
Succinct Arguments from Subvector Commitments
and Linear Map Commitments

Russell W. F. Lai and Giulio Malavolta

Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract. Succinct non-interactive arguments of knowledge (SNARK) allow a
prover to convince a verifier of the validity of certain statements with a single short
message. Revisiting the “CS proofs” paradigm [Micali, FOCS 1994], we leverage
number-theoretic assumptions to construct arguments with significantly shorter
proofs. With typical computational and statistical security parameters λ ≈ 100
and k ≈ 80 respectively, two main results in the random oracle model follow.

1. There exists a setup-free SNARK with proofs of size ∼4300 bits, under the
adaptive root assumption over class groups of imaginary quadratic orders.
This is the shortest setup-free SNARK at the time of writing.

2. There exists a pre-processing SNARK with proofs consisting of 2 group
elements plus ∼250 bits (for a total of ∼750 bits), under the computational
Diffie-Hellman (CDH) assumption over pairing groups. This matches the
most efficient scheme in the same setting [Groth, EUROCRYPT 2016] but
our verifier has to compute only 2 pairings, as opposed to 3.

The common ground of both constructions is a 4-message protocol that compiles
any (possibly linear) probabilistic checkable proof (PCP) into an argument of
knowledge. The protocol is made non-interactive using the Fiat-Shamir transform.
Our main technical tool is a generalization of vector commitments called subvector
commitments (SVC). The latter allows to open a committed vector at a set of
positions, where the opening size is independent of the size of the set. We propose
two constructions under variants of the root assumption and the CDH assumption
respectively. We further generalize SVC to a notion called linear map commitments
(LMC), which allows to open a committed vector to its images under linear maps.
We propose two constructions under different assumptions over pairing groups.
LMC allows one to construct pre-processing SNARKs but with a more efficient
prover. Apart from the new application in constructing succinct arguments, SVC
and LMC have numerous other applications which may be of independent interest.

1 Introduction

An argument system allows a prover, with a witnessw, to convince a verifier that a certain
statement x is in an NP language L. In contrast with proof systems, argument systems
are only required to be computationally sound. Due to this relaxation, it is possible that
the interaction between the prover and the verifier is succinct, i.e., the communication
complexity is bounded by some polynomial poly(λ) in the (computational) security
parameter and is independent of the size of w. One can also require an argument system
to be zero-knowledge, meaning that the communication transcript can be efficiently sim-
ulated without knowing the witness. An argument is of knowledge if for any successful

prover there exists an extractor that can recover w. Finally, we say that an argument is
non-interactive if it consists of a single message from the prover to the verifier.

1.1 The Quest of Constructing Ever Shorter Arguments

Recently, much progress has been made both in theory and practice to construct zero-
knowledge succinct non-interactive arguments of knowledge (zk-SNARK) for general
NP languages. We distinguish between zk-SNARKs in the setup-free model and the
pre-processing model. In the setup-free model, the prover and the verifier do not share
any input other than the statement x to be proven. In the pre-processing model, they share
a common reference string, generated by a trusted third party, which may depend on the
language L and the statement x. In general, existing zk-SNARKs in the pre-processing
model are more efficient (at least in terms of the computational complexity of verification)
than those in the setup-free model. This reflects the intuition that pushing the majority
of the verifier’s workload to the offline pre-processing phase reduces its workload in
the online phase. On the other hand, in some applications such as cryptocurrencies it is
crucial to avoid a trusted setup. With the current landscape, one is forced to trade short
proof size and verification time with the absence of a trusted setup.

In order to compare argument systems with drastically different constructions,
throughout the paper we will consider instantiations with computational security param-
eter set to λ ≈ 100 and statistical security parameter set to k ≈ 80.

Pre-Processing SNARKs. In the pre-processing model, there exist plenty of zk-
SNARKs constructed from linear interactive proofs (LIP) and pairings in the standard
model [37]. The scheme with the shortest proofs, with 4 group elements, is due to
Danezis et al. [29]. In the generic group model, Groth [40] proposed a scheme [57] with
only 3 group elements, and showed that proofs constructed from LIP must consist of at
least 2 group elements. These schemes can be instantiated over elliptic curves. A popular
choice is “BN128” [7], in which a group element can be represented using 256 bits.

