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Abstract. An argument of knowledge allows a prover to convince a verifier of
the validity of certain statements. We construct succinct arguments of knowledge
with an optimal communication complexity of O(λ) bits in the standard model,
thereby resolving an open problem posed by Kilian (CRYPTO’ 95), assuming that
the strong root problem is hard over groups of unknown order. Our protocol can be
generically transformed into a zero-knowledge succinct non-interactive argument
of knowledge (zk-SNARK) with proofs of size O(λ) bits, with efficient trusted
setup in the random oracle model. These results can be instantiated under the strong
RSA assumption. For groups that admit a public-coin setup, the transformation
yields a zk-SNARK without setup. A plausible candidate family of such groups is
class groups of imaginary quadratic orders. Existing zk-SNARKs with optimal
proof size require inefficient trusted setup and use bilinear maps.
Our main technical tool is a generalization of vector commitments called subvector
commitments. The latter allows one to open a commitment of a vector at a set of
positions, where the opening size is independent of the size of the set. Apart from
the new application in constructing succinct arguments, subvector commitments
generally serve as a more efficient replacement of vector commitments in all
applications where the prover needs to decommit at more than one position.

1 Introduction

An argument system allows a prover, with a witnessw, to convince a verifier that a certain
statement x is in an NP language L. In contrast with proof systems, argument systems
are only required to be computationally sound. Due to this relaxation, it is possible that
the interaction between the prover and the verifier is succinct, i.e., the communication
complexity is bounded by some polynomial poly(λ) in the security parameter and is
independent of the size of w. One can also require an argument system to be zero-
knowledge, meaning that the communication transcript can be efficiently simulated
without knowing the witness. An argument is of knowledge if for any successful prover
there exists an extractor that can recover w. Finally, we say that an argument is non-
interactive if it consists of a single message from the prover to the verifier.

1.1 The Quest of Constructing Ever Shorter Arguments

Recently, much progress has been made both in theory and practice to construct zero-
knowledge succinct non-interactive arguments of knowledge (zk-SNARK) for general
NP languages. We distinguish between zk-SNARKs in the plain / setup-free model
and the pre-processing model. In the plain model, the prover and the verifier do not



Scheme Proof Size (bits) CRS Size (bits) Assumptions
[24] O(λ) O(s) Knowledge of Exponent
[35] O(λ) O(s) Generic Group Model

This work O(λ) O(λ) Random Oracle, Strong RSA
[46] O(λ2 log |w|) − Random Oracle
[19] O(λ logn) − Random Oracle, Discrete Logarithm

This work O(λ) − Random Oracle, Strong Root w/o Trusted Setup
Table 1: Comparison of zk-SNARKs. λ: security parameter, w: witness, n: number of
multiplication gates in NP verification circuit, s: size of NP verification circuit.

share any input other than the statement x to be proven. In the pre-processing model,
they share a common reference string, generated by a trusted third party, which may
depend on the language L and the statement x. In general, existing zk-SNARKs in
the pre-processing model are asymptotically more efficient (at least in terms of the
computational complexity of verification) than those in the plain model. This reflects the
intuition that pushing the majority of the verifier workload to the offline pre-processing
phase reduces its workload in the online phase. On the other hand, in some applications
such as cryptocurrencies it is crucial to avoid a trusted setup. With the current landscape,
one is forced to trade optimal-size proofs with the absence of a trusted setup. In Table 1,
we highlight some schemes in each model with the shortest proof size.

In the pre-processing model, there exists plenty of zk-SNARKs constructed from
linear interactive proofs (LIP) and pairings in the standard model [31]. The scheme
with the shortest proofs is due to Danezis et al. [24], where a proof consists of 4 group
elements. Groth [35] proposed a scheme in the generic group model [49] with only 3
group elements, and showed that proofs constructed from LIP must consist of at least
2 group elements. Assuming that each group element can be represented by O(λ) bits,
then all of these constructions have proof size O(λ) in bits, which is optimal up to a
constant multiplicative factor.

While it is known that setup-free non-interactive arguments for NP do not exists
in the standard model [13], one can circumvent this impossibility by assuming the
existence of a random oracle [6]. For a soundness parameter k, a proof in the scheme
by Micali [46] consists of a λ-bit Merkle-tree commitment of a probabilistic checkable
proof (PCP) string, O(k) bits of the PCP string, and O(k) openings of the commitment,
each of size O(λ log |w|) bits. Assuming k = O(λ), a proof consists of O(λ2 log |w|)
bits. Since the size of the witness can be bounded by |w| ≤ 2λ, the proof size is bounded
by O(λ3). In Bulletproof [19], which improves upon Bootle et al. [14], a proof consists
of O(logn) group elements and integers, where n is the number of multiplication gates
in the arithmetic circuit representation of the verification algorithm of L. Assuming that
each of the group elements and integers can be represented by λ bits, the proof size is
O(λ logn) ≤ O(λ2) bits, where the inequality is due to n ≤ 2λ.

1.2 Our Results

The state of the art raises the question of both theoretical and practical importance:
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Can we construct setup-free zk-SNARKs with O(λ)-bit (optimal) proofs?

In this work we answer this question positively. Throughout the process, we also obtain
similar results in other settings which might be of independent interest. We summarize
our main theorems below, with detailed explanation deferred to Section 7.

The core of our results is a construction of 4-move argument systems for NP, assuming
the existence of groups1 where (a weaker form of) the strong root problem is hard. When
instantiated with the strong RSA assumption, we obtain a system with communication
complexity O(λ). To the best of our knowledge, prior to our work the most succinct
argument system was due to Kilian [43], with communication complexity O(λ log λ).
In the same work, Kilian posed the problem of constructing a system with optimal O(λ)
communication, which was open for over 20 years.

Theorem 1. Assuming the strong RSA problem is hard, there exist 4-move argument
systems for NP with communication complexity O(λ).

Since the system obtained above is public-coin except for the first message, sent from
the verifier to the prover, it immediately yields a pre-processing SNARK for NP in the
random oracle model by applying the Fiat-Shamir [28] transformation. A zk-SNARK can
then be obtained generically using non-interactive zero-knowledge proof of knowledge
(NIZKPoK), which can be constructed from the (strong) RSA assumption in the common
random string model [7].

Theorem 2. Assuming the strong RSA problem is hard, there exist pre-processing zk-
SNARKs for NP with CRS size O(λ) and proof size O(λ) in the random oracle model.

Returning to the original question of constructing a setup-free zk-SNARK, we
observe that the above zk-SNARK requires a setup due to the fact that the first message
of the interactive argument system is not public-coin. To make this first message public-
coin, we need to assume further that the strong root problem is still hard even if it is
defined by a group element sampled with public coin. A candidate family of groups is
that of class groups of imaginary quadratic orders, denoted Cl(∆).

Theorem 3. Assuming the strong root problem (without trusted setup) is hard over
Cl(∆), and NIZKPoK exists in the common random string model, there exists setup-free
zk-SNARKs for NP with proof size O(λ) in the random oracle model.

1.3 Subvector Commitments

Our construction relies on a generalization of vector commitments (VC) called subvector
commitments (SVC), which we introduce below. A VC scheme [20] is a commitment
scheme which allows to commit a vector of messages, such that the committer can later
open the commitment at any position i of the vector, i.e., reveal a message and show that
it equals to the i-th committed message. A VC scheme is required to be position binding,
meaning that no efficient algorithm can open a commitment at some position i to two
distinct messages mi 6= m′i. Note that the position binding property is only required

1 Our formal results are presented over modules over Euclidean rings, which generalize groups.
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to hold if the public parameters are generated honestly using private randomness. A
VC scheme is also required to be dynamic, meaning that the committer can efficiently
update a commitment and correspondingly its openings such that the new commitment
contains a new vector of messages. Catalano and Fiore [20] constructed two VC schemes
based on the computational Diffie-Hellman assumption over bilinear groups and the RSA
assumption, respectively. In both schemes, a commitment and an opening both consist
of a single group element. Furthermore, the scheme based on the RSA assumption has
public parameters whose size is independent of the length of the vectors to be committed.

We generalize the notion of VC into that of subvector commitments (SVC). Given
a vector m of length q and an ordered index set I ⊆ [q], we define the I-subvector
of m as the vector formed by collecting the i-th component of m for all i ∈ I . The
main difference between VC and SVC is that, in the latter, the committer can open a
commitment at all positions in I simultaneously. It is important that an opening has size
sublinear in (or even independent of) |I|, otherwise it is not more efficient than opening
a VC at |I| positions separately. The committer can also update a commitment and its
openings such that an I-subvector of the committed vector is replaced with a new one.
In additional to the functional differences, we define position binding without trusted
setup. This property says that, even if the public parameters are sampled using public
coins, no efficient algorithm can open a commitment at some index sets I and J to some
I-subvectormI andm′J respectively, such that there exists i ∈ I ∩ J with mi 6= m′i.

1.4 Construction Overview

With the background knowledge of (S)VC, we overview our techniques for obtaining
the main result – the construction of a setup-free zk-SNARK with O(λ)-bit proofs.
Our starting point is the succinct argument system of Micali [46], later proven to be an
argument of knowledge by Valiant [50]. The scheme can be described as a Σ protocol
between a prover and a verifier, where the latter uses public coins. First, the prover
computes a PCP of the statement and sends a Merkle-tree commitment of the PCP string
to the verifier. The latter then sends k independent randomness, each of which determines
a set of positions queried by a PCP verifier. The prover responds by opening all queried
positions of the PCP string. Since the verifier is public-coin, the protocol can then be
turned non-interactive using the Fiat-Shamir [27] transformation.

Our initial idea is to replace the Merkle-tree commitment used in Micali’s scheme
with a VC, so that a proof now consists of a commitment and k openings. This removes
the log |w| factor in the proof size and yields a zk-SNARK with proof size O(kλ) in
the pre-processing model (as vector commitments assume a trusted setup). In order to
remove the k factor (and to avoid pre-processing), we replace the VC with an SVC
(without trusted setup), with the size of an opening to a set of k positions independent of
k. This turns the multiplicative factor k into an additive one, i.e., the proof size is now
O(λ+k) = O(λ) bits, assuming k = O(λ). The resulting protocol is a succinct 4-move
zero-knowledge argument of knowledge with communication complexity O(λ) in bits.
The Fiat-Shamir transformation is then applied to make the argument non-interactive.

It remains to construct the required SVC scheme. To begin, we upgrade the RSA-
based VC scheme by Catalano and Fiore [20] into an SVC scheme with trusted setup.
This intermediate SVC is already sufficient to instantiate our interactive argument and
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our pre-processing zk-SNARK, by just letting the verifier sampling the public parameters.
However a public-coin SVC scheme, needed to make the zk-SNARK setup-free, requires
hidden order groups with a public-coin generation. To capture the minimal mathematical
structure required, we generalize our construction to work over modules defined over
Euclidean rings, following the framework of Lipmaa [45]. We then prove that the SVC
is position binding (without trusted setup), assuming the existence of “strong distinct-
prime-product root modules without trusted setup” (Definition 6). This assumption is
qualitatively weaker than the assumption on the existence of strong root modules without
trusted setup, which in turn is a natural generalization of the strong RSA assumption.
Compared to the original proof of VC position binding, our proof requires a more
elaborate manipulation of the exponents and assumes the hardness of (a variant of) the
strong root problem.

In the setup-free setting, our construction can no longer be instantiated with the
strong RSA assumption, since the problem is easy if the RSA modulus is sampled
using public randomness. Instead, we suggest two candidate families of groups of
unknown order, where the strong (distinct-prime-product) root problem is believed to
be hard even if the group is sampled using public coin. The first candidate, which we
recommend for efficiency (see below), is the family of class groups of imaginary quadratic
orders, each defined by a single integer ∆, called the discriminant, with very little
structure. The second candidate, which we include for completeness2, is the family of the
groups Z∗N where N are the so called “generalized RSA-moduli with unknown complete
factorization (RSA-UFOs)” [48], which are essentially randomly sampled integers. Both
of these families were used to construct, among other primitives, accumulators without
trusted setup [45,48]. For a more detailed discussion of these candidates, we refer
to Section 6.

In terms of concrete efficiency, we emphasize that when instantiated with RSA
groups or class groups of imaginary quadratic orders, the constant hidden in the O(λ)
proof size is reasonably small. With a class group defined by a d-bit discriminant ∆
where d = O(λ) or an RSA group with a d-bit modulus N , a soundness parameter k,
and a PCP where the verifier tests h = O(1) bits of the PCP string, a proof consists of
at most 2d+ hk bits. In terms of verifier efficiency, we note that our verifier performs
log(hk) group operations, 1 exponentiation, and k PCP verifications. Finally, we remark
that a class group defined by a 1000-bit discriminant ∆ provides roughly the same level
of security as RSA with a 1536-bit modulus [36], k = 100 is way more than what is
typically considered necessary for soundness, and there exists PCPs where the verifier
tests only h = 3 bits of the PCP string [37].

1.5 Other Applications

Catalano and Fiore [20] suggested a list of applications of VC, including verifiable
databases with efficient updates, updatable zero-knowledge elementary databases, and
universal dynamic accumulators. In all of these applications, one can gain efficiency
by replacing the VC scheme with an SVC scheme which allows for batch opening and

2 As humongous RSA-UFOs (in the order of 30000-bit) are required for security, cryptosystems
based on these groups are not practical.
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updating. When instantiated with our construction of SVC, one can further avoid the
trusted setup, which is especially beneficial to database applications as trusted third
parties are no longer required.

1.6 Related Work

Succinct arguments were introduced by Kilian [42,43] and later improved, in terms of
round complexity, by Lipmaa and Di Crescenzo [26]. Non-interactive arguments, or com-
putationally sound proofs, were first proposed by Micali [46]. These early approaches
rely on PCP and have been recently extended [8] to handle interactive oracle proofs [11]
(also known as probabilistic checkable interactive proofs [47]), in favor of a more efficient
prover (but with the same asymptotics). A recent manuscript by Ben-Sasson et al. [9]
improves the concrete efficiency of interactive oracle proofs. Ishai, Kushilevitz, and
Ostrovsky [40] first observed that linear PCP can be combined with a linearly homomor-
phic encryption to construct more efficient arguments, with pre-processing. Afterwards,
Groth [34] and Lipmaa [44] upgraded this approach to non-interactive proofs. Gennaro
et al. [31] presented a very elegant linear PCP that gave rise to a large body of work to
improve the practical efficiency of non-interactive arguments [4,5,10,12,21,22,29,25].
All of these constructions assume a highly structured and honestly generated common
reference string (of size proportional to the circuit to be evaluated) and rely on some
variant of the knowledge of exponent assumption. Recently, Ames et al. [1] proposed
an argument based on the MPC-in-the-head [41] paradigm to prove satisfiability of a
circuit C with proofs of size O(λ

√
|C|). Zhang et al. [52] showed how to combine

interactive proofs and verifiable polynomial delegation schemes to construct succinct
interactive arguments. The scheme requires a trusted pre-processing and the communi-
cation complexity is O(λ log |w|). A similar result by Whaby et al. [51] introduces a
prover-efficient construction with proofs of size O(λ

√
|w|).

2 Preliminaries

Throughout this work we denote by λ ∈ N the security parameter, and by poly(λ) and
negl(λ) the sets of polynomials and negligible functions in λ, respectively. We say that a
Turing machine is probabilistic polynomial time (PPT) if its running time is bounded by
some polynomial function poly(λ). An interactive protocol Π between two machines A
and B is referred to as (A,B)Π . Given a set S, we denote sampling a random element
from S as s←$S and the output of an algorithm A on input x is written as z ← A(x).
Let ` ∈ N, the set [`] is defined as [`] := {1, . . . , `}. Let Si = (si,1, . . . , si,`i) be ordered
sets for i ∈ [k]. Their concatenation is denoted as S1‖ . . . ‖Sk := (s1,1, . . . , sk,`k). Let
S = (s1, . . . , s`) be an ordered set. We denote by Unique(S) the set of all unique
elements in S with their relative order preserved, i.e., if si = sj and i < j, then sj is
dropped from S.

2.1 Hoeffding’s Inequality

In the following we recall a useful inequality by Hoeffding. Let X1, . . . , Xn be indepen-
dent random variables bounded by the interval [0, 1] and let X := X1+...+Xn

n , then it
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holds that
Pr
[
X − E

[
X
]
≥ d
]
≤ e−2nd2

.

where 0 < d < X − E
[
X
]
.

2.2 Pseudo-Random Generators

A pseudorandom generator [39] allows one to stretch random strings into new random
looking ones.

Definition 1 (Pseudo-Random Generator). A function PRG : {0, 1}n → {0, 1}m is
a pseudo-random generator if m > n and for all PPT adversaries A the following
ensembles are computationally indistinguishable

{PRG(s)}s←$ {0,1}n ≈ {r}r ←$ {0,1}m .

2.3 Arguments of Knowledge

Let R : {0, 1} × {0, 1} → {0, 1} be an NP-relation with corresponding NP-language
L := {x : ∃w s.t.R(x,w) = 1}. We define arguments of knowledge [15] for interactive
Turing machines [32].

Definition 2 (Arguments of knowledge). An interactive protocol Π = (P,V)Π is a
(succinct) argument of knowledge forR if the following conditions hold.

(Completeness) IfR(x,w) = 1 then

Pr [(P(x,w),V(x))Π = 1] = 1.

(Argument of Knowledge) For all PPT adversary A, there exists a PPT ma-
chine EA, such that for all x, z ∈ {0, 1}∗, if there exists a constant c such that
Pr [(A(x, z),V(x))Π = 1] ≥ 1

λc , then there exists a constant d such that

Pr
[
R(x,w) = 1

∣∣w ← EA(x,z)(x)
]
≥ 1
λd
.

(Succinctness) The communication between P and V is at most poly(λ).

An argument of knowledge satisfies the notion of zero-knowledge if the interaction
between the prover and the verifier reveals nothing but the validity of the statement.

Definition 3 (Zero Knowledge). An interactive protocolΠ = (P,V)Π is computation-
ally (statistically, resp.) zero-knowledge if for all PPT V∗ there exists a PPT algorithm
S such that the following ensembles are computationally (statistically, resp.) indistin-
guishable

{(P(x,w),V∗(x))Π}λ∈N,x∈L,w s.t.R(x,w)=1 ≈ {S(x)}λ∈N,x∈L .
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2.4 Witness-Extractable PCP

One of the principal tools in the construction of arguments of knowledge is probabilistic
checkable proofs (PCP) [2]. The PCP theorem shows that any witness w (of lenght n)
for an NP-statement can be encoded into a PCP of length n(logn)O(1) such that it is
sufficient to probabilistically test O(1) bits of the encoded witness.

Definition 4 (Probabilistically Checkable Proofs). A pair of machines (PPCP,VPCP)
is a PCP for an NP-relationR if the following conditions hold.
(Completeness) IfR(x,w) = 1, then

Pr [VPCP(x)π = 1|π ← PPCP(x,w)] = 1.

(Soundness) For all x /∈ L and π ∈ {0, 1}∗,

Pr [VPCP(x)π = 1] < 1
3 .

It is well known that one can diminish the soundness error to a negligible function by
parallel repetition. Let ` be a constant, for notational convenience we writeQ(VPCP(x)π)
the ordered set of queries (q1, . . . , q`) made by VPCP(x)π , where qi ∈ [|π|] for all i ∈ [`].
We additionally require that the witness can be efficiently recovered from the encoded
string π [50].

Definition 5 (Witness-Extractability). A PCP is witness-extractable if there exists a
PPT algorithm EPCP and a constant γ ∈ (0, 1) such that, given any strings x and π such
that Pr [VPCP(x)π = 1] ≥ 1− γ, extracts an NP witness w for x.

3 Definitions

To capture the minimal mathematical structure required for our constructions, we follow
the module-based cryptography framework of Lipmaa [45].

3.1 Algebraic Background

A (left) R-module RD over the ring R (with identity) consists of an Abelian group
(D,+) and an operation ◦ : R ×D → D, denoted r ◦ A for r ∈ R and A ∈ D, such
that for all r, s ∈ R and A,B ∈ D, we have i) r ◦ (A + B) = r ◦ A + r ◦ B, ii)
(r + s) ◦ A = r ◦ A + s ◦ A, iii) (r · s)A = r ◦ (s ◦ A), and iv) 1R ◦ r = r, where
1R is the multiplicative identity of R. Let S = (s1, . . . , sq) ⊆ N be an ordered set, and
r = (rs1 , . . . , rsq ) ∈ Rq and A = (As1 , . . . , Asq ) ∈ Dq be vectors of ring and group
elements respectively. For notational convenience, we denote

∑
i∈S ri ◦Ai by 〈r,A〉.

A commutative ring R with identity is called an integral domain if for all r, s ∈ R,
rs = 0R implies r = 0R or s = 0R, where 0R is the additive identity of R. A ring
R is Euclidean if it is an integral domain and there exists a function deg : R → Z+,
called the Euclidean degree, such that i) if r, s ∈ R, then there exists q, k ∈ R such that
r = qs+ k with either k = 0R, k 6= 0R and deg(k) < deg(q), and ii) if r, s ∈ R with
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rs 6= 0R and r 6= 0R, then deg(r) < deg(rs). An element r ∈ R \ {0R, 1R} is said to
be irreducible if there are no elements s, t ∈ R \ {1R} such that r = st. The set of all
irreducible elements of R is denoted by IRR(R). An element r ∈ R \ {0R, 1R} is said
to be prime if for all s, t ∈ R, whenever r divides st, then r divides s or r divides t. If R
is Euclidean, then an element is irreducible if and only if it is prime.

