between different codewords defined as min

c,c∗∈C
dis(c, c∗)

It is convenient to view code C as a function C : [q]k → [q]
n
. Under this view, the elements of V can be

considered as a message v ∈ V and the process to generate its associated codeword C(v) = c is called
encoding. Viewed this way, encoding a message v of size k, always adding redundancy to produce codeword
c ∈ [q]n of longer size n.

Nevertheless, for any codeword c with at most t = bd−1
2 c symbols are being modified to form c′, it is

possible to uniquely recover c from c′ by using certain function f s.t. f(c′) = c. The procedure to find the
unique c ∈ C that satisfied dis(c, c′) ≤ t by using f is called as decoding. A code C is said to be efficient if
there exists a polynomial time algorithm for encoding and decoding.

Linear error correction code [Gur04]: Linear error correction code is a linear subspace of Fnq . A q-ary
linear code of blocklength n, dimension k and minimum distance d is represented as [n, k, d]q code C. For a
linear code, a string with all zeros 0n is always a codeword. It can be specified into one of two equivalent

ways with a generator matrix G ∈ Fn×kq or parity check matrix H ∈ F(n−k)×n
q :
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– a [n, k, d]q linear code C can be specified as the set {Gv : v ∈ Fkq} for an n × k metric which known as
the generator matrix of C.

– a [n, k, d]q linear code C can also be specified as the subspace {x : x ∈ Fnq and Hx = 0n} for an (n−k)×n
metric which known as the parity check matrix of C.

For any linear code, the linear combination of any codewords is also considered as a codeword over Fnq .

Often, the encoding of any message v ∈ Fkq can be done with O(nk) operations (by multiplying it with
the generator matrix, i.e., Gv. The distance between two linear codewords refers to the number of disagree
elements between them, also known as the hamming distance.

Local Sensitive Hashing (LSH) [Cha02] Given that P2 > P1, while w,w′ ∈M, and H = hi :M→U ,
where U3 is the hashed metric space depends to similarity function defined by S and i refers to the number
of hash functions hi. A local sensitive hashing is a probability distribution on a family H of hash functions
such that Ph∈H[h(w) = h(w′)] = S(w,w′). With a similarity function S define on the collection of w and w′.

Ph∈H(hi(w) = hi(w
′)) ≤ P1, if S(w,w′) < R1

Ph∈H(hi(w) = hi(w
′)) ≥ P2, if S(w,w′) > R2

LSH is the hashing of object collection w and w′ by means of multiple hash functions hi. The use of hi
enables decent approximation of the pair-wise distance of w and w′ in terms of collision probability. LSH
ensures that w and w′ with high similarity render higher probability of collision in the hashed domain; on
the contrary, the data points far apart each other result in a lower probability of hash collision.

3 Our Construction-LSH Secure Sketch

We hereby provide the detail of our based design of on a pair of sketching and recover algorithm, that
incorporated with LSH, by hamming hash strategy.

3.1 LSH-Hamming hash

We first formulate the hamming-hash algorithm Ωham−h which will be used in our LSH-sketching and recover
algorithms described later. Generally, the hamming-hash algorithm Ωham−h :M1× [l]n →M2 is an iterative
process through repeating the hamming hash strategy (steps 1 and 2) up to n > 1 times. It serves to sample
the input binary string of size l into a longer binary string a.k.a resilient vector of size n > l.

Given input w ∈ {0, 1}l, and N ←$ [l]n, the LSH-hamming hash algorithm described as follow:

Ωham−h(w,N)

φ← ∅
for i = 1, . . . , n do

parse x = w(N(i))// x is the N(i)-th bits of w

φ = φ‖x
endfor

return φ

3 The notation used here is different with our exposition. In our exposition, M =M1 and U =M2, where |M1| <
|M2|. In traditional LSH, |U | is usually smaller than M for different objectives, i.e., fast similarity search.
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3.2 LSH-Sketching

We denote the LSH-sketching algorithm that employed the hamming-hash algorithm, Ω and a [n, k, t]2 code
Cξ with parity check matrix H4 as SSLSH

Ω,Cξ .
For sketching, one is required to generate a resilient vector φ by using the LSH hamming hash algorithm.

The size of the resilient vector must same as the sampled codeword c. Then, the sketch ss can be constructed
by simply perform an XOR operation, i.e., ss = c⊕ φ. Besides, to add additional noise to the input during
sketching, we denote the random error vector e ∈ supp(χ) over some random distribution χ parametrized by
ε ∈ (0, 1/2− ξ). Specifically, we have ‖χ‖ = lε, which means the error vector e is of weight ‖e‖ = ‖χ‖ = lε.
The sketching algorithm SSLSH

Ω,Cξ used input w,N , H described as follow:

SSLSH
Ω,Cξ(w,N,H, ε)

r←$ {0, 1}k−l// sample r uniformly at random

χ←$ {0, 1}l// sample χ according to the noise parameter ε, i.e., ‖χ‖ = lε

e←$ supp(χ)// sample e from χ uniformly at random, where ‖e‖ = ‖χ‖ = lε

v = w‖r;
c = Hv;

we = w ⊕ e;
φ← Ωham−h(we, N)

ss = c⊕ φ
return (ss,N,H)

All steps on SSLSH
Ω,Cξ(w,N,H, ε) can be done in O

(
n2
)
. Notably, the size of v and ss are now depend upon

the chosen code Cξ (parametrized by k and n respectively). Often, the XOR operation c⊕ φ works perfectly
under the case when the size of the codeword and the resilient vector are equal, i.e., |c| = |φ| = n.

Assuming in a scenario that is without any random bits padding, direct encoding w must add n − l
number of redundant symbols for |c| = |φ| = n to hold, which will lead to exhaustive entropy loss when the
sketch is published. As a solution to this, we padded the input to form a longer string v before encoding takes
place, hence reduced the number of redundancy. Doing so can minimize the entropy loss from the sketch
during encoding phase.

In fact, the idea of random bits padding for secure sketch has been earlier proposed by Woodage et
al. [WCD+17] for password typo correction. Their works padded random bits on shorter sketches that
protecting the same password. The effort required to recover the password from all sketches of the same size
is increased, so, it reduced the entropy loss.

Noting that for any random bit padded input v ∈ V over some random distribution V , our strategy should
introduce a changes over the input metric space form M1 to M2 for W ∈M1 and V ∈M2 respectively. In
fact any secure sketch construction technique that allows changing in between metric space can be viewed as
biometric embedding, first identified by Dodis et al., (2004) [DRS04]. Generally, biometric embedding used
a transformation function fb to transform the input w, w′ ∈Ma over a metric space Ma to another metric
spaceMb, i.e., fb(w), fb(w

′) ∈Mb. The transformation function itself must come with some useful properties
for secure sketch construction (see Section 4.3 in [DRS04] for more details). Like wise, our construction can
be considered as an realization of biometric embedding with resilient vector where the achievable security is
bounded by the input min-entropy over the original metric space before transformation ([DRS04], Lemma
4.7).

3.3 LSH-Recover

For recovery, suppose one wishes to recover w from another string w′ ∈ {0, 1}l. He/she needs to provide
another resilient vector φ′. This resilient vector can be generated by using the same hamming hash algorithm

4 Sometimes, we replace H with G if generator matrix is desired for code Cξ
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Ω with inputs w′e = w′ ⊕ e after adding the error vector e ∈ supp(χ′) followed another sampled error
distribution χ′ parametrized by the same parameter ε. Noting that, despite the noise’s distribution χ′ and χ
are both parametrized by ε, but the later one consisted of doubled in amplitude, i.e., ‖χ′‖ = 2lε. The offset
is manifested by the way of measuring the hamming distance on the resilient vectors pair, δ = φ⊕ φ′. Often,
we allow the recovery algorithm to run iteratively for all ei ∈ supp(χ′) to take consideration of all possible
errors’ pattern of ei over χ′ (for i = 1, . . . , |supp(χ′)|).

We denote the LSH-recover algorithm that employed the hamming-hash algorithm, Ω, and a [n, k, t]2
code Cξ with parity check matrix H and a decoding algorithm f as RecLSH

Ω,Cξ,f . The recover algorithm RecLSH
Ω,Cξ,f

used input string ss, w′, N , ε and H to recover w is described as follow:

RecLSH
Ω,Cξ,f(ss, w

′, N,H, ε)

χ′ ←$ {0, 1}l// sample χ
′

with noise parameter ε i.e.,
∥∥χ′∥∥ = 2lε

for i = 1, . . . ,
∣∣supp(χ′)

∣∣
L ← ∅
ei ←$ supp(χ′)// sample e

′
i uniformly at random, where

∥∥e′i∥∥ =
∥∥χ′∥∥

w′ei = w′ ⊕ ei
φ′i ← Ωham−h(w′ei , N)

c′i = ss⊕ φ′i// also ss⊕ φ′i = c⊕ (φ⊕ φ′i)

ci ← f(c′i, H)

vi ← H−1ci

wi ← vi// look for wi from first k bits of vi

L
⋃
wi

endfor

return L

If the final decoding process f(c,H) is successful, the algorithm returns a list of outputs L where w ∈ L.
Else, it will output all wrong results and w /∈ L.

By introducing additional error during the sketching phase, we are now able to describe the input error
rate with ε by ‖w ⊕ w′‖ l−1 ≤ ξ ± ε or ‖w ⊕ w′‖ l−1 ≥ ξ ± ε. We want the recovery algorithm to output
w ∈ L for any error rate ‖w ⊕ w′‖ l−1 ≤ ξ ± ε by some error correction code Cξ.

A brief description of the recovery mechanism is given as follow. Suppose Bob has intercepted with a
sketch ss = c⊕ φ. Firstly, he has to double the noise parameter from ε to 2ε and generate a resilient vector
φ′ ← Ωham−h(w′e, N). Doubling the noise parameter is mainly aimed to show correctness for any error rate
‖w ⊕ w′‖ l−1 ≤ ξ + ε. The hamming weight of the offset can be conveniently represented as ‖δ‖ = ‖φ⊕ φ′‖.
By means of the similarity preservation property over LSH, the offset, δ is expected to be low as well if w and
w′ are close to each other. Expressly, if w and w′ are close enough, one would have ‖δ‖ ≤ t, with distance
t specified by the error correction code Cξ, where ξ = t/n. Eventually, Bob can perform ss ⊕ φ′i to output
the nearest codeword c′. The errors over c′ can be tolerated by means of error correction with code Cξ with
decoding function f.

When comes into decoding, it follows that f(c′, H) = f(c⊕ δ,H) = f((c⊕φ)⊕φ′, H) = f(c⊕ (φ⊕φ′), H).
If ‖φ⊕ φ′‖ = ‖δ‖ ≤ t, the decoding will success and its efficiency follows the decoding algorithm f itself.
Thereafter, v can be recovered successfully and so w by looking at the first l symbols of v. Above process is
repeated for i = 1, . . . , |supp(χ′)| iterations to list all possible solutions for w over a list L.

4 Resilience

We now consider the resilience of the new proposed algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉. Generally, the resilience

measures on how probable the offset ‖δ‖ can be tolerated in facilitating the recovery of w from the sketch.
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High resilience implies high probability to tolerate the offset, or more formally, high probability of correcting
the errors.

Obviously, the resilience of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is bounded below the resilience of the selected code Cξ.
Choosing a ‘good’ code with a high value of ξ is non-trivial, this is because different code Cξ is subjected to
different set of parameters (n, k, t) and there is no straightforward way to determine which the most efficient
one is. The design of such code under different set of parameters (n, k, t) is another broad research topic. We
direct the interested user refer to the works of Macwilliams, (1977) [MS77], and Peterson and Weldo, (1972)
[Ber15]. In this section, we are more interested in the probability to recover the original input w. We will
leave the discussion of the topic regarding resilience bound to the following Section 4.1.

For the seek of simplicity, we combined the results of Eq. (1) and Eq. (2). Formally, we let β = exp (−2nε2).

Thus, Ew′←W
[

max
φ′

Pr
[
Φ ∈ Bt(φ′)

∣∣W 6∈ Bt(+)
(w′)

]]
≤ β. accordingly. On the other hand, the average min-

imum probability to find Φ ∈ Bt(φ′) can be represented as Ew′←W
[

min
φ′

Pr
[
Φ ∈ Bt(φ′)

∣∣W ∈ Bt(−)
(w′)

]]
≥

1− β.
Further simplification is done by describing the term overwhelming given the value of 1− β comes with

some negligible quantity β. As we shall see, negligible value of β means substantial average fuzzy min-entropy,

since H̃
fuzz

t,∞(Φ|W 6∈ Bt(+)
(w′)) ≥ − log(β). In view of this, apart from the security it could offer with, the

average fuzzy min-entropy is promoting higher resilience.
Our explication of resilience evinced by the completeness of 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉. It captured the scenario

when the players are honest, which is defined under the following definition.

Definition 1. Let W and Φ be some random variable over a metric space M1 = {0, 1}l and M2 = {0, 1}n
respectively, where l < n. Given w,w′ ∈ W , N ∈ [l]n, ε ∈ (0, 1/2 − ξ), an [n, k, t]2 linear code Cξ with ξ =
tn−1 ∈ (0, 1/2) and parity check matrix H ∈ F(n−k)×n. For a sketch ss generated through SSLSH

Ω,Cξ(w,N,H, ε) =

ss, then the probability for RecLSH
Ω,Cξ,f(ss, w

′, N,H, ε) = w is overwhelming if the error rate ‖w ⊕ w′‖l−1 ≤
ξ − ε. We said 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 is complete in (ξ, ε)-fuzziness if above statement holds.

We hereby provide a proposition with proof to characterize the resilience property of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉.
For efficiency purpose, we will focus on particular [n, k, t] code Cξ named BCH code with efficient decoding
algorithm f via algebric method, i.e., syndrome decoding [PW72].

Proposition 1. If syndrome decoding algorithm f is used for an [n, k, t] BCH code Cξ, an LSH-sketching
and recover algorithm pair 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 is complete in (ξ, ε)-fuzziness if n is sufficiently large.

Proof. Recall that any offset as δ ∈ {0, 1}n with ‖δ‖ ≤ t is required for a successful decoding. For an error
correction threshold t > 0, the usage of syndrome decoding, f can decode the corrupted codeword, c′ if
‖δ‖ ≤ t, described as f(c′, H) = f(c⊕ (φ⊕ φ′), H) = c. Eventually, one has RecLSH

Ω,Cξ,f(ss, w
′, N,H, ε) = w.

To claim our completeness, we utilize the result in Corollary 1. Focusing on the case when ‖w ⊕ w′‖l−1 ≤
ξ − ε, one has:

Ew′←W
[

min
φ′

Pr
[
Φ ∈ Bt(φ′)

∣∣W ∈ Bt(−)
(w′)

]]
≥ 1− β

Observe that 1 − β is overwhelming with negligible quantity β = exp (−2nε2) when n is sufficiently large.
Hence, the proposition is prove.

Proposition 1 concluded that given a [n, k, t]2 BCH code Cξ, under the scenario where ‖w ⊕ w′‖l−1 ≤ ξ − ε,
or formally, it also equivalent to the case when ‖w ⊕ w′‖ ≤ t(−), the offset can be tolerated with overwhelming
probability if one has the value of n is sufficiently large for any decoding algorithm f. The secure sketch itself
is considered as efficient by the efficiency of syndrome decoding f itself.

It is useful to have an example to show how our results can be applied practically with a particular classes
of error correction code- BCH code, which is an efficient one.
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Example 1. Let w,w′ ∈ {0, 1}l, l = 100. Suppose one wishes to correct some errors say 10 bits. It means
10/l = 0.1 = ‖w ⊕ w′‖l−1. Suppose a [1023, 101, 175]2 BCH code with ξ = 175/1023 = 0.1711 is used for
encoding/decoding. To show resilience (correctness), recall the completeness hold if ‖w ⊕ w′‖ ≤ b(ξ − ε)lc.
It follows that one can calculate the weight of random error ‖e‖ = lε following 10 ≤ b(0.1711− ε)100c, thus
ε ≤ 0.0711 and ‖e‖ ≤ b(0.0711)100c = 7 bits. The error can be corrected with overwhelming probability
1− exp (−2nε2) = 1− 3.22× 10−5.

In fact the syndrome decoding algorithm f itself will always success without error (success with probability
one, i.e., β = 0) if ‖δ‖ ≤ t [Ber15]. However, adding random error eventually boils down this perfect
correctness notion into probabilistic correctness notion. Precisely, the error added into the input w would
affect the distance of the resilient vectors pair ‖φ⊕ φ′‖ described by their collision probability. Therefore the
distance over the resilient vector will be probabilistic as well.

4.1 Correcting More Error via List-Decoding

Recall that, once the error added to the input w, the final error rate would be ‖w ⊕ w′‖l−1 ≤ ξ ± ε. To correct
the error with overwhelming probability, the completeness statement (hold only if ‖w ⊕ w′‖l−1 ≤ ξ − ε)
implies the added random error must come with error parameter ε ≤ ξ for a constant value of error tolerance
rate ξ ∈ (0, 1/2). In fact, above result demonstrating a limited amount of inputs’ error rate ‖w ⊕ w′‖ could
be corrected by the code Cξ. For instance, since ‖w ⊕ w′‖l−1 ≤ ξ − ε must hold by argument of completeness,
therefore ‖w ⊕ w′‖ l−1 + ε ≤ ξ must hold as well, thus lesser inputs’ errors can be corrected in this scenario.

Conversely, one can actually correct more error with any code Cξ when ‖w ⊕ w′‖l−1 ≤ ξ + ε. To be
specific, given higher inputs’ error rate of ‖w ⊕ w′‖l−1 ≤ ξ + ε (also means ‖w ⊕ w′‖l−1 ≥ ξ). This error rate
is possible to be reduced to ‖w ⊕ w′‖l−1 ≤ ξ − ε after one has introduced additional random error of rate
−2ε during recovery phase, i.e., ‖e‖ = 2lε. Saying so, we have the soundness of 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 to correct

a total amount of error rate ≤ ξ + ε by code Cξ. Noting that the soundness itself covered scenario when any
adversary is capable of sampling a query sample w′ where ‖w ⊕ w′‖l−1 ≤ ξ + ε holds5.

The definition below captured the soundness of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 in correcting the errors with overwhelm-

ing probability and efficiently under the event when ‖w ⊕ w′‖l−1 ≤ ξ + ε. As all steps on SSLSH
Ω,Cξ(w,N,H, ε)

can be done efficiently in O
(
n2
)
, our focus will mostly on the recovery algorithm itself RecLSH

Ω,Cξ,f .

Definition 2. Let W and Φ be some random variable over a metric space M1 = {0, 1}l and M2 = {0, 1}n
respectively, where l < n. Given w,w′ ∈ W , N ∈ [l]n, ε ∈ (0, 1/2 − ξ), an [n, k, t]2 linear code Cξ with ξ =
tn−1 ∈ (0, 1/2) and parity check matrix H ∈ F(n−k)×n. For a sketch ss generated through SSLSH

Ω,Cξ(w,N,H, ε) =

ss, We said RecLSH
Ω,Cξ,f is efficient if it can run in polynomial time and correct the error rate of ‖w ⊕ w′‖ l−1 ≤

ξ + ε with overwhelming probability.

We provide a proposition with proof to show that RecLSH
Ω,Cξ,f can be done in an efficient manner follows

Definition 2.

Proposition 2. For any polynomial time decoding algorithm f used for an [n, k, t] code Cξ, an LSH-recover
algorithm RecLSH

Ω,Cξ,f is efficient for sufficiently large n.

Proof. We first argue on the statement where the error can be corrected with overwhelming probability. In
particular, given any input pair (w,w′) with original error rate described as ‖w ⊕ w′‖ l−1 ≤ ξ + ε. With
additional random error e of weight ‖e‖ = 2lε added to the input w′, such as ‖w ⊕ w′ ⊕ e‖l−1. The error
included will lead to the changes in the final error rate between w and w′, to either ‖w ⊕ w′‖l−1 ≤ ξ + ε+ 2ε
or ‖w ⊕ w′‖l−1 ≤ ξ + ε− 2ε. In particular, under the case when ‖w ⊕ w′‖ l−1 ≤ ξ + ε− 2ε ≤ ξ − ε, the error
can be corrected with overwhelming probability by Eq. 1.

5 The soundness itself characterized the correctness of RecLSH
Ω,Cξ,f for larger range of error rate ‖w ⊕ w′‖l−1 ≤ ξ + ε

compared to the completeness which only hold for error rate ‖w ⊕ w′‖l−1 ≤ ξ − ε
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For efficiency claim, given any error ei of weight ‖ei‖ = 2lε, we have a total number of |supp(χ′)| =
(
l

2lε

)
possible ways to describe all different combination of the random error ei ∈ supp(χ′). Noting that all these
possible ways of description should include both scenarios when the introduced error rate is +2ε (inputs’
errors rate increasing) or −2ε (inputs’ errors rate decreasing). Therefore RecLSH

Ω,Cξ,f maximally run in
(
l

2lε

)
iterations. It follows that Pr

[
‖w ⊕ w′‖ l−1 ≤ ξ − ε

]
=

(‖w⊕w
′‖

2lε )
( l
2lε)

. Let y = l − ‖w ⊕ w′‖, then

(‖w⊕w′‖
2lε

)(
l

2lε

) =

(
l−y
2lε

)(
l

2lε

) > (1− y

l − 2lε
)2lε ≈ exp(− 2yε

1− 4ε
) =

1

poly(ε)
(4)

Briefly, after poly(ε) iteration, RecLSH
Ω,Cξ,f would success and output w with overwhelming probability 1−β.

The efficiency of the decoding algorithm f itself follows.

Proposition 2 concluded that given a [n, k, t]2 BCH code Cξ, under the scenario where ‖w ⊕ w′‖l−1 ≤ ξ + ε,
or formally, it also equivalent to the case when ‖w ⊕ w′‖ ≤ t(+), the offset can be tolerated with overwhelming

probability after RecLSH
Ω,Cξ,f has run in poly(ε) iterations and n is large enough with additional introduced error

vector ei of weight ‖ei‖ = 2lε. The secure sketch itself is considered as efficient if f is efficient.
Remark that RecLSH

Ω,Cξ,f could return a list of solutions L after running poly(ε) iterations, we then called it
as list-decoding for recovery of w.

We give another example to showcase how RecLSH
Ω,Cξ,f works according to our claim follows Proposition 2.

Example 2. Let w,w′ ∈ {0, 1}l, l = 100. Suppose one wishes to correct some errors say 30 bits. It means
30/l = 0.3 = ‖w ⊕ w′‖l−1. Suppose a [1023, 101, 175]2 BCH code with ξ = 175/1023 = 0.1711 is used for
encoding/decoding. Obviously, we now have‖w ⊕ w′‖l−1 ≤ 0.3 = ξ + ε. It follows that one can calculate
the weight of random error by 30 ≤ b(0.1711− ε)100c, thus ‖e‖ ≥ 2dl(0.3− 0.1711)e = 26 bits. By Eq.

4, after log
(100

26 )
(30
26)

= 265 number of iterations, the error can be corrected with overwhelming probability 1 −

exp (−2nε2) = 1− 1.72× 10−15.

Intuitively, we introduce additional 26 bits of information while recovery phase by adding extra random
error to facilitate the decoding process. To be specific, since 30 bits of error contributed to 0.3 error rate
(equivalent to ≈ 307 bits of errors over M2) which is required to be corrected by the chosen BCH code
C175/1023. However, as C175/1023 is only capable to correct an error rate of ξ = 175/1023 = 0.1711 (equiv-
alent to 175 bits of error over M2), and it can correct the error with overwhelming probability 1 − β if
‖w ⊕ w′‖ l−1 ≤ ξ− ε with any ε ∈ (0, ξ − 1/2). Adding extra random error of 26 bits on the inputs is possible
to reduce the original error from 0.3 to ξ + ε− 2ε = 0.3− 0.2578 = 0.0422 (equivalent to ≈ 44 bits of errors
over M2). Therefore, the total errors that need to be corrected over M2 are now become 44 bits, which is
suffice and easy to be handled by using C175/1023.

4.2 Error Correction up to Shannon Bound

In the previous section, we have demonstrated the resilience of algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉, in term of
the probability in correcting the errors. Although, high probability in correcting the errors does not always
mean high number of errors can be corrected. Therefore, this section will provide the discussion on how
much errors can be corrected by using 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉. Formally, we called this as the resilience bound of

〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉.
Generally, to study the resilience bound, the error model of the system must be conceived. It is mean

to say that, without any knowledge on the error process of the input, it is difficult to precisely model and
determine the resilience bound of a given error correcting construction. It is also heedless for one to believe
that people have a complete understanding of the complex error pattern, or the distribution that is overtaking
by the noisy non-uniform sources, i.e., biometric.
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Principally, to study the resilience bound without the knowledge of the input error process, one can
always use the perfect correctness model. Recall that, high resilience means the errors can be corrected with
overwhelming probability 1 − β. Ideally, it is natural to let β = 0, which will easily lead to the perfect
correctness model, so, the errors can be corrected with probability one. This means there will be only one
unique solution for every w′ within distance t. Hence, the decoding process always return the original value
w precisely (e.g., unique decoding). In this model, the fuzzy min-entropy notion may not necessary, since
one can easily show infinite fuzzy min-entropy without any dissension for security. Therefore, this model is
useful and suitable for who try to avoid certain assumption about the exact properties of the stochastic error
process, or the computational power of an adversary to carry out decoding successfully. Formally, once the
error pattern of the input sources is precisely modelled and known, one can easily determine the min-distance
d between the codewords so that the decoding process must succeed without any error. On the other hand,
computational hardness assumption must be applied to show meaningful security with fuzzy min-entropy in
case of it is not infinite.

However, inevitably, under the perfect correctness model, one always tied to a very strong bound in term
of the resilience. Typically, one can only uniquely decode the codeword by using an error correction code
with min-distance d ≥ 2t+ 1. Saying so, the Plotkin bound (see [Sud01]) has revealed the limited maximum
number of codewords in a code of blocklength n and minimum distance d. More formally, there can be only
at most 2n codewords with d > n/2, which means given the residual entropy larger or equal to log (n), there
has no error correction code can correct n/4 errors with probability one and so for a secure sketch.

Despite of this, for sufficiently large n, the code Cξ would contain large distance in between the code-
words itself (i.e., d ≥ 2t+ 1) with overwhelming probability ([Gur10], Theorem 8). In such an event, one
has a slightly relaxed notion of correctness called probabilistic correctness model. Notably, our construction
naturally categorized under this relaxed model, where the decoding process will not succeed with probability
one, rather 1−β, with some probability to fail. The failure in decoding is subjected to the condition of either
W ∈ Bt(−)

(w′) or W /∈ Bt(+)
(w′) for a given sketch ss. Therefore, a higher distance between the codewords

implicitly reduces the failure in decoding. This relaxed notion of correctness is essential for 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉
to free from the Plotkin bound and allows it to correct more errors by increment of n.

We now show that the probabilistic correctness model has allowed us to correct more errors, arbitrarily
close to n/2. Credited by the LSH-hamming hash, the errors in a pair of resilient vectors can be described by
using the Bernoulli process. More formally, our works following the random error model which was famously
considered by Shannon [Sha01]. Shannon provided the noisy channel coding theorem saying that, for any
discrete memoryless channel, the error tolerance rate is characterized by the maximum mutual information
between the input and outputs. Precisely, in a binary symmetric channel, like our case, there exists a code
encoding k bits into n bits which able to tolerate the error of probability p for every single bit, if and only if:

k < b(1− h2(p))nc

where h2(p) = −p log(p) − (1 − p) log(1 − p) is the binary entropy function of error rate p. Since h2(p)
is maximally one when p = 1/2, conversely, this theorem indicates the existence of a secure sketch even for
high error rate as long as p is smaller than 1/2. Therefore, we obtain

Proposition 3. With sufficiently large n, there exists a [n, k, t]2 code Cξ for 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 to correct the

errors with overwhelming probability as long as the total error rate satisfy ξ + ε < 1/2.

Proof. This proof is straightforward by using the Shannon noisy channel coding theorem over binary sym-
metric channel. Formally, the total error rate including the introduced random error of parameter e can be
described as:

‖w ⊕ w′‖ l−1 = ξ ± ε

By completeness itself, the error can be corrected with overwhelming probability when ‖w ⊕ w′‖ l−1 = ξ− ε
for sufficiently large n. On the other hand, by the the efficiency of the algorithm RecLSH

Ω,Cξ,f itself, the error can

be corrected overwhelming probability when ‖w ⊕ w′‖ l−1 ≤ ξ + ε with sufficiently large n. For both cases,
we have p = ξ ± ε < 1/2 with ξ ∈ (0, 1/2) and ε ∈ (0, 1/2− ξ), hence complete the prove.
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The result of Proposition 3 indeed can be demonstrated by any [n, k, t] BCH code Cξ with syndrome
decoding function f. Clearly, RecLSH

Ω,Cξ,f can correct the errors rate of ξ+ ε with overwhelming probability after

poly(ε) iterations (see Proposition 2 and Example 2).
Apart from this, computationally efficient code achieve Shannon bound is also found by Forney in 1965,

named as concatenated code [For65]. This outcome suggested one can choose an appropriate concatenated
code to apply on 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 since the code can be linear as well.

5 Security

We now formalize the security of algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉. We assume an original input w is randomly

sampled from a metric space M1 = {0, 1}l, over some random distribution W ∈ M1 (not mandatory
uniform). Besides, we restrain another sample w′ ∈ W that show at least error rate of ‖w ⊕ w′‖ l−1 ≥ ξ
with the original sample w. This step is orthodox to show error tolerance up to distance t with code Cξ,
where ξ = t/n. We seek to characterize the security of 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 by using an adversary A comes

with unlimited computation power. The security is formalized by using an attack running together with A.

Formally, A :M2
1×M2 × F(n−k)×n

2 × [l]
n →M1

6 is just an algorithm that is computationally unbounded,

aim to recover w from a sketch ss ∈ M2, with the parity check matrix H ∈ F(n−k)×n
2 , an integer string

N ∈ [l]
n

and w′ ∈ M1 and error parameter ε ∈ (0, 1/2− ξ, and M2 = {0, 1}n. Meanwhile, we imposed an
additional requirement for A in running the attack. To be specific, once A has successfully outputted the
original string w, the attack is consider succeeded only if the error rate ‖w ⊕ w′‖ l−1 ≤ ξ + ε. The attack
is denoted as Attack(SSLSH

Ω,Cξ ,N,H, ε,A) with LSH-sketching algorithm SSLSH
Ω,Cξ , and inputs N , H, ε, and A as

follow:

Attack(SSLSH
Ω,Cξ ,N,H, ε,A)

1 : w←$ {0, 1}l, w′ ←$ {0, 1}l,
2 : if

∥∥w ⊕ w′∥∥ l−1 ≤ ξ, repeat step 1 until
∥∥w ⊕ w′∥∥ l−1 ≥ ξ

3 : if A(SSLSH
Ω,Cξ (w,N,H, ε), w′, N,H, ε) = w &

∥∥w ⊕ w′∥∥ l−1 ≤ ξ + ε

4 : Output true

5 : else

6 : Output false

The additional requirement we have imposed is meant to provide a more complete security evaluation on
the input W . For instance, given ‖w ⊕ w′‖ ≥ ξ, after additional error e of weight ‖e‖ = ‖χ‖ = lε is included
(during sketching), it may lead to either ‖w ⊕ w′‖ ≥ ξ + ε or ‖w ⊕ w′‖ ≥ ξ − ε. Since the correctness
result can be applied to the case when ‖w ⊕ w′‖ l−1 ≤ ξ + ε by Proposition 2, focusing on both cases when
‖w ⊕ w′‖ ≥ ξ + ε and ‖w ⊕ w′‖ l−1 ≤ ξ + ε should complete our security evaluation. We then have the
following definition for our security.

Definition 3. Let β and β′ be some negligible quantity. Let W and Φ be some random variable over a metric

space M1 = {0, 1}l and M2 = {0, 1}n respectively, where l < n. Given N ∈ [l]n, H ∈ F(n−k)×n
2 , and ε ∈

(0, 1/2−ξ), where ξ ∈ (0, 1/2), the algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is a (M2,m,min{− log(β),− log(β′)}, t)

secure sketch if Pr
[

Attack(SSLSH
Ω,Cξ ,N, H, ε,A) = true

]
≤ β′ and Pr

[
A(SSLSH

Ω,Cξ(w,N, H, ε), w′, N,H, ε) = w
]
≤

β for any computationally unbounded adversary A.

Finally, we provide a general characterization of the information theoretical security of algorithm pair
〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉, and show that it is a (M2,m,min{− log(β),− log(β′)}, t) secure sketch. This proposition

comes with a proof according to Definition 3

6 Note that we here omitted the step of recovering the padded input v ∈ {0, 1}k, rather, we directly refer the
recovered object to be w ∈ M1. This is because once v is recovered successfully, it is trivial to look for w by the
first l bits of v.
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Theorem 3. The algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is a (M2,m,min{− log(β),− log(β′)}, t) secure sketch

with β′ = 2−m/β and β = exp(−2nε2) if n is sufficiently large.

Proof. (sketch): We here provide a brief overview of the main proof. More complete and detail proof can be
found in the appendix. The correctness is clear, simply follow the soundness of RecLSH

Ω,Cξ,f (Proposition 2).

Formally, given any pair of string w,w′ ∈ M1, under the case when ‖w ⊕ w′‖ l−1 ≤ ξ + ε, the offset can be
tolerated with overwhelming probability at least 1− β = 1− exp(−2nε2) for negligible β, or after RecLSH

Ω,Cξ,f
run in poly(ε) iterations if n is sufficiently large.

For security, due to the introduced error effect, the error rate in the resilient vectors can simply described
into two different cases, which are ‖w ⊕ w′‖l−1 ≥ ξ + ε and ‖w ⊕ w′‖l−1 ≥ ξ − ε. Based on this, our security
proof can be completed by focusing on two different parts: (1) when ‖w ⊕ w′‖l−1 ≥ ξ + ε, and (2) when
‖w ⊕ w′‖ l−1 ≤ ξ + ε.

Proof for Part (1): Given any pair w,w′ ∈W with ‖w ⊕ w′‖l−1 ≥ ξ + ε, it follows that:

Pr
[
A(SSLSH

Ω,Cξ(w,N,H, ε), w′, N,H, ε) = w
]

= Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖l−1 ≥ ξ + ε
]

≤ max
t=tmax

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖l−1 ≥ ξ + ε
]

= exp (−2nε2)

Thus, we found β = exp(−2nε2) and claim our security for this part.
However, since the error added is random during the sketching, the condition ‖w ⊕ w′‖l−1 ≥ ξ + ε must

not hold every time. We then proceed to the proof for the remaining Part (2).
Proof for Part (2): When ‖w ⊕ w′‖ l−1 ≤ ξ + ε, recall the correctness result can be applied to the case

when ‖w ⊕ w′‖ l−1 ≤ ξ + ε by Proposition 2. Therefore, the proof for this part follows the terminology in
Attack. This attack will output true if the adversary A succeeded in recover w and able to show the sampled
pair (w,w′) comes with ‖w ⊕ w′‖ l−1 ≤ ξ + ε. It should be described as follow:

Pr
[

Attack(SSLSH
Ω,Cξ ,N, H, ε,A) = true

]
= Pr

[
‖w ⊕ w′‖ l−1 ≤ ξ + ε

∣∣ ‖δ‖ ≤ t ]
=

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ l−1 ≤ ξ + ε
]

Pr
[
‖w ⊕ w′‖ l−1 ≤ ξ + ε

]
Pr[‖δ‖ ≤ t]

=
(1− β)α

(1− β)α+ (1− α)β
=
α

β

(
1− β
1− α

)
≤ α

β
= β′

The second line result obtained by using Bayes’ law. For the third line result, it follows: given t(+) =

b(ξ + ε)lc, and let α = Pr
[
‖w ⊕ w′‖ ≤ t(+)

]
≤ max

w′
Pr
[
W ∈ Bt(+)

(w′)
]
. Then, by combining the results from

Corollary 1 and Proposition 2 (Eq. 4), one has Pr[‖δ ≤ t‖] = (1 − β)α + β(1 − α). Since the source must
come with certain quantity of fuzzy min-entropy over t(+), and the fuzzy min-entropy must be upper bound

to the min-entropy, thus, − log(α) = Hfuzz
t(+),∞(W ) ≥ H∞ (W ) = m, and α ≤ 2−m by minimum entropy of m.

Therefore β can be any value ≥ α to show security.
In the end, the maximum probability of recovering w for both Part (1) and Part (2) described as

max {2−m/β, β}.

Remark: The events when ‖w ⊕ w′‖ l−1 ≥ ξ + ε and ‖w ⊕ w′‖ l−1 ≤ ξ + ε can also be represented as
the cases when ‖w ⊕ w′‖ > t(+) and ‖w ⊕ w′‖ ≤ t(+) respectively. In our exposition, we usually refer to

the former representation to show more meaningful details with ξ and ε. This show 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 offers

correctness when ‖w ⊕ w′‖ ≤ t(+) but no guarantee for the case when ‖w ⊕ w′‖ > t(+) further supported
the definition for a standard secure sketch.

The proof of Theorem 3 demonstrated one can construct an info. theoretic secure sketch with security does
not depend upon the length itself provided the min-entropy of the source in M1 is high enough. Therefore,
to show meaningful security, the sources must at least come with sufficient amount of min-entropy, where
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the entropy loss can be characterized by average fuzzy min-entropy, which parametrized by a chosen [n, k, t]
code Cξ.

We here provide discussion on how the average fuzzy min-entropy (− log β) help in monitoring the entropy
loss. Recall the fuzzy min-entropy definition. The residual entropy of Φ is equivalent to its fuzzy min-entropy
over tolerance distance t, which can be bounded as Hfuzz

t,∞(Φ) ≥ H̃∞ (Φ|W, ss) = H∞ (Φ) − λ, where λ refers
to the entropy loss. Since we have used the min-entropy as lower bound for − logα, the computed fuzzy
min-entropy must be minimum as well, which is:

Hfuzz
t,∞(Φ) = H∞ (Φ)− λ = min{− log(β′),− log(β)}

= min{− log(α/β),− log(β)}
= min{H∞ (W ) + log(β),− log(β)} (5)

Given the case whenm/2 ≤ − log(β), through direct comparison, we have H∞ (Φ)−λ = H∞ (W ) + log(β).
Since H∞ (W ) ≥ m, it follows H∞ (Φ) ≥ m, so the entropy loss would be bounded as λ ≤ − log(β). On
the other hand, if m/2 > − log(β), one has H∞ (Φ) − λ = − log(β), hence larger entropy loss can be seen
described as λ ≤ m− (− log(β)).

An alternative to always ensure meaningful security can be provided is to have a precise knowledge setting
on the input distribution during the sketching phase. This setting can be achieved by using the universal
hashing to disambiguate the points as proposed by Fuller et al., [FRS16].

Given the source in some distribution W over M1, which has no min-entropy to support meaningful
security, showing security on it seems to be an extra move. Nevertheless, there have a plethora of sources
with “reasonable” amount of min-entropy. Our construction offers the advantage to show security with min-
entropy measurement that can be view as the min-entropy over larger metric space by the resilient vector.
In light of this, one can always show security to all family of distribution with our construction, but not
always all of them are meaningful ones.

5.1 Security Bound on Secure Sketch

In this section, we consider the security bound on the secure sketch. Formally, this security bound also refer
to the best possible security can offer by a secure sketch construction. Particularly, we are interested in the
best possible security by using the new sketching and recover algorithm pair 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉.

If a secure sketch allows recovery of the input from some errors with high probability, it must consist
enough information to describe the error pattern. According to Dodis et al. [DRS04], in a random error model,
under the relaxed correctness notion, describing the outcome of n independent coin flips with probability of
error, p requires nh2(p) bits of entropy. Therefore, the sketch must loss nh2(p) bits of entropy. They used
the Shannon entropy to described the security bound in this model by assuming W is drawn from uniform.
Since nh2(p) bits of entropy is loss from the sketch, the upper bound residual entropy is thus reduced to
n(1− h2(p)− o(1)). larger value of p ∈ (0, 1/2) results to lower residual entropy.

Under the same model, the bound with nh2(p) bits entropy loss is possible to be applied in our case as well,
by letting p = ‖w ⊕ w′‖ l−1 + ε. However, through comparing the mathematical description of the average
fuzzy min-entropy − log(β) and nh2(p), it shows that there is no compiling need to consider the error rate
of the input ‖w ⊕ w′‖ l−1 to outline the entropy loss. Clearly, − log(β) = − log(exp(−2nε2)) will show lower
value with smaller ε without the knowledge of the input error rate ‖w ⊕ w′‖ l−1. Recall this entropy loss can
simply described by − log(β) under the case when m/2 ≥ − log(β) (see Eq. 5). This result suggested a better
achievable lower bound to describe the error pattern in the resilient vectors of size n by using − log(β) rather
than nh2(p). Additionally, it is well-understood that W is not uniform in our case, therefore, the lower bound
residual entropy described by n(1− h2(p)− o(1)) may not directly applicable to us. In fact, we have shown
that, the upper bound residual entropy in our construction is min{H∞ (W ) + log(β),− log(β)}. Apparently,
this residual entropy is always bounded by the min-entropy of the source instead of the blocklength of the
code n.
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Perceivably, min-entropy has shown to offer more meaningful results relatively to Shannon entropy,
especially for the case when the inputs are not uniform. These results have motivated the usage of min-
entropy instead of Shannon entropy to avoid overestimation on the residual entropy, which is critical while
designing any cryptographic application such as randomness extractor or key derivation. In spite of that,
for any discussion related to resilience, the Shannon bound is always a good reference point to exam the
existence of such a code for error correction.

We have the following proposition to describe the best possible security for 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉, whose
proof is straightforward.

Proposition 4. The best information theoretical security with algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is m/2

Proof. Since we have a (M2,m,min{− log(β),− log(β′)}, t) secure sketch with β′ = 2−m/β and β =
exp(−2nε2) (Theorem 3). Therefore, the best possible security balances both sites which is:

m+ log(β) = − log(β)

m/2 = − log(β)

Given a source with min-entropy m, one can always choose a desired security level by average fuzzy
min-entropy via computing − log β. This security holds for computationally unbounded adversary A with
conditioned on m/2 ≥ − log β by Proposition 4.

Table 1 tabulated the security bound for various β-correct secure sketch.

Security Bound for β-Correct Secure Sketch

Computational Best possible security Hfuzz
t,∞(W )− log(1− β)

Computational
FRS sketch(universal
hash functions) [FRS16]

Hfuzz
t,∞(W )− log( 1

β )− log log(supp(W))− 1

Computational
Layer hiding hash (strong
universal hash
function)[WCD+17]

Hfuzz
t,∞(W )− log( 1

β )− 1

Info. theoretic LSH sketch min{H∞ (W ) + log(β),− log(β)}7

Table 1: Summary of security bound of β-correct secure sketch in term of fuzzy-min entropy.

6 Reusability

We focus on the reusability of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 in this section. First stated by Boyen, 2004 [Boy04], any
information theoretical secure sketch or fuzzy extractor must leak certain amount of fresh information about
the input for each time it reuses/re-enrolls. The reusability property allows the reuse/re-enrollment of the
noisy data with multiple providers. Trivially, if 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 can show reusability property, it also

suggested a reusable fuzzy extractor for uniform random strings generation.
In the context of showing reusability, SSLSH

Ω,Cξ may run in multiple times for enrollment of correlating
samples w1, w2, . . . , wγ . Each enrollment should return a sketch ssi which possesses individual security that
holds even under the existence of other sketches for i ∈ {1, . . . , γ}. Boyens works on assuming a single
adversary should be able to perform some perturbation on the original input w∗ to yield a list of correlating
samples w1, w2, . . . , wγ , further gains advantages in recovering wi from its corresponding sketch ssi. The
works of Boyen on reusability has focused on a particular class of perturbation which is the transitive and
isometric permutation applied to w∗. This constraint applied to the perturbation is unlikely in a real and
practical scenario. However, his work has encouraged the needs of showing reusability for a secure sketch to
offer stronger security guarantee.

7 We used t′ instead of t to remark the LSH sketch emphasis on different tolerance distances explicitly
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Apart from Boyen works, Fuller et al., (2016) [FRS16] provided a modified definition of reusability
that covered a more realistic scenario. In their works, they split the adversary into a group of adversaries
{A1, . . . ,Aγ}. This group of adversaries implicitly defined different distributions over the published sketch
{ss1, . . . , ssγ}. Each sketch is subjected to a particular adversary in the group to show security individually.
The act of showing security for a group of adversaries manifested the reusability for independent re-enrollment
of the original input with multiple providers that may not trust each other. They utilized set of functions
f1, . . . , fγ to sample w′, . . . , wγ s.t. wi = fi(w

∗, ss1, . . . , ssi). These set of functions come with the main
property, is to offer fresh min-entropy to the new sample wi over a particular distribution Wi. The security
is defined computationally with fuzzy min-entropy and holds for a large class of family of distributions
{W1, . . . ,Wγ} over M.

We now formalize the reusability of algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉. Basically, it follows the previous

security setting, but only comes with slight extension (from single adversary to multi adversaries setting).
We assume an original input w∗ is randomly sampled from a metric space M1 = {0, 1}l, over some random
distribution W ∈ M1 (not mandatory uniform). Again, we restrain another sample w′ ∈ W that show
at least error rate of ‖w∗ ⊕ w′‖ l−1 ≥ ξ. We aim to characterize the reusability of 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 by

using a group of adversaries {A1, . . . ,Aγ} comes with unlimited computation power. To do so, we have
introduced additional random error {e′1, . . . , e′γ} with ‖e′i‖ ≤ lε′ < lε parametrized by another error parameter
ε′ ∈ (0, 1/2− ξ − ε). Formally, e′i acting as perturbation to the input w∗ to sample a list of correlating reading
{w1, . . . , wγ}. The usage of random error is better fit to real case scenario, since any perturbation occurs
during re-enrollment must cause certain amount of bits flip to the original sample w∗.

Briefly, we seek to show reusability defined in information-theoretical sense as well. Our work is considered
as a stronger notion of reusability compare to the previous case studied by Boyen and Fuller et al.,. It means
to show security for any perturbation applied to the input as long as the perturbation is kept within some
limited strength, i.e., the maximum number of altered bits is bounded. This notion is more applicable to real
case scenario since it does not introduce any assumption on the type of perturbation applied to the input
but only provides a bound on it.

The security is formalized by using an attack running together with {A1, . . . ,Aγ}. Formally, each ad-

versary Ai : M2
1×M2 × F(n−k)×n

2 × [l]
n →M1 is simply an algorithm that is computationally unbounded

to output wi from a public sketch ssi ∈ M2, with input w′ ∈ M1, a parity check matrix H × F(n−k)×n
2 ,

an error parameter ε ∈ (0, 1/2− ξ) and an integer string N ∈ [l]
n
. Follow previous security setting, similar

requirement is imposed on Ai in running the attack. That is, once Ai has successfully outputted the string
wi, the attack is only considered succeeded if the error rate ‖wi ⊕ w′‖ ≤ ξ + ε+ ε′. The attack is denoted as
Attack2(SSLSH

Ω,Cξ ,N, H, ε, ε′, {A1, . . . ,Aγ}) with LSH-sketching algorithm SSLSH
Ω,Cξ , and inputs N , H, and Ai as

follow:

Attack2(SSLSH
Ω,Cξ ,N, H, ε, ε′, {A1, . . . ,Aγ})

1 : w∗ ←$ {0, 1}l, w′ ←$ {0, 1}l

2 : if
∥∥w∗ ⊕ w′∥∥ l−1 ≤ ξ, repeat step 1 until

∥∥w∗ ⊕ w′∥∥ l−1 ≥ ξ
3 : for i = 1 : γ

4 : e′i ←$ {0, 1}l// the weight
∥∥e′i∥∥ = lε

′
i ≤ lε

′
< lε

5 : wi = w∗ ⊕ e′i
6 : if Ai(SSLSH

Ω,Cξ (wi,N, H, ε), w′, N,H, ε) = wi &
∥∥wi ⊕ w′∥∥ l−1 ≤ ξ + ε+ ε′

7 : Output true

8 : else

9 : Output false

10 : endfor

Our intuition of showing reusability for a group of adversary follows the works proposed by Fuller et
at., [FRS16]. The goal is to show security to the original sample w∗ for different independent re-enrollment,
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with some perturbations. Reusability can only be claimed if the security holds for all adversaries corresponds
to individual re-enrollment of w∗ respectively. Since each re-enrollment is subjected to different providers,
and the providers may not communicating and trusted to each other, therefore showing security individually
to each adversary Ai is necessary to support our claim. We give the definition below to characterized the
reusability of 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉.

Definition 4. Let β2 and β′2 be some negligible quantities. Let W and Φ be some random variable over a met-
ric space M1 = {0, 1}l and M2 = {0, 1}n respectively, where l < n. Given N ∈ [l]n, ε ∈ (0, 1/2− ξ) and ε′ ∈
(0, 1/2− ξ − ε), where ξ ∈ (0, 1/2) and H ∈ F(n−k)×n

2 . Let ε∗(−) = ε−ε′, the algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉

is (max{β2, β
′
2}, ε∗(−), γ)-reusable if one has max

γ
Pr
[

Attack2(SSLSH
Ω,Cξ ,N,H, ε, ε′, {A1, . . . ,Aγ}) = true

]
≤ β′2

and max
i

Pr
[
Ai(SSLSH

Ω,Cξ(wi,N, H, ε), w′, N,H, ε) = wi

]
≤ β2 for a group of computational unbounded adver-

sary {A1, . . . ,Aγ}.

Recall we have initially introduced an error e of weight ‖e‖ = lε during sketching. Given another error
‖e′i‖ = lεi ≤ lε′, where ε′ < ε, it means ‖e′i ⊕ e‖ l−1 must within ε ± ε′. Suppose the error rate between w∗

and w′ satisfies ‖w∗ ⊕ w′‖ ≥ ξ, the total error effect (for recovery and perturbation) will cause the changes of
the final error rate to either ‖w∗ ⊕ w′‖ l−1 ≥ ξ + (ε± ε′) or ‖w∗ ⊕ w′‖ l−1 ≥ ξ − (ε± ε′). Manifestly, further
simplification can be done by letting ε∗ = ε ± ε′, which therefore allows one to describe the final error rate
as ‖w∗ ⊕ w′‖ l−1 ≥ ξ + ε∗ and ‖w∗ ⊕ w′‖ l−1 ≥ ξ − ε∗ respectively. Consequently, doing so can easily lead us
to the security reduction from multi-adversaries setting to single adversary setting which has been covered
by the prove of Theorem 3.

Based on the reasoning above, adding error while sketching implicitly allows reusability. Hence, the proof
of reusability is trivial in our case. Nevertheless, it is worth to detail the reduction of the security property
from multiple adversaries setting to single adversary setting over 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉.

The following lemma is given to characterize the reusability of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉. The proof demonstrated

the security reduction of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 from multi-adversaries setting to single adversary setting.

Lemma 1. The algorithm pair 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is (max{β2, β
′
2}, ε∗(−),∞)-reusable, with β′2 = 2−m/β2 and

β2 = exp(−2n(ε∗(−))
2) given some integer m > 0.

Proof. (Sketch) We reiterate the proof of this lemma is similar to the proof of the security in Theorem 3.
We briefly highlighted the main prove as follows.

Focusing on the errors we have introduced, e of weight ‖e‖ = lε during sketching, and e′i of weight ‖ei‖ =
lε′i ≤ lε′ < lε to show reusability. Given the error rate for w∗ and w′ satisfies ‖w∗ ⊕ w′‖ ≥ ξ, introducing error
e′i will yield either ‖wi ⊕ w′‖ l−1 ≥ ξ + ε′i or ‖wi ⊕ w′‖ l−1 ≥ ξ − ε′i. Thereafter, the error ei added during
sketching phase will change the final error rate to ‖wi ⊕ w′‖ l−1 ≥ ξ + ε± ε′i or ‖wi ⊕ w′‖ l−1 ≥ ξ − ε± ε′i.
Likewise the single adversary setting, the second inequality can be replaced by ‖wi ⊕ w′‖ l−1 ≤ ξ + ε± ε′i
because of the correctness should hold when ‖wi ⊕ w′‖ l−1 ≤ ξ + ε∗ as well by the soundness of RecLSH

Ω,Cξ,f
with error parameter ε = ε∗ = ±ε′.

Therefore, the error rate in the resilient vectors can simply analysed under these two parts, which are
Part(1): when ‖wi ⊕ w′‖ l−1 ≥ ξ + ε± ε′i, and Part(2): when ‖wi ⊕ w′‖ l−1 ≤ ξ + ε± ε′i.

We will let ε∗(−) = ε− ε′ and ε∗(+) = ε+ ε′ throughout the whole prove to show the reduction of our result
from multiple adversaries to single adversary setting. Since we have multiple adversaries needed to consider,
our aim of Part (1) proof is to find the maximum probability to correct the offset among all of them. Let
β2,i = exp(−2n(ε± ε′i)2), the maximum probability described as follow:

max
i

Pr
[
Ai(SSLSH

Ω,Cξ(wi,N, H), w′, N,H, ε) = wi

]
= max

wi
Pr
[
‖δ‖ ≤ t

∣∣ ‖wi ⊕ w′‖l−1 ≥ ξ + ε± ε′i
]

= β2,i ≤ exp (−2n(ε∗(−))
2)

21



The last line result follows by taking the maximum value for β2,i, clearly, the maximum value of
β2,i = exp(−2n(ε± ε′i)2) refer to the case when ε ± ε′i is minimum, which is ε − ε′, since ε′i ≤ ε′. Let
β2 = exp (−2n(ε− ε′)2) = exp (−2n(ε∗(−))

2), the security for Part (1) is claimed.

On the other hand, the main prove for Part (2) is to show security hold for all adversaries {A1, . . . ,Aγ}
in running Attack2. Formally, it can be described as:

max
γ

Pr
[

Attack2(SSLSH
Ω,Cξ ,N, H, ε, ε′,{A1, . . . ,Aγ}) = true

]
= max

wi
Pr
[
‖wi ⊕ w′‖ l−1 ≤ ξ + ε± ε′i

∣∣ ‖δ‖ ≤ t ]
We first look for Pr

[
‖wi ⊕ w′‖ l−1 ≤ ξ + ε± ε′i

∣∣ ‖δ‖ ≤ t ], then follow by its maximum value. By the results
of Corollary 1 and Proposition 2 and Bayes’ law (follows the proof of Theorem 3):

Pr
[
‖wi ⊕ w′‖ l−1 ≤ ξ + ε± ε′i

∣∣ ‖δ‖ ≤ t ] =
1− β2,i

β2,i

(
α2,i

1− α2,i

)
Above result depends upon the error parameter εi for each Ai. In particular, we let t′2,i = b(ξ + ε± ε′i)lc,

and so α2,i = Pr
[
‖wi ⊕ w′‖ ≤ t′2,i

]
≤ max

w′
Pr
[
W ∈ Bt′2

]
, where t′2 = b(ξ + ε+ ε′i)lc (since (ξ + ε∗(+)) ≥

(ξ + ε∗(−)) by maximum). Therefore we have α2 ≤ max
w′

Pr
[
W ∈ Bt′2

]
and one can bound − logα2,i ≥

− logα2 ≥ Hfuzz
t′2,∞(W ) ≥ H∞ (W ) = m. It follows:

max
γ

Pr
[

Attack2(SSLSH
Ω,Cξ ,N, H, ε, ε′,{A1, . . . ,Aγ}) = true

]
= max

wi
Pr
[
‖wi ⊕ w′‖ l−1 ≤ ξ + ε± ε′i

∣∣ ‖δ‖ ≤ t ] ≤ α2

β2
=

2−m

β2

by maximum β2,i ≤ β2 (prove in Part (1)) and maximum α2,i ≤ 2−m.
Consequently, one has the new security results in a multiple adversaries setting (a group of adversary).

The maximum probability to decode the codeword successfully is max{β′2, β2} with β′2 = 2−m/β2 and β2 =
exp(−2n(ε∗(−))

2). This result holds for all the adversaries {A1, . . . ,Aγ}. The prove holds with γ =∞.

With the proof of Lemma 1, we concluded that 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 allows the re-enrollment of the input

w∗ for γ = ∞ number of times as long as the error (perturbation) e′ has bounded weight ‖e′i‖ ≤ lε′ for
i = {1, . . . , γ}. The security holds for all adversaries is min{− log(β′2),− log(β2)}. Noticeably, the security
over multi-adversaries setting is similar to single adversary setting, with the only changed error parameter
from ε (single adversary) to ε∗(−) (multi-adversaries). We therefore obtain the following proposition

Proposition 5. If a pair of LSH-sketching and recover algorithm 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is (max{β2, β
′
2}, ε∗(−),∞)-

reusable, it is also a (M2,m,min{− log(β2),− log(β′2)}, t) secure sketch for sufficiently large n.

We omitted the proof of Proposition 5 since it is straightforward. Precisely, its correctness claims by
Proposition 1 (after reduction from multiple adversaries setting to single adversary setting) for sufficient
large n and its security claims by Lemma 1 itself.

7 A Toy Example

In this section, a toy example is given to demonstrate how 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 can be practically applies to
real cases. This example focuses on one of the common-known noisy sources which consist of more error
than entropy-IrisCode. The IrisCode is a binary representation extracted from the human iris, and it is
being used to perform biometric authentication. It has been viewed as the strongest biometric [PPJ03] due
to its uniqueness and resistant against false matching. We adopted the IrisCode of vector w ∈ {0, 1}l with
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l = 2048, which is first considered by Daugman in 2006. [Dau06]. Based on the degree of freedom argument,
this IrisCode is believed to come with entropy around 249 bits. Additionally, it is commonly conceived that
depends on different transformation, from the original eye images to IrisCode generation, the error content in
different IrisCode of the same user lye in between 10%− 35% [FSS17]. Therefore, a traditional secure sketch
should loss all information and show no security for any error correction on error rate ≥ 249/2048 = 0.1215.

We here show how 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉 is able to correct an error rate 249/2048 = 0.1215 yet offer security

guarantee. To do so, an [65535, 2061, 10967]2 BCH code C10967/65535 is chosen, with ξ = 0.1674. To correct
an error rate of 0.15 > 0.1215, one can compute the value ε required, which is 307 ≤ b(0.1674− ε)2048c,
thus ε ≤ 0.0174 and ‖e‖ ≤ b(0.0174)2048c = 35 bits. In such a case, one could enjoy information theoretical
security of − log(exp(−2nε2)) = 58 bits, where the error can be corrected with overwhelming probability at
least 1− 2−58.

To correct more error, RecLSH
Ω,Cξ,f also offered the list-decoding strategy which run in polynomial time

(see Section 4.1). Suppose now the error rate increased to 0.1750. Then, C10967/65535 has shown insufficient
error correction capacity for such error rate, hence cannot correct the errors with overwhelming probability as
promised. In such event, adding the random error e of weight ‖e‖ = 2lε would help to achieve ‖w ⊕ w′‖ l−1 ≤
ξ − ε from ‖w ⊕ w′‖ l−1 ≤ ξ + ε. Consequently, one can easily compute that 0.1750 ≤ (0.1674 + ε), thus

2ε ≥ 0.0076. Thus ‖e‖ ≥ dl(0.1750− 0.1674)e = 32 bits are required. Precisely, by Eq. 4, after log
(2048

32 )
(356

32 )
= 267

number of iterations, the error can be corrected with overwhelming probability 1− exp (−2nε2) = 1− 1.94×
10−3, with information theoretical security − log(exp(−2nε2)) = 11 bits. To show re-usability in this case,
we refer perturbation e′ with ‖e′‖ ≤ lε′, which can be described using perturbation parameter ε′ < ε. For
instance, given any perturbation e′ that maximally caused 3 bits flipped on the input, i.e. ‖e′‖ = 3, so
ε′ = 3/2048 < ε. by Lemma 1 results, it follows 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 is (max{β2, β

′
2}, ε∗(−),∞)-reusable, where

one can compute that β2 = 2−m/β2, where β′2 = exp(−2n(ε∗(−))
2)) = 0.0076 and ε∗(−) = ε− ε′ = 0.0061, with

information theoretical security reduced to − log(β′2) = 8 bits.

7.1 The Cost of Information Theoretical Security

As we shall see, based on our toy example given in Section 7, one can show considerable high information
theoretical security (58 bits) for any inputs’ error rate ‖w ⊕ w′G‖ l−1 ≤ ξ − ε but lower security (16 bits)
for any inputs’ error rate ‖w ⊕ w′G‖ l−1 ≤ ξ + ε with code Cξ. Apparently, correcting more error introduced
lower security level (information theoretically).

Noting that for error correction over error rates ‖w ⊕ w′G‖ l−1 ≤ ξ + ε, it only holds if RecLSH
Ω,Cξ,f has run

in time after poly(ε) iterations. This result suggested that the computation complexity required for error
correction indeed goes higher. To visualize this, suppose we have two different cases: a genuine case with
recovery input w′G and an imposter case with recovery input w′I . Obviously, for 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 to be useful

and applicable, its correctness must hold when ‖w ⊕ w′G‖ l−1 ≤ ξ + ε under the genuine case. Given that
‖w ⊕ w′G‖ l−1 ≤ ξ, any introduced error parameter ε ∈ (0, 1/2) is possible to yield ‖w ⊕ w′G‖ l−1 ≤ ξ + ε,
thus, the inputs’ errors rate ‖w ⊕ w′G‖ l−1 can be corrected with overwhelming probability by the correctness
of 〈SSLSH

Ω,Cξ ,RecLSH
Ω,Cξ,f〉 itself.

For instance, given some value of ‖w ⊕ w′G‖ l−1 ∈ (0, 1/2), where ‖w ⊕ w′G‖ l−1 = ξ + εG, it means one
must add additional error ‖e‖ = 2lε parametrized by ε = εG to yield ‖w ⊕ w′G‖ l−1 ≤ ξ − εG for correctness
claim during recovery. Clearly, same things applied to the imposter case as well, where any adversaries could
claim correctness by adding extra error ‖e‖ = 2lεI to achieve ‖w ⊕ w′I‖ l−1 ≤ ξ− εI . In such events, one can
easily show that the number of iteration required for genuine case and imposter case will be different, which

can be calculated by Eq. 4, i.e., log

((
l

2lεG

)
/
(‖w⊕w′G‖

2lεG

))
and log

((
l

2lεI

)
/
(‖w⊕w′I‖

2lεI

))
respectively. From this

point of view, we can further reason that without the genuine case information of ‖w ⊕ w′G‖ l−1 and εG, any
computationally unbounded attacker can succeed with overwhelming probability after RecLSH

Ω,Cξ,f has run in

log

((
l

2lεI

)
/
(‖w⊕w′I‖

2lεI

))
number of iterations. Therefore, this result showing that introducing error e of higher
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weight (e.g., higher value of ε) will lead to lower security level for computational unbounded adversary but
higher computational complexity for computational bounded adversary (higher number of iterations). In
other words, correcting more errors than the tolerance distance of Cξ (i.e., ‖w ⊕ w′‖ l−1 ≥ ξ) implies higher
computational security but lower information theoretical security. In additional to this, it is well understood
that one is subjected to strong theoretical bound for any error correction code Cξ to maximally correct the
total error rate of 1/4 (see Section 4.2) for any sources. Therefore, it is natural to ask whether the cost of
information theoretical security is worth and necessary to pay-off with higher computational security while
correcting more errors. Viewed this way, the argument over the needs of information theoretical security over
a secure sketch or fuzzy extractor is indeed an interesting open question.
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8 Appendix

Proof of Theorem 3:

Proof. Correctness: The correctness property follows the completeness and soundness of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉
itself (proven in Proposition 1 and Proposition 2 respectively). Particularly, for any input string w′ ∈ W
that is at most t(−) = b(ξ − ε)lc close to its original value w ∈ W , formally, it means ‖w ⊕ w′‖ l−1 ≤ ξ − ε,
then, the probability for RecLSH

Ω,Cξ,f(w
′, N,H, ε) = w is overwhelming at least 1 − β ≥ 1− exp(−2nε2). On

the other hand, if w′ is at most t(+) = b(ξ + ε)lc close to its original value w ∈ W , formally, it means

‖w ⊕ w′‖ l−1 ≤ ξ + ε, after RecLSH
Ω,Cξ,f run in poly(ε) iterations, the probability for RecLSH

Ω,Cξ,f(w
′, N,H, ε) = w

is overwhelming at least 1− β ≥ 1− exp(−2nε2). Both cases hold for sufficiently large value of n

Security: We now argue in the security of 〈SSLSH
Ω,Cξ ,RecLSH

Ω,Cξ,f〉. Observe that, given a sketch ss = c⊕φ, no
doubt that, the best strategy to recover w is through decoding the nearest codeword. In fact, this corresponds
to the well-known problem of decoding a random linear code that is considered to be NP-hard [BMVT78].
However, this statement is not sufficient for our security goal, which is to show security for computational
unbounded adversary (information theoretically secure). For the seek of completeness, the proof of security
can be divided into two parts:

Proof for Part (1), when ‖w ⊕ w′‖l−1 ≥ ξ + ε: Recall after error e of weight ‖e‖ = lε is included, initially,
‖w ⊕ w′‖ l−1 ≥ ξ, it may lead to either ‖w ⊕ w′‖ ≥ ξ + ε or ‖w ⊕ w′‖ ≥ ξ − ε. The prove for this part is to
show security on the first case.
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Given any pair w,w′ ∈W with ‖w ⊕ w′‖l−1 ≥ ξ + ε, it follows that (proven in Corollary 2):

Pr
[
A(SSLSH

Ω,Cξ(w,N, H), w′, N,H, ε) = w
]

= Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖l−1 ≥ ξ + ε
]

≤ max
t=tmax

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖l−1 ≥ ξ + ε
]
≤ exp (−2nε2) = β

This result depicted the upper bound advantages for A to decode the codeword c′ when ‖w ⊕ w′‖l−1 ≥ ξ + ε,
formally holds for any variable W 6∈ Bt(+)

(w′). Thus we found β = exp(2nε2) and claim our security for this
part.

However, since the error added is random during sketching, the condition ‖w ⊕ w′‖l−1 ≥ ξ + ε must not
holds every times. Particularly, one may also have ‖w ⊕ w′‖l−1 ≥ ξ − ε. Merely focusing on decoding the
codeword might not sufficient to claim our security in this case. Therefore, we must proceed to Part (2) to
complete our proof of security.

Proof for Part (2): When ‖w ⊕ w′‖ l−1 ≥ ξ − ε, since the correctness result can be applied to the case when
‖w ⊕ w′‖ l−1 ≤ ξ + ε by Proposition 2, focusing on both cases when ‖w ⊕ w′‖ ≥ ξ + ε and ‖w ⊕ w′‖ l−1 ≤
ξ + ε should complete our security evaluation. Therefore, the proof for this part follows the terminology in
Attack. This attack will output true if the adversary A succeeded in recover w and able to show the sampled
pair (w,w′) comes with ‖w ⊕ w′‖ l−1 ≤ ξ + ε. It should be described as follow:

Pr
[

Attack(SSLSH
Ω,Cξ ,N, H, ε,A) = true

]
= Pr

[
‖w ⊕ w′‖ l−1 ≤ ξ + ε

∣∣ ‖δ‖ ≤ t ]
To do so, we denote two events {Eventa,Eventb} where a, b ∈ {0, 1} as follow:

Eventa =

{
‖δ‖ ≤ t, a = 0

‖δ‖ > t, a = 1

Eventb =

{
‖w ⊕ w′‖ l−1 ≤ ξ + ε, b = 0

‖w ⊕ w′‖ l−1 ≥ ξ + ε, b = 1

By using Bayes’ law :

Pr
[
‖w ⊕ w′‖ l−1 ≤ ξ + ε

∣∣ ‖δ‖ ≤ t ] =
Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ l−1 ≤ ξ + ε
]

Pr
[
‖w ⊕ w′‖ l−1 ≤ ξ + ε

]
Pr[‖δ‖ ≤ t]

=
Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ]

Pr[Eventa=0 ]

=
Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ]

Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ] + Pr[Eventa=0 |Eventb=1 ] Pr[Eventb=1 ]

=
Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ]

Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ] + Pr[Eventa=0 |Eventb=1 ] (1− Pr[Eventb=0 ])

=
1

1 + Pr[Eventa=0 | Eventb=1 ](1−Pr[Eventb=0 ])
Pr[Eventa=0 | Eventb=0 ]Pr[Eventb=0 ]

≤ 1
Pr[Eventa=0 | Eventb=1 ](1−Pr[Eventb=0 ])

Pr[Eventa=0 | Eventb=0 ]Pr[Eventb=0 ]

≤ Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ]

Pr[Eventa=0 |Eventb=1 ] (1− Pr[Eventb=0 ])

=

(
Pr[Eventa=0 |Eventb=0 ]

Pr[Eventa=0 |Eventb=1 ]

)(
Pr[Eventb=0 ]

1− Pr[Eventb=0 ]

)
(6)
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Straight away, we use the results from Corollary 1 to compute the maximum probability for the events
Pr[Eventa=0 |Eventb=1 ]. It follows:

Pr[Eventa=0 |Eventb=1 ] ≤ max
t=tmax

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ > t(+)

]
≤ exp(−2nε2) = β

To obtain Pr[Eventa=0 |Eventb=0 ], we use the result from Proposition 2. By Eq. ??:

Pr[Eventa=0 |Eventb=0 ] = min
t=tmin

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ ≤ t(+)

]
≥ 1− exp (−2nε2) = 1− β

Recall the definitions:

− log(β) = − log

(
Ew′←W

[
max
φ′

Pr
[
Φ ∈ Bt(φ′)

∣∣W 6∈ Bt(+)
(w′)

]])
= H̃

fuzz

t,∞(Φ|W 6∈ Bt(+)
(w′))

and let α = Pr[Eventb=0 ], as t(+) = b(ξ + ε)lc, α can be rewritten as:

α = Pr[Eventb=0 ] = Pr
[
‖w ⊕ w′‖ ≤ t(+)

]
≤ max

w′
Pr
[
W ∈ Bt(+)

(w′)
]

Eq. (6) can further simplify as

(
Pr[Eventa=0 |Eventb=0 ]

Pr[Eventa=0 |Eventb=1 ]

)(
Pr[Eventb=0 ]

1− Pr[Eventb=0 ]

)
=

(
1− β
1− α

)
α

β

Let β′ = α/β. We used the min-entropy as lower bound, one has Hfuzz
t(+),∞(W ) ≥ H∞ (W ) = m, therefore,

− log(α) ≥ m, and so α ≤ 2−m. In such a case, β can be any value ≥ α to show security, thus yield:

Pr
[

Attack(SSLSH
Ω,Cξ ,N, G, ε,A) = true

]
≤ β′ = 2−m/β

Combining the results from Part (1) and Part (2), the maximum probability to decode the codeword is:

max
{

Pr
[

Attack(SSLSH
Ω,Cξ ,N, H, ε,A) = true

]
,Pr

[
A(SSLSH

Ω,Cξ(w,N, H), w′, N,H, ε) = w
]}

= max{β′, β} = max{2−m/β, β}

hence complete the prove.
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