Setup-Free SNARKs. While it is known that setup-free non-interactive arguments for
NP do not exists in the standard model [14], one can circumvent this impossibility by
assuming the existence of a random oracle [8]. For a soundness parameter k, a proof in
the scheme by Micali [52] consists of a λ-bit Merkle-tree commitment of a probabilistic
checkable proof (PCP) string, O(k) bits of the PCP string, and O(k) openings of the
commitment, each of size λ log |w| bits. For concreteness, assuming |w| = 230, λ = 100,
k = 80, and the constant inO(k) is 3, the proof size is around 88 KB. In Bulletproof [23],
which improves upon Bootle et al. [18], a proof consists of 2 logn + 13 (group and
field) elements, where n is the number of multiplication gates in the arithmetic circuit
representation of the verification algorithm of L. In an instantiation over the curve
secp256k1, each of the group elements and integers can be represented by ∼256 bits,
thus a proof consists of roughly 512 logn + 3328 bits. As n grows, the difference in
proof size, when compared to those in the pre-processing model, can be quite substantial.

2

1.2 Our Results

Constructing argument systems, especially non-interactive and setup-free ones, with
even smaller proof size is of both theoretical and practical importance. In this work, we
present several families of constructions in various settings. We highlight two of them.

1. We construct a setup-free zk-SNARK in the random oracle model, under certain
variants of the root assumption over class groups of imaginary quadratic orders. The
proof size of a reasonable instantiation is 4336 bits, which is shorter than that of
Bulletproof [23] for n > 4.

2. We construct a pre-processing zk-SNARK in the random oracle model, under the
computational Diffie-Hellman (CDH) assumption over pairing groups. Instantiating
it with BN128 yields a proof size of 752 bits, and verifying a proof requires 2
pairings plus some lightweight operations. In comparison, the scheme of Groth [40],
which is sound in the generic group model, has roughly the same proof size, and
requires 3 pairings plus some lightweight operations for verification.

Construction Overview. To explain our results in more detail, we recall the notion
of probabilistic checkable proofs (PCP) [3] for NP. A PCP scheme allows the prover
to efficiently compute a PCP string which encodes the witness of the statement to be
proven. The verifier can then decide whether the statement is true by inspecting a short
substring of the PCP string. Linear PCP [44] generalizes traditional PCP in the sense that
the PCP string now encodes a linear function. The verifier, who is given oracle access to
the function, can decide the veracity of the statement by making only a few queries.

The core of our results is a 4-move argument systems for NP, which follows the
construction paradigm of Killian [46] and Micali [52]. For this explanation, it is useful
to split the system into an offline setup phase and an online proving phase. In the setup
phase, the verifier sets up the system and sends as the first move the public parameters
(or the generating randomness in the setup-free case) to the prover. This public parameter
can be reused for proving multiple statements. Next, in the proving phase, the prover
first encodes its witness for the NP statement as a PCP string, and sends the commitment
of the string to the verifier. The verifier then asks the prover to reveal some random
positions of the string. The prover responds with the values of those positions and the
corresponding openings to the commitment. Finally, the verifier checks the validity of the
openings and the revealed values, and outputs a bit deciding the truth of the statement.

Typically, an argument system under this paradigm has public-coin verifiers (at least
in the proving phase), and thus can be compiled into a non-interactive argument using
the Fiat-Shamir transform [33]. If the underlying PCP is witness-extractable, then the
argument system is of knowledge. Zero-knowledge can be obtained generically by using
one of the following approaches: An option is to replace the PCP with an (honest-verifier)
zero-knowledge PCP (e.g., [48]). Another option is to first prove the knowledge of the
witness using non-interactive zero-knowledge proof of knowledge (NIZKPoK) [31], and
then prove the knowledge of the NIZKPoK proof using the argument system.

Being the main ingredients of the construction, the efficiency of the PCP and the
commitment scheme determines the efficiency of the resulting argument system. The
majority of the paper is dedicated to formalizing and constructing commitment schemes
which are compatible with PCP schemes with varying efficiency.

3

Subvector Commitments. Previous schemes under Micali’s paradigm use a Merkle-
tree commitment to commit to the PCP string. For an encoding of size q, the commitment
size is O(λ) and the opening size is O(λ log q). Typically PCPs have only a constant
soundness error, which means that one need to amplify the probability by running k
instances of the verification. Our main idea is to replace the Merkle-tree commitment
with other commitment schemes which allow batch opening to multiple positions. With
this in mind, we study the notion of vector commitment (VC) [24].

