
Verifiable Sealed-Bid Auction on the Ethereum
Blockchain

Hisham S. Galal and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Quebéc, Canada

Abstract. The success of the Ethereum blockchain as a decentralized
application platform with a distributed consensus protocol has made
many organizations start to invest into running their business on top of
it. Technically, the most impressive feature behind Ethereum’s success is
its support for a Turing complete language. On the other hand, the in-
herent transparency and, consequently, the lack of privacy poses a great
challenge for many financial applications. In this paper, we tackle this
challenge and present a smart contract for a verifiable sealed-bid auction
on the Ethereum blockchain. In a nutshell, initially, the bidders submit
homomorphic commitments to their sealed-bids on the contract. Sub-
sequently, they reveal their commitments secretly to the auctioneer via
a public key encryption scheme. Then, according to the auction rules,
the auctioneer determines and claims the winner of the auction. Finally,
we utilize interactive zero-knowledge proof protocols between the smart
contract and the auctioneer to verify the correctness of such a claim. The
underlying protocol of the proposed smart contract is partially privacy-
preserving. To be precise, no information about the losing bids is leaked
to the bidders. We provide an analysis of the proposed protocol and the
smart contract design, in addition to the estimated gas costs associated
with the different transactions.

Keywords: Ethereum, Smart Contract, Sealed-Bid Auction.

1 Introduction

Online auctions have played an important role in the world economy by transfer-
ring trillions of dollars in exchange for goods and services in the recent decades.
An auction is a platform for sellers to advertise the sale of arbitrary assets where
buyers place competitive bids as the highest prices they are willing to pay. Prac-
tically, auctions promote many economic advantages for the efficient trade of
goods and services. Traditionally, there are four main types of auctions [8]:

1. First-price sealed-bid auctions (FPSBA). Bidders submit their bids in sealed
envelopes and hand them to the auctioneer. Subsequently, the auctioneer
opens the envelopes to determine the bidder with the highest bid.

2. Second-price sealed-bid auctions (Vickrey auctions). It is similar to FPSBA
with the exception that the winner pays the second highest bid instead.

3. Open ascending-bid auctions (English auctions). Bidders increasingly submit
higher bids and stop bidding when they are not willing to pay more than
the current highest bid.

4. Open descending-bid auctions (Dutch auctions). Auctioneer initially sets a
high price, which is gradually decreased until a bidder decides to pay at the
current price.

Arguably, the main advantage behind the sealed-bid auctions lies in the fact that
no bidder learns any information about the other bids. Hence, the bidders are
encouraged to bid according to their monetary valuation of the asset. However,
a collusion between the auctioneer and a malicious bidder can break this advan-
tage. In other words, there is a conflict between preserving the privacy of the
bids and trusting the auctioneer to individually determine the winner. Hence, in
online sealed-bid auctions, cryptographic protocols can be utilized to accomplish
the publicly verifiable correctness without sacrificing the privacy of the bids.

According to a recent Reuters report [11], as part of the efforts to improve the
transparency in government transactions, the Ukraine’s justice ministry carried
out trial auctions on top of the blockchain. The main goal is to make the auction
system more transparent and secure such that the information is accessible to
everyone to check if there is any manipulation or corruption.

Recently, cryptocurrencies have gained high popularity as evidenced by the
surge in Bitcoin exchange rate. The foundation of cryptocurrencies is based on a
decentralized public ledger on a peer-to-peer network that maintains the history
of all transactions in an append-only fashion. Peers agree on the state of the
ledger through an incentive-based consensus protocol. Additionally, cryptocur-
rencies also use cryptography to secure transactions as well as to control the
creation of new currency units. Furthermore, many cryptocurrencies blockchains
go beyond the simple means of payments. In fact, they provide a support for
building and executing contracts on top of them. Simply, a smart contract is
a piece of code that is stored and run on the blockchain. The smart contract
resides passive until its execution is triggered by transactions. With the help of
the consensus protocol, the contract is also guaranteed to be executed as its code
dictates.

The Ethereum blockchain [18] presumably provides the highest support for
smart contracts creation. Smart contracts are executed by a simple stack-based
Turing complete 256-bit virtual machine known as the Ethereum Virtual Ma-
chine (EVM). Solidity is the common scripting language for writing smart con-
tracts with a growing community. Ether represents the unit of currency in
Ethereum and there are two types of accounts: externally owned accounts and
contract accounts. An externally owned account is typically associated with a
user, it consists of a unique public-private key pair. On the other hand, a contract
account is controlled by the contract instead of a single private key. Transactions
are created and signed by externally owned accounts. The receiver of the trans-
action can be an externally owned account or a contract account. In the former
case, the transaction’s purpose is to transfer ethers between users. Whereas in
the latter case, the transaction triggers the execution of a function on the smart

2

contract. Transactions also include a gas limit and a gas price; the amount of
gas consumed to execute the transaction is converted into ethers using the gas
price. These ethers are charged to the sender’s account as transaction fees.

The Ethereum project has been planned in four locksteps [17]: Frontier,
Homestead, Metropolis, and Serenity. Each update brings a set of approved
Ethereum Improvement Proposals (EIP). Recently, the Ethereum blockchain
has been upgraded to the first phase of Metropolis which is named Byzan-
tium. The fork has been announced by the Ethereum team at the block number
4,370,000 [15]. Byzantium includes EIP-196 and EIP-197 to efficiently perform
elliptic curve point addition and scalar multiplication operations on alt bn128
curve [16]. Simply, they are precompiled contracts with special addresses that
are intercepted by the client software which provide efficient native implemen-
tation, rather than the inefficient EVM implementation, for elliptic curve oper-
ations. These proposals prepare Ethereum for untraceable transactions by inte-
grating ZK-Snarks, a cryptographic innovation developed in collaboration with
the anonymity-centric cryptocurrency Zcash [13].

Despite the flexibility and power of the smart contracts, the present form of
the blockchain technologies lacks transactional privacy. Typically, every sequence
of actions executed in the smart contract is propagated across the network and
ends up being recorded on the blockchain. As a result, the lack of privacy is con-
sidered a major challenge towards the adoption of smart contracts as alternatives
to many financial applications. Many individuals are not willing to reveal their
financial transactions to the public. In this paper, we tackle this challenge and
present an auction smart contract that utilizes a set of cryptographic primitives
to guarantee the following attributes:

1. Bid privacy. All bidders cannot know the bids submitted by the others before
committing to their own. This property is also guaranteed even in a collusion
with a malicious auctioneer.

2. Posterior privacy. Given a semi-honest auctioneer, all committed bids are
maintained private from the bidders and public users.

3. Non-repudiability. Once the bid interval is closed, bidders cannot change or
deny the commitments to their sealed-bid.

4. Public verifiable correctness. The auction contract verifies the correctness of
the auctioneer’s work to determine the auctioneer winner.

5. Financial fairness. Bidders or auctioneer may attempt to deviate from the
protocol and prematurely abort to affect the behavior of the auction proto-
col. The aborting parties are financially penalized while honest parties are
refunded after a specific timeout.

6. Non-Interactivity. Bidders do not participate in complex interactions with
the underlying protocol of the auction contract. In fact, no extra communi-
cations between the bidders and the auction contract are required aside from
the submission of the bid commitments and the associated opening values.

We have also made our implementation prototype available on Github 1 for
researchers and community to review it.

1 https://github.com/HSG88/AuctionContract

3

https://github.com/HSG88/AuctionContract

The rest of this paper is organized as follows. Section 2 provides a review
of state-of-the-art research on auction solutions on the blockchain. The cryp-
tographic primitives and the protocol for comparing the bids and verifying the
correctness of the auction winner are presented in Section 3. In Section 4, we
provide an analysis of the auction contract design and the estimated gas cost of
the relevant transactions. Finally, we present our conclusions and future work in
Section 5.

