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Abstract. Secure sketch produces public information of its input w
without revealing it, yet, allows the exact recovery of w given another
value w′ that is close to w. Therefore, it can be used to reliably reproduce
any error-prone secret sources (i.e., biometric) stored in secret storage.
However, some sources have lower entropy compared to the error itself,
formally called “more error than entropy”, a standard secure sketch can-
not show its security promise perfectly to these kinds of sources. Besides,
when same input is reused for multiple sketches generation, the com-
plex error process of the input further results to security uncertainty,
and offer no security guarantee. Fuller et al., (Asiacrypt 2016) defined
the fuzzy min-entropy is necessary to show security for different kind
of sources over a family of distributions. This paper focuses on secure
sketch. We propose a new technique to generate re-usable secure sketch.
We show security to low entropy sources and enable error correction up
to Shannon bound via unique decoding. Our security defined information
theoretically with Shannon entropy over some worst case random error
distribution adding to the input source. In particular, our new technique
offers security guarantee for all input distributions with min-entropy at
least one bit.

Keywords: Secure Sketch · Error Correction · Fuzzy Extractor · Infor-
mation Theory

1 Introduction

Traditional cryptography systems rely on uniformly distributed and recoverable
random strings for secret. For example, random passwords, tokens, and keys,
all are commonly used secrets for deterministic cryptographic applications, i.e.,
encryption/decryption and password authentication. These secrets must present
exactly on every query for a user to be authenticated and get accessed into the
system. Besides, it must also consist of high enough entropy, thus making it very
long and complicated, further resulted in the difficulty in memorizing it. On the
other hand, there existed plentiful non-uniform strings to be utilized for secrets
in practice. For instance, biometrics (i.e., human iris, fingerprint) which can be
used for human recognition/identification purpose. Similarly, long passphrase
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(S. N. Porter, 1982 [1]), answering several questions for secure access (Niklas
Frykholm et al., 2001 [2]) or personal entropy system (Ellison et al., 2000 [3]),
and list of favorite movies (Juels and Sudan, 2006 [4]), all are non-uniformly
distributed random strings that can be utilized for secrets.

As a solution by utilizing non-uniform input for secrets, it raised several
security and practicability concerns. Firstly, since it is not truly random and
uniform, this increased the risk where an adversary may easily be guessed and
compromised it, thus reveals the underlying secret. Secondly, most of the avail-
able non-uniform strings are not exactly recoverable. Therefore, they cannot be
used for a typical deterministic cryptographic application. For instance, human
biometric data, it is well understood that two biometric readings sourced from
the same individual are rarely to be identical. Additionally, precise answer to
multiple questions or entering a password through keyboard consistently, from
time to time, would be a challenge for human memory although the provided
answers are likely to be similar.

Nevertheless, these non-uniform measurements that always selected by hu-
man or naturally existing are believed to offer a higher entropy than human-
memorable password. Especially, higher security level can be achieved by using
longer/more complex human biological measurements, i.e., fingerprint, voice,
retina scan, handwriting signature, and others. (N. Frykholm, 2000 [2]), (Jain
et al., 2016 [5]). Most importantly, it is memory-free and somewhat difficult to
steal, or loss compared to using external key storage, e.g., smart card, token,
keys.

The availability of non-uniform information prompted the generation of uni-
form random string from non-uniform materials. Started by Bennette et al.,
(1988) [6], identified two major approaches to derive a uniform string from noisy
non-uniform sources. The first approach is information-reconciliation, by tol-
erating the errors in the sources without leaking any information. The second
approach refers to the privacy amplification, which converts high entropy in-
put into a uniform random input. The information-reconciliation process can be
classified into interactive (includes multi messages) and non-interactive (only in-
cludes single message) versions. For non-interactive line of work, it has been first
defined by Dodis et al., (2004) [7] called the fuzzy extractor. Likewise, the fuzzy
extractor used two approaches to accomplish the task, which is the secure sketch
- for error tolerance, and randomness extractor - for uniform string generation.

In this paper, we only focus on the secure sketch. Secure sketch is more de-
manding because it allows information-reconciliation, e.g., exact recovery of a
noisy secret while offering security assurance to it. Moreover, a secure sketch
can be easily extended to fuzzy extractor for uniform string generation by using
a randomness extractor. There existing various secure sketch constructions in
the literature. Some notable constructions involved the code-offset construction
proposed by Juels and Wattenberg (1999) [8] that operates perfectly over ham-
ming matric space. This work generates a sketch through encoding a uniform
string with error correction code, then leaving an offset via performing XOR
operation with a noisy string. The uniform string can be reproduced by another
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noisy string by means of error tolerance, provided the error level is lower than
a specified threshold. Besides, Juels and Sudan (2006) [4] have also proposed
another construction for metric other than hamming called the fuzzy vault. An
improved version of the fuzzy vault is proposed by Dodis et al., (2004) [7], and
also the Pin-sketch that relies on syndrome encoding/decoding with t-error cor-
recting BCH code C, which works well for non-fixed length input over a universe
U .

1.1 Existing Issues in Secure Sketch

We here review some existing issues in the secure sketch.

More error than entropy: The secure sketch must contain some informa-
tion about the sources to tolerate the errors. More generally, given a point (some
value) w, the sketch would allow the acceptance of its nearby point w′ within
distance t. Therefore, if an adversary can predict an accepting w′ with noticeable
probability, the sketch must reveal w to the adversary with noticeable probabil-
ity as well. The tension between the security and error tolerance capability is
very strong. Precisely, the security is measured in term of the residual (min-) en-
tropy, which is the starting entropy of w minus the entropy loss. Often, a larger
tolerance distance is needed to tolerate more errors. However, exercising larger
tolerance distance will offer greater advantages to the adversary in predicting w′.
In the end, the residual entropy becomes lower by the increment of t. This con-
sequent to an upper bound of the tolerance distance translated to a lower bound
on the entropy loss of the input sources. This event is much worsening for some
non-uniform sources with low min-entropy, especially, when the sources consist
of more error than entropy itself. Since the source entropy rate is lower than
the error rate, simply deducting the entropy loss from the sources’ min-entropy
always output a negative value, hence, show no security. One typical example of
a source with more error than entropy refers to the commonly known biometric
feature - IrisCode (Daugman, 2006) [9]. The IrisCode is said to provide entropy
of 249 bits. Whereas, the IrisCodes generated from the same user of each 2048
bits have shown far more than 249 bits of errors. Therefore, this more error than
entropy problem is indeed restricting the usage of a secure sketch from all kind
of available sources.

Distribution uncertainty: The predictability of nearby point w′ within
distance t is not merely entropically connected, but it is also closely tied to
the distribution of the sources. A source can be described using a family of
distributions W = {W1, . . . ,Wγ}. Given a source under a random distribution
W ∈ W where all points are far apart, the probability for an adversary to predict
any nearby point w′ ∈ W ′ within distance t will be small. The entropy loss of
the sketch would be bounded that is proportional to t. In particular, given a
source with min-entropy m, a larger distance between the points implies higher
min-entropy, thus, the entropy loss due to error tolerance over distance t can be
compensated by the high min-entropy. This entropy loss is crude if one has set
t > m for error tolerance over distance t (e.g., more error than entropy).
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Fuller et al., (2013) [10] showed that under the event when the input distri-
bution is precisely known, the crude entropy loss can be avoided by the measure-
ment of fuzzy min-entropy, which defined as the min-entropy with maximized
chances for a variable of W within distance t of w′:

Hfuzz
t,∞(W )

def
= − log

(
max
w′

Pr[W ∈ Bt(w′)]
)

where Bt(w
′) denoted a hamming ball of radius t around w′. Conceivably, the

fuzzy min-entropy is equivalent to the residual entropy, which is bounded by the
min-entropy H∞ (W ) − log(Bt(w

′)) ≤ Hfuzz
t,∞(W ) minus the loss signified by the

hamming ball Bt(w
′) of radius t.

Realistically, it is imprudent to assume the source distribution is precisely
known, especially for high entropy sources. The adversary may have higher com-
putation power to model and exam the distribution compared to the designer.
Such event always refer to the distribution uncertainty, where the fuzzy min-
entropy notion is necessary and sufficient only when the security is defined com-
putationally. Viewed this way, one cannot assure information theoretical security
without precise knowledge over the input worst-case distribution W (i.e., dis-
tance between points is minimum).

Reusability1 Reusability property is introduced by Boyen (2004) [13]. Given
a user comes with a noisy input w (i.e., biometric), the user may enroll w for
different applications. Each time the user enrolls using w, he/she must provide
slightly different reading wi due to the error. Therefore, different sketches ssi
and keys Ri can be generated for different applications respectively. The security
property of individual sketches and keys should hold with all existing sketches
ss1, ss2, . . . , ssγ . In fact, this property has been well studied for current construc-
tions of secure sketch and fuzzy extractor, but many of them do not satisfied
reusability [13] [14] [15] [16].

1.2 Our Contributions

We highlighted our main contributions as follow:
Average fuzzy min-entropy: To correct more errors, larger error toler-

ance distance is desired. Unfortunately, larger tolerance distance renders higher
probability of success in predicting w′ within more considerable distance around
w. Thus, security diminution cannot be avoided. Our new result has considered
the notion of average fuzzy min-entropy, which is basically the fuzzy min-entropy
with different error tolerance distances.

To be more precise, consider different variable Φ and Φ′. To allow error tol-
erance within a larger distance t > t′, one must maximize the total probability
mass of Φ with larger ball Bt(φ

′)2 around the string φ′ ∈ Φ′. Suppose Φ is

1 The reusability property is different to the unlinkability property [11] [12]. Unlinka-
bility property prevents an adversary from differentiating whether two enrollments
correspond to the same physical source, which is not focused in this work.

2 Sometime, we omit φ′ or w′ to describe the ball Bt or Bt′ , when they are not depend
upon their center φ′ and w′ respectively
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correlated with some variable W , if the adversary finds out W 6∈ Bt′(w′), then

the predictability of Φ becomes Ew′←W
[

max
φ′

Pr[Φ ∈ Bt(φ′) |W 6∈ Bt′(w′) ]

]
. On

average, the average fuzzy min-entropy is:

H̃
fuzz

t,∞(Φ|W 6∈ Bt′(w′))
def
= − log

(
Ew′←W

[
max
φ′

Pr[Φ ∈ Bt(φ′) |W 6∈ Bt′(w′) ]

])
Intuitively, average fuzzy min-entropy refers to the fuzzy min-entropy of some

variable Φ defined by a larger hamming ball Bt, where only the points outside an
existing smaller ball Bt′ are considered. Substantial fuzzy min-entropy implies
more errors can be corrected over larger tolerance distance t > t′, hence, higher

entropy loss. In this sense, average fuzzy min-entropy H̃
fuzz

t,∞(Φ|W 6∈ Bt′(w′)) re-
veals the entropy loss from the fuzzy min-entropy of W over smaller tolerance
distance t′. Since the quantity of entropy loss must lower bounded to the entropy
of the source to show meaningful security, the average fuzzy min-entropy mani-
fested the minimum entropy loss from a source over the worst case t′ (minimum
t′). In view of this, the average-fuzzy min-entropy is useful for better monitoring
the loss of the min-entropy while providing optimal resilience.

Unique-decoding toward Shannon bound: Our construction uses two
error correction codes, one act as ‘inner’ code C∗ to encode a noisy input string
and yield the codeword c∗ ∈ C∗; another one act as ‘outer’ code to encode the
noisy version of c∗ and yield another codeword c ∈ Cξ. In addition to this, we
adopted the principle of Locality Sensitive Hashing (LSH) to generate a resilient
vector pair (trivially, a pair of longer strings with resilience property) for sketch-
ing and recovery. The resilient vector resembles additional random error adding
to the codeword c encoded by a the ‘outer’ code Cξ. We show that in such par-
ticular setting, one is able to uniquely decode the corrupted codewords, and
correcting total error rate up to Shannon bound.

Security bound independent to the input length: Info. theoretic secure
sketch is always desired. Because it does not introduce additional assumption of
computational limits to the attacker, thus offers better security assurance. Most
importantly, info. theoretic secure sketch eliminates the distribution uncertainty
issue by showing security to all family of input distribution via min-entropy
measurement. Notwithstanding its security robustness, the cost imposed by info.
theoretic secure sketch to the source entropy requirement is too high, which is
at least half of the input length itself [17]. It means that if the entropy is less
than half of its input length, it achieves nothing where the underlying secret can
be easily revealed due to exhaustive entropy loss caused by error tolerance. We
constructed a pair of sketching and recover algorithm. Formal correctness and
security proof have been given to show that it satisfies the properties of an info.
theoretical secure sketch. In addition to this, the new construction is capable of
achieving security bound that merely depend upon the Shannon entropy of some
worst case random error distribution rather than its input length.

Reusable secure sketch: Apart from this, the new construction offers ex-
tra security property, which is the reusability. We show that the error included
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implicitly allows reusability. We defined our reusability in information theoret-
ical sense, with a group of computational unbounded adversaries. Our results
imply the flexibility of independent re-enrollment of a single source with multi-
ple providers, yet offer security assurance to each of them, as long as the error
is kept within specified range. Our reusability emphasizes the case when the
providers are not communicating with each other hence it supports security to
all of them individually.

1.3 Our Technique

Some notation need to know : This work focus on binary hamming metric where
M1 = {0, 1}k∗ , and M2 = {0, 1}n denoted two different sizes of metric spaces
with n > k∗. The distance between different binary string w and w′ is the binary
hamming distance (e.g., the number of disagree elements) denoted as ‖w ⊕ w′‖
where ‖.‖ is the hamming weight that count the number of non-zero elements,
and ⊕ is the addition modulo two operation (XOR). Besides, the error rate in
between the input w w′ ∈ M1 is denoted as ‖w ⊕ w′‖ (k∗)−1 which is simply
their normalized hamming distance. For error correction code notation, since
we are more interested in tolerating the errors of a codeword c′ instead of its
min-distance d, we used t instead of d to explicitly represent an [n, k, t]2 binary
code Cξ with the tolerance rate denoted as ξ = tn−1, where ξ ∈ (0, 1/4). Be-
sides, we also refer to another [n∗, k∗, t∗]2 binary code C∗ with k∗ < n∗ ≤ k < n.
In particular, we focus on the case when both C∗ and Cξ are come with min-
distance d∗ ≥ 2t∗ + 1 and d ≥ 2t+ 1 respectively. At the same point, we let
t(+) = b(ξ + ε)k∗c and t(−) = d(ξ − ε)k∗e to describe two different error toler-

ance distances over the smaller binary metric space {0, 1}k∗ , with some error
parameter ε > 0.

Overview idea: Suppose Alice wishes to conceal a noisy non-uniform string
w ∈ {0, 1}k∗ while allows exact recovery of w from another noisy string w′ ∈
{0, 1}k∗ that is close to w. Then, Alice has to generate a secure sketch which able
to tolerate the error in w′. To do so, we invoke the uses of error correction code for
conventional secure sketch generation. Our scheme requires two error correction
codes, an [n∗, k∗, t∗]2 ‘inner’ code C∗ is chosen over {0, 1}n∗ , and another [n, k, t]2
‘outer’ code Cξ is chosen over {0, 1}n, where k∗ < n∗ ≤ k. Firstly, Alice encodes
w using the ‘inner’ code C∗ to output a codeword c∗. Then, c∗ is padded with
extra zeros 0n

∗−k∗ to form a longer string noisy string v∗ ∈ {0, 1}k with w,
yielding v∗ = c∗ ⊕ (0n

∗−k∗‖w). After that, v∗ is being encoded by the ‘outer’
code Cξ to output the final codeword c ∈ Cξ. Alice then conceals c by generating
a sketch ss = c⊕δ which is then made public and leaving the offset δ in the clear.
The offset δ is characterized by a pair of resilient vectors φ, φ′ ∈ {0, 1}n, which
is generated from a pair of noisy strings w′e, we ∈ {0, 1}k

∗
, i.e., we = w⊕ e (with

additional error vector e) through LSH. The resilient vectors offer resilience for
the recovery of w from w′ if ‖δ‖ ≤ t and ‖w ⊕ w′‖ ≤ t∗.

Likewise the code-offset construction [8], our idea is conceptual simpler but
comes with some crucial differences in term of operations. Firstly, the code-offset
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construction concealing a random and uniform string (called as the witness of
w) and involved only single encoding stage; our construction concealing a non-
uniform input w that has gone through two different encoding stages with C∗,
and Cξ. Secondly, despite the code-offset construction does not limit to particular
types of error correction code (i.e., not necessary to be linear), the sketch size is
always bounded by the size of the input w. Comparatively, in our case, Alice is
free to choose any error correction code where the sizes of the concealed object
and output sketch are not bounded but parametrized by the selected [n∗, k∗, t∗]2
code C∗ and the [n, k, t]2 code Cξ. Thirdly, of course, our operation comes with
additional random error adding to the input w and w′ during sketching and
recovery.

For resilient vector generation, we only focus on a particular LSH family
called hamming-hash [18]. The hamming hash is considered as one of the eas-
iest ways to construct an LSH family by bit sampling technique. Since it will
be a core element in our proposal, it is worth sketching in details on how it works.

Hamming hash strategy. Let [k∗] = {1, . . . , k∗}. For Alice with w ∈ {0, 1}k∗

and Bob with w′ ∈ {0, 1}k∗ . Alice and Bob agreed on this strategy as follow:

1. They are told to each other a common random integer N ∈ [k∗].
2. They separately output ‘0’ or ‘1’ depend upon their private string w and w′,

i.e., Alice output ‘1’ if the N -th bit of w is ‘1’, else output ‘0’.
3. They win if they got the same output, i.e., w(N) = w′(N).

Based on above strategy, we are interested in the probability for Alice and
Bob output the same value which can be described with a similarity function
S(w,w′) = P with probability P ∈ [0, 1].

Theorem 1. Hamming hash strategy is a LSH with similarity function S(w,w′) =
1− ‖w ⊕ w′‖(k∗)−1

Theorem 1 concluded that Alice and Bob always win with probability de-
scribed as P = 1 − ‖w ⊕ w′‖(k∗)−1. Observe that, the similarity function for
hamming hash correspond to the hamming distance between w and w′.

By repeat step 1 and step 2 of hamming hash strategy n times, with different
random integers, Alice and Bob able to output a n bits string φ, φ′ ∈ {0, 1}n
respectively, which we have earlier named as resilient vectors.

Theorem 2. Suppose two resilient vectors φ, φ′ ∈ {0, 1}n are generated from
w,w′ ∈ {0, 1}k∗ respectively by hamming hash strategy with a random integer
string N ∈ [k∗]

n
, the expected hamming distance is E[‖φ⊕ φ′‖] = n ‖w ⊕ w′‖ (k∗)−1.

Proof. Let ‖δ‖ = ‖φ⊕ φ′‖, base on Theorem 1, we know that, for each time
in comparing the hamming hash output (for i = 1, . . . , n), the probability of
disagree is describe as:

Pr[φ(i) 6= φ′(i)] = ‖w ⊕ w′‖ (k∗)−1 = 1− P
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Therefore, one has i.i.d variable (or Bernoulli variable) for each offset element,
δ(i) = 1 if φ(i) 6= φ′(i) and δ(i) = 0 if φ(i) = φ′(i). Precisely, ‖δ‖ = ‖φ⊕ φ′‖ =∑n
i=1 δ(i), thus, ‖δ‖ ∼Bin(n, 1 − P ) follows binomial distribution of expected

distance E [‖δ‖ ] = n(1 − P ) and s.d. σ =
√
nP (1− P ). Hence, E [‖δ‖] = n(1 −

P ) = n ‖w ⊕ w′‖ (k∗)−1 and prove the theorem.

Theorem 2 concluded that, any changes in the input hamming distance
‖w ⊕ w′‖ can be described as an Bernoulli variable corresponds to the offset
elements δ(i). Therefore, by introducing additional error e ∈ {0, 1}k∗ of weight
‖e‖ = bk∗εc to the inputs, where ε > 0 (e.g., adding the error simply equivalent
to ‖w ⊕ w′ ⊕ e‖), the probability of disagreeing for each element between the
resilient vectors φ, φ′ must increase or decrease by ε, which can be described as
1− P ± ε.

To make the above argument more precise, we provide the following corollar-
ies to characterize the effect on the offset ‖δ‖ with ε. To avoid notation clutter,
we always refer to the resilient vectors generated from LSH hamming using the
same random integer string N ∈ [k∗]

n
. The corollaries are given as follow.

Corollary 1. Given some random variables W,W ′ ∈ {0, 1}k∗ , Φ,Φ′ ∈ {0, 1}n
and an error parameter ε > 0. Let ξ = t/n be the tolerance rate of a [n, k, t]2
code Cξ. Suppose a resilient vector φ′ ∈ Φ′ is generated from strings w′ ∈ W ′.
For two hamming ball Bt(φ

′) and Bt(−)
(w′) of radius t(−) = d(ξ − ε)k∗e and

t > t(−) respectively ,if W ∈ Bt(−)
(w′), then, one has the minimum probability

to find any variable Φ ∈ Bt(φ′) described as 1− exp (−2nε2).

Proof. For W ∈ Bt(−)
(w′), it means that for all w ∈W , ‖w ⊕ w′‖ ≤ t(−) and so

‖w ⊕ w′‖(k∗)−1 ≤ ξ − ε is always true. Based on Theorem 2, w can be used to
produce its corresponding resilient vector φ ∈ Φ showing an expected offset with
φ′ described as E [‖φ⊕ φ′‖ ] = E [‖δ‖ ] s.t. E [‖δ‖] ≤ t− nε (by multiplying both
sides of the inequality with n). It follows there will be a minimum value of tmin

s.t. tmin = E[‖δ‖] + nε. Therefore, By using Hoeffding’s inequality, one able to
calculate the average probability:

Ew′←W
[
min
φ′

Pr
[
Φ ∈ Bt(φ′)

∣∣W ∈ Bt(−)
(w′)

]]
≥ min
t=tmin

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ ≤ t(−)

]
= 1− exp (−2nε2) (1)

and complete the prove.

Corollary 2. Given some random variables W,W ′ ∈ {0, 1}k∗ , Φ,Φ′ ∈ {0, 1}n
and an error parameter ε > 0. Let ξ = t/n the tolerance rate of a [n, k, t]2 code
Cξ. Suppose a resilient vector φ′ ∈ Φ′ is generated from strings w′ ∈ W ′. For
two hamming ball Bt(φ

′) and Bt(+)
(w′) of radius t(+) = b(ξ + ε)k∗c and t > t(+)

respectively, if W 6∈ Bt(+)
(w′), then, one has the maximum probability to find

any variable Φ ∈ Bt(φ′) described as exp (−2nε2).
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Proof. This proof is instantiated from the proof of Corollary 1. ForW 6∈ Bt(+)
(w′),

it means that for all w ∈ W , ‖w ⊕ w′‖ ≥ t(+) and so ‖w ⊕ w′‖(k∗)−1 ≥ ξ + ε is
always true. According to Theorem 2, w is capable to produce its corresponding
resilient vector φ ∈ Φ showing an expected offset with φ′ described as E [‖δ‖ ] ≥
t+ nε. Thus, there will be a maximum value of tmax s.t. tmax = E[‖δ‖]− nε.
Therefore, By using Hoeffding’s inequality, one able to calculate the average
probability, by symmetry:

Ew′←W
[

max
φ′

Pr
[
Φ ∈ Bt(φ′)

∣∣W 6∈ Bt(+)
(w′)

]]
≤ max
t=tmax

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ ≥ t(+)

]
= exp (−2nε2) (2)

and complete the prove.

The results obtained from Corollary 1 and Corollary 2 imply the following
statement: Once the error of parameter ε > 0 is introduced to the input, the
probability of finding any resilient vector φ ∈ Φ close to φ′ ∈ Φ′ with in the
ball Bt(φ

′) will be bounded. These bounds are conditioned on the input W ,
whether W ∈ Bt(−)

(w′) or W 6∈ Bt(+)
(w′), that can be proven in either way by

minimizing/maximizing the value of t = tmin/tmax respectively. Accordingly, we
have the computed numerical bound for average fuzzy min-entropy described as

H̃
fuzz

t,∞(Φ|W 6∈ Bt(+)
(w′)) ≥ − log(exp(−2nε2)) (3)

2 Preliminaries

In this section, we briefly highlight and recall some classical notions used in our
constructions.

Metric Spaces: A metric space definedM as finite set along with a distance
function dis : M×M → R+ = [0,∞), that takes any non-negative real values
and obey symmetric e.g., = dis(A,B) = dis(B,A), and triangle inequality, e.g.,
dis(A,C) ≤ dis(A,B) + dis(B,C).

Min-Entropy: For security, one is always interested in the probability for
an adversary to predict a random value, i.e., guessing a secret. For a random
variable W , max

w
Pr[W = w ] is the adversary’s best strategy to guess the most

likely value, also known as the predictability of W . The min-entropy thus defined
as

H∞ (W ) = − log (max
w

Pr[W = w ])

min-entropy also viewed as worst case entropy.
Average min-entropy: Given pair of random variable W , and W ′ (possible

correlated), given an adversary find out the value w′ of W ′, the predictability
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of W is now become max
w

Pr[W = w |W ′ = w′ ]. The average min-entropy of W

given W ′ is defined as

H̃∞ (W |W ′ ) = − log
(
Ew′←W ′

[
max
w

Pr[W = w |W ′ = w′ ]
])

Fuzzy min-entropy: Given an adversary try to find w′ that is within dis-
tance t of w, the fuzzy min-entropy is the total maximized probability mass of
W within the ball Bt(w

′) of radius t around w defined as:

Hfuzz
t,∞(W ) = − log

(
max
w′

Pr[W ∈ Bt(w′)]
)

high fuzzy min-entropy is a necessary for strong key derivation.
Secure sketch [7] An (M,m, m̃, t)-secure sketch is a pair of randomized

procedures “sketch” (SS) and “Recover” (Rec), with the following properties:

SS: takes input w ∈ M returns a secure sketch (e.g., helper string) ss ∈
{0, 1}∗.
Rec: takes an element w′ ∈M and ss. If dis(w,w′) ≤ t, then Rec(w′, ss) = w
with probability 1−β, where β is some negligible quantity. If dis(w,w′) > t,
then no guarantee is provided about the output of Rec.

The security property of secure sketch guarantees that for any distribution W
overM with min-entropy m, the values of W can be recovered by the adversary
who observes ss with probability no greater than 2−m̃. That is the residual
entropy H̃∞ (W |W ′ ) ≥ m̃.

Error correction code [19]: Let q ≥ 2 be an integer, let [q] = {1, . . . , q},
we called an (n, k, d)q-ary code C consist of following properties:

– C is a subset of [q]n, where n is an integer referring to the blocklength of C.
– The dimension of code C can be represented as |C| = [q]k = V
– The rate of code C to be the normalized quantity k

n
– The min-distance between different codewords defined as min

c,c∗∈C
dis(c, c∗)

It is convenient to view code C as a function C : [q]k → [q]
n
. Under this view,

the elements of V can be considered as a message v ∈ V and the process to
generate its associated codeword C(v) = c is called encoding. Viewed this way,
encoding a message v of size k, always adding redundancy to produce codeword
c ∈ [q]n of longer size n. Nevertheless, for any codeword c with at most t = bd−1

2 c
symbols are being modified to form c′, it is possible to uniquely recover c from c′

by using certain function f s.t. f(c′) = c. The procedure to find the unique c ∈ C
that satisfied dis(c, c′) ≤ t by using f is called as decoding. A code C is said to be
efficient if there exists a polynomial time algorithm for encoding and decoding.

Linear error correction code [19]: Linear error correction code is a linear
subspace of Fnq . A q-ary linear code of blocklength n, dimension k and minimum
distance d is represented as [n, k, d]q code C. For a linear code, a string with all
zeros 0n is always a codeword. It can be specified into one of two equivalent ways

with a generator matrix G ∈ Fn×kq or parity check matrix H ∈ F(n−k)×n
q :
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– a [n, k, d]q linear code C can be specified as the set {Gv : v ∈ Fkq} for an n×k
metric which known as the generator matrix of C.

– a [n, k, d]q linear code C can also be specified as the subspace {x : x ∈ Fnq
and Hx = 0n} for an (n − k) × n metric which known as the parity check
matrix of C.

For any linear code, the linear combination of any codewords is also consid-
ered as a codeword over Fnq . Often, the encoding of any message v ∈ Fkq can be
done with O(nk) operations (by multiplying it with the generator matrix, i.e.,
Gv. The distance between two linear codewords refers to the number of disagree
elements between them, also known as the hamming distance.

Shannon Code [20] Let a binary code C over {0, 1}n. We call that C
is an [t, ε]-Shannon code if there exits an encoding and decoding algorithm
〈Encode, decode〉 such that, Encode encode any k bits message to n bits code-
word c ∈ C, and a decode decode any codeword c′ for all t′ ≤ t, and c ∈ C,
Pr[dis(c, c′) ≤ t′ ∧ decode(c′ 6= c)] ≤ ε.

Locality Sensitive Hashing (LSH) [21] Given that P2 > P1, while w,w′ ∈
M, and H = hi :M→U , where U refers to the output metric space (after
hashing), which comes along with a similarity function S, where i is the number
of hash functions hi. A locality sensitive hashing can be viewed as a probability
distribution over a family H of hash functions follows Ph∈H[h(w) = h(w′)] =
S(w,w′). In particular, the similarity function S described the hashed collision
probability in between w and w′.

Ph∈H(hi(w) = hi(w
′)) ≤ P1, if S(w,w′) < R1

Ph∈H(hi(w) = hi(w
′)) ≥ P2, if S(w,w′) > R2

LSH transforms input w and w′ to its output metric space U with property
that ensuring similarity inputs render higher probability of collision over U , and
vice versal.

3 New Construction-LSH Secure Sketch

We hereby provide the detail of our based design of on a pair of sketching and
recover algorithm, that incorporated with LSH, by hamming hash strategy.

3.1 LSH-Hamming hash

We first formulate the hamming-hash algorithm Ωham−h which will be used in our
LSH-sketching and recover algorithms description later. Generally, the hamming-
hash algorithm Ωham−h : M1 × [k∗]n → M2 is an iterative process through
repeating the hamming hash strategy (steps 1 and 2) up to n > 1 times. It
serves to sample the input binary string of size k∗ into a longer binary string
a.k.a resilient vector of size n > k∗.

Given input w ∈ {0, 1}k∗ , and N ←$ [k∗]n, the LSH-hamming hash algorithm
describes as follow:
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Ωham−h(w,N)

φ← ∅
for i = 1, . . . , n do

parse x = w(N(i))// x is the N(i)-th bits of w

φ = φ‖x
endfor

return φ

3.2 LSH-Hamming hash

We denote the LSH-sketching algorithm that employs the hamming-hash algo-
rithm, Ω, an [n∗, k∗, t∗]2 ‘inner’ code C∗ and an [n, k, t]2 ‘outer’ code Cξ with
parity check matrix H∗ and H respectively3 as SSLSH

Ω,C∗,Cξ .
For sketching, one requires to generate a resilient vector φ by using the LSH

hamming hash algorithm. The size of the resilient vector must same with the
output codeword c. Then, the sketch ss can be constructed by simply perform
an XOR operation, i.e., ss = c⊕φ. Besides, to add additional error to the input,
we use a random error vector e ∈ supp(χ) over some random distribution χ
parametrized by ε > 0. Specifically, we have ‖χ‖ = bk∗εc where the error vector
e is of weight ‖e‖ = ‖χ‖ = bk∗εc. The sketching algorithm SSLSH

Ω,C∗,Cξ with inputs
w,N , H∗, H and ε is describe as follow:

SSLSH
Ω,C∗,Cξ(w,N,H

∗, H, ε)

χ←$ {0, 1}k
∗
// sample χ according to the error parameter ε

e←$ supp(χ)// sample e from χ uniformly at random, where ‖e‖ = ‖χ‖ = bk∗εc

c∗ = H∗w; // encode w

v∗ = c∗ ⊕ (0n
∗−k∗‖w);

v∗ = 0k−n
∗
‖v∗; // this padding step is only require if n

∗
< k

c = Hv∗; // encode v
∗

we = w ⊕ e;
φ← Ωham−h(we, N)

ss = c⊕ φ
return (ss,N,H∗, H)

All steps on SSLSH
Ω,C∗,Cξ(w,N,H

∗, H, ε) can be done in O(n2). Notably, the size
of ss is now depend upon the chosen ‘outer’ code Cξ.

3.3 LSH-Recover

For recovery, suppose one wishes to recover w from another string w′ ∈ {0, 1}k∗ .
He/she needs to provide another resilient vector φ′. This resilient vector can be

3 Sometimes, we replace H with G if generator matrix is desired for code Cξ
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generated by using the same hamming hash algorithm Ω with noise added inputs
w′e = w′ ⊕ e. We want the recovery algorithm to output w for any error rate
‖w ⊕ w′‖ (k∗)−1 ≤ ξ± ε or ‖w ⊕ w′‖ ≤ t(+). Therefore, the noise included by an
error vector e ∈ supp(χ′) sampled from another error distribution χ′, must show
doubled in amplitude i.e., ‖χ′‖ = b2k∗εc compared to χ in the sketching phase.

We denote the LSH-recover algorithm that employs the hamming-hash al-
gorithm, Ω, an [n∗, k∗, t∗]2 ‘inner’ code C∗ with parity check matrix H∗, an
[n, k, t]2 ‘outer’ code Cξ with parity check matrix H, and a decoding algorithm
f as RecLSH

Ω,C∗,Cξ,f . The recover algorithm RecLSH
Ω,C∗,Cξ,f with inputs ss, w′, N , H∗,

H and ε to recover w is describe as follow:

RecLSH
Ω,C∗,Cξ,f(ss, w

′, N,H∗, H, ε)

χ′ ←$ {0, 1}k
∗
// sample χ

′
with error parameter ε i.e.,

∥∥χ′∥∥ = b2k∗εc

for i = 1, . . . ,
∣∣supp(χ′)

∣∣
ei ←$ supp(χ′)// sample ei uniformly at random, where ‖ei‖ =

∥∥χ′∥∥ = b2k∗εc

w′ei = w′ ⊕ ei
φ′i ← Ωham−h(w′ei , N)

c′i = ss⊕ φ′i// also ss⊕ φ′i = c⊕ (φ⊕ φ′i)

// try to decode the codeword:

c← f(c′i, H)// first decoding

if first decoding is succeeded

v∗ ← H−1c

c′∗ = v∗ ⊕ (0n
∗−k∗‖w′)

c∗ ← f(c′∗, H∗)// second decoding

if second decoding is succeeded

w ← H∗−1c∗

return w

endif

endif

endfor

A brief description of the recovery mechanism is given as follow. Suppose
Bob has intercepted with a sketch ss = c⊕φ. Firstly, he has to double the error
parameter from ε to 2ε and generate a resilient vector φ′ ← Ωham−h(w′e, N). The
hamming weight of the offset can be conveniently represented as ‖δ‖ = ‖φ⊕ φ′‖.
By means of the similarity preservation property of LSH, the offset, δ is expected
to be low as well if w and w′ are close to each other. Bob performs ss ⊕ φ′i to
output the nearest codeword c′i. The errors over c′∗ and c′i can be tolerated by
means of error correction with codes C∗, Cξ and a decoding function f. Such
decoding process is repeat for i = 1, . . . , |supp(χ′)| iterations to try with all
possible input error patterns |supp(χ′)|
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4 Resilience

We now consider the resilience of algorithm pair 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉. Gener-

ally, the resilience measures on how probable the offset ‖δ‖ can be tolerated in
facilitating the recovery of v∗ and so w from the sketch. High resilience implies
high probability to tolerate the offset or correcting the errors.

Clearly, the resilience of 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉 is bounded by the resilience
of the selected codes pair C∗ and Cξ. This also mean that the value of ε should be
bounded by the maximum achievable error tolerence rate, determined among the
chosen codes pair C∗ and Cξ, i.e, 0 < ε ≤ max {t∗/n, ξ}. Since t∗ < t, certainly
0 < ε ≤ ξ. Choosing a ‘good’ code with a high value of ξ is non-trivial, this
is because different code is subjected to different set of parameters (n, k, t) and
there is no straightforward way to determine which the most efficient one is. The
design of such code under different set of parameters (n, k, t) is another broad
research topic. We direct the interested user refer to the works of Macwilliams,
(1977) [22], and Peterson and Weldo, (1972) [23]. Nevertheless, by padding zeros
on the input v∗, the selection of different codes pair C∗ and Cξ are highly relieved,
since once can easily find a pair of code C∗ and Cξ with k ≥ n∗ > k∗.

In this section, we are more interested in the probability to recover the origi-
nal input w. We will leave the discussion of the topic regarding resilience bound
to the following Section 4.1.

Further simplification is done by describing the term overwhelming if the
value of 1− β is close to one (e.g., negligible β). As we shall, negligible β means
substantial average fuzzy min-entropy.

We hereby formalize the completeness of 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉 for our re-
silience claim. It captured the scenario when the players are honest, which is
define under the following definition.

Definition 1. For some random variables W,W ′ ∈ M1, and SS ∈ M2, where
M1 = {0, 1}k∗ and M2 = {0, 1}n. Given N ∈ [k∗]n, an [n∗, k∗, t∗]2 linear code
C∗ and an [n, k, t]2 linear code Cξ with parity check matrix H∗ ∈ F(n∗−k∗)×n∗

and H ∈ F(n−k)×n respectively, where t∗ < t and k∗ < n∗ ≤ k < n. For
ε ∈ (0, ξ], let t(−) = d(ξ − ε)k∗e, and ξ = t/n. For a sketch ss generated through

SSLSH
Ω,C∗,Cξ(w,N,H

∗, H, ε) = ss, where ss ∈ SS. For all w ∈ W , w′ ∈ W ′, then

one has RecLSH
Ω,C∗,Cξ,f(ss, w

′, N,H∗, H, ε) = w can be achieved with overwhelming

probability at least 1− β if ‖w ⊕ w′‖ ≤ t(−). We said 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉 is

complete in (β, ε)-fuzziness if above statement holds.

We hereby provide a proposition with proof for the completeness claim on
〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉.

Proposition 1. 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉 is complete in (β, ε)-fuzziness if ‖w ⊕ w′‖ ≤
t(−) ≤ t∗ and n is sufficiently large where β = exp(−2nε2).

Proof. Clearly, RecLSH
Ω,C∗,Cξ,f(ss, w

′, N,H∗, H, ε) = w can only be achieved if both

decoding processes f(c′, H)4 and f(c′∗, H∗) can be done successfully. To be spe-

4 we here omitted the i-th notation for neater presentation
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cific, for the first decoding, it follows that f(c′, H) = f(c ⊕ δ,H) = f((c ⊕ φ) ⊕
φ′, H) = f(c ⊕ (φ ⊕ φ′), H). If ‖φ⊕ φ′‖ = ‖δ‖ ≤ t, this decoding will success
and return c and so v∗. For the second decoding stage. It follows f(c′∗, H∗) =
f(v∗ ⊕ (0n

∗−k∗‖(w ⊕ w′), H∗) = f(c′∗ ⊕ (w ⊕ w′), H∗). If ‖w ⊕ w′‖ ≤ t(−) ≤ t∗,
the second decoding will success as well by returning c∗ and so w. Therefore,
both scenarios ‖δ‖ ≤ t and ‖w ⊕ w′‖ ≤ t(−) ≤ t∗ must hold for successful recov-
ery of w. For any value of t(−) = d(ξ − ε)k∗e ≥ 0, the second decoding will always
success with probability one if ‖w ⊕ w′‖ ≤ t(−) ≤ t∗. Therefore, we only need
to consider the probability for the scenario ‖δ‖ ≤ t to hold. Follow Corollary 1.
When ‖w ⊕ w′‖ ≤ t(−), this probability is therefore expresses as:

min
t=tmin

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ ≤ t(−)

]
= 1− β

It follows 1− β is overwhelming with negligible quantity β = exp (−2nε2) when
n is sufficiently large. Hence, the proposition is prove.

Proposition 1 concluded that given two linear error correction codes C∗ and
Cξ, for ε ∈ (0, ξ], when ‖w ⊕ w′‖ ≤ t(−), then RecLSH

Ω,C∗,Cξ,f(ss, w
′, N,H∗, H, ε) = w

can be achieved with overwhelming probability at least 1 − β with syndrome
decoding f if one has the value of n is sufficiently large and t∗ ≥ t(−).