A VC scheme [24] is a commitment scheme which allows a prover to commit to
a vector x of q messages, such that it can later open the commitment at any position
i ∈ [q] of the vector, i.e., reveal a message and show that it equals to the i-th committed
message. A VC scheme is required to be position binding, meaning that no efficient
algorithm can open a commitment at some position i to two distinct messages xi 6= x′i.
Catalano and Fiore [24] constructed two VC schemes based on the CDH assumption
over pairing groups and the RSA assumption, respectively. In both schemes, a commit-
ment and an opening both consist of a single group element (in the respective groups).
Furthermore, the scheme based on the RSA assumption has public parameters whose
size is independent of the length of the vectors to be committed.

Inspired by this work, we modify both VC constructions of Catalano and Fiore so
that the prover can open the commitment at any subset of positions I ⊆ [q], with a single
group element. Proving the security of the modified schemes requires a more complex
manipulation of the exponents. We further generalize the RSA-based scheme to work
over modules over Euclidean rings, where variants of the root assumption hold. This
enables setup-free instantiations using class groups of imaginary quadratic orders.

Formalizing the idea, we generalize VC to what we call subvector commitments
(SVC). Given a vector x of length q and an ordered index set I ⊆ [q], we define the
I-subvector of x as the vector formed by collecting the i-th component of x for all
i ∈ I . It is important that an opening to an I-subvector has size sublinear in (or even
independent of) |I|, otherwise it is not more efficient than opening a VC at |I| positions
separately. In addition to the functional differences, we define position binding without
trusted setup to capture the security of plausible setup-free instantiations. This property
says that, even if the public parameters are sampled using public coins, no efficient
algorithm can open a commitment at some index sets I and J to some I-subvector xI
and and J-subvector x′J respectively, such that there exists i ∈ I ∩ J with xi 6= x′i.

Linear Map Commitments. While argument systems constructed from (traditional)
PCPs and SVC schemes have plausible setup-free instantiations, a main drawback is that
PCP schemes typically have much less efficient provers than those in linear PCP schemes.
This motivates us to study functional commitments (FC), which were introduced by
Libert, Ramanna and Yung [49] as a generalization of VC.

Intuitively, an FC allows the prover to commit to a vector x, and opens the commit-
ment to function-value tuples (f, y) such that y = f(x). Libert, Ramanna and Yung [49]
formalized FC for linear forms f : Fq → F for some field F. Generalizing position
binding of VC, they define function binding for FC for linear forms, which means that
no efficient algorithm can open a commitment to function-value tuples (f, y) and (f, y′)
where f is a linear form and y 6= y′. This notion aims to capture the intuition that

4

the prover cannot open a commitment inconsistently. Based on the q-Diffie-Hellman
exponent (q-DHE) assumption over pairing groups, they gave a construction in which a
commitment and an opening both consist of a single group element. Note that using their
FC for linear forms and the linear PCP of Bitanski et al. [15], one can obtain an argument
system (with trusted setup) where a proof consists of 4 group and 3 field elements.

To further reduce the proof size (e.g., to 2 group and 3 field elements), we gener-
alize FC for linear forms to FC for linear maps f : Fq → Fk, similar in spirit to the
generalization of VC to SVC. We call such class of FC linear map commitments (LMC).
As in SVC, it is important to require an LMC to be compact, meaning that both the
commitment and the openings are of size sublinear in, or even independent of, q and k.
Note that an SVC can be viewed as an LMC restricted to the class of linear maps whose
matrix representation has exactly one 1 in each row and 0 everywhere else.

Naively, one may attempt to generalize function binding for FC for linear forms to
that of LMC by requiring that the prover cannot open a commitment to (f,y) and (f,y′)
with y 6= y′, where f is a linear map and y,y′ ∈ Fk are now vectors. Attempting to
prove the soundness of an argument system from this definition of function binding
suggests that the latter is insufficient. This is because the prover may be able to open
to (f,y) and (f ′,y′) where f 6= f ′ and y 6= y′ such that they form an inconsistent
system of linear equations, yet the attack is not captured by the definition. We tackle
this issue by defining a more general function binding notion (also applicable to FC for
general functions) which requires that no efficient algorithm can produce openings for
L function-value tuples {(f`,y`)}`∈[L] for any L ∈ poly(λ), such that there does not
exist x with f`(x) = y` for all ` ∈ [L].

We then modify the construction of Libert, Ramanna and Yung [49] to support batch
openings to linear forms, or equivalently opening to a linear map. Since the verification
equation of their construction is linear, a natural way to support batch openings is to
define the new verification equation as a random linear combination of previous ones.
With this observation, our first construction embeds a secret linear combination in the
public parameter, and is shown to be function binding in the generic group model (GGM).
To avoid relying on the GGM, we give a second construction which samples random
linear combinations using a random oracle. This construction achieves a weaker notion
of function binding, in which the prover must first output a commitment and then provide
openings to functions sampled by a sampler. We show that such a weaker notion is
sufficient for proving the soundness of our argument system.

Summary of Results. The main result of this work is a compiler that turns PCPs into
SNARKs. Our compiler works directly with both traditional and linear PCPs. Plugging
in different instances of SVCs or LMCs, we obtain a wide range of argument systems in
various settings. We summarize our results with a short list of constructions in the most
interesting settings by means of informal theorems. Combining traditional PCPs with
our SVCs (see Section 6) yields the following results.

Theorem 1. (Informal.) If the strong RSA assumption holds in Z∗N for some integer
N , then there exist 4-move argument systems for NP with the following properties. The
public parameter consists of N . In the proving phase, the verifier is public-coin, the

5

communication from the verifier to the prover consists of λ bits, and the communication
from the prover to the verifier consists of 2 Z∗N elements and 3k bits.

Theorem 2. (Informal.) If the adaptive root assumption holds inCl(∆), the class groups
of imaginary quadratic order with discriminant ∆, and NIZKPoK exists in the common
random string model, then there exist setup-free zk-SNARKs for NP in which a proof
consists of 2 Cl(∆) elements and 3k bits in the random oracle model.

Theorem 3. (Informal.) If the CDH assumption holds in a pairing group G, and
NIZKPoK exists in the common random string model, then there exist pre-processing
zk-SNARKs for NP in which a proof consists of 2 G elements and 3k bits in the random
oracle model. Furthermore, the verification requires 2 pairing operations.

Combining linear PCPs with an LMC scheme (see Section 7) gives us the following.

Theorem 4. (Informal.) If the q-DHE assumption holds in a pairing group G of prime
order p, and NIZKPoK exists in the common random string model, then there exist
pre-processing zk-SNARKs for NP in which a proof consists of 2 G elements and 3 Zp
elements in the random oracle model. The provers are potentially more efficient than the
schemes obtained in Theorem 3, and the verification requires 3 pairing operations.

1.3 Other Applications

Catalano and Fiore [24] suggested a list of applications of VC, including verifiable
databases with efficient updates, updatable zero-knowledge elementary databases, and
universal dynamic accumulators. In all of these applications, one can gain efficiency
by replacing the VC scheme with an SVC scheme which allows for batch opening and
updating. When instantiated with our first construction of SVC, one can further avoid
the trusted setup, which is especially beneficial to database applications as trusted third
parties are no longer required. For the applications of FCs for linear forms [49], similar
efficiency improvements can be obtained by using LMCs instead.

1.4 Related Work

Succinct arguments were introduced by Kilian [46,47] and later improved, in terms
of round complexity, by Lipmaa and Di Crescenzo [32]. Succinct non-interactive ar-
guments, or computationally sound proofs, were first proposed by Micali [52]. These
early approaches rely on PCP and have been recently extended [9] to handle interactive
oracle proofs [12] (also known as probabilistic checkable interactive proofs [54]), in
favor of a more efficient prover (but with the same asymptotics). A recent manuscript by
Ben-Sasson et al. [10] improves the concrete efficiency of interactive oracle proofs. Ishai,
Kushilevitz, and Ostrovsky [44] observed that linear PCP can be combined with a linearly
homomorphic encryption to construct more efficient arguments, with pre-processing.
Later, Groth [39] and Lipmaa [50] upgraded this approach to non-interactive proofs.

The first usage of knowledge assumptions to construct SNARKs appeared in the
work of Mie [53]. Gennaro et al. [37] presented a very elegant linear PCP that gave

6

rise to a large body of work to improve the practical efficiency of non-interactive argu-
ments [5,11,13,25,26,34,30]. All of these constructions assume a highly structured and
honestly generated common reference string (of size proportional to the circuit to be
evaluated) and rely on some variant of the knowledge of exponent assumption. Recently,
Ames et al. [2] proposed an argument based on the MPC-in-the-head [45] paradigm to
prove satisfiability of a circuit C with proofs of size O(λ

√
|C|). Zhang et al. [61] show

how to combine interactive proofs and verifiable polynomial delegation schemes to con-
struct succinct interactive arguments. The scheme requires a trusted pre-processing and
the communication complexity isO(λ log |w|). A recent result by Whaby et al. [59] intro-
duces a prover-efficient construction with proofs of sizeO(λ

√
|w|). Recent works [1,36]

investigate on the resilience of SNARKs against a subverted setup.
Libert, Ramanