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Abstract. Secure sketch produces public information of its input w
without revealing it, yet, allows the exact recovery of w given another
value w′ that is close to w. Therefore, it can be used to reliably reproduce
any error-prone a secret sources (i.e., biometrics) stored in secret storage.
However, some sources have lower entropy compared to the error itself,
formally called “more error than entropy”, a standard secure sketch can-
not show its security promise perfectly to these kind of sources. This
paper focuses on secure sketch. We propose a concrete construction for
secure sketch. We show security to all noisy sources, including the trivial
source with zero min-entropy. In addition, our construction comes with
efficient recovery algorithm operates in polynomial time in the sketch
size, which can tolerate high number of error rate arbitrary close to 1/2.
Above result acts in conjunction to our derivation on the solution to an
NP-complete coding problem, implying P=NP.

Keywords: Secure Sketch · Error Correction · Coding Theory · Fuzzy
Extractor

1 Introduction

Traditional cryptography systems rely on uniformly distributed and recoverable
random strings for secret. For example, random passwords, tokens, and keys.
These secrets must present exactly on every query for a user to be authenticated
and get accessed into the system. Besides, it must also consist of high enough
entropy, thus making it very long and complicated, further resulted in the diffi-
culty in memorizing it. On the other hand, there existed plentiful non-uniform
strings to be utilized for secrets in practice. For instance, biometrics (i.e., human
iris, fingerprint) which can be used for human recognition/identification purpose.
Similarly, long passphrase (S. N. Porter, 1982 [1]), answering several questions
for secure access (Niklas Frykholm et al., 2001 [2]) or personal entropy system
(Ellison et al., 2000 [3]), and list of favorite movies (Juels and Sudan, 2006 [4]),
all are non-uniformly distributed random strings that can be utilized for secrets.

The availability of non-uniform information prompted the generation of uni-
form random string from non-uniform materials. Started by Bennette et al.,
(1988) [5], identified two major approaches to derive a uniform string from noisy
non-uniform sources. The first approach is information-reconciliation, by tol-
erating the errors in the sources without leaking any information. The second
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approach refers to the privacy amplification, which converts high entropy input
into a uniformly random input. The information-reconciliation process can be
classified into interactive (includes multi messages) and non-interactive (only in-
cludes single message) versions. For non-interactive line of work, it has been first
defined by Dodis et al., (2004) [6] called the fuzzy extractor. Likewise, the fuzzy
extractor used two approaches to accomplish the task, which is the secure sketch
(for error tolerance), and randomness extractor (for uniform string generation).
Secure sketch is demanding because it enables information-reconciliation, e.g.,
exact recovery of a noisy secret while offering security assurance to it. More-
over, a secure sketch can be easily extended to fuzzy extractor for uniform string
generation by using a randomness extractor. The generated random string can
be used in independent security system for access control, identification, digital
signature, etc.

This work focuses on secure sketch. We reviewed the limitations of current
secure sketch constructions in Section 1.1. To overcome such limitations, we
introduced the usage of resilience vector (RV) in Section 5 to support better
understanding of the structure of the noisy sources. We proposed a concrete
construction with included RV for sketching and recovery (secure sketch) in Sec-
tion 6 and 7 respectively. Our proposed recovery mechanism has shown to be
efficient in polynomial in the sketch size and allows error tolerance of error rate
arbitrary close to 1/2 (Section 9). In the end, in Section 10 we formalize the
security of our construction and show security to all noisy sources with com-
putationally unbounded attacker. We also compared our proposal with existing
secure sketch construction, showing our construction enjoys the better upper
bound of min-entropy requirement for a standard secure sketch (Section 11).

1.1 Issues in Existing Secure Sketch Construction

There existing various secure sketch constructions in the literature. Some notable
constructions involved the code-offset construction proposed by Juels and Wat-
tenberg (1999) [7] that operates perfectly over hamming matric space. Besides,
Juels and Sudan (2006) [4] have also proposed another construction for metric
other than hamming called the fuzzy vault. An improved version of the fuzzy
vault is proposed by Dodis et al., (2004) [6], and also the Pin-sketch that relies on
syndrome encoding/decoding with t-error correcting BCH code C, which works
well for non-fixed length input over a universe U .

However, the above mentioned secure sketch construction only works for lim-
ited noisy sources. Briefly, given a point (some value) w, the sketch would allow
the acceptance of its nearby point w′ within distance t for exact recovery of w.
Therefore, if an adversary can predict an accepting w′ with noticeable proba-
bility, the sketch must reveal w to the adversary with noticeable probability as
well. The tension between security and error tolerance capability is very strong.
Precisely, the security is measured in term of the residual (min-) entropy, which
is the starting entropy of w minus the entropy loss. Given some non-uniform
sources with low min-entropy, especially, when the sources consist of more error
than entropy itself, deducting the entropy loss from the sources’ min-entropy
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always output a negative value, hence, show no security. Because of this, cor-
recting t errors regardless of the structure of the input distribution would have
to assume sufficient high min-entropy to the input sources. To show meaningful
security for standard secure sketch, the min-entropy must at least half of the in-
put length itself [8], hence, limiting the availability of secure sketch construction
for low entropy sources.

Through exploitation of the struction of the input distributions, Fuller et al.,
(2013) [9] have show that the crude entropy loss over ‘more error than entropy’
sources can be avoided by the measurement of fuzzy min-entropy, which defined
as the min-entropy with maximized chances for a variable of W within distance
t of w′:

Hfuzz
t,∞(W )

def
= − log

(
max
w′

Pr[W ∈ Bt(w′)]
)
,

where Bt(w
′) denoted a hamming ball of radius t around w′. Conceivably, the

fuzzy min-entropy is equivalent to the residual entropy, which is at least the
min-entropy H∞ (W ) minus the loss signified by the hamming ball Bt(w

′) of
radius t, s.t.

Hfuzz
t,∞(W ) ≥ H∞ (W )− log(Bt(w

′)).

Hfuzz
t,∞(W ) is useful for security measurement instead of H∞ (W ) especially when

the residual entropy shows negative value (i.e. more error than entropy). How-
ever, due to the fact that Hfuzz

t,∞(W ) depends on the error tolerance distance t,
and it is not necessary referring to the worst-case distribution for W , therefore,
traditional way of showing security with Hfuzz

t,∞(W ) measurement have to deal
with such distribution uncertainty by considering a family of distributions W
for different variables i.e., {W1,W2, . . .} ∈ W rather than single distribution.
Viewed this way, Hfuzz

t,∞(W ) measurement is only sufficient for computational se-
cure sketch construction [9], [10], which means that the security property of such
construction only hold for computationally bounded attacker (i.e., polynomial
time bounded) accompanies with strong assumption on the user has a precise
knowledge over W. However, it is unrealistic to assume every sources distribu-
tion can be modelled precisely, especially for high entropy sources like human
biometric.

2 Overview Results

We highlighted our main five results as follow.
To construct a secure sketch for all noisy sources, it was believed that the

exploitation of the input structure is necessary [11]. Follow in this way, our
works adopted the principle of Locality Sensitive Hashing (LSH) to generate a
resilient vectors pair (trivially, a pair of longer strings with resilience property)
for sketching and recovery. Details discussion on the resilient vector (RV) is
covered in Section 5. The RV pair possessing resilience property, i.e., distance
preserving that is useful for the exploitation of the input noisy sources structure.
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Our first result is the metric of correlation measure between the RV pair and
their input pair (Eq. 1 and Eq. 2).