3.2 Intractability Assumption

We define the following variant of the “strong root assumption” [23] over modules over
Euclidean rings, which is a generalization of the strong RSA assumption. Let RD be
a module over some Euclidean ring R, and A be an element of D. The strong distinct-
prime-product root problem with respect toA asks to find a set of distinct prime elements
{ei}i∈S in R and an element X in D such that

(∏
i∈S ei

)
◦ X = A. We define the

assumption in two variants depending on whether RD and A are sampled with public
coins.

Definition 6 (Strong Distinct-Prime-Product Root Modules (w/o Trusted Setup)).
Let I be some ordered set. Let RD = ((Ri)Di)i∈I be a family of modules. Let

GGen(1λ;ω) be a deterministic algorithm which picks some i ∈ I (hence some RD =
(Ri)Di ∈ RD) and some element A ∈ D. RD is a strong distinct-prime-product root
modules family if for all PPT adversary A there exists ε(λ) ∈ negl(λ) such that

Pr

 (∏i∈S ei
)
◦X = A

∀i ∈ S, ei ∈ IRR(R)
∀i 6= j ∈ S, ei 6= ej

∣∣∣∣∣∣
ω←$ {0, 1}λ

(RD, A) := GGen(1λ;ω)
({ei}i∈S , X)← A(1λ, RD, A , ω )

 ≤ ε(λ),

whereA does not receive ω (highlighted by the dashed box) as an input. If the inequality
holds even if A receives ω as an input, then we say thatRD is a strong distinct-prime-
product root modules family without trusted setup.

Lipmaa defined several variants of the (strong) root assumption with respect to random
elements in D sampled with private coin, given the description of the module RD
sampled with public coin. It is safe to assume that the description of RD includes a
generating set of D. Viewed in this way, the above can be seen as defining an assumption
directly with respect to the generating set. Note that the assumption of the existence of
strong distinct-prime-product root modules (without trusted setup) is weaker than that of
strong root modules (without trusted setup), where the latter requires the adversary to
simply output (e,X) such that e 6= 1R and e ◦X = A.

It is apparent that RSA groups are strong distinct-prime-product root modules under
the strong RSA assumption. We shall elaborate more in Section 6.

3.3 Subvector Commitments

Subvector commitments are a generalization of vector commitments [20], where the
opening and updating operations are performed with respect to subvectors.
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Definition 7 (Subvectors). Let q ∈ N,M be a set, and (m1, . . . ,mq) ∈ Mq be a
vector. Let I ⊆ [q] be an ordered index set. The I-subvector ofm is defined asmI :=
(mi1 , . . . ,mi|I|) where I = (i1, . . . , i|I|).

Definition 8 (Subvector Commitments (SVC)). A subvector commitment scheme SVC
is a tuple of PPT algorithms (Setup,Com,Open,Verify,Update,ProofUpdate):
Setup(1λ, q;ω): The deterministic setup algorithm inputs the security parameter 1λ, the
length q of the committed vector, and a random tape ω. It outputs a public parameter pp
(which implicitly defines the “vector space”3 Mq). We assume that all other algorithms
input pp which we omit.
Com(m): The committing algorithm inputs a vectorm ∈Mq . It outputs a commitment
string C and some auxiliary information aux.
Open(I,m′I , aux): The opening algorithm inputs an index set I , an I-subvector m′I ,
and some auxiliary information aux. It outputs a proof ΛI thatm′I is the I-subvector of
the committed vector.
Verify(C, I,m′I , ΛI): The verification algorithm inputs a commitment stringC, an index
set I , an I-subvectorm′I , and a proof ΛI . It accepts (i.e., it outputs 1) if and only if C is
a commitment tom andm′I is the I-subvector ofm.
Update(C, J,mJ ,m

′
J , aux): The updating algorithm inputs a commitment string C, an

index set J , an old J-subvector mJ , a new J-subvector m′J , and some old auxiliary
information aux. It outputs a new commitment C ′, some update information U , and some
new auxiliary information aux′.
ProofUpdate(C, I, ΛI , J,m′J , U): The proof updating algorithm inputs a commitment
string C, an index set I , a proof ΛI for some I-subvector of some vectorm committed
in C, an index set J , a new J-subvectorm′J , and some update information U . It outputs
a new commitment string C ′ and new proof Λ′I for some I-subvector of some vectorm′

committed in C, wherem′J is the J-subvector ofm′.

Definition 9 (Correctness). A subvector commitment scheme SVC is said to be correct
if, for all security parameter λ ∈ N, length q ∈ poly(λ), random tape ω ∈ {0, 1}λ,
public parameters pp ∈ Setup(1λ, q;ω) (which defines the vector spaceMq),m ∈Mq ,
index set I ⊆ [q], (C, aux) ∈ Com(m), ΛI ∈ Open(I,mI , aux), it holds that

Pr [Verify(C, I,mI , ΛI) = 1] ≥ 1− negl(λ)

and the same holds for updated commitments and proofs.

We consider the notion of position binding for subvector commitments. Recall that posi-
tion binding for vector commitments requires that it is infeasible to open a commitment
with respect to some position i to two distinct messages mi and m′i. We extend this
notion to subvector commitments, by requiring that it is infeasible to open a commitment
with respect to some index sets I and J to subvectorsmI andm′J , respectively, such
that there exists an index i ∈ I ∩ J where mi 6= m′i. Furthermore, we may also require

3 Note that the “vector space” described here is not necessarily a vector space in the mathematical
sense. In particular, we do not define any arithmetic operations overMq .
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P(x,w) V(x)
π ← PPCP(x,w) ω←$ {0, 1}λ

pp← Setup(1λ, q;ω)
pp or ω
←−−−−−−−−

pp← Setup(1λ, q;ω) (C, aux)← Com(pp,π)

C−−−−−−−−→
α←$ {0, 1}λ

α←−−−−−−−−
ρ1‖ . . . ‖ρk ← PRG(α) ρ1‖ . . . ‖ρk ← PRG(α)
∀i ∈ [k], Qi := Q(VPCP(x; ρi)π)
I := Unique(Q1‖ . . . ‖Qk)
ΛI ← Open(I,πI , aux)

ΛI ,πI−−−−−−−−→
J := Unique(Q(V∗PCP(x; (ρ1, . . . , ρk))πI ))
b0 := Verify(C, J,πI , ΛI)
b1 := V∗PCP(x; (ρ1, . . . , ρk))πI

return b0 ∩ b1

Fig. 1: Succinct Argument of Knowledge for NP

this property to hold without trusted setup. That is, the above should be infeasible even
if the setup algorithm is public coin.

Definition 10 (Position Binding (without Trusted Setup)). A subvector commitment
SVC is position binding if for all PPT adversary A, there exists a negligible function
ε(λ) ∈ negl(λ) such that

Pr

Verify(C, I,mI , ΛI) = 1
Verify(C, J,m′J , Λ′J) = 1
∃i ∈ I ∩ J s.t. mi 6= m′i

∣∣∣∣∣∣
ω←$ {0, 1}λ

pp← Setup(1λ;ω)
(C, I, J,mI ,m

′
J , ΛI , Λ

′
J)← A(1λ, pp , ω )

 ≤ ε(λ)

whereA does not receive ω (highlighted by the dashed box) as an input. If the inequality
holds even if A receives ω as an input, then we say that SVC is position binding without
trusted setup.

As in [20], the hiding property can also be considered, and obtained generically from a
(non-hiding) SVC scheme and a hiding (standard) commitment scheme. Since the hiding
property is not necessary for our applications, we omit its definition.
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4 Optimal Succinct Arguments of Knowledge for NP

Let (PPCP,VPCP) be a witness extractable PCP for NP with q being a bound on the
size of the encoded proof, r being a bound on the length of the random coins of the
(possibly adaptive) verifier, and k being a statistical parameter (such that γk is a negli-
gible fraction). Let PRG : {0, 1}λ → {0, 1}k·r be a pseudo-random generator and let
SVC := (Setup,Com,Open,Verify,Update,ProofUpdate) be a position binding sub-
vector commitment (without trusted setup). We construct a 4-move interactive argument
of knowledge in the standard model. Its formal description can be found in Figure 1.

4.1 Protocol Description

The prover first produces π as the PCP encoding of the witness w, while the verifier
samples a random string ω. Suppose an SVC (with trusted setup) is used, the verifier
computes the public parameter pp using ω, and sends pp to the prover. Otherwise, if
an SVC without trusted setup is used, the verifier simply sends ω to the prover, so that
both the prover and the verifier can compute the public parameter pp. After obtaining pp,
the prover commits to π and sends its commitment C to the verifier. Once the verifier
receives the commitment C, it responds with another random string α. The prover
stretches α with a PRG into ρ = ρ1‖ . . . ‖ρk and executes the PCP verifier on ρ. The
prover then records the sets of queries Qi of V using randomness ρi to π, and computes
the opening of the commitment C at the unique positions I = Unique(Q1‖ . . . ‖Qk).
The opening ΛI , along with the corresponding bits πI of π are sent to the verifier.

Let φ = (φ1, φ2, . . .) ∈ {0, 1}∗ and V∗PCP(x; (ρ1, . . . , ρk))φ be an algorithm which
does the following: It maintains an initially empty ordered set Q∗. It iteratively runs
VPCP(x; ρi) from i = 1 to k, and maintain a global counter j for queries q∗j made by
VPCP(x; ρi) for all i ∈ [k]. Upon receiving the j-th query q∗j from VPCP(x; ρi) (for
some i), it first appends q∗j to Q∗, and then checks if q∗j = q∗j′ for some j′ < j. If so,
it responds identically as for the j′-th query. Otherwise, it fetches the foremost entry
of φ which is not used as the response to a previous query, and use the fetched entry
as the response to the current query. If such an entry cannot be fetched, it outputs 0.
After running VPCP(x; ρi) for all i ∈ [k], it outputs 1 if and only if VPCP(x; ρi) outputs
1 for all i ∈ [k], and otherwise outputs 0. We slightly abuse the notation of Q and
define Q(V∗PCP(x; (ρ1, . . . , ρk))φ) := Q∗. The verifier executes V∗PCP over the same
coins PRG(α) and records the set of unique queries J = Unique(Q∗). It then checks
whether ΛI is a valid opening for πI sent by the prover for the (ordered) set J . If both
the PCP and the SVC verifications succeed, then the verifier returns 1, else it returns 0.

Completeness follows directly from the completeness of the PCP and of the SVC.

4.2 Communication Complexity

Suppose an SVC without trusted setup is used, the interaction between prover and verifier
consists in the exchange of two random strings of length λ, a subvector commitment C,
O(k) bits of the proof encoding, and the corresponding opening Λ. Assuming a suitable
instantiation of the subvector commitment whereC andΛ are of sizeO(λ) (see Section 6
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for candidate instantiations), the amount of information exchanged accounts for O(λ)
bits. This is succinct and in fact optimal up to a constant factor.

Otherwise, if an SVC (with trusted setup) is used, then one of the random strings is
replaced by a public parameter pp. Assuming again a suitable instantiation of the subvec-
tor commitment where pp is of size O(λ) (see Section 6), the amount of communication
is bounded by O(λ) bits.

4.3 Analysis

The argument of knowledge of the protocol is established by the following theorem.

Theorem 4. Let (PPCP,VPCP) be a witness extractable PCP for NP, PRG be a pseudo-
random generator, and SVC := (Setup,Com,Open,Verify,Update,ProofUpdate) be
a position binding (without trusted setup) subvector commitment. Let k = λ. Then the
protocol in Figure 1 is a (public-coin) argument of knowledge.

Proof. Let ω ∈ {0, 1}λ and ρi ∈ {0, 1}rk for all i ∈ N. Consider the following extractor.
EA(x) : On input a statement x, the extractor initializes an empty string π := {⊥}q,
samples ω←$ {0, 1}λ, computes pp← Setup(1λ, q;ω) and sends pp (or ω if using SVC
without trusted setup) to A. The adversary A replies with a certain commitment C. The
extractor enters into a loop. In the i-th iteration of the loop, it performs the following:

1. Run w ← EPCP(π), ifR(x,w) = 1 then return w and terminate the execution.
2. Sample a random αi←$ {0, 1}λ and send it to A. Set ρi := PRG(αi).
3. A responds with (Λi,φi), let Q∗ be the set of queries of V∗PCP(x; ρi)φi .
4. If Verify(C,Unique(Q∗),φi, Λi) = 0 or V∗PCP(x; ρi)φi = 0 then rewind the adver-

sary A and go to step 1 of the (i+ 1)-th iteration.
5. For all qj ∈ Q∗, if πqj /∈ {⊥, φij} then abort. Otherwise set πqj := φij .
6. Rewind the adversary A and go to step 1 of the (i+ 1)-th iteration.

It is clear that whenever the extractor does not abort and terminates, then the extraction
is successful. We first argue that the extractor does not abort within polynomially-many
steps except with negligible probability.

Lemma 1. For all statements x, all auxiliary information z, all PPT adversary A, and
all polynomials p ∈ poly(λ) it holds that

Pr
[
⊥ ← EA(x,z)(x) within p iterations

]
≤ negl(λ) .

Proof (Lemma 1). We observe that the extractor aborts if and only if the adversary
successfully opens one bit of the proof encoding π to two different bits. That is, there
exists two sets of queries Q, Q′, two openings Λ, Λ′, two strings φ, φ′ and an index i
such that

1. Verify(C,Unique(Q),φ, Λ) = 1,
2. Verify(C,Unique(Q′),φ′, Λ′) = 1,
3. i ∈ Q ∩Q′, and
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4. φi 6= φ′i.

This set of conditions contradicts the position binding (without trusted setup) of the
subvector commitment scheme. It follows that the event where the extractor aborts
happens only with negligible probability. ut

The rest of the analysis establishes the probability of the extractor to terminate. First we
introduce the following helping lemma.

Lemma 2. For all statements x, all f(λ) ∈ poly(λ), all π∗ ∈ {0, 1}≤q, all constant
γ ∈ (0, 1), all k ≥ − log f(λ)

log(1−γ) , and all strings ρ = ρ1‖ . . . ‖ρk ∈ {0, 1}rk such that

Pr
[
V∗PCP(x; ρ)π

∗
= 1
]
≥ 1
f(λ) ,

over the random choice of ρ, then Pr [R(x,w) = 1|w ← EPCP(π∗)] = 1.

Proof (Lemma 2). Let

pk := Pr
[
V∗PCP(x; ρ)π

∗
= 1
]

and p1 := Pr
[
VPCP(x; ρ1)π

∗
= 1
]
.

Since the random tapes ρi of the verifier are chosen uniformly we have that pk = (p1)k
and therefore

p1 = (pk) 1
k ≥ f(λ)

−1
k .

The following shows that 1
f(λ)k ≥ (1− γ):

k ≥ − log f(λ)
log(1− γ)

1
k

log
(

1
f(λ)

)
≥ log(1− γ)

1
f(λ) 1

k

≥ (1− γ).

By Definition 5 it follows that the extractor EPCP is successful with probability 1. ut

Next we argue that for any given string φ, running V∗PCP with φ over truly random
coins induces the a distribution of outputs which is computationally indistinguishable
from the distribution induced by V∗PCP executed with φ over pseudo-random coins. This
is proven in the following lemma.

Lemma 3. Let PRG be a pseudorandom generator. For all statements x, and all proof
encodings φ ∈ {0, 1}≤q , the ensembles{

V∗PCP(x; PRG(α))φ
}
α←$ {0,1}λ and

{
V∗PCP(x; ρ)φ

}
ρ←$ {0,1}rk

are computationally indistinguishable.
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Proof (Lemma 3). Assume the contrary, then we can construct the following distinguisher
against PRG: On input a string ρ, it executes b ← VPCP(x; ρ)π using ρ as the random
tape. Then it outputs b. By initial assumption we have that the distributions of the output
of the verifier are non-negligibly far depending on the random tape, consequently so are
the distributions of the output of the distinguisher for the two cases. This contradicts the
pseudo-randomness of PRG and shows the veracity of our proposition. ut

Next we show that if the adversary is successful with non-negligible probability, then the
extractor outputs w in polynomially many steps. This is shown in two steps. First, we
show that if the adversary is successful with non-negligible probability, then the extractor
produces a string π∗ which is accepted with non-negligible probability. Given such a
string π∗, we show that the PCP extractor must succeed in extracting a witness w.

Concretely, for any statement x and for any auxiliary input z consider an adversary
A such that

εA := Pr [(A(x, z),V(x))Π = 1] ≥ 1
λc

for some constant c, which is given by assumption. Set t = λ
εA
≤ λc+1, and for i ∈ [t],

let Πi be and independent execution of the protocol. Then we have that

Pr [∀i ∈ [t], (A(x, z),V(x))Πi = 0] = (1− εA)t ≤ e−εAt ≤ e−λ.

This means that with all but negligible probability the adversary is going to be successful
in at least one of these t executions. Let π∗ be the variable maintained by E after t · s-
many iterations, for s := tλ = λ2

εA
≤ λc+2 ∈ poly(λ). In the following we are going to

show that, with overwhelming probability, there exists a constant d such that

εV := Prα←$ {0,1}λ
[
VPCP(x; PRG(α))π

∗
= 1
]
≥ 1
λd
.

Assume the contrary that, with non-negligible probability, there exists a constant c
with ε ≥ 1

λc and εV < 1
λd

for all constants d. Let φi be the variable sent by A in
the i-th iteration and let Xi be 1 if the extractor reaches step 5 in the i-th iteration by
running VPCP(x; ρi)φi , and 0 otherwise. LetX∗i be defined likeXi except that the verifier
VPCP(x; ρi)π∗ = 1 is executed on π∗. By Lemma 1, with overwhelming probability E
does not abort, and we have that the string π∗ is uniquely defined. In other words, for all
i ∈ [t ·s] such thatXi = 1 then φi ⊆ π∗. This implies that whenever VPCP(x; ρi)φi = 1,
then VPCP(x; ρi)π∗ = 1. It follows that

X
∗ := X∗1 + . . .+X∗t·s

t · s
≥ X1 + . . .+Xt·s

t · s
≥ s

t · s
= 1
t
.

By assumption, for all constants d,

E[X∗] = Pr
[
α←$ {0, 1}λ

]
VPCP(x; PRG(α))π

∗
= 1 ≤ 1

λd
.
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Let d = c+ 2. By Hoeffding’s inequality we have that

Pr
[
X
∗ − E[X∗] ≥ 1

t
− 1
λd

]
≤ e−2ts( 1

t−
1
λd

)2

= e−2ts( 1
t2
− 2
tλd

+λ−2d) = e−2(λ− 2s
λd
−λ−2d)

≤ e−2(λ− 2s
λd

) ≤ e−2
(
λ− 2λc+2

λd

)
≤ e−2(λ−2) = negl(λ) .

contradicting the assumption that this event happens with non-negligible probability.
To recap, we have shown that

εV := Prα←$ {0,1}λ
[
VPCP(x; PRG(α))π

∗
= 1
]
≥ 1
λc+2 .

By Lemma 3, there exists a negligible function negl(λ) such that

Prρ←$ {0,1}rk
[
VPCP(x; ρ)π

∗
= 1
]

≥ Prα←$ {0,1}λ
[
VPCP(x; PRG(α))π

∗
= 1
]
− negl(λ)

≥ 1
λc+2 − negl(λ)

Since k = λ, with sufficiently large λ, by Lemma 2, we have that

Pr [R(x,w) = 1|w ← EPCP(π∗)] = 1.

This implies that the extractor terminates after t·s steps, except with negligible probability,
and concludes the proof. ut

5 Subvector Commitments from Modules over Euclidean Rings

Let GGen be an efficient algorithm as defined in Definition 6. Let R be an Euclidean ring
sampled by GGen, and e1, . . . , eq be arbitrary distinct prime elements in R. LetMq :=
{0R, 1R}q4 where 0R and 1R are the additive and multiplicative identity elements of R
respectively. We construct a subvector commitment scheme SVC in Figure 2.

Note that in the opening and proof updating algorithm, it is required to compute

ΛI :=
(∏
i∈I

ei

)−1

◦ 〈m[q]\I ,S[q]\I〉 and

Λ′I := ΛI +
(∏
i∈I

ei

)−1

◦ 〈m′([q]\I)∩J −m([q]\I)∩J ,S([q]\I)∩J〉

4 In general,M can be set such that for all m,m′ ∈M, gcd(m−m′, ei) = 1 for all i ∈ [q].
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Setup(1λ, q;ω)

(RD, A)←$ GGen(1λ, ω)

∀i ∈ [q], Si :=
(∏

j∈[q]\{i} ej

)
◦A

S := (S1, . . . , Sq)
e := (e1, . . . , eq)
return pp := (RD, A,S, e)

Com(m)

C := 〈m,S〉
aux := m

return (C, aux)

Open(I,m′I , aux)

parse aux asm

ΛI :=
(∏

i∈I ei
)−1 ◦ 〈m[q]\I ,S[q]\I〉

return ΛI

Verify(C, I,m′I , ΛI)

b0 := (m′I ∈M|I|)

b1 := (C = 〈m′I ,SI〉+
(∏

i∈I ei
)
◦ ΛI)

return b0 ∩ b1

Update(C, J,mJ ,m
′
J , aux)

parse aux as (m1, . . . ,mq)
parsem′J as (m′j1 , . . . ,m

′
j|J|)

C′ := C + 〈m′J −mJ ,SJ〉
U := (J,mJ ,m

′
J)

∀j ∈ [q],m′′j =
{
mj j /∈ J
m′j j ∈ J

aux′ := (m′′1 , . . . ,m′′q )
return (C′, U, aux′)

ProofUpdate(C, I, ΛI , J,m′J , U)

parse U as (J,mJ ,m
′
J)

C′ := C + 〈m′J −mJ ,S〉

Λ′I := ΛI +
(∏

i∈I ei
)−1

◦ 〈m′([q]\I)∩J −m([q]\I)∩J ,S([q]\I)∩J〉
return (C′, Λ′I)

Fig. 2: Construction of a Subvector Commitment Scheme SVC.

respectively. Although multiplicative inverses of ring elements do not exist in general,
and if so, they may be hard to compute, the above are efficiently computable because,
for all i ∈ [q] \ I and hence for all i ∈ ([q] \ I) ∩ J , we have

Si :=

 ∏
j∈[q]\{i}

ej

 ◦A =

∏
j∈I

ej
∏

j∈[q]\(I∪{i})

ej

 ◦A.
The correctness of SVC follows straightforwardly by inspection.

Theorem 5. If RD is a strong distinct-prime-product root modules family (without
trusted setup), then SVC is position binding (without trusted setup).

Proof. Suppose not, let A be a PPT adversary such that

Pr

Verify(C, I,mI , ΛI) = 1
Verify(C, J,m′J , Λ′J) = 1
∃i ∈ I ∩ J s.t. mi 6= m′i

∣∣∣∣∣∣
ω←$ {0, 1}λ

pp← Setup(1λ;ω)
(C, I, J,mI ,m

′
J , ΛI , Λ

′
J)← A(1λ, pp , ω )

 > 1
f(λ)
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for some polynomial f(λ) ∈ poly(λ), where A gets ω as input (highlighted by the
dashed box) only in the variant without trusted setup. In any case, we have

〈mI ,SI〉+
(∏
i∈I

ei

)
◦ ΛI = 〈m′J ,SJ〉+

(∏
i∈J

ei

)
◦ Λ′J

which implies

〈mI\J ,SI\J〉 − 〈m′J\I ,SJ\I〉+ 〈mI∩J −m′I∩J ,SI∩J〉

=
( ∏
i∈I∩J

ei

) ∏
i∈J\I

ei

 ◦ Λ′J −
 ∏
i∈I\J

ei

 ◦ ΛI
 .

Recall that Si =
(∏

j∈[q]\{i} ej

)
◦ A. Define δi :=


mi i ∈ I \ J
−m′i i ∈ J \ I
mi −m′i i ∈ I ∩ J

and Λ :=

((∏
i∈J\I ei

)
◦ Λ′J −

(∏
i∈I\J ei

)
◦ ΛI

)
. We obtain ∑

i∈I∪J
δi

∏
j∈[q]\{i}

ej

 ◦A =
( ∏
i∈I∩J

ei

)
◦ Λ.

LetK0 := {i ∈ I ∩J : δi = 0R} andK1 := {i ∈ I ∪J : δi 6= 0R}. Next, we show that
d := gcd

(∑
i∈I∪J δi

∏
j∈[q]\{i} ej ,

∏
i∈I∩J ei

)
=
∏
j∈K0

ej . Furthermore, suppose
that this is the case, we have (I ∩ J) \K0 6= ∅ since there exists i ∈ I ∩ J such that
δi = mi −m′i 6= 0R. To prove the above, we first note that∑

i∈I∪J
δi

∏
j∈[q]\{i}

ej =
∑
i∈K1

δi
∏

j∈[q]\{i}

ej

=
∏

j∈[q]\(I∪J)

ej

∑
i∈K1

δi
∏

j∈(I∪J)\{i}

ej

 .

Hence

d = gcd

∑
i∈K1

δi
∏

j∈(I∪J)\{i}

ej ,
∏
i∈I∩J

ei


=
∏
j∈K0

ej · gcd

∑
i∈K1

δi
∏

j∈(I∪J)\(K0∪{i})

ej ,
∏

i∈(I∩J)\K0

ei

 .

It remains to show that d′ := gcd
(∑

i∈K1
δi
∏
j∈(I∪J)\(K0∪{i}) ej ,

∏
i∈(I∩J)\K0

ei

)
=

1R. Suppose not, let d′ =
∏
i∈L ei for some L ⊆ (I ∩ J) \K0. Suppose ` ∈ L 6= ∅.
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This means δ` 6= 0R and hence ` ∈ K1. Then there exists r ∈ R such that

e` · r =
∑
i∈K1

δi
∏

j∈(I∪J)\(K0∪{i})

ej

=δ`
∏

j∈(I∪J)\(K0∪{`})

ej + e`
∑

i∈K1\{`}

δi
∏

j∈(I∪J)\(K0∪{i})

ej .

Let r′ := r −
∑
i∈K1\{`} δi

∏
j∈(I∪J)\(K0∪{i}) ej . We have

e` · r′ = δ`
∏

j∈(I∪J)\(K0∪{`})

ej .

Since δ` 6= 0R, i.e., δ` ∈ {−1R, 1R}, the above contradicts the fact that e` is a prime
element. Thus we must have L = ∅ and hence d′ = 1R.

Now that we have concluded d = gcd
(∑

i∈I∪J δi
∏
j∈[q]\{i} ej ,

∏
i∈I∩J ei

)
=∏

j∈K0
ej , we can use the extended Euclidean algorithm to find a, b ∈ R such that

a
∑
i∈I∪J

δi
∏

j∈[q]\{i}

ej + b
∏
i∈I∩J

ei =
∏
j∈K0

ej .

Multiplying this to A, we get ∏
j∈K0

ej

 ◦A =

a ∑
i∈I∪J

δi
∏

j∈[q]\{i}

ej + b
∏
i∈I∩J

ei =
∏
j∈K0

ej

 ◦A
=
(
a
∏
i∈I∩J

ei

)
◦ Λ+

(
b
∏
i∈I∩J

ei

)
◦A

=
( ∏
i∈I∩J

ei

)
(a ◦ Λ+ b ◦A)

Since (I ∩ J) \K0 6= ∅, we can set S := (I ∩ J) \K0 and X := (a ◦ Λ+ b ◦A), and
output ({ei}i∈S , X) as a solution to the strong distinct-prime-product root problem. ut

6 Candidate Modules Families

In the following we suggest some candidate instantiations for groups of hidden order
where the strong distinct-prime-root problem is conjectured to be hard.

6.1 Class Groups of Imaginary Quadratic Orders

The use of class groups in cryptography is first proposed by Buchmann and Williams [18].
We refer to, e.g., [16,17], for more detailed discussions. We recall the preliminaries of
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class groups necessary for our purpose. Let ∆ be a negative integer such that ∆ ≡ 0
or 1 (mod 4). The ring O∆ := Z + ∆+

√
∆

2 Z is called an imaginary quadratic order
of discriminant ∆. Its field of fractions is Q(

√
∆). The discriminant is fundamental if

∆/4 (resp. ∆) is square-free in the case of ∆ ≡ 0 (mod 4) (resp. ∆ ≡ 1 (mod 4)). If
∆ is fundamental, then O∆ is a maximal order. The fractional ideals of O∆ are of the
form q

(
aZ + b+

√
∆

2 Z
)

with q ∈ Q, a ∈ Z+, and b ∈ Z, subject to the constraint that

there exists c ∈ Z+ such that ∆ = b2 − 4ac and gcd(a, b, c) = 1. A fractional ideal can
therefore be represented by a tuple (q, a, b). If q = 1, then the ideal is called integral
and can be represented by a tuple (a, b). An integral ideal (a, b) is reduced if it satisfies
−a < b ≤ a ≤ c and b > 0 if a = c. It is known that if an ideal (a, b) is reduced, then
a ≤

√
|∆|/3. Two ideals a, b ⊆ O∆ are equivalent if there exists 0 6= α ∈ Q(

√
∆)

such that b = αa. It is known that, for each equivalence class of ideals, there exists
exactly one reduced ideal which serves as the representative of the equivalence class.
The set of equivalence classes of ideals equipped with ideal multiplication forms an
Abelian group Cl(∆) known as a class group.