2 Related Work

Many of the previous research have focused on combining cryptocurrencies with
secure multiparty computation protocols (MPC) and/or zero-knowledge proofs
(ZKP). Typically, the cryptocurrency is used to incentive fairness and correct-
ness, and avoid deviations from the MPC or ZKP protocol [1, 2, 9, 10]. Initially,
each participant deposits an amount of cryptocurrency in a smart contract.
These funds are reserved while the protocol is still running. Subsequently, once
the protocol reaches a final state after an arbitrary timeout, the deposits get
refunded only to the honest players. This in effect encourages parties to strictly
follow the protocols to avoid the financial penalty.

In [7], the authors presented Hawk, a framework for creating Ethereum smart
contract that does not store financial transactions in the clear on the blockchain.
One can easily write a Hawk program without having to implement any cryptog-
raphy. The associated compiler utilizes different cryptographic primitives such
as ZKP to automatically generate privacy-preserving smart contracts. A Hawk
program contains public and private parts. The public part consists of the logic
that does not deal with the data or the currency. Conversely, the private part
is responsible for hiding the information about data and input currency units.
The compiler translates the Hawk program into three pieces that define the
cryptographic protocol between users, manager, and the blockchain nodes. The
security of a Hawk program is guaranteed to satisfy on-chain privacy that pro-
tects the flow of money and data from the public view, and contractual security
that protects the parties in the agreement of the contract from each other. Up
to our knowledge, the Hawk framework has not been released yet on the project
homepage http://oblivm.com/hawk/download.html.

The authors in [3] presented Strain, a protocol to implement sealed-bid auc-
tions on top of blockchains that protects the bid privacy against fully-malicious
parties. To achieve efficiency and low latency cost, the authors avoided the use
of highly interactive MPC primitives such as garbled circuits. Instead, they de-
signed a two-party comparison mechanism executed between any pair of bidders
in parallel. The outcome of the comparison is broadcasted to all bidders such
that each one can verify it using ZKP. An additional ZKP protocol is used to ver-
ify that the comparisons only involved the committed bids. Moreover, to achieve
fairness against prematurely aborting malicious parties, the protocol uses a re-
versible commitment scheme such that a group of bidders can jointly open the

4

http://oblivm.com/hawk/download.html

bid commitment. The authors mentioned that the proposed protocol leaks the
order of bids similar to Order Preserving Encryption (OPE) schemes.

In [14], the author proposed Raziel, a system that combines MPC and ZKP
to guarantee the privacy, correctness and verifiability of smart contracts. The
associated proofs of the smart contracts can effectively prove the functional cor-
rectness of a computation, besides to additional properties such as termination,
security, pre-conditions and post-conditions. Furthermore, the author presented
how a smart contract owner can prove its validity to third parties without re-
vealing any information about the source code by using Zero-Knowledge Proofs
to create Proof-Carrying Code certificates. Moreover, the author also proposed
an incentive-based scheme for miners to genereate preprocessed data of MPC.

3 Preliminaries

In this section, we briefly explain the cryptographic primitives that are utilized
in the design of our proposed protocol:

1. Homomorphic commitment scheme that supports the addition operation on
the underlying values

2. Zero-knowledge proof of interval membership x ∈ [0, B].

3.1 Homomorphic Commitment Scheme

Our protocol makes an extensive use of Pedersen commitment scheme [12]. Let
G and H be fixed public generators of the elliptic curve alt bn128 which is
supported in EIP-196 and EIP-197 with the group order q [16]. The value of H
is chosen such that neither the bidders nor the auctioneer know its discrete log.
To commit a bid x ∈ Zq, the bidder chooses a random r ∈ Zq, then computes
the commitment as C = xG + rH. Later, to open the commitment C, the
bidder simply reveals the values of x and r. The Pedersen commitment scheme
also possesses the homomorphic addition property on the underlying committed
values by simply computing the point addition operation on the commitments. In
other words, given two commitments C1 = x1G+r1H and C2 = x2G+r2H, then
C1 +C2 = (x1 +x2)G+(r1 +r2)H which is essentially the outcome commitment
to x1 + x2.

3.2 Zero-Knowledge Proof of Interval Membership

We adapt the interval membership ZKP protocol proposed in [5]. Given an
arbitrary number x which belongs to an interval [0, B), the prover is able to
convince the verifier that x ∈ [−B, 2B). Since the financial values of bids cannot
be negative numbers, the proved interval membership becomes x ∈ [0, 2B). The
protocol runs as follows:

1. Commit. The prover picks a number w1 ∈ [0, B] and sets w2 = w1 − B.
Then, the prover sends the commitments X = xG+ uH,W1 = w1G+ r1H,
and W2 = w2G+ r2H to the verifier.

5

2. Challenge. The verifier picks a random variable b ∈ {0, 1}.
3. Response. The prover sends one of the following responses to the verifier

based on the value of b:

– Case b = 0, the prover sends w1, r1, w2, and r2. The verifier checks
|w1 − w2| = B, and the successful openining of the commitments W1

and W2.

– Case b = 1, the prover sends m = x+wz and n = u+rz, where m ∈ [0, B)
and z ∈ {0, 1}. The verifier checks XWz = (x+ wz)G+ (u+ rz)H.

In this protocol, the probability of cheating is 1
2 which is non-negligible. However,

with multiple k rounds of the protocol, the cheat probability becomes 1
2k

.

3.3 Proving Claimed Inequality x1 > x2

Based on the primitives outlined above, we can prove that one bid is greater
than another as follows. Suppose that x1, x2 ∈ Zq, where q is a 256-bit prime
number representing the order of alt bn128 elliptic curve as specified in EIP-197
and EIP-198 [16]. Then it is relatively easy to prove that x1 > x2 if and only if
the following three interval membership hold (i) x1 ∈ [0, q2), (ii) x2 ∈ [0, q2), and
(iii) ∆x1,2 ∈ [0, q2) where ∆x1,2 = (x1 − x2)mod q.

In our work, the auctioneer acts as a prover and the auction contract acts
as a verifier. Recall that in the interval membership ZKP, the prover is able
to convince the verifier that x ∈ [0, 2B) given that x ∈ [0, B). As a result,
we set an upper bound V = q

4 on the range of possible bids. Additionally,
the auctioneer is not allowed to create any commitments for the bids, instead,
the auctioneer only uses the commitments submitted by the bidders on the
smart contract. The auction contract utilizes the additive homomorphic feature
of Pedersen commitment scheme to compute the commitment to the differences
between each pair of bids ∆Xi,j = Xi + (−1)Xj .

4 Auction Smart Contract

In this section, we illustrate all the interactions between the bidders, the auc-
tioneer, and the auction contract. Although our work applies to both types of
sealed-bid auctions, we demonstrate the interactions in the case of FPSBA.

There are five sequential phases from the initial deployment of the auction
contract to the collection of the highest bid from the winner given a successful
verification of correctness. There are two methods to define phases of a smart
contract: time interval and block interval. In time interval, the smart contract
checks the time of the mined block (block.timestamp or now) which is specified
by the block’s miner. Ethereum developers discourage this method since it can
be easily manipulated by the miners. On the other hand, in block interval, the
smart contract loses the notion of time.

6

4.1 Phase 1: Contract Deployment and Parameters Setup

As shown in Fig. 1, the auctioneer initially deploys the auction contract on the
Ethereum blockchain with the following set of parameters:

Create: upon receiving from auctioneer A (T1, T2, T3, T4, N, F,Apk) :
Set state := INIT, bidders := {}, zkpCommits := {}
Set highestBid := 0, winner := 0

Set challengeBlockNumber := 0, challengedBidder := 0

Assert T < T1 < T2 < T3 < T4
Assert ledger[A] >= F

Set ledger[A] := ledger[A] - F

Set deposit := deposit + F

Fig. 1. Pseudocode for the deployment of the auction contract

1. T1, T2, T3, T4 define the time intervals for the following four phases: com-
mitments of bids, opening the commitments, verification of the winner, and
finalizing the auction, respectively.

2. F defines the amount of initial deposit of ethers received from the bidders
and the auctioneer to achieve financial fairness against malicious parties.

3. N is the maximum number of bidders.
4. Apk is the auctioneer’s public key of an asymmetric encryption scheme.

4.2 Phase 2: Commitment of Bids

This phase starts immediately after the deployment of the auction contract.
Each bidder submits a bid commitment using Pedersen commitment scheme
along with the initial deposit F in ethers to the function Bid as shown in Fig. 2.

Bid: upon receiving from a bidder B (comB):
Assert T < T1
Assert ledger[B] > F

Set ledger[B] := ledger[B] - F

Set deposit := deposit + F

Set bidders[B].Commit := comB

Fig. 2. Pseudocode for the Bid function

Suppose that an arbitrary bidder Bob is known to be very rich and is really
interested in winning the auctioned item, i.e., Bob is very likely to be the one who
submits the highest bid. Then, a collusion between a malicious bidder Alice and
the auctioneer can eliminate Bob’s winning chance by abusing the homomorphic
property of the Pedersen commitment. The attack can be carried out as follows:

1. Bob submits the commitment CB = (xG+ rH).

7

2. Subsequently, Alice submits the commitment CA = CB + (G+H).
3. Bob reveals (x, r) to the auctioneer.
4. The auctioneer forwards (x, r) to Alice.
5. Alice reveals (x+ 1, r + 1).

To avoid this attack, we utilize Chaum-Pedersen non-interactive ZKP [6], which
is not shown in Fig. 2. for the sake of simplicity. In this case, the above attack
is not applicable because Bob sends commitments to random numbers rather
than the actual bid which are subsequently challenged to verify the knowledge
of values (x, r). As a result, Alice cannot succeed to imitate Bob’s commitment
since she will receive different challenges to verify the knowledge of (x+1, r+1).

4.3 Phase 3: Opening the Commitments

Each bidder Bi sends the outcome ciphertext of encrypting (xi, ri) by the public
key of the auctioneer Apk to the function Reveal on the auction contract as
shown in Fig. 3.

Reveal: upon receiving from a bidder B (ciphertext):
Assert T1 < T < T2
Assert B ∈ bidders

Set bidders[B].Ciphertext := ciphertext

Fig. 3. Pseudocode for the Reveal function

The ciphertexts are stored on the auction contract instead of being sent
directly to the auctioneer in order to avoid the following attack scenario. Suppose
a malicious auctioneer pretends that an arbitrary bidder Bob has not revealed
the opening values of the associated commitment. In this case, Bob has no chance
of denying this false claim. However, if the ciphertexts are to be stored on the
auction contract, then their mere existence successfully prevents this attack.

We have also taken into our account the possibility of the following attack
as well. Suppose a malicious auctioneer intends to penalize an arbitrary bidder
Bob by claiming that the decryption outcome of Bob’s ciphertext CTB does not
successfully open Bob’s commitment CB . We prevent this attack by requiring
the auctioneer to verify the opening correctness of the commitments once they
are submitted by the bidders. In the case of unsuccessful opening, the auctioneer
declares on the auction contract that the ciphertext associated with the bidder
B is invalid. The honest bidder can deny this claim by revealing (xB , rB) to
the auction contract. Subsequently, the auction contract encrypts the revealed
values by the public key Apk. If the outcome ciphertext is found to be equivalent
to the previously submitted ciphertext, then the auction contract penalizes the
auctioneer and terminates the auction after refunding the bidders. Otherwise,
the bidder is penalized and the associated commitment is removed, such that
only the valid commitments exist on the auction contract.

8

To guard against forward search attack on the submitted ciphertexts, the
parameter r in the opening values is a 256-bit random number that has no
restriction on its value compared to the parameter x. Additionally, the opening
values are combined to form one message which is passed to the encryption
scheme.

4.4 Phase 4: Verification of Comparison Proofs

The auctioneer orders the bids to determine the wining bid xw, the associated
account address Bw and commitment Cw. Then, the auctioneer has to prove
that xw > xi for all i 6= w and 0 < i < N . The auction contract has a set
of states to impose an order on the functions being invoked by the auctioneer
for verification. Initially, the auctioneer calls the function ClaimWinner to claim
that a winner is found by specifying the account address and opening values of
the bid commitment as shown in Fig. 4.

ClaimWinner:upon receiving from auctioneer A (Bw, xw, rw):
Assert state = INIT

Assert T2 < T < T3
Assert xw < V
Assert Bw ∈ bidders

Assert bidders[Bw].commit = Pedersen.Commit(xw, rw)
Set winner := Bw
Set highestBid := xw
Set state := Challenge

Fig. 4. Pseudocode for the ClaimWinner function

Recall that the interval membership ZKP has a probability of cheating 1
2

which is non-negligible; however, this probability can be further reduced to (1
2)k

by running the protocol k times. Moreover, in the challenge step, the verifier
sends to the prover a random value b ∈ {0, 1} which has to be non-predictable.
However, smart contracts cannot send data to externally owned accounts, (i.e.,
the auction contract cannot send a challenge value to the auctioneer). Hence, we
utilize a non-interactive interval membership ZKP to prove xi ∈ [0, q2) as follows:

1. Commit: The auctioneer chooses k-pairs of (w1,j , w2,j) where w1,j ∈ [−V, V)
and w2,j = w1,j − V such that |w1,j − w2,j | = V for 1 ≤ j ≤ k. Then, the
auctioneer invokes the function ZKPCommit with the account address of the
challenged bidder and the commitments to w1 and w2 as shown in Fig. 5.

9

ZKPCommit:upon receiving from auctioneer A (Bi, commits):
Assert state = Challenge

Assert T2 < T < T3
Assert Bi ∈ bidders

Set zkpCommits :=commits
Set challengeBidder := Bi

Set challengeBlockNumber := QueryBlockNumber()

Set State := Verify

Fig. 5. Pseudocode for the ZKPCommit function

2. Challenge and Response:
– The auctioneer receives a transaction receipt which includes the hash

of the block containing the transaction after it has been confirmed. The
ZKPCommit function has no access to this hash while it is being executed;
therefore it stores the current block number in challengeBlockNumber.

– The least significant k-bits of the hash are chosen as the challenge bj .
– The auctioneer creates k responses Rj based on the values of bj .
– Case bj = 0, then Rj = {w1,j , r1,j , w2,j , r2,j}.
– Case bj = 1, then Rj = {mj , nj , z} where mj = xj +wz,j , nj = uj + rz,j

such that mj ∈ [0, V) and z ∈ {1, 2}.
– The auctioneer invokes the function ZKPVerify with input parameter
responses which is an array of Rj as shown in Fig. 6.

ZKPVerify: upon receiving from auctioneer A (responses)
Assert State = Verify

Assert T2 < T < T3
Set hash := QueryBlockHash(challengeBlockNumber)

for j ∈ [1, k], Rj ∈ responses, Cj ∈ zkpCommits
Set bj := Bit(hash,j)
if bj = 0

Assert VerifyFirstCase(Cj , Rj)

else

Assert VerfiySecondCase(Cj , Rj)

Set bidders[challengeBidder].ValidBid := true

Set state := Challenge

Fig. 6. Pseudocode for the ZKPVerify function

As explained in Section 3, three interval membership ZKP are required to
prove that xw > xi. However, since the bid of the winner Bw is revealed, then
the number of proofs is reduced to two. In other words, the auctioneer has to
prove the interval membership for all bids xi other than the winning bid and
their associated differences∆wi. The function ZKPCommit and ZKPVerify contain
extra logic to also verify the correctness of ∆wi ∈ [0, q4).

10

4.5 Phase 5: Finalizing the Auction

After the successful verification of correctness, the auctioneer invokes the func-
tion VerifyAll as shown in Fig. 7 to change the state of the auction contract
so that the winner can pay the winning bid.

VerifyAll upon receiving from auctioneer A ()
Assert state = Challenge

Assert T2 < T < T3
For all b ∈ bidders - {winner}

Assert b.ValidBid = true and b.ValidDelta = true

Set State := ValidWinner

Fig. 7. Pseudocode for the VerifyAll function

Subsequently, The winner invokes the function WinnerPay to deposit the
difference between the winning bid and the initial deposit F as shown in Fig. 8.

WinnerPay upon receiving from a bidder B (”winnerPay”)
Assert State = ValidWinner

Assert T3 < T < T4
Assert B = winner

Assert ledger[B] > highestBid - F

Set ledger[B] := ledger[B] - highestBid +F

Set deposit := deposit + highestBid - F

Set state := WinnerPaid

Fig. 8. Pseudocode for the WinnerPay function

The auction contract guarantees to refund the initial deposit to all honest
players after the time T3 as shown in Fig. 9. In the case of invalid proofs, it
penalizes the auctioneer and refunds all bidders. Otherwise, it refunds the losing
bidders and the auctioneer as well. It is also clear that the only way for the
winner to refund the initial deposit is by invoking WinnerPay function.

Timer
if T > T3 then

if state 6= V alidProof then

refund(F) for all b ∈ bidders

else

refund(F) to auctioneer A

refund(F) for all b ∈ bidders - {winner}

Fig. 10. Pseudocode for the Timer function

11

4.6 Gas Cost

We have created a local private Ethereum blockchain to test our prototype using
the Geth client version 1.7.2. To support the Byzantium EIP-196 and EIP-197,
the genesis.json file has to contain the attribute {“byzantiumBlock”: 0}. Ad-
ditionally, since Ethereum does not support timer triggered functions, we have
implemented a Withdraw function that is invoked by an explicit request from
the honest players to refund their initial fairness deposit. We have tested the
auction contract with ten bidders, and we have set k = 10 as the number of
multiple rounds to verify interval membership NiZKP which results in a proba-
bility of cheat less than 0.001. The upper bound on bid values is up to 250-bit
length which is very adequate for financial values. The Pedersen commitment
size is 512-bits that represent two points on the elliptic curve. The ciphertext
submitted to the Reveal function is 1024-bits. Table 1 shows the consumed gas
and the equivalent monetary cost in US dollars for invoking different functions
on the auction contract. As of November 30, 2017, the ether exchange rate is 1
ether = 450$ and the gas price is approximately 20 Gwei = 20 × 10−9 ether.
Furthermore, the execution of ”heavy” functions in Ethereum is not only costly
in dollar terms, but may be even impossible, if the function’s gas requirements
exceed the block gas limit. The block gas limit at time of writing is 8m gas,
whereas the most expensive protocol function consumes 2m gas, which seems
feasible

Table 1. Consumed gas cost for different functions of the Auction contract

Function Gas units Gas cost (USD)

Deployment 3131261 28.18
Bid 130084 1.17
Reveal 132849 1.19
ClaimWinner 166288 1.49
ZKPCommit 656689 5.91
ZKPVerify 2002490 18.02
VerifyAll 46580 0.42
Withdraw 47112 0.42

5 Conclusion and Future Work

In this paper, we presented a smart contract for a verifiable sealed-bid auction
on the Ethereum blockchain. We utilized Pedersen commitment scheme along
with ZKP of interval membership to create the underlying protocol. The auc-
tion contract maintains the privacy of bids such that bidders do not learn any
information about the other bids when they commit. Additionally, the auction

12

contract also exhibits the public verifiable correctness as it is designed to ver-
ify the proofs claimed by the auctioneer to determine the winner. Moreover,
no complex interaction is required from the bidders other than submitting and
revealing the commitments to their bids. The proposed protocol can be easily
modified to support the full privacy of all bids including the winner’s bid if there
is a desire to receive the payment of winning bid aside from the blockchain. For
future work, we will investigate other approaches applicable to the Ethereum
blockchain where we can also protect the privacy of bids from all parties includ-
ing the auctioneer.

References

1. Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on bitcoin. In 2014 IEEE Symposium
on Security and Privacy (SP), pages 443–458. IEEE, 2014.

2. Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols.
In International Cryptology Conference, pages 421–439. Springer, 2014.

3. Erik-Oliver Blass and Florian Kerschbaum. Strain: A secure auction for
blockchains. Cryptology ePrint Archive, Report 2017/1044, 2017. https://

eprint.iacr.org/2017/1044.
4. Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public

randomness source. IACR Cryptology ePrint Archive, 2015:1015, 2015.
5. Ernest F Brickell, David Chaum, Ivan B Damg̊ard, and Jeroen van de Graaf. Grad-

ual and verifiable release of a secret. In Conference on the Theory and Application
of Cryptographic Techniques, pages 156–166. Springer, 1987.

6. David Chaum and Torben P Pedersen. Wallet databases with observers. In Crypto,
volume 92, pages 89–105. Springer, 1992.

7. Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-
thou. Hawk: The blockchain model of cryptography and privacy-preserving smart
contracts. In 2016 IEEE Symposium on Security and Privacy (SP), pages 839–858.
IEEE, 2016.

8. Vijay Krishna. Auction theory. Academic press, 2009.
9. Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penal-

ties. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 418–429. ACM, 2016.

10. Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Im-
provements to secure computation with penalties. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 406–417.
ACM, 2016.

11. Alessandra Prentice Olena Vasina. Ukrainian ministry carries out first blockchain
transactions. Reuters Technology News. https://goo.gl/J8X1up.

12. Torben Pedersen and Bent Petersen. Explaining gradually increasing resource
commitment to a foreign market. International business review, 7(5):483–501,
1998.

13. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and Privacy (SP), pages 459–
474. IEEE, 2014.

13

https://eprint.iacr.org/2017/1044
https://eprint.iacr.org/2017/1044
https://goo.gl/J8X1up

14. David Cerezo Snchez. Raziel: Private and verifiable smart contracts on blockchains.
Cryptology ePrint Archive, Report 2017/878, 2017. https://eprint.iacr.org/

2017/878.
15. Ethereum Project Team. Byzantium hf announcement, 2017. https://blog.

ethereum.org/2017/10/12/byzantium-hf-announcement/.
16. Ethereum Project Team. Ethereum improvement proposals, 2017. https://

github.com/ethereum/EIPs.
17. Ethereum Project Team. The ethereum launch process, 2017. https://blog.

ethereum.org/2015/03/03/ethereum-launch-process/.
18. Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper, 151, 2014.

14

https://eprint.iacr.org/2017/878
https://eprint.iacr.org/2017/878
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://blog.ethereum.org/2017/10/12/byzantium-hf-announcement/
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://blog.ethereum.org/2015/03/03/ethereum-launch-process/
https://blog.ethereum.org/2015/03/03/ethereum-launch-process/

	Verifiable Sealed-Bid Auction on the Ethereum Blockchain
	Hisham S. Galal and Amr M. Youssef