4.1 Correcting More Errors in Polynomial Time

This section provided the details explanation for error correction of error rate
up to ξ + ε or t(+).

Focusing on the second decoding stage, it only success when ‖w ⊕ w′‖ ≤
t(−) ≤ t∗. This result demonstrating a limited amount of the error rate ‖w ⊕ w′‖ ≤
ξ − ε, or t(−) can be corrected by the ‘inner’ code C∗ with probability one. On
the other hand, one can actually correct more errors with additional ‘outer’ code
Cξ imposes on top of C∗. In particular, when ‖w ⊕ w′‖ ≤ t(+), ‖w ⊕ w′‖(k∗)−1 ≤
ξ + ε. By introducing additional random error of rate −2ε during recovery phase,
the value of ‖w ⊕ w′‖(k∗)−1 is possible to be reduced down to ‖w ⊕ w′‖(k∗)−1 ≤
ξ − ε, hence the remaining errors can be corrected with probability one when
t(−) ≤ t∗.

Based on the above argument, we hereby provide the soundness of RecLSH
Ω,C∗,Cξ,f

to characterize the resilience of RecLSH
Ω,C∗,Cξ,f for higher rate of error rate, e.g.,

‖w ⊕ w′‖(k∗)−1 ≤ ξ + ε. Formally, this soundness of RecLSH
Ω,C∗,Cξ,f covers the sce-

nario where any adversary is capable of sampling any w′ s.t. ‖w ⊕ w′‖ ≤ t(+)

holds.
Often, for efficient decoding, we always hope that RecLSH

Ω,C∗,Cξ,f can be done

successfully in a few iterations, polynomial in the sketch size (n). The definition
below defines the soundness of RecLSH

Ω,C∗,Cξ,f in correcting the errors probability

at least 1− β and efficiently under the event when ‖w ⊕ w′‖ ≤ t(+).

Definition 2. For some random variables W,W ′ ∈ M1, and SS ∈ M2, where
M1 = {0, 1}k∗ and M2 = {0, 1}n. Given N ∈ [k∗]n, an [n∗, k∗, t∗]2 linear code
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C∗ and an [n, k, t]2 linear code Cξ with parity check matrix H∗ ∈ F(n∗−k∗)×n∗

and H ∈ F(n−k)×n respectively, where k∗ < n∗ ≤ k < n. For ε ∈ (0, ξ], let
t(+) = d(ξ + ε)k∗e, t(−) = d(ξ − ε)k∗e, and ξ = t/n. For all w ∈ W,w′ ∈ W ′,
given a sketch ss generated by SSLSH

Ω,C∗,Cξ(w,N,H
∗, H, ε) = ss ∈ SS. We said

RecLSH
Ω,C∗,Cξ,f is efficient if RecLSH

Ω,C∗,Cξ,f(ss, w
′, N,H∗, H, ε) = w can be done in

time poly(n)

For the ‘inner’ code C∗, we propose to use a type of efficient code named
BCH code [23] with efficient decoding algorithm f via algebric method, i.e.,
syndrome decoding [24]. To claim the soundness of 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉, we

have to show the existence of such ‘outer’ code Cξ for 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉
with efficient decoding algorithm f as well. All the while, we wish the decoding
can to be done successfully in time polynomial in the sketch size n. Let denote
h2(ε) = −(ε) log (ε) − (1 − ε) log(1 − ε) be the binary entropy function of error
rate ε, we provide a theorem with proof of the existence of the ‘outer’ code Cξ,
and the efficiency of RecLSH

Ω,C∗,Cξ,f itself.

Theorem 3. Suppose code C∗ is a [n∗, k∗, t∗] BCH code. For ε ∈ [(k∗)−1, ξ],
and exp(−2nε) < 0.125, there exists another [n, k, t] BCH code Cξ with syn-
drome decoding algorithm f for 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉 to correct the error rate

of ξ+ ε with probability at least 1− exp(−2nε) in time poly(n) when dkh2(ε)e ≤
dlog(1/ exp(−2nε2))e, b2k∗εc ≤ ‖w ⊕ w′‖ ≤ t(+), and t∗ ≥ t(−).

Proof. We first provide the existance proof for code Cξ. We knew that, for some

positive integer m′ > 3 and t < 2m
′−1, there exits an BCH code (computa-

tion in Galois field GF (2m
′
)) with parameters n = 2m

′ − 1, n − k ≤ m′t
and minimum distance d ≥ 2t− 1. The total number of codewords in such
BCH code must be bounded by 2m

′
= n + 1. For exp(−2nε2) < 0.125, there

are at least 1/ exp(−2nε2) = 2log (1/ exp(−2nε2)) > 23 number of codewords
which are consider as ‘similar’ codewords (e.g., c′i ∈ Cξ ∧ ‖δ‖ ≤ t) for sec-
ond decoding to success with probability at east 1 − exp(−2nε2) (see Proposi-

tion 1). It follows that 2dlog(1/ exp(−2nε2))e ≥ 2log (1/ exp(−2nε2)), and we can let
dlog(1/ exp(−2nε2))e = m′ > 3 to claim the existence of such ‘outer’ BCH code
Cξ.

We now revert to our main goal of correcting the error rate ξ+ε or t(+). Noting
that doubling the error during decoding would cause the input error rate to
increase (i.e., ‖w ⊕ w′‖ (k∗)−1 ≤ ξ + ε+ 2ε) or decrease (i.e., ‖w ⊕ w′‖ (k∗)−1 ≤
ξ + ε−2ε). Clearly, when the error rate decreases, it means the errors ‖w ⊕ w′‖ ≤
t(−), then, the second decoding stage will success with probability one if t∗ ≥
t(−) by the chosen ‘inner’ code C∗. We have to show the probability of the
errors to decrease from ‖w ⊕ w′‖ ≤ t(+) to ‖w ⊕ w′‖ ≤ t(−). Given error vector

‖ei‖ = b2k∗εc, we have |supp(χ′)| =
(

k∗

b2k∗εc
)

possible ways to describe all different

combinations of the error vector ei ∈ supp(χ′). It follows RecLSH
Ω,C∗,Cξ,f maximally
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run in
(

k∗

b2k∗εc
)

iterations. This probability can be expressed as:

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ ≤ t(+)

]
=

(‖w⊕w′‖
b2k∗εc

)(
k∗

b2k∗εc
)

For efficiency claim, to keep RecLSH
Ω,C∗,Cξ,f run in low number of iterations,

we could have
(

k∗

b2k∗εc
)
/
(‖w⊕w′‖
b2k∗εc

)
≤ 2m

′
to ensure RecLSH

Ω,C∗,Cξ,f maximally run

in 2m
′

= n+ 1 iterations. With b2k∗εc ≤ ‖w ⊕ w′‖ ≤ t(+), by Stirling’s ap-

proximation,
(

k∗

b2k∗εc
)
≤
(
k∗

2k∗ε

)
≤ 2k

∗h2(ε) < 2n
∗h2(ε) ≤ 2kh2(ε) holds when

ε ∈ [(k∗)−1, 1/4], hence
(‖w⊕w

′‖
b2k∗εc )

( k∗
b2k∗εc)

≥ 2−kh2(ε). Recall ε ∈ (0, ξ] must hold, there-

fore we should have ε ∈ [(k∗)−1, ξ]. For dkh2(ε)e ≤ dlog(1/ exp(−2nε2))e, the
solution is then follow:

Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ ≤ t(+)

]
≥ 2−kh2(ε)

≥ 2−dkh2(ε)e ≥ 2−dlog(1/ exp(−2nε2))e = 2−m
′

=
1

2O(log(n))
=

1

poly(n)
(4)

After poly(n) iterations, RecLSH
Ω,C∗,Cξ,f would success and output w with prob-

ability at least 1− exp(−2nε2) > 0.875 and complete the prove.

In summary, for ε ∈ [(k∗)−1, ξ], given exp(−2nε2) < 0.125, b2k∗εc ≤ ‖w ⊕ w′‖ ≤
t(+) and t∗ ≥ t(−), one needs dkh2(ε)e ≤ dlog(1/ exp(−2nε2))e = log(n+ 1) to

ensure efficient decoding with f in RecLSH
Ω,C∗,Cξ,f to correct the error rate of ξ + ε.

We would provide more details discussion regarding the error correction
bound in the next subsection.

4.2 Error Correction up to Shannon Bound

In the previous section, we have demonstrated the resilience of algorithm pair
〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉, in term of the probability in correcting the errors at most

t(+). Although, high probability in correcting the errors does not always mean
high number of errors can be corrected. Therefore, this section will provide the
discussion on how much errors can be corrected by using 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉.

Formally, we call this as the resilience bound of 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉.
Generally, to study the resilience bound, the error model of the system must

be conceived. It is mean to say that, without any knowledge on the error process
of the input, it is difficult to precisely model and determine the resilience bound
of a given error correcting construction. It is also heedless for one to believe
that people have a complete understanding of the complex error pattern, or the
distribution that is overtaking by the noisy non-uniform sources, i.e., biometric.

To study the resilience bound without the knowledge of the input error pro-
cess, one can always use the perfect correctness model. Recall that, high resilience
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means the errors can be corrected with overwhelming probability 1− β. Ideally,
it is natural to let β = 0, which will easily lead to the perfect correctness model,
so, the errors can be corrected with probability one. This means there will be
only one unique solution for every w′ within distance t. Hence, the decoding
process always returns the original value w precisely (e.g., unique decoding). In
this model, the fuzzy min-entropy notion may not necessary, since one can easily
show infinite fuzzy min-entropy without any dissension for security. Therefore,
this model is useful and suitable for who try to avoid certain assumption about
the exact properties of the stochastic error process, or the computational power
of an adversary to carry out decoding successfully.

However, inevitably, under the perfect correctness model, one always tied to
a very strong bound in term of the resilience. Typically, one can only uniquely
decode the codeword by using an error correction code with min-distance d ≥
2t+ 1. Saying so, the Plotkin bound (see [25]) has revealed the limited maximum
number of codewords in a code of blocklength n and minimum distance d. More
formally, there can be only at most 2n codewords with d > n/2, which means
given the residual entropy larger or equal to log (n), there has no error correction
code can correct n/4 errors with probability one and so for a secure sketch.

Despite of this, for sufficiently large n, the code Cξ would contain large dis-
tance in between the codewords itself (i.e., d ≥ 2t+ 1) with overwhelming prob-
ability ([26], Theorem 8). In such an event, one has a slightly relaxed notion
of correctness called probabilistic correctness model. Notably, our construction
naturally categorized under this relaxed model, where the first decoding f(c′i, H)
will not succeed with probability one, rather 1−β, with some probability to fail.
The failure in decoding is subjected to the condition of either W ∈ Bt(+)

(w′)
or W /∈ Bt(+)

(w′) for a given sketch ss. Therefore, a higher distance between
the codewords implicitly reduces the failure in decoding. This relaxed notion of
correctness is essential for 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉 to free from the Plotkin bound

and allow it to correct more errors by increment of the error parameter ε. In con-
trary, we have our perfect correctness guarantee only when W ∈ Bt(−)

(w′) via
second decoding f(c′∗, H∗), with number of correctable errors up to t(−) ≤ t∗ < t.

We now show that the probabilistic correctness model has allowed us to cor-
rect more errors, arbitrarily close to n/2. Credited by the LSH-hamming hash,
the errors in a pair of resilient vectors can be described by using the Bernoulli
process. More formally, our works following the random error model which was
famously considered by Shannon [20]. Shannon provided the noisy channel cod-
ing theorem saying that, for any discrete memoryless channel, the error tolerance
rate is characterized by the maximum mutual information between the input and
outputs. Precisely, in a binary symmetric channel, like our case, there exists a
code encoding k bits into n bits which able to tolerate the error of probability p
for every single bit, if and only if:

k < b(1− h2(p))nc

Since h2(p) is maximally one when p = 1/2, conversely, this theorem indicates
the existence of a secure sketch even for high error rate as long as p is smaller
than 1/2.
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Our efficiency claim for maximum error correction using RecLSH
Ω,C∗,Cξ,f is as

follow:

Proposition 2. If both C∗ and Cξ are BCH codes with syndrome decoding algo-
rithm f, where ξ = t/n ∈ (0, 1/4). For ε ∈ [(k∗)−1, ξ] and exp(−2nε2) < 0.125,
RecLSH

Ω,C∗,Cξ,f is efficient when dkh2(ε)e ≤ log(n + 1), b2k∗εc ≤ ‖w ⊕ w′‖ ≤ t(+),

and t∗ ≥ t(−) where the maximum correctable error rate is 2ε ≤ 2ξ < 1/2.

Proof. By Theorem 3, RecLSH
Ω,C∗,Cξ,f can correct the error rate of ‖w ⊕ w′‖ (k∗)−1 ≤

ξ + ε efficiently when dkh2(ε)e ≤ log(n + 1), b2k∗εc ≤ ‖w ⊕ w′‖ ≤ t(+), and
t∗ ≥ t(−). clearly, with maximum ε = ξ, the maximum correctable error rate is
‖w ⊕ w′‖ (k∗)−1 ≤ ξ + ε ≤ 2ε ≤ 2ξ < 1/2

Finally, we give a corollary whom proof is instantiated by the proof of The-
orem 3 and Proposition 2, to formalize 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉 as an [t(+), β]

Shannon code.

Corollary 3. For any pair of BCH codes C∗ and Cξ with efficient decoding al-
gorithm f used in 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉, 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉 is an efficient

[(t/n) + ε, β]-Shannon code with β = exp(−2nε2)

It is useful to have an example to show how RecLSH
Ω,C∗,Cξ,f works according to

our claim follows Corollary 3 with two BCH codes.

Example 1. Suppose one wishes to correct some errors over an input w ∈ {0, 1}k
∗

of length k∗ = 11. Given an [1023, 56, 191]2 BCH code is chosen for ‘outer’ code
Cξ. By efficiency argument, he/she needs dkh2(ε)e ≤ log(n+ 1), thus, h2(ε) ≤
0.1786, so ε ≤ 0.0269. In such a case, one has the correctable error rate is bounded
at most ξ + ε = 0.2136 (i.e., t(+) = b(0.2136)k∗c, and he/she needs an ‘inner’
code C∗ that could correct at least t(−) = d(0.01599)k∗e = 1 error, i.e., [n∗, k∗, t∗]
code C∗ with n∗ = 31, k∗ = 11, t∗ = 5. On the other hand, let say the input is
of length k∗ = 4. For an [1023, 11, 255]2 ‘outer’ code Cξ where ξ = 0.2493.
One can easily compute h2(ε) ≤ 0.9091. Then, he/she is capable of choosing
maximum ε = ξ = 0.2493 for maximum error correction capacity, which is at
most ξ+ ε = 0.4986. The errors can be corrected with overwhelming probability
at least 1−5.95×10−56. Meanwhile, he/she would need to choose an ‘inner code’
C∗ with n∗ = 7, k∗ = 4 and t∗ = 1. since t(−) = 1 ≤ t∗, the second decoding
stage would success with probability one by syndrome decoding algorithm f.

Apart from this, computationally efficient code achieve Shannon bound is
also found by Forney in 1965, named as concatenated code [27]. Our construction
relies on similar approach as the concatenated code for 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉

with an ‘outer’ code Cξ build on top of an ‘inner’ code C∗, where both are
linear codes as well. However, obviously, our construction operating differently
by taking into consideration over the input error’s distributions parametrized by
ε.
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5 Security

Recall that for all w ∈W in some random distribution W over M1, the sound-
ness of RecLSH

Ω,C∗,Cξ,f captured the scenario where any adversary A is capable of

sampling any w′ ∈ W ′ satisfy ‖w ⊕ w′‖ (k∗)
−1 ≤ ξ + ε or ‖w ⊕ w′‖ ≤ t(+). The

security of our proposal depends upon the hardness in searching a variable W
satisfy W ∈ Bt(+)

(w′). Since error correction implies entropy loss, this loss must
be indicated by the number of codewords in Cξ which is consider as ‘similar’
(e.g., c′i ∈ Cξ ∧ ‖δ‖ ≤ t) for first decoding to success. Therefore, any ‘similar’
codewords would contribute to additional information for an attacker to differ-
entiate whether W ∈ Bt(+)

(w′). In the absence of these additional information,
W is hidden in information theoretically fashion with security proportional to
the min-entropy H∞ (W ) for some worst case distribution W over M1.

We now formalize the security of algorithm pair 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉. We
assume an original input w is randomly sampled from some random distri-
bution W (not mandatory uniform) over a metric space M1 = {0, 1}k∗ . Be-
sides, we restrain another sample w′ ∈ W ′ that show at least error rate of
‖w ⊕ w′‖ (k∗)−1 ≥ ξ + ε (holds for ‖w ⊕ w′‖ ≥ t(+)) with the original sample
w. Recall the number of correctable is bounded proportional to the introduced
error of parameter ε (i.e., 2ε), we hereby giving A full power in choosing any
other error parameter ε′ ≤ ε in recovering w for maximum error tolerance.

We sake to characterize the security of 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉 by using an
adversary A comes with unlimited computation power and probable of sampling
any w′ satisfies ‖w ⊕ w′‖ ≥ t(+). The security is formalize by using an attack run-

ning together with A. Formally, A :M2
1×M2×F(n∗−k∗)×n∗

2 ×F(n−k)×n
2 ×[k∗]

n →
M1 is just an algorithm that is computationally unbounded, aim to recover w

from a sketch ss ∈ M2, with the parity check matrix H∗ ∈ F(n∗−k∗)×n∗
2 and

H ∈ F(n−k)×n
2 , an integer string N ∈ [k∗]

n
and w′ ∈ M1 and error parame-

ter ε′ ≤ ε. The attack is denote as Attack(SSLSH
Ω,C∗,Cξ ,N,H

∗,H, ε,A) with LSH-

sketching algorithm SSLSH
Ω,C∗,Cξ , and inputs N , H∗, H, ε, and A as follow:

Attack(SSLSH
Ω,C∗,Cξ ,N,H

∗,H, ε,A)

1 : w ←W// sample according to some distribution W ∈ M1

2 : w′ ←W ′

3 : if
∥∥w ⊕ w′∥∥ ≤ t(+), repeat step 2 until

∥∥w ⊕ w′∥∥ ≥ t(+)

4 : if A(SSLSH
Ω,C∗,Cξ (w,N,H∗,H, ε), w′, N,H∗, H, ε′) = w

5 : Output true

6 : else

7 : Output false

8 : endif

9 : endif

We then have the following definition for our security.



Secure Sketch: Correcting More Errors Without Entropy Loss 21

Definition 3. Let µ > 0 and ε ∈ [(k∗)−1, ξ]. Given some random variables
W,W ′ ∈ M1, and SS ∈ M2, where M1 = {0, 1}k∗ and M2 = {0, 1}n.
Given N ∈ [k∗]n, an [n∗, k∗, t∗]2 linear code C∗ and an [n, k, t]2 linear code
Cξ with parity check matrices H∗ ∈ F(n∗−k∗)×n∗ and H ∈ F(n−k)×n respec-
tively, where ξ = t/n and k∗ < n∗ ≤ k < n. For all w ∈ W , w′ ∈ W ′,
and SSLSH

Ω,C∗,Cξ(w,N,H
∗,H, ε) = ss ∈ SS, 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉 is (µ, ξ + ε)-

information theoretically secure if Pr
[

Attack(SSLSH
Ω,C∗,Cξ ,N,H

∗,H, ε,A) = true
]
≤

µ for any computationally unbounded adversary A.

According to Definition 3, we give a theorem with proof to generally charac-
terize the information theoretical security of algorithm pair 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉.

Theorem 4. Let a positive integer m ≥ 1, if both C∗ and Cξ are BCH codes with
syndrome decoding algorithm f, then, the algorithm pair 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉

is (µ, ξ+ε)-information theoretically secure with µ =
(

2−m−1

1−2−m

)
, when dkh2(ε)e >

dlog(1/ exp(−2nε2))e, and ‖w ⊕ w′‖ ≥ t(+).

Proof. : We first analyse the amount of effort for any adversary (A) in recovering
w from a sketch when ‖w ⊕ w′‖ ≥ t(+). We claim that this amount of effort is
large and bounded by the number of codewords which is consider as ‘similar’ for
first decoding to success.

Specifically, given ‖e′‖ = bk∗ε′c ≤ bk∗εc, one could easily note that the
results of Corollary 1 and 2 are indeed offer the tighter bound for the probability
of getting a similar pair of resilient vectors with offset ‖δ‖ ≤ t. In particular, let
t′(+) = b(ξ + ε′)k∗c, and t′(−) = d(ξ − ε′)k∗e, where β = exp (−2n(ε)2):

min
t=tmin

Pr
[
‖δ‖ ≤ t

∣∣∣ ‖w ⊕ w′‖ ≤ t′(−)

]
= 1− exp (−2n(ε′)2) ≤ 1− β (5)

max
t=tmax

Pr
[
‖δ‖ ≤ t

∣∣∣ ‖w ⊕ w′‖ ≥ t′(+)

]
= exp (−2n(ε′)2) ≥ β (6)

Therefore, the number of codewords which are consider as ‘similar’ is at most
1/ exp (−2n(ε′)2) ≤ 1/β by Eq. 6. It follows this number can be further bounded
as log(1/β) = 2log (1/β) ≤ 2dlog(1/β)e, hence:

Pr
[
A(SSLSH

Ω,C∗,Cξ(w,N,H
∗,H, ε), w′, N,H∗, H, ε′) = w

]
≤ 2−dlog(1/β)e (7)

We now revert to our main problem where w is not sampled randomly instead of
selected by the algorithm itself according to some distribution W (could be non-
uniformly) over M1. We will show that in this case, the probability to sample

any W ∈ Bt(+)
(w′) is at most

(
2−m−1

1−2−m

)
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It should be described as follow:

Pr
[

Attack(SSLSH
Ω,C∗,Cξ ,N,H

∗,H, ε,A) = true
]

= Pr
[
‖w ⊕ w′‖ ≤ t(+)

∣∣ ‖δ‖ ≤ t ]

To continue, we denote two events {Eventa,Eventb} where a, b ∈ {0, 1} as follow:

Eventa =

{
‖δ‖ ≤ t, a = 0

‖δ‖ > t, a = 1

Eventb =

{
‖w ⊕ w′‖ ≤ t(+), b = 0

‖w ⊕ w′‖ ≥ t(+), b = 1

By using Bayes’ law :

Pr
[
‖w ⊕ w′‖ ≤ t(+)

∣∣ ‖δ‖ ≤ t ] =
Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ ≤ t(+)

]
Pr
[
‖w ⊕ w′‖ ≤ t(+)

]
Pr[‖δ‖ ≤ t ]

=
Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ]

Pr[Eventa=0 ]

=
Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ]

Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ] + Pr[Eventa=0 |Eventb=1 ] Pr[Eventb=1 ]

=
Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ]

Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ] + Pr[Eventa=0 |Eventb=1 ] (1− Pr[Eventb=0 ])

=
1

1 + Pr[Eventa=0 | Eventb=1 ](1−Pr[Eventb=0 ])
Pr[Eventa=0 | Eventb=0 ]Pr[Eventb=0 ]

<
1

Pr[Eventa=0 | Eventb=1 ](1−Pr[Eventb=0 ])
Pr[Eventa=0 | Eventb=0 ]Pr[Eventb=0 ]

=
Pr[Eventa=0 |Eventb=0 ] Pr[Eventb=0 ]

Pr[Eventa=0 |Eventb=1 ] (1− Pr[Eventb=0 ])

=

(
Pr[Eventa=0 |Eventb=0 ]

Pr[Eventa=0 |Eventb=1 ]

)(
Pr[Eventb=0 ]

1− Pr[Eventb=0 ]

)
(8)

By Eq. 7, we have Pr[Eventa=0 |Eventb=1 ] ≤ 2−dlog(1/β)e.
By the result from Theorem 3 (Eq. 4), we have (for ε ∈ [(k∗)−1, ξ], b2k∗εc ≤

‖w ⊕ w′‖ ≤ t(+)):

Pr[Eventa=0 |Eventb=0 ] = Pr
[
‖δ‖ ≤ t

∣∣ ‖w ⊕ w′‖ ≤ t(+)

]
≥ 2−kh2(ε) ≥ 2−dkh2(ε)e

To look for the solution of Pr[Eventb=0 ], we need to use the fuzzy min-entropy

notion, s.t. max
w′

Pr
[
W ∈ Bt(+)

(w′)
]

= 2
−H̃

fuzz
t(+),∞

(W )
. Therefore:

Pr[Eventb=0 ] = Pr
[
‖w ⊕ w′‖ ≤ t(+)

]
≤ max

w′
Pr
[
W ∈ Bt(+)(w

′)
]

= 2
−H̃

fuzz
t(+),∞

(W )
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Taking into consideration over all possible distributions for W of fuzzy min-

entropy at least one bit, H̃
fuzz

t(+),∞(W ) ≥ 1, it follows H̃
fuzz

t(+),∞(W ) ≥ H∞ (W ) = m,

means that we are now denoting the worst case distribution of W with min-
entropy H∞ (W ) = m at least on bit. Eq. (8) can be interpreted as:

(
Pr[Eventa=0 |Eventb=0 ]

Pr[Eventa=0 |Eventb=1 ]

)(
Pr[Eventb=0 ]

1− Pr[Eventb=0 ]

)
=

(
2−dkh2(ε)e

2−dlog(1/β)e

)(
2−m

1− 2−m

)

For dkh2(ε)e > dlog(1/ exp(−2nε2))e, dkh2(ε)e − dlog(1/ exp(−2nε2))e ≥ 1
must hold by minimum. The maximum achievable probability is thus:

Pr
[

Attack(SSLSH
Ω,C∗,Cξ ,N,H

∗,N, ε,A) = true
]
<

(
2−dkh2(ε)e

2−dlog(1/β)e

)(
2−m

1− 2−m

)
≤
(

2−m−1

1− 2−m

)
(9)

hence complete the prove.

Eventually, we give the below proposition to formalize 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉
as an information theoretically secure sketch.

Proposition 3. 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉 is an efficient (M2,m,m, t)-secure sketch

Proof. We start from the proof of correctness. Obviously, the correctness sim-
ply follows the proof of Theorem 3, where we claimed when b2k∗εc ≤ ‖w ⊕ w′‖ ≤
t(+) and dkh2(ε)e ≤ dlog(1/ exp(−2nε2))e = log(n + 1), the errors can be cor-
rected with probability at least 1− exp(−2nε2) > 0.875 efficiently.

For security proof, by Theorem 4 (Eq. 9). For ε ∈ [(k∗)−1, ξ] and ‖w ⊕ w′‖ ≥
t(+), the residual entropy required for a computationally unbounded attacker
to differentiate whether W ∈ Bt(+)

(w′) from a sketch ss ∈ SS under some

distribution SS over M2, two parity check matrix H∗ ∈ F(n∗−k∗)×n∗
2 and H ∈

F(n−k)×n
2 , an integer string N ∈ [k∗]

n
and w′ ∈ W ′ over M1 can be expressed

as:

H̃∞ (W |SS,H,N,W ′, ε) = − log
(

Pr
[

Attack(SSLSH
Ω,C∗,Cξ ,N,H

∗,H, ε,A) = true
])

≥ m+ 1 + log(1− 2−m) (10)

For m ≥ 1, the term 0 ≥ log(1−2−m) ≥ −1 maximally contribute to entropy
loss of one bit, hence, the average minimum entropy is describe as:

H̃∞ (W |SS,H∗, H,N,W ′, ε) ≥ m

and complete the prove.
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Since dkh2(ε)e > dlog(1/ exp(−2nε2))e is a necessary condition to show secu-
rity of 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉 (information theoretically). Proposition 3 there-

fore suggested the following statement:

“For any input with error parameter 0 < ε ≤ ξ, high Shannon entropy of
error rate ε is a necessary and sufficient condition to show security of a secure
sketch with inputs min-entropy m ≥ 1 and correcting a total number of error at
most 2ε ≤ 2ξ”

5.1 Security Bound on Secure Sketch

In this section, we consider the security bound on the secure sketch. Formally,
this security bound also refer to the best possible security can offer by a secure
sketch construction. Particularly, we are interested in the best possible security
by using the new sketching and recover algorithm pair 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉.

If a secure sketch allows recovery of the input from some errors with high
probability, it must consist of enough information to describe the error pattern.
According to Dodis et al. [7], in a random error model, under the relaxed correct-
ness notion, describing the outcome of n independent coin flips with probability
of error, p requires nh2(p) bits of entropy. Therefore, the sketch must loss nh2(p)
bits of entropy. They used the Shannon entropy to describe the security bound
in this model and assumed the input is random and uniformly distributed. Since
nh2(p) bits of entropy is loss from the sketch, the upper bound residual entropy
is thus reduced to n(1−h2(p)−o(1)). larger value of p ∈ (0, 1/2) results to lower
residual entropy.

In our model, the entropy loss can be described by dlog(1/ exp(−2nε2))e+ 1
(see Eq. 10). Observably, dlog(1/ exp(−2nε2))e + 1 will show higher value (i.e.,
dlog(1/ exp(−2nε2))e + 1 > nh2(p) ) with larger ε or n. This result suggested
a better achievable lower bound to describe the error pattern in the resilient
vectors of size n by using dlog(1/ exp(−2nε2))e+ 1 rather than nh2(p).

In fact, we have shown that, the upper bound residual entropy in our con-
struction is m+dkh2(ε)e−dlog(1/ exp(−2nε2))e−1. Apparently, this residual en-
tropy is always bounded bym+dkh2(ε)e. Given dkh2(ε)e ≤ dlog(1/ exp(−2nε2))e,
entropy loss cannot be avoided, therefore, high min-entropy became a neces-
sary condition to show security for any sources under a family of distributions
{W1, . . .} ∈ W over M1. In viewed of this, meaningful security (e.g., at least
one bit) can only be showed over any distribution W ∈ W with entropy (i.e.,
fuzzy min-entropy) larger than the total entropy loss. On the other hand, if
dkh2(ε)e > dlog(1/ exp(−2nε2))e, our results (see Theorem 4 and Proposition
3) replied that one can always show meaningful security for any random dis-
tributions W ∈ M1, including the worst case distribution with min-entropy
H∞ (W ) = m ≥ 1. In other words, we could have 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉 to ac-

cept any sources with any distribution of min-entropy at least one bit, yet shown
not entropy loss with the published sketch.

Table 1 tabulated the security bound for various β-correct probabilistic secure
sketch in correcting the error in probability 1− β. To differentiate our proposal
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from other existing scheme, we stress here we only refer β = exp(−2nε2) in our
proposal (LSH sketch).

Security Bound for β-Correct Secure Sketch

Computational Best possible security Hfuzz
t,∞(W )− log(1− β)

Computational
FRS sketch(universal
hash functions) [28]

Hfuzz
t,∞(W )− log(1/β)−

log log(supp(W ))− 1

Computational
Layer hiding hash (strong
universal hash
function)[29]

Hfuzz
t,∞(W )− log(1/β)− 1

Info. theoretic LSH sketch
H∞ (W ) = m ≥ 1

(If dkh2(ε)e > dlog(1/β)e)

Table 1: Summary of security bound of β-correct secure sketch in term of
fuzzy-min entropy.

6 Reusability

We focus on the reusability of 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉 in this section. First stated

by Boyen, 2004 [13], any information theoretical secure sketch or fuzzy extractor
must leak certain amount of fresh information about the input for each time it
reuses/re-enrolls. The reusability property allows the reuse/re-enrollment of the
noisy data with multiple providers. Trivially, if 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉 can show

reusability property, it also suggested a reusable fuzzy extractor for uniform
random strings generation.

In the context of showing reusability, SSLSH
Ω,C∗,Cξ may run in multiple times for

enrollment of correlating samples w1, w2, . . . , wγ . Each enrollment should return
a sketch ssi which possesses individual security that holds even under the ex-
istence of other sketches for i ∈ {1, . . . , γ}. Boyens works on assuming a single
adversary should be able to perform some perturbation on the original input w∗

to yield a list of correlating samples w1, w2, . . . , wγ , further gains advantages in
recovering wi from its corresponding sketch ssi. The works of Boyen on reusabil-
ity has focused on a particular class of perturbation which is the transitive and
isometric permutation applied to w∗. This constraint applied to the perturbation
is unlikely in a real and practical scenario. However, his work has encouraged
the needs of showing reusability for a secure sketch to offer stronger security
guarantee.

Apart from Boyen works, Fuller et al., (2016) [28] provided a modified defini-
tion of reusability that covered a more realistic scenario. In their works, they split
the adversary into a group of adversaries {A1, . . . ,Aγ}. This group of adversaries
implicitly defined different distributions over the published sketch {ss1, . . . , ssγ}.
Each sketch is subjected to a particular adversary in the group to show security
individually. The act of showing security for a group of adversaries manifested
the reusability for independent re-enrollment of the original input with multiple
providers that may not trust each other. They utilized set of functions f1, . . . , fγ
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to sample w′, . . . , wγ s.t. wi = fi(w
∗, ss1, . . . , ssi). These set of functions come

with the main property, is to offer fresh min-entropy to the new sample wi over
a particular distribution Wi. The security is defined computationally with fuzzy
min-entropy and holds for a large class of family of distributions {W1, . . . ,Wγ}
over M.

Our intuition of showing reusability for a group of adversary follows the
works proposed by Fuller et at., [28]. The goal is to show security to the original
sample w∗ for different independent re-enrollments come with certain degree
of perturbations. It considered a stronger notion of reusability compare to the
previous case studied by Boyen and Fuller et al.,. It means to show security for
any perturbation applied to the input as long as the perturbation is kept within
some limited strength, i.e., the maximum number of altered bits is bounded. This
notion is more applicable to real case scenario since it does not introduce any
assumption on the type of perturbation applied to the input but only provides a
bound on it. To do so, we have introduced additional random error {e1, . . . , eγ},
s.t. ‖ei‖ = bk∗εic ≤ bk∗εc, i.e., εi ≤ ε acting as perturbation to the input
w∗ to sample a list of correlating reading {w1, . . . , wγ}. The usage of random
error is better fit to real case scenario, since any perturbation occurs during
re-enrollment must cause certain amount of bits flip to the original sample w∗.

To formalize the reusability of 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉 with perturbation pa-
rameter εi ≤ ε, we assume an original input w∗ is randomly sampled from a met-
ric space M1 = {0, 1}k∗ , then we apply perturbation on w∗ to generate a list of
correlated samples {w1, . . . , wγ} over some random distribution {W1, . . . ,Wγ} ∈
M1 (parametrized by εi ≤ ε) respectively. Such realization of perturbation in
fact can be done straightforwardly with SSLSH

Ω,C∗,Cξ(w
∗, N,H∗, H, εi)→ ssi to out-

put a random sketch ssi ∈ SSi over M2 = {0, 1}n. We restrain another sample
w′ ∈ W ′ over M1 that show at least error rate of ‖wi ⊕ w′‖ (k∗)−1 ≥ ξ + ε ≥
ξ + εi, which also true for ‖wi ⊕ w′‖ ≥ t(+) (i = 1, . . . , γ). We aim to charac-

terize the reusability of 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉 by using a group of adversaries

{A1, . . . ,Aγ} comes with unlimited computation power. Formally, each adver-

saryAi :M1×M2×F(n∗−k∗)×n∗
2 ×F(n−k)×n

2 ×[k∗]
n →M1 is simply an algorithm

that is computationally unbounded to output wi ∈ M1 from a public sketch

ssi ∈ M2, with input w′ ∈ M1, the parity check matrices H∗ ∈ F(n∗−k∗)×n∗
2 ,

H ∈ F(n−k)×n
2 and an integer string N ∈ [k∗]

n
. Our formalization uses a sec-

ond attack running with {A1, . . . ,Aγ}. Likewise the formulation of Attack, each
adversary Ai is giving full power of choosing any other error parameter ε′i ≤ εi
in recovering wi for maximum error tolerance. The second attack is depict on
Attack2(SSLSH

Ω,C∗,Cξ ,N,H
∗,H, ε, {A1, . . . ,Aγ}) with input LSH-sketching algorithm

SSLSH
Ω,C∗,Cξ , N , H∗, H, ε and Ai, which is consider as succeeded if at least one

adversary Ai ∈ {A1, . . . ,Aγ} has successfully recover wi from the sketch ssi
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Attack2(SSLSH
Ω,C∗,Cξ ,N,H

∗,H, ε, {A1, . . . ,Aγ})

1 : w∗ ←W// sample according to some distribution W ∈ M1

2 : for i = 1 : γ

3 : ei ←$ {0, 1}k
∗
// the weight ‖ei‖ = bk∗εic ≤ bk∗εc

4 : wi = w∗ ⊕ ei// wi ∈ Wi

5 : w′ ←W ′

6 : if
∥∥wi ⊕ w′∥∥ ≤ t(+), repeat step 5 until

∥∥wi ⊕ w′∥∥ ≥ t(+)

7 : if Ai(SSLSH
Ω,C∗,Cξ (w∗,N,H∗,H, εi), w

′, N,H∗, H, ε′i) = wi

8 : Output true

9 : else

10 : Output false

11 : endif

12 : endif

13 : endfor

The reusability of 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉 can be generally characterized by
the definition below.

Definition 4. Let µ′ > 0, ε ∈ [(k∗)−1, ξ] and εi ≤ ε and i = 1, . . . , γ. Let
Wi,W

′,W ∗ ∈ M1 and SS ∈ M2 be some random variable over M1 = {0, 1}k∗

and M2 = {0, 1}n respectively. Given N ∈ [k∗]n, an [n∗, k∗, t∗]2 linear code
C∗ and an [n, k, t]2 linear code Cξ with parity check matrices H∗ ∈ F(n∗−k∗)×n∗

and H ∈ F(n−k)×n respectively, where ξ = t/n and k∗ < n∗ ≤ k < n. For
all w′ ∈ W ′, wi ∈ Wi, w

∗ ∈ W and SSLSH
Ω,C∗,Cξ(w

∗,N,H∗,H, εi) = ssi ∈ SSi,

we said algorithm pair 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉 is (ε, µ′, γ)-reusable if ons has the

probability Pr
[

Attack2(SSLSH
Ω,C∗,Cξ ,N,H

∗,H, ε,{A1, . . . ,Aγ}) = true
]
≤ µ′

Theorem 5. Let a positive integer m ≥ 1, if both C∗ and Cξ are BCH codes with
syndrome decoding algorithm f, then, the algorithm pair 〈SSLSH

Ω,C∗,Cξ ,RecLSH
Ω,C∗,Cξ,f〉

is (ε, µ′,∞)-reusable with µ′ =
(

2−m−1

1−2−m

)
, when dkh2(ε)e > dlog(1/ exp(−2nε2))e

and ‖wi ⊕ w′‖ ≥ t(+).

Proof. Clearly, Attack2 will output a true result if at least one of the adversary
Ai has successfully recover wi from the sketch ssi.

Since, ε′i ≤ εi ≤ ε, one obtains the same bound by Eq. 5 and Eq. 6:

Pr
[
Ai(SSLSH

Ω,C∗,Cξ(w
∗,N,H∗,H, εi), w

′, N,H∗, H, ε′i) = wi

]
≤ 2−dlog(1/β)e

Therefore, the reusability attack Attack2 is at least as hard as Attack over
single adversary setting. It follows:
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Pr
[

Attack(SSLSH
Ω,C∗,Cξ ,N,H

∗,N, ε,A) = true
]

≤ Pr
[

Attack2(SSLSH
Ω,C∗,Cξ ,N,H

∗,H, ε,{A1, . . . ,Aγ}) = true
]
≤
(

2−m−1

1− 2−m

)

with µ′ ≥ µ =
(

2−m−1

1−2−m

)
and complete the prove.

Theorem 5 concluded that the original input w∗ ∈ W can be reused for
γ times to generate γ number sketches SSLSH

Ω,C∗,Cξ(w
∗,N,H∗,H, εi) = ssi ∈ SSi

with perturbation parameter εi ≤ ε. Viewed this way, adding error of parameter
ε larger than the input perturbation εi ≤ ε while sketching implicitly allows
reusability.

Proposition 4. If 〈SSLSH
Ω,C∗,Cξ ,RecLSH

Ω,C∗,Cξ,f〉 is (ε, µ′,∞)-reusable, it is also an

efficient (M2,m,m, t) secure sketch.

We omitted the proof of Proposition 4 since it is same with the proof in
Proposition 3 by letting µ′ = µ.
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