Properties Useful in Cryptography. Since for all reduced ideals, |b| ≤ a ≤
√
|∆|/3,

Cl(∆) is finite. For sufficiently large |∆|, no efficient algorithm is known for finding
the cardinality of Cl(∆), also known as the class number. Group operations can be
performed efficiently, as there exists efficient algorithms for ideal multiplication and
computing reduced ideals [16]. It remains to show how a random element can be sampled
with public coin such that the corresponding strong root problem is believed to be hard.
Below, we suggest a simple candidate sampling algorithm for concreteness, and leave
the formal analysis and the design of other algorithms as an independent future work.

Assuming the extended Riemann hypothesis, Cl(∆) is generated by the classes
of all invertible prime ideals of norm smaller than 12(log |∆|)2 [3], where the norm
of a fractional ideal (q, a, b) is defined as q2a (= a for integral ideals). Since these
ideals have norms logarithmic in |∆|, they can be found in polynomial time through
exhaustive search. A random element can then be sampled by computing a power
product of the elements in the generating set, with exponents randomly chosen from
[|∆|]. Denote the generating set as {G1, . . . , Gk} and the exponents as {c1, . . . , ck}. Let
GGen be an algorithm which generates a class group Cl(∆) together with an element
A =

∏
i∈[k] G

ci
i chosen by the above method, with an additional constraint that d :=

gcd(c1, . . . , ck) = 1.
The additional constraint is (almost) necessary for the strong distinct-prime-product

root problem with respect to A to be hard: Suppose d 6= 1 and suppose further that
d can be efficiently factorized into {ei}i∈S such that d =

∏
i∈S ei for distinct primes

ei 6= 1. Define X :=
∏
i∈[k] G

ci/
∏

i∈S
ei

i . Then ({ei}i∈S , X) is a solution to the strong
distinct-prime-product root problem. Since it seems unreasonable to assume that d cannot
be efficiently factorized into a product of distinct primes (see also the discussion of
RSA-UFO below), we impose the much more reasonable restriction that d = 1. We
conjecture that the additional constraint is sufficient for the strong distinct-prime-product
root problem to be hard with respect to A sampled as above with public coin.
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6.2 RSA Groups

RSA-based cryptosystems operate over Z∗N , the group of positive integers smaller and
coprime with N , equipped with modular multiplication, where N is an integer with at
least two distinct large prime factors. The security of these systems relies on the hardness
of the (strong) root problem over Z∗N , known as the (strong) RSA assumption. Typically,
the modulus N is chosen as a product of two distinct large primes p, q. However, the
(strong) root problem over Z∗N is easy if p and q are known. In other words, for N
generated this way, Z∗N is not a (strong) root module without trusted setup.

RSA-UFOs. The problem of constructing RSA-based accumulators without trapdoors
was considered by Sander [48], who proposed a way to generate (k, ε)-“generalized RSA
moduli of unknown complete factionization (USA-UFOs)” N which has at least two
distinct k-bit prime factors with probability 1−ε, summarized as follows. LetN1, . . . , Nr
be random 3k-bit integers with r = O(log 1/ε). It is known that with constant probability
Ni has at least two distinct k-bit prime factors [48]. It then follows that N :=

∏
i∈[r] Ni

has at least two distinct k-bit prime factors. An important observation is that N can be
generated with public coin (e.g., using a random oracle). However, since N is a 3kr-bit
integer, any cryptosystem based on Z∗N seems impractical.

7 Summary of Our Results

We conclude the paper with a summary of our main results.

7.1 Arguments of Knowledge withO(λ) Communication (Theorem 1)

By Theorem 5, we obtain position binding SVC assuming the existence of strong distinct-
prime-product root modules, which is implied by the strong RSA assumption. When
instantiated with the strong RSA assumption, the public parameter pp = (RD, A,S, e),
where RD = Z∗N for some N ∈ N, can be succinctly represented by (N,A) which is of
size O(λ). This is because e is a vector of arbitrary distinct primes which can be derived
publicly, and S is uniquely determined by A and e. Furthermore, an opening consists of
a single element in Z∗N , which is again of size O(λ).

Next, by Theorem 4, we obtain a 4-move argument of knowledge system for NP as-
suming the existence of witness extractable PCPs for NP, pseudorandom generators, and
a position binding SVC. Note that witness extractable PCPs for NP exist unconditionally,
and both pseudorandom generators and position binding SVC can be obtained from the
strong RSA assumption. By the complexity analysis in Section 4.2, the resulting system
has communication O(λ).

7.2 zk-SNARK withO(λ) CRS and Proof Size in ROM (Theorem 2)

In the argument of knowledge protocol obtained above, the verifier is public-coin except
for the first message, where it sends an SVC public parameter to the prover. However,
since the public parameter is independent of the statement to be proven and can be
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reused for proving different statements, the verifier can publish the public parameter as
a common reference string, so that the remaining steps of the protocol form a 3-move
protocol in which the verifier is public-coin. We can then apply the Fiat-Shamir [28]
transformation to obtain a SNARK in the random oracle model with a CRS of size O(λ)
and O(λ) proof size.

To turn this SNARK into a zk-SNARK, we can apply a generic transformation similar
to the following.

Theorem 6 ([13]). If adaptively-sound non-interactive zero-knowledge (NIZK) argu-
ments and SNARKs exist, then zk-SNARGs exist. If furthermore the NIZK argument has
proof of knowledge (PoK) then zk-SNARKs exist.

Strictly speaking, the difference between such a transformation and the one we need, is
that our SNARK is in the random oracle model. This might be problematic because we
do not know how to prove statements involving random oracles. Below, we argue that
we can use the same transformation without any issues.

In a nutshell, the transformation consists in using SNARK to prove the existence
of a NIZKPoK proof of the existence of the witness w, instead of the existence of w
directly. Adaptive NIZKPoK (e.g., [7] and [33]) are known from standard assumptions
in the common random string model, which can be made setup-free by sampling the
string with a random oracle. In particular, the construction based on (enhanced) trapdoor
permutation [7] can be instantiated with the (strong) RSA assumption. Note that the
random oracle here is only used for generating the common random string, but is not
used for generating and verifying the NIZKPoK proof. Therefore the transformation
does not need to use SNARK to prove statements involving the random oracle.

7.3 Setup-Free zk-SNARK withO(λ) Proof Size in ROM (Theorem 3)

In order to obtain a setup-free zk-SNARK, we use SVC without trusted setup instead
in Theorem 4 and obtain a public-coin protocol. We can then apply the transformation
as described above to obtain a setup-free zk-SNARK in the random oracle model.
By Theorem 5, position binding SVC without trusted setup can be obtained assuming
the existence of strong distinct-prime-product root modules without trusted setup. As
discussed in Section 6, class groups seem to be a reasonable instantiation of such
modules.
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36. Safuat Hamdy and Bodo Möller. Security of cryptosystems based on class groups of imaginary
quadratic orders. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS,
pages 234–247, Kyoto, Japan, December 3–7, 2000. Springer, Heidelberg, Germany.
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