Since the RV is used for sketching, such correlation measurement implies
the entropy loss from the input. Therefore, the minimum entropy loss from the
sketch reduced to the maximum correlation measured in between the RV pair,
conditioned on their inputs. We formalize such minimum entropy loss based on
the worst-case distribution of the RV pair and their given inputs pair. Such
worst-case distribution is identified by random error parsing, which considered
the maximized weight of the codeword after an encoding process. This refers
to our second result, where the maximum tolerance distance corresponds to the
worst-case input distribution (Corollary 1), implies the minimum entropy loss
from the sketch (Eq. 4).

Thirdly, we show that the minimum entropy loss could be at least three bits
with BCH error correction codes. This pushed the upper bound of minimum
entropy requirement for our secure sketch construction to accept any sources of
entropy at least three bits, which is much lower compared to existing construc-
tions.

Later, we deemed that the three bits upper bound can be further pushed down
to zero by considering any attacker could have unlimited computation power in
modelling the input distribution with other random distribution (viewed as site
information), lead to a successful decoding and recovery of the input vector (Eq.
15). Nevertheless, the attacker requires to brute-force the input where its security
is defined by the Shannon entropy of the introduced error’ distribution during the
sketching phase. This refers to our fourth result, which is information-theoretic
in claiming security for all noisy sources with any positive value of min-entropy,
included the trivial source with min-entropy zero (Proposition 3).

The last result we would like to highlight is the efficiency of the recovery
algorithm in our construction. Without the consideration on the computational
power in running the recovery algorithm, the recovery of the input from the
sketch can be done with high probability (close to one) given the sketch size is
large enough (Proposition 1). On the other hand, considering the computational
power in running the recovery algorithm, we noticed that higher computational
power, i.e., exponential time in the input (Eq 8) is needed in order to tolerate
more errors (Eq. 8). Nonetheless, such exponential computation time can be
relaxed to polynomial time in the sketch size to ensure efficient recovery while
allowing more errors to be tolerated (Proposition 2). This result shows deep
connection in between a difficult decoding problem over smaller metric space (of
size k∗) could be reduced down to an easier problem over larger metric space
n > k∗, implying P=NP.

3 Preliminaries

There are some preliminaries to introduce the background of a standard secure
sketch, entropy, and error correction code.
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Secure sketch: [6] An (M,m, m̃, t)-secure sketch is a pair of randomized pro-
cedures “sketch” (SS) and “Recover” (Rec), with the following properties:

SS: takes input w ∈ M returns a secure sketch (e.g., helper string) ss ∈
{0, 1}∗.
Rec: takes an element w′ ∈ M and ss. If dis(w,w′) ≤ t for some tolerance
threshold t, then Rec(w′, ss) = w with probability 1 − β, where β is some
negligible quantity. If dis(w,w′) > t, then no guarantee is provided about
the output of Rec.

The security property of secure sketch guarantees that for any distribution
W overM with min-entropy m, the values of W can be recovered by the adver-
sary who observes ss with probability no greater than 2−m̃. That is the residual
entropy H̃∞ (W |W ′ ) ≥ m̃.

Min-Entropy: For security, one is always interested in the probability for an
adversary to predict a random value, i.e., guessing a secret. For a random variable
W , max

w
Pr[W = w ] is the adversary’s best strategy to guess the most likely

value, also known as the predictability of W . The min-entropy thus defined as

H∞ (W ) = − log (max
w

Pr[W = w ])

min-entropy also viewed as worst-case entropy.

Conditioned min-entropy: Given pair of random variable W , and W ′ (possi-
ble correlated), given an adversary find out the value w′ of W ′, the predictability
of W is now become max

w
Pr[W = w |W ′ = w′ ]. The conditioned min-entropy

of W given W ′ is defined as

H̃∞ (W |W ′ ) = − log
(
Ew′←W ′

[
max
w

Pr[W = w |W ′ = w′ ]
])

Error correction code: [12] Let q ≥ 2 be an integer, let [q] = {1, . . . , q}, we
called an [n, k, d]q-ary code C consist of following properties:

– C is a subset of [q]n, where n is an integer referring to the blocklength of C.
– The dimension of code C can be represented as |C| = [q]k = V
– The rate of code C to be the normalized quantity k

n
– The min-distance between different codewords defined as min

c,c∗∈C
dis(c, c∗)

It is convenient to view code C as a function C : [q]k → [q]
n
. Under this

view, the elements of V can be considered as a message v ∈ V and the pro-
cess to generate its associated codeword C(v) = c is called encoding. Viewed
this way, encoding a message v of size k, always adding redundancy to produce
codeword c ∈ [q]n of longer size n. Nevertheless, for any codeword c with at
most t = bd−1

2 c symbols are being modified to form c′, it is possible to uniquely
recover c from c′ by using certain function f s.t. f(c′) = c. The procedure to
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find the unique c ∈ C that satisfied dis(c, c′) ≤ t by using f is called as decoding.
A code C is said to be efficient if there exists a polynomial time algorithm for
encoding and decoding. Sometime, we refer [n, k, d] code C as [n, k, t] code C if
the error tolerance distance t is of interested rather than its minimum distance d.

4 Main Idea

We here highlight some common notation to be used in this work, and a brief
overview of our construction, focus on binary metric space.

Notations: LetM1 = {0, 1}k∗ , andM2 = {0, 1}n denote two different sizes
of metric spaces where n > k∗. The distance between different binary string w
and w′ denoted as dis(w,w′) is the binary hamming distance (e.g., the number of
disagree elements), i.e., dis(w,w′) = ‖w ⊕ w′‖ where ‖.‖ is the hamming weight
that count the number of non-zero elements, and ⊕ is the addition modulo two
operation (XOR). Besides, the error rate in between the input w w′ ∈ M1 is
denoted as ‖w ⊕ w′‖ (k∗)−1 which is simply their normalized hamming distance.

For error correction code notation, despite there existing a lot of error correc-
tion codes available in practice, due to the efficiency consideration, we used the
commonly studied binary error correction code named as BCH code [13] with
minimum distance d ≥ 2t+ 1 and efficient decoding algorithm f via algebric
method, i.e., syndrome decoding [13]. Our construction used two BCH codes.
We called one of these as ‘inner’ code Cin, and another one called the ‘outer’
code Cout. Both of them are chosen to be BCH codes with parameter [n∗, k∗, t∗]2
for Cin and [n, k, t]2 for Cout, where k∗ < n∗ < k < n holds. We denote the
tolerance rate of code Cin and Cout as ξ∗ = t∗/n∗ and ξ = t/n respectively.

Overview Construction: Suppose Alice wishes to conceal a noisy non-
uniform string w ∈ {0, 1}k∗ while allows exact recovery of w by using another
noisy string w′ ∈ {0, 1}k∗ that is close to w.

Firstly, Alice encodes w using the ‘inner’ code Cin to output a codeword c∗.
Then, c∗ is used to generate a noisy string v∗ ∈ {0, 1}k with w. Eventually, v∗

is being encoded by the ‘outer’ code Cout to output the final codeword c ∈ Cout.
Alice then conceals c by generating a sketch ss = c ⊕ δ which is then made
public and leaving the offset δ in the clear. The offset δ is characterized by a
pair of resilient vectors φ, φ′ ∈ {0, 1}n, which is generated from a pair of random
noisy strings w′e, we ∈ {0, 1}k

∗
, i.e., we = w ⊕ e (with additional error vector

e) through Ω with public shared random string N . The resilient vectors offer
resilience for the recovery of w from w′ if ‖δ‖ ≤ t and ‖w ⊕ w′‖ ≤ t∗.

5 Resilient Vector: Properties and Generation

Since RV is a core element of our construction, we here provide details discussion
on its properties and how it can be generated. The concept of RV is derived from
Locality Sensitive Hashing (LSH) defined as below.
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Locality Sensitive Hashing [14] Given that P2 > P1, while w,w′ ∈ M, and
H = hi :M→U , where U refers to the output metric space (after hashing),
which comes along with a similarity function S, where i is the number of hash
functions hi. A locality sensitive hashing can be viewed as a probability distribu-
tion over a family H of hash functions follows Ph∈H[h(w) = h(w′)] = S(w,w′).
In particular, the similarity function S described the hashed collision probability
in between w and w′.

Ph∈H(hi(w) = hi(w
′)) ≤ P1, if S(w,w′) < R1

Ph∈H(hi(w) = hi(w
′)) ≥ P2, if S(w,w′) > R2

LSH transforms input w and w′ to its output metric space U with property
that ensuring similarity inputs render higher probability of collision over U , and
vice versa.

For RV generation, we only focus on a particular LSH family called hamming-
hash [15]. The hamming hash is considered as one of the easiest ways to construct
an LSH family by bit sampling technique.

Hamming hash strategy: Let [k∗] = {1, . . . , k∗}. For Alice with w ∈ {0, 1}k∗

and Bob with w′ ∈ {0, 1}k∗ . Alice and Bob agreed on this strategy as follow:

1. They are told to each other a common random integer N ∈ [k∗].

2. They separately output ‘0’ or ‘1’ depend upon their private string w and w′,
i.e., Alice output ‘1’ if the N -th bit of w is ‘1’, else output ‘0’.

3. They win if they got the same output, i.e., w(N) = w′(N).

Based on above strategy, we are interested in the probability for Alice and Bob
outputting the same value. This probability can be described by a similarity
function S(w,w′) = P where P ∈ [0, 1].

Theorem 1. Hamming hash strategy is a LSH with similarity function S(w,w′) =
1− ‖w ⊕ w′‖(k∗)−1

The hamming hash strategy can also be operated in between Alice and Bob
in an non-interactive way. To do so, Alice and Bob simply repeat Step 1 and
Step 2 for n number of times with a set of pre-shared random integers N =
[N(1), N(2), . . . , N(n)] ∈ [k∗]n. In the end, they can output a n bits string φ, and
φ′ respectively over {0, 1}n, which we have earlier named as resilient vectors. We
denote such non-interactive hamming-hash algorithm as Ω :M1 × [k∗]n →M2,
which serves to sample the input binary string of size k∗ into a longer binary
string a.k.a resilient vector of size n > k∗.

Given input w ∈ {0, 1}k∗ , and N ∈ [k∗]n, the algorithm for Ω :M1× [k∗]n →
M2 can be described as follow:



8 Yen-Lung Lai

Ω(w,N)

1 : φ← ∅
2 : for i = 1, . . . , n do

3 : parse x = w(N(i))// x is the N(i)-th bits of w

4 : φ = φ‖x
5 : endfor

6 : return φ

Theorem 2. Suppose two resilient vectors φ, φ′ ∈ {0, 1}n are generated from
w,w′ ∈ {0, 1}k∗ respectively using hamming hash algorithm Ω with a random
integer string N ∈ [k∗]

n
, then E[‖φ⊕ φ′‖ ] = n ‖w ⊕ w′‖ (k∗)−1.

Correlation Measure in RVs: Let Φ and Φ′ be two random variables over
{0, 1}n, and W and W ′ be two random variables over {0, 1}k∗ . Given a resilience
vector φ ∈ Φ generated from w ∈W with random string N , it follows Φ must cor-
relate with W where the probability to look for any random variable Φ ∈ Bt(φ′)
(also means similar resilience vector s.t. ‖φ⊕ φ′‖ ≤ t) varies conditioned on
either W 6∈ Bt′(w′) or W ∈ Bt′(w′). Note that W ∈ Bt′(w′) implies the inputs
w ∈ W and w′ ∈ W ′ must similar within distance t′ (e.g. ‖w ⊕ w′‖ ≤ t′),
while W ∈ Bt′(w′) means ‖w ⊕ w′‖ > t′. Such correlation can be measured by
using the conditional probability described as Pr[Φ ∈ Bt(φ′) |W 6∈ Bt′(w′) ] or
Pr[Φ 6∈ Bt(φ′) |W ∈ Bt′(w′) ] respectively. In particular, we are more interested
on the maximum correlation, which can be conveniently expressed by the condi-
tioned maximum probability in looking for Φ ∈ Bt(φ′) given W 6∈ Bt′(w′) defined
as:

Ew′←W ′
[

max
φ′

Pr[Φ ∈ Bt(φ′) |W 6∈ Bt′(w′) ]

]
(1)

On the other hand, the conditioned minimum probability in looking for Φ 6∈
Bt(φ

′) given W ∈ Bt′(w′) is defined as:

Ew′←W ′
[

min
φ′

Pr[Φ 6∈ Bt(φ′) |W ∈ Bt′(w′) ]

]
(2)

6 Sketching

We denote the sketching algorithm that employs the hamming-hash algorithm,
Ω, an [n∗, k∗, t∗]2 ‘inner’ code Cin and an [n, k, t]2 ‘outer’ code Cout as SSΩ,Cin,Cout

.
The sketching algorithm SSΩ,Cin,Cout with inputs w,N , and εss is described as
follow:
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SSΩ,Cin,Cout
(w,N, εss)

1 : Ess ←$ {0, 1}k
∗
// initiate Ess according to the error parameter ε

2 : e←$ Ess// randomly sample e from Ess, where ‖e‖ = dk∗εsse

3 : c∗ = Cin(w); // encode w

4 : we = w ⊕ e;

5 : vsyn = c∗ ⊕ (0n∗−k∗‖we)

6 : v∗ = 0k−n∗‖vsyn;

7 : c = Cout(v∗); // encode v
∗

8 : φ← Ω(we, N)

9 : ss = c⊕ φ;

10 : return ss

Our sketching procedure consists of mainly two encoding steps. Given an in-
put w ∈ {0, 1}k∗ , the first encoding stage used Cin to encode w to generate a
codeword c∗ ∈ {0, 1}n∗ . In principle, c∗ can be any random codeword over Cin,
including the trivial codeword of all zeros i.e. c∗ = 0n

∗
. Then, we generate a noisy

string we and pad it with zeros in front to generate a longer bit string, which can
be viewed as the syndrome vector denoted as vsyn = c∗ ⊕ (0n

∗−k∗‖we). Clearly,
vsyn conceals c∗ by using we. The syndrome vector itself is also a codeword
vsyn ∈ Cin. Then, the second encoding stage used Cout to encode v∗ = 0k−n

∗‖vsyn
to generate the final code word c. The 0k−n

∗
zeros in front is used to notify the

recovery algorithm if the decoding is success. The final sketch is formed by hiding
c with RV generated from we.

For the realisation of the noisy string we, we parse additional error to the
original input w using a random error vector e ∈ Ess sampled from some random
distribution Ess. Such error distribution is parametrized by an error parameter
εss > 0. To be specific, all error vector e ∈ Ess is of weight ‖e‖ = dk∗εsse, and the
generation of the noisy string follows we = w ⊕ e. The error vector e is leaving
in clear after it has being parsed into the input w to form we.

All steps on SSΩ,Cin,Cout
(w,N, εss) can be done in O(n2), and the size of ss

is now depend upon the blocklength n of the chosen ‘outer’ code Cout.

7 Recovery

We denote the recover algorithm that employed the hamming-hash algorithm, Ω,
an [n∗, k∗, t∗]2 ‘inner’ code Cin and an [n, k, t]2 ‘outer’ code Cout as RecΩ,Cin,Cout,f .
The recover algorithm RecΩ,Cin,Cout,f with inputs ss, w′, N , εrec to recover w is
described as follow:
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RecΩ,Cin,Cout,f(ss, w
′, N, εrec)

1 : Erec ←$ {0, 1}k
∗
// initiate Erec with error parameter εrec

2 : for i = 1, . . . , |supp(Erec)|
3 : e′i ←$ Erec// sample e

′
i differently at random, where

∥∥e′i∥∥ = dk∗εrece

4 : w′e′i = w′ ⊕ e′i
5 : φ′i ← Ω(w′e′i , N)

6 : c′i = ss⊕ φ′i// also ss⊕ φ′i = c⊕ (φ⊕ φ′i)

7 : c← f(c′i)// first decoding

8 : return v∗ = C−1
out(c)

9 : if v∗[1], . . . , v∗[k − n∗] = 0k−n∗// first k − n∗ bits of v
∗

are zeros

10 : set v′syn as the last n∗ elements of v′∗

11 : c′∗ = v′syn ⊕ (0n∗−k∗‖w′e′i)

12 : c∗ ← f(c′∗)// second decoding

13 : return w = Cin−1(c∗)

14 : break

15 : endif

16 : endfor

Our proposal for the recovery algorithm consists of mainly two decoding pro-
cess. for decoding, we refer f be the syndrome decoding algorithm which operate

in O
(

(n∗)
t
)

and O(nt ) for Cin and Cout respectively. The first decoding process

is designed to be iterative decoding uses Cout and f to output the codeword c
from the sketch. It can be conveniently viewed as a brute-force decoding proce-
dure of |supp(Erec)| trials with some distribution Erec, parametrized by another
error parameter εrec > 0. Considering the general case where the person in re-
covering w may or may not know Ess, the error distribution introduced in the
recovery phase is different compared to the error distribution used in sketching
phase (Ess). Therefore, the brute-force complexity for the first decoding is highly
depends on the given error distribution Erec, where all error vector e′ ∈ Erec is
of weight ‖e′‖ = dk∗εrece. The main goal of the first decoding is to output
the syndrome vector vsyn. This can be done by examining the recovered vector
v∗ = 0k−n

∗‖vsyn. If the first k−n∗ bits of v∗ are all zeros, the decoding is viewed
as success and thus the recovery algorithm could proceed to the second decoding
stage to recover c∗ and so w from vsyn using Cin.

The second decoding process is basically a generic BCH code decoding with
f. It decodes the corrupted syndrome vector (viewed as the corrupted codeword

c′∗) to output c∗. The decoding itself must success if
∥∥∥we ⊕ w′e′i∥∥∥ ≤ t∗, thus w

can be recovered from c∗.
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8 Distribution Hiding with Random Error Parsing

Recall that the recover algorithm RecΩ,Cin,Cout,f can be viewed as a brute-force
decoding procedure of |supp(Erec)| trials. We stress that such brute-force trial is
necessary to show optimal security while allowing more errors to be tolerated.
This is mainly because the input w ∈W0 could be under some random distribu-
tion W0 overM1, yielding a random RV φ ∈ Φ0 of random distribution Φ0 over
M2. However, tolerating t errors using an [n, k, t] error correction code even-
tually reveal W0. This is because the encoding process must ensure all random
variable W0 ∈ Bt(w

′) can be tolerated by decoding function f, therefore, the
encoding process must know W0. Adding redundancy to W0 inevitably intro-
duce t information loss, hence cannot show security to more error than entropy
sources. Moreover, it is understood that potential attacker may have better com-
putational power in modelling W0, leading to better knowledge over W0 and so
higher entropy loss from W0 is possible.

To resolve the above issue, a straightforward way is to hide W0 before adding
redundancy to it. This can be done by parsing an error randomly and uniformly
chosen from a list {e0, e1, . . . , e|supp(Ess)|} ∈ Ess into the input string w ∈ W0

during the sketching phase. Doing so will produce a list of possible noisy strings
over different distributions {W0,W1, . . . ,W|supp(Ess)|} ∈ W respectively. This list
of noisy strings corresponds to a list of possible RVs in different distributions
{Φ0, Φ1, . . . , Φ|supp(Ess)|} ∈ Ψ . Remark here we have W0 ∈ W, and φ0 ∈ Ψ re-
ferring to the trivial case when the error vector e0 ∈ Ess is all zeros. This also
means that the original distribution W0 is now hidden over W. Therefore, it
is more appropriate to consider the family of distributions in W and Ψ rather
than single distribution W0 and Φ0 over M1 and M2 respectively in deriving
the security of the sketch. Based on above argument, compared to the generic
BCH encoding procedure, our proposed sketching algorithm can be viewed as a
more general encoding procedure by considering a more general case where the
error parameter εss ≥ 0 (or ‖e‖ ≥ 0).

Because the sketch is generated by concealing the final codeword c with an
RV φ. It follows that the best (worst-case) security of the sketch is manifested by
the worst-case distribution over Ψ , where all points (or RVs) in this distribution
are very close to each other. Suppose the worst-case distribution is Φ ∈ Ψ , one
shall use the min-entropy H∞ (Φ) measurement to measure the entropy of such
worst-case distribution. Arguing that the points in the worst-case distribution
are most close to each other, it must offer highest probability of success in getting
a similar RV within distance t. Compared to blindly modelling Ψ to determine
Φ, it is relatively easier to measure its maximum probability of success in getting
a similar RV within a maximum achievable distance t ≤ tmax among all possible
distributions {Φ0, Φ1, . . . , Φ|supp(Ess)|} ∈ Ψ .

To do so, since Φ is conditioned on some random distribution W ∈ W, it
is necessary to first define a maximum tolerance distance t(+) over W ∈ W for
sketching. The main intuition of doing this is to stimulate the worst-case scenario
for φ with respect to the worst-case error measurement over W . Such worst-
case error corresponds to the maximum tolerance distance which is defined as
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t(+) = d(ξ + εss)k
∗e, where ξ = t/n is parametrized by the chosen [n, k, t] error

correction code Cout. Since the number of errors can be tolerated is bounded
by the tolerance distance of the selected codes pair Cin and Cout. This also
means that the value of εss should be bounded by the maximum achievable
error tolerance rate among Cin and Cout, i.e, εss ≤ max {ξ∗, ξ}. Because t∗ < t,
obviously, εss ≤ ξ. Above reasoning explained the reference of ξ (not ξ∗) is more
appropriate in defining t(+). Since εss > 0 and max {ξ∗, ξ} = ξ, thus, t(+) is
maximum in W ∈ W. It follows the maximum probability to look for similar RV
over Ψ can be reduced to measuring the maximum correlation among all variables
{Φ0, Φ1, . . . , Φ|supp(Ess)|} ∈ Ψ given W ∈ W (see Eq. 1). The Corollary below
characterized the worst-case security of RVs. Such security is measured in term
of conditioned maximum probability in getting similar RV within a maximum
achievable tolerance distance t ≤ tmax over Ψ given any input distribution W ∈
W and a noisy string w′ ∈W ′ over some random distribution W ′0 ∈ {0, 1}k

∗
.

Corollary 1. Given W ∈ W, and a noisy string w′ ∈ W ′0. For all RV over a
family of distributions Ψ , the conditioned maximum probability to look for any
similar RV φ in the worst-case distribution Φ ∈ Bt(φ′) over Ψ (i.e. ‖φ⊕ φ′‖ =
‖δ‖ ≤ t for all φ ∈ Φ) when W 6∈ Bt(+)

(w′) is measured to be

= Ew′←W ′0

[
max
φ′

Pr
[
Φ ∈ Bt(φ′)

∣∣W 6∈ Bt(+)
(w′)

]]
= max
t=tmax

Pr
[
‖δ‖ ≤ t

∣∣ ‖we ⊕ w′‖ ≥ t(+)

]
≤ exp (−2nε2ss) (3)

Proof. For W 6∈ Bt(+)
(w′), it means the would have a noisy strings we ∈ W,

where ‖we ⊕ w′‖ ≥ t(+) or ‖we ⊕ w′‖(k∗)−1 ≥ ξ + εss must hold. Let denote
t(n) = nξ be a function of n, it follows that t(n) ≤ (‖we ⊕ w′‖(k∗)−1 − εss)n
can be yielded by multiplying both sides of the inequality with n. Clearly, the
maximum value of t(n) can be viewed as tmax = (‖we ⊕ w′‖(k∗)−1− εss)n. Then
the probability for ‖δ‖ ≤ tmax given ‖we ⊕ w′‖(k∗)−1 ≥ ξ + εss can be computed
by Hoeffding’s inequality follows the last line of Eq. 3.

By Corollary 1, the conditioned min-entropy of RV over Ψ measured to be

H̃∞ (Ψ |W ) = − log

(
EW←W [Pr[Ψ = Φ |W = W ]]

)
= − log

(
Ew′←W ′

[
max
φ′

Pr
[
Φ ∈ Bt(φ′)

∣∣W 6∈ Bt(+)
(w′)

]])
≥ log(1/ exp (−2nε2ss)) (4)

9 Correctness with Regardless Computational Power

We are here to discuss the correctness of RecΩ,Cin,Cout,f in recovering w from a
sketch. specifically, such correctness characterizes the success rate of the recov-
ery of vsyn and so w from a sketch generated by SSΩ,Cin,Cout

. Noting that the
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number of iterations (or computational power) requirement for RecΩ,Cin,Cout,f is
proportional to the value of |supp(Erec)|, which is parametrized by εrec. In such
a case, higher value of εrec would result to higher number of |supp(Erec)|, im-
plying higher computational power requirement for RecΩ,Cin,Cout,f . Besides, the
efficiency of the decoding algorithm f used for the given error correction code,
i.e. Cin and Cout also plays an important rules in computing the final computa-
tional power requirement for RecΩ,Cin,Cout,f . Nonetheless, we here consider the
correctness with negligible error without the consideration of the computational
power requirement in running RecΩ,Cin,Cout,f . Formally, it can be expressed in
Eq. 5 below with some negligible probability β > 0 for all εrec > 0, regardless
the efficiency of the decoding algorithm f itself.

Pr[RecΩ,Cin,Cout,f(SSΩ,Cin,Cout
(w,N, εss), w

′, N, εrec) = w ] = 1− β. (5)

To attain such correctness claim (without considering the computational
power), it is desired to show that the probability of success in recovering w
is at least 1 − β. In viewed of this, the maximum value of β have to be com-
puted, which is indeed referring to the maximum error in recovering w from a
sketch with RecΩ,Cin,Cout,f .

Suppose a sketch ss generated through SSΩ,Cin,Cout(w,N, εss) = ss, where
ss ∈ SS under some random distribution SS over M2. Since the total number
of possible RVs generated from the input w (with random string N) implies
the total number of possible sketches, therefore, all RVs over the family of dis-
tributions {Φ0, Φ1, . . . , Φ|supp(Ess)|} ∈ Ψ will yield different sketches in different
distributions {SS0, SS1, . . . , SS|supp(Ess)|} ∈ S as well. In such a case, the error
(in term of probability) to recover w from a sketch ss ∈ S reduced to the error to
look for a random variable SS over family of distributions S, where the RV pair
(φ, φ′) used for sketching and recovery is in distinct, (i.e., ‖φ⊕ φ′‖ = ‖δ‖ ≥ t).
Therefore, to maximize such error for maximum value of β, the optimal distri-
bution in Ψ , where all points (or RVs) in such distribution are farthest away
to each other needs to be identified. Suppose the optimal distribution is Φ ∈ Ψ ,
since the points in Φ is farthest to each other, it should correspond to the highest
probability in looking for a distinct RV. Because {Φ0, Φ1, . . . , Φ|supp(Ess)|} ∈ Ψ
are conditioned on some random distribution W ∈ W, likewise the way in deter-
mining the worst-case distribution from Ψ (refer to last section), one shall first
define another minimum tolerance distance t(−) = d(ξ − εss)k∗e over W ∈ W
for sketching. As an important remark, for t(−) to be minimum given Cin and
Cout, one needs t(−) ≤ t∗ < t to hold as well. The following Corollary revealing
β ≤ exp(−2nε2ss).

Corollary 2. Given W ∈ W, and a noisy string w′ ∈ W ′0. For all RV over a
family of distributions Ψ , the conditioned maximum probability to look for any
distinct RV φ in optimal distribution Φ 6∈ Bt(φ′) over Ψ (i.e. ‖φ⊕ φ′‖ = ‖δ‖ ≥ t
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for all φ ∈ Φ) when W ∈ Bt(−)
(w′) is measured to be

Ew′←W ′0

[
max
φ′

Pr
[
Φ 6∈ Bt(φ′)

∣∣W ∈ Bt(−)
(w′)

]]
= max
t=tmin

Pr
[
‖δ‖ ≥ t

∣∣ ‖we ⊕ w′‖ ≤ t(−)

]
≤ exp (−2nε2ss). (6)

Proof. For W ∈ Bt(−)
(w′), it means that there would have one noisy string we ∈

W, where ‖we ⊕ w′‖ ≤ t(−), or ‖we ⊕ w′‖(k∗)−1 ≤ ξ − εss must hold. Let denote
t(n) = nξ be a function of n, it follows that n‖we ⊕ w′‖(k∗)−1 ≤ nξ − nεss can be
yielded by multiplying both sides of the inequality with n. Clearly, the minimum
value of t(n) can be viewed as tmin = (‖we ⊕ w′‖(k∗)−1 + εss)n. The probability
for ‖δ‖ ≥ tmin given ‖we ⊕ w′‖(k∗)−1 ≤ ξ − εss can be computed by Hoeffding’s
inequality follows the last line of Eq. 6.

The following Proposition can be obtained by comparing Eq. 5 and Eq. 6.

Proposition 1. For all εrec > 0, εss > 0, and ‖we ⊕ w′‖ ≤ t(−) ≤ t∗,

Pr[RecΩ,Cin,Cout,f(SSΩ,Cin,Cout
(w,N, εss), w

′, N, εrec) = w ]

≥ 1− exp (−2nε2ss)

Proposition 1 concluded given an error parameter εss > 0. For all εrec > 0,
the success rate for RecΩ,Cin,Cout,f in recovering w is at lest 1 − exp (−2nε2ss)
if ‖we ⊕ w′‖ ≤ t(−) ≤ t∗. This resultant probability is overwhelming when n
is sufficiently large without considering the computational power in running
RecΩ,Cin,Cout,f .

10 Correctness with Regard to Computational Power:
The NP-Complete Problem

In general, without considering the computational power in running RecΩ,Cin,Cout,f ,
the claim of correctness in Proposition 1 demonstrating at most t(−) ≤ t∗ of er-
rors (or error rate of ξ− εss) can be tolerated over W ∈ W, which applied to any
input distribution W0 ∈ {0, 1}k

∗
. In this section, we will show that given one

has set the value of εrec of sufficiently large, i.e., εrec ≥ 2εss, and RecΩ,Cin,Cout,f

is allowed to run in |supp(Erec)| number of iterations, one can actually tolerate
higher error rate, arbitrary close to one.

Our main intuition is to tolerate t(+) > t(−) number of errors. To do so,
for any error described as the distance ‖we ⊕ w′‖ ≤ t(+), or the error rate is
‖we ⊕ w′‖(k∗)−1 ≤ ξ + εss. By introducing an error parameter εrec of higher
value compared to εss, e.g., εrec ≥ 2εss , the final worst-case error rate can be
described as ‖we ⊕ w′e′‖(k∗)−1 ≤ ξ + εss±εrec. Viewed this way, any error rate of
‖we ⊕ w′‖(k∗)−1 ≤ ξ + εss is possible to be reduced down to ‖we ⊕ w′e′‖(k∗)−1 ≤
ξ − εss given high enough εrec during recovery. Eventually, the remaining errors
‖we ⊕ w′e′‖ ≤ t(−) can be tolerated with overwhelming probability by Proposi-
tion 1.
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To make the idea more explicit, suppose one knows the value of εss, he/she
can simply choose a minimum εrec = 2εss during recovery, this would allow
him/her to produce another list of possible error vectors {e′0, . . . , e′|supp(Erec)|} ∈
Erec, which would yield a list of possible noisy string w′ei ∈ W ′i over another
family of distributionsW ′, s.t. {W ′0, . . . ,W ′|supp(Erec)|} ∈ W

′. Here the trivial case

εrec = εss = 0 (or ‖e′0‖ = 0) applied to the original input distribution W ′0 ∈ W ′.
To look for the non-trivial solutions for e′ ∈ Erec, one shall have RecΩ,Cin,Cout,f

running in |supp(Erec)| iterations to try all possible {e′1, . . . , e′|supp(Erec)|} ∈ Erec
until he/she found such noisy string w′e′ s.t. ‖we ⊕ w′e′‖ ≤ t(−) holds. Let d′ =
dξk∗e. Suppose the original distance ‖w ⊕ w′‖ ≤ d′ (when εss = 0). Parsing an
error e ∈ Ess of weight dk∗εsse to the input w ∈ W0 yields we. It follows there
should be a resultant case where

‖we ⊕ w′‖ = ‖w ⊕ w′‖ ± dk∗εsse ≤ d′ ± dk∗εsse

Note that when ‖we ⊕ w′‖ ≤ t(−) = d′ − dk∗εsse (refers to ‘-’ sign), such
errors is trivial which can be tolerated by means of Cin since t(−) ≤ t∗. For
nontrivial case when t(+) = d′ + dk∗εsse (refers to the ‘+’ sign), one has to trial
all e′ ∈ Erec of weight d2k∗εsse. It follows that there must have at least one
solution for e′ s.t.

‖we ⊕ w′e′‖ = ‖(w ⊕ e)⊕ (w′ ⊕ e′)‖ = ‖(w ⊕ w′)⊕ (e⊕ e′)‖
≤ d′ + (dk∗εsse ± d2k∗εsse) ≤ d′ − dk∗εsse = t(−) (7)

Doing so means one needs to find the nontrivial error vector e′ ∈ Erec using
error parameter εrec s.t. the distance ‖we ⊕ w′e′‖ ≤ t(−) ≤ t∗ holds by minimum.
Once such error vector is found, the remaining errors t(−) can be tolerated via
generic BCH code decoding using Cin comes across with error tolerance distance
t∗ ≥ t(−). To look for such nontrivial error vector using a typical deterministic
computer machine (i.e., Turing machine), the value of εss used in the sketching
phase have to be known by the recovery algorithm. Even so, only with the
knowledge of εss, there is no short-cut or direct way rather than brute-forcing
for such e′. Therefore, we shall see that to tolerate more error (more than t(−)),
it is inevitable that ones have to deal with the issue of computational power in
running RecΩ,Cin,Cout,f , where the knowledge on the chosen error parameter εss
during sketching phase is necessary.

Given εss ∈ [(2k∗)−1, 1/4], with minimum εrec = 2εss, one can use Stirling
approximation to compute minimum value for |supp(Erec)|:

|supp(Erec)| =
(

k∗

d2k∗εsse

)
≤ 2dk

∗h2(2εss)e (8)

where h2(x) = −x log(x)− (1−x) log(1−x) is the binary entropy function with
input error rate of x.

Taking into consideration that one could also run the recovery algorithm in
parallel with different value of ε using several computation machines (i.e., non-
deterministic Turing machine), the brute-force complexity should be bounded by
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the order of O(2k
∗h2(2εss)). This result implies after 2dk

∗h2(2εss)e number of iter-
ations, we shall have RecΩ,Cin,Cout,f to recover w successfully with overwhelming
probability for both deterministic and non-deterministic Turing machine.

Follows Eq. 7 (second line), viewing that meaningful correctness can only be
shown for any errors in term of distance ‖we ⊕ w′e′‖ ≤ t(−) which is positive.
To make sure t(−) ≥ 0 always hold for nontrivial error, one shall consider d′ ≥
dk∗εsse, hence ‖we ⊕ w′e′‖ = d′ + dk∗εsse − d2k∗εsse = t(−) ≥ 0 must follow
by minimum. Therefore, the permissible minimum distance in our construction
should be described as

‖w ⊕ w′‖ ≥ d′ = dk∗εsse. (9)

Based on above reasoning, recall that εss ≤ max {ξ∗, ξ} is bounded by the
maximum tolerance rate among Cin and Cout in practice. Choosing a BCH code
Cout with tolerance rate ξ < 1/4 arbitrary close to 1/4 (maximum achievable
rate by Plotkin bound) allows one to tolerate at most

t(+) = d′ + dk∗εsse = d2kεsse ≤ k∗/2, (10)

number of errors, and achieving error tolerance rate of arbitrary close to 2εss ≤
2ξ < 1/2 by using algorithm pair 〈SSΩ,Cin,Cout

,RecΩ,Cin,Cout,f〉.

10.1 Relaxation to Polynomial Time Recovery

Nonetheless, Eq. 8 suggesting exponential computation time in the input size k∗

with εrec = 2εss, which is highly inefficient for large k∗. This result is not suprised
because looking for such nontrivial vector, which viewed as the minimum-weight
solution to Eq. 7 is infact an NP-complete problem [16], also commonly refer to
the maximum likelihood decoding problem for a linear code [17]. More precisely,
its corresponding decision problem can be formalised as follow:

Problem: Maximum likelihood decoding
Instance: A α× n binary matrix H, a vector y ∈ Fα2 , and integer z > 0
Question: Is there a vector x ∈ Fn2 of weight ≤ z, such that Hx = y

Clearly, the answer for above question would be ‘yes’ if one able to find
x, which can be viewed as the solution for e′ ∈ Erec where Eq. 7 holds. More
explicitly, let H be the parity check matrix of Cout, so α = n − k. Note that
Hc ⇔ syn(c) = 0α, where syn(c) is the syndrome of the encoded codeword
c ∈ Cout. Given the corrupted codeword c′, the RV φ′ and H, the syndrome
decoding algorithm f computes

f(c′) = H · (c⊕ (φ′ ⊕ φ)) = Hc⊕Hδ = 0α ⊕ syn(δ) = syn(δ)

yields the syndrome of δ. Given the distance ‖φ⊕ φ′‖ = ‖δ‖ is small, i.e., ‖δ‖ ≤ t,
knowing syn(δ) is enough to determine the offset δ, which can be done via f
in poly (n) running time. Treating x = δ, follows the constrain of ‖δ‖ ≤ t,
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the hardness of looking for δ (of size n) is as hard as the above mentioned
decision problem related to the maximum likelihood decoding. Nevertheless, the
results in Section 9 showed that if one able to find an error vector (during
recovery) e′ ∈ Erec s.t. ‖we ⊕ w′e′‖ ≤ t(−) ≤ t∗ holds, then ‖δ‖ ≤ t can be
achieved with probability at least 1− exp(−2nεss) follows Proposition 1, hence
the answer for the above question is immediate. This show a reduction on the
above NP-complete problem to look for e′ (of size k∗) over Erec. In viewed of
this, efficient searching process for e′ immediately implies efficient maximum
likelihood decoding algorithm, hence resolve the NP-complete problem discussed
above in an efficient manner.

Based on above argument, since k∗ < n, it is convenient to use n as upper
bound and define RecΩ,Cin,Cout,f to be efficient if it can run in polynomial time
poly(n) in the input sketch size n to show correctness.

As both decoding stages use syndrome decoding algorithm which operates

in O
(

(n∗)
t∗
)

and O (nt ) for Cin ∈ {0, 1}n
∗

and Cout ∈ {0, 1}n respectively. It

is clearly shown that every decoding step performed in RecΩ,Cin,Cout,f is efficient
in polynomial time poly(n). Nonetheless, such efficient claim for f only holds if
‖δ‖ ≤ t. Therefore it is reasonable to say that the efficiency of f depends on the
correctness (regardless computational power) of RecΩ,Cin,Cout,f which referring
to the derived value β ≤ exp(−2nε2ss). It is not difficult to see that the value
of β is in fact closely tied to the numbers of zeros padding to the syndrome
vector vsyn to form v∗ = 0k−n

∗‖vsyn (see Step 5 of SSΩ,Cin,Cout). This is because
RecΩ,Cin,Cout,f will only proceed to the second decoding if the first decoding return
v∗ with the first k − n∗ bits are all zeros. Eventually, the second decoding must
success in recovering w with probability at least 1− β given ‖we ⊕ w′e′‖ ≤ t(−).
Due to the selection of e′ ∈ Erec is random, every iteration of the first decoding
should return a random codeword c ∈ Cout, hence its first k−n∗ bits are random
over {0, 1}k−n∗ . In viewed of this, we could have β = 2−(k−n∗) of probability for
the first k−n∗ bits are all zeros, which implies the second decoding shall success
with probability 1 − 2−(k−n∗) revealed by the number of zeros padding to the
syndrome vector. However, for such argument to hold, one needs to ensure

β ≤ exp(−2nε2ss) ≤ 2−(k−n∗), (11)

which shall give us the tighter upper bound of error rate measured as 2−(k−n∗)

compared to Eq. 6. As we shall see, Eq. 11 can be achieved easily with sufficient
large value of n for a given εss, n

∗ and k.
In such a case, the dependency of our correctness derived previously in Sec-

tion 9 reduced to the number of zeros padding in the sketching phase, measured
as k − n∗. Noting that such reduction is computational. It depends upon the
construction itself, where the selection of the error correction codes Cin and
Cout (given εss) with parameters [n∗, k∗, t∗] and [n, k, t] respectively is viewed
as an important factor for efficiency claim. In particular, under the designation
of an BCH code [13] used in our construction for Cin and Cout, its correctness
is defined using some positive integer m′ ≥ 3. Given the value of tolerance dis-
tance t < 2m

′−1, we can construct an [n, k, t] BCH code Cout with parameters
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n = 2m
′ − 1, n− k ≤ m′t and minimum distance d ≥ 2t− 1 (something applied

to Cin). With such reasoning, follows Eq. 11, for sufficiently large n, we shall
have the derived value for m′:

m′ =
⌊
log(1/ exp(−2nε2ss))

⌋
≥ 3 = k − n∗ (12)

Above statement also prove the existence of BCH codes for Cout and Cin in our
construction with efficient syndrome decoding algorithm f only if Eq. 11 holds,
i.e., at least three zeros padding to vsyn.

With the efficient decoding claim by Eq. 12, the efficiency of RecΩ,Cin,Cout,f

thus reduced to the brute-force complexity itself, which is proportional to the
value of |supp(Erec)|. Follows Eq. 8 and Eq. 12, if one properly choose Cin and
Cout s.t. dk∗h2(2εss)e ≤ k − n∗, such complexity can be bounded in term of the
sketch size n described as:

|supp(Erec)| ≤ 2dk
∗h2(2εss)e ≤ 2(k−n∗) = 2m

′
= n+ 1 (13)

Expressing so would allow us to relax the number of iteration for RecΩ,Cin,Cout,f

from exponential time in k∗ to linear time in n. In particular, since the syndrome
decoding for both decoding stages operate in O (nt ), the remaining steps on
RecΩ,Cin,Cout,f are operate in O

(
n2
)
. Therefore the overall recovery complexity

is in poly(n).
Remark that above complexity is derived given one has the knowledge of

εss and running RecΩ,Cin,Cout,f with a deterministic Turing machine. In such a
case, εss can be viewed as an special information required for RecΩ,Cin,Cout,f to
run in poly(n) deterministically. By Eq. 9, 10, 12, and 13, we can formalise the
following Proposition to characterize the correctness of RecΩ,Cin,Cout,f for higher
error rate ξ + εss in efficient manner.

Proposition 2. For both Cin ∈ {0, 1}k
∗

and Cout ∈ {0, 1}n are BCH codes with
syndrome decoding algorithm f, Given εss ∈ [(2k∗)−1, ξ], and εrec = 2εss, where
the following hold (for t(+) = d(ξ + εss)k

∗e, ξ = t/n):

1. ‖w ⊕ w′‖ ≥ dk∗εsse
2.
⌊
log(1/ exp(−2nε2ss))

⌋
≥ 3

3. dk∗h2(2εss)e ≤ k − n∗

Then, Pr[RecΩ,Cin,Cout,f(SSΩ,Cin,Cout
(w,N, εss), w

′, N, εrec) = w ] ≥ 0.875 can be
achieved efficiently operating in time poly(n) and the maximum achievable error
tolerance rate is 2ξ < 1/2.

The results in Proposition 2 have also suggested the NP-complete problem
mentioned in [16] can be solved in polynomial time by using algorithm pair
〈SSΩ,Cin,Cout

,RecΩ,Cin,Cout,f〉 running with a deterministic Turing machine. Fol-
lows the work in [18] stated, if any NP-complete problem possesses a polynomial
time algorithm to solve, then so does every NP-problem, and hence we shall have
P=NP.
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11 Security

Based on the previous discussion, we learned that for some input variable W0 ∈
M1, rather than deal with the entire metric spaceM1 of size 2k

∗
, sketching with

SSΩ,Cin,Cout
is able to reduce our focus to a family of distributionW (by random

errors parsing), where W0 ∈ W is concealed under such family of distributions
over M1. To show security for SSΩ,Cin,Cout . Recall that given the knowledge of
εss, one could set εrec = 2εss, and tolerate at most ‖we ⊕ w′‖ ≤ t(+) number of
error efficiently by running RecΩ,Cin,Cout,f with a deterministic Turing machine
(see Proposition 2). Therefore, for any adversary knowing εss, he/she should be
able to look for any variable W ∈ Bt(+)

(w′) efficiently by modelling W ′ with
error parameter εrec > 0 by the correctness of the recovery algorithm itself. In
such a case, rather than define its security of SSΩ,Cin,Cout in term of the hardness
in looking for the encoded string w ∈ W0, it is more appropriate to define it as
the hardness in looking for a variable W ∈ W satisfies W ∈ Bt(+)

(w′).

Based on the Eq. 12, the minimum information to show correctness using
RecΩ,Cin,Cout,f (efficiently) could be expressed as the number of zeros padding
to vsyn, which is k − n∗. Therefore, above statement explained any adversary
should be able to gain certain minimum information due to the zeros padding.
This minimum information leakage is independent of how liberal or conservative
is the selection of the input string w. Rather, it is a limit (lower bound), which
required to be set in before constructing any error tolerance system, to satisfy
certain minimum requirement of correctness with proper selection of Cin, Cout
and εss. Formally, follows Eq. 4 and Eq. 12, such minimum information leakage
can be used to express the conditioned min-entropy of RV:

H̃∞ (Ψ |W ) ≥
⌊
log(1/ exp (−2nε2ss))

⌋
= k − n∗ = m′ ≥ 3. (14)

However, merely consider the minimum information leakage is not sufficient to
attain strong security claim. This is because one have to consider also the correla-
tion in between different distributions or among different family of distributions.
In such a case, the input w could also be found in some random distribution
I ∈ I over other family of distributions I, apart from W ′. This also can be
argued with the adversary may have better computational power in modelling
W ′ using another family of distributions I, leading to higher entropy loss from
W compared to the minimum entropy loss derived in Eq. 14. In light of this, it
is good to go into the deeper analysis on how well is W being concealed over
M1, given the additional information derived from I. This question can also be
interpreted as how well is the syndrome vector vsyn ∈W is hidden overW given
some random distribution I ∈ I while sketching with SSΩ,Cin,Cout .

Since SSΩ,Cin,Cout
accepts any random codeword c∗, included the trivial case

when c∗ = 0n
∗

is all zeros. The answer for the above question should cover the
minimum entropy of W s.t. H∞ (W ) ≥ m for some integer m ≥ 0. Because the
error parsing process is random, hidingW overW of size |W| = |supp(Ess)| would
add entropy to it. The resultant entropy can be expressed as the min-entropy of
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W:

H∞ (W ) = H∞ (W, Ess ) ≥ H∞ (W ) + | log(supp(Ess))|
= m+ dk∗h2(εss)e (15)

Considering the entropy loss due to the zero bits padding to the syndrome
vector vsyn to form v∗ = 0k−n

∗‖vsyn. It must leak information with any string in
some distribution I ∈ I over {0, 1}k−n∗ by simply XOR operation with the first
k−n∗ bits of v∗. This can be done with the help of the integer vector N used for
hamming hash, lead to higher entropy loss from the input source. Recall such
zeros padding stage is necessary for RecΩ,Cin,Cout,f to be notified when the first
decoding is success, which means vsyn ∈ W is revealed from W. Since v∗ ∈ W
simply follows the distribution of the syndrome vector, therefore it can also be
interpreted in such a way that certain understanding over W is necessary for
our derived correctness (in Proposition 1) to hold. We refer such scenario as the
distribution precision. Padding more zeros means higher distribution precision
over W , thus RecΩ,Cin,Cout,f can be well-notified that the first decoding stage
is succeed. Our construction has perfectly captured such distribution precision
notion, measured in term of the entropy loss proportional to the number of
zeros padding to the syndrome vector vsyn. To be specific, it can be expressed
as m′ = k − n∗ ≥ 3 (see Eq. 11). In such a case, the conditioned min-entropy of
W given I can be described by using Eq. 15 as:

H̃∞ (W|I ) = H̃∞ (W, Ess|I ) ≥ m+ dk∗h2(εss)e − (k − n∗) (16)

Since the min-entropy of W is at least m, straightforwardly, the worst-case en-
tropy loss due to the zeros bit padding is at most m. This means if k− n∗ ≥ m,
the source is considered has loss all the entropy. This also implies when worst
comes to the worst, there could have such a powerful attacker with unlimited
computational power that can reveal W precisely by using some random string
in the worst-case distribution I ∈ I over {0, 1}k−n∗ . Based on this, the security
of SSΩ,Cin,Cout can be measured in term of the conditioned min-entropy with
the worst-case distribution I ∈ I described as below (say H(X) is the Shannon
entropy of distribution X):

H̃∞ (W|I ) ≥ H̃∞ (W, Ess|I = I ) ≥ dk∗h2(εss)e ≥ H(Ess) (17)

Refer to Eq.15 and 17, under the worst-case when all input entropy is loss, the
conditioned min-entropy ofW is at least the Shannon entropy over binary chan-
nel of rate εss, i.e., H(Ess) = k∗h2(εss). Such minimum entropy characterized the
worst-case security of SSΩ,Cin,Cout

even for computationally unbounded attacker
in modelling the family of distribution W with I ∈ I over {0, 1}k−n∗ .

Based on the correctness discussed in Proposition 2, and the security reason-
ing follows Eq. 15, 16 and 17, the Proposition below is formalised to characterize
our construction as a standard secure sketch.

Proposition 3. Given some integer me > 0. For any error distribution Ess
with entropy H(Ess) ≥ me, then algorithm pair 〈SSΩ,Cin,Cout

,RecΩ,Cin,Cout,f〉 is
an efficient (M2,m,me, t(+))-secure sketch.
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12 Comparison

Table 1 below depicted the security bound (upper bound min-entropy require-
ment) for existing secure sketch construction.

Security Bound for Secure Sketch
Computational Best possible security H∞ (W ) ≥

Hfuzz
t,∞(W )− log(1− β)

Computational
FRS sketch(universal
hash functions) [11]

H∞ (W ) ≥
Hfuzz
t,∞(W )− log(1/β)−

log log(supp(W ))− 1

Computational
Layer hiding hash (strong
universal hash
function)[10]

H∞ (W ) ≥
Hfuzz
t,∞(W )− log(1/β)− 1

Info. theoretic
Fuzzy commitment with
generic syndrome
decoding [7]

H∞ (W ) ≥ t log(n)
(when t� n)

Info. theoretic Fuzzy vault [4] H∞ (W ) ≥ t log(n)
Info. theoretic Improved Fuzzy vault [6] H∞ (W ) > t log(n) + 2
Info. theoretic Pinsketch [6] H∞ (W ) ≥ t log(n+ 1)
Info. theoretic Proposed H∞ (W ) ≥ 0 where security

depends on H(Ess) > 0

Table 1: Summary of security bound of existing secure sketch in term of
fuzzy-min entropy and min-entropy.

Obviously, compared to the computational secure sketch construction where
its security property only holds for computationally bounded attacker, [9], [10],
our construction offers stronger security claim over computationally unbounded
attacker.

On the other hand compared to traditional single error correction code con-
struction, i.e., [4], [6], [7], our construction is capable of claiming security for all
noisy sources with min-entropy m ≥ 0.

These results are clearly showed by Eq. 15 and 16, where H̃∞ (W, Ess|I = I ) ≥
H(Ess) must hold regardless the value of m. Such property is crucial as merely
claiming security according to the minimum residual entropy requirement, de-
rived from the error correction construction itself cannot assure strong security.
This is because any attacker could have higher computational power in mod-
elling the input distribution W , results to significant low brute-force complexity
in revealing w from W . This scenario is even worst for computationally bounded
attacker assumption over computational secure sketch construction. The attacker
can be running in exponential time still eventually reveal W . Therefore, hiding
W over W is our main contribution to claim meaningful security for computa-
tionally unbounded attacker (information-theoretically secure).

Formally, our result from Eq. 16 suggested that Shannon entropy is necessary
and sufficient condition to show meaningful security for a standard secure.
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13 Conclusion

Existing secure secure constructions have shown limitation in providing secu-
rity for noisy sources with low entropy, i.e., lower than half of its input size. To
overcome such limitation, recent approaches [9], [10] suggested constructing se-
cure sketch where its security property only holds for computationally bounded
attacker. Such computational construction accompanies with stringent require-
ment, s.t. the user must have precise knowledge over the sources distribution.
However, under practical scenario, a lot of noisy sources, for instance biometric
(human face, iris, fingerprint, etc) are difficult to model, hence assuming precise
knowledge over such noisy sources is unrealistic.

In this work, we proposed a concrete construction for secure sketch. We in-
troduce the usage of RV for sketching to facilitate the understanding of the
input distribution. Besides, we suggested parsing random error to the input,
which we showed later it acts as special information to support efficient recov-
ery, deterministic polynomial time in the sketch size. For security, under the
worst-case where any attacker (computationally unbounded) could model and
mount brute-force guesses over the input. The source entropy shall vanish, there-
fore, in principle, have no security to show. However, we showed that with the
random error parsing to the input during sketching, we can still show meaningful
security (information-theoretically) in term of the brute-force complexity to look
for such nontrivial error vector. These results are significant, where it implies
our construction could accept any sources, included the trivial sources with zero
entropy, which have no prior construction have considered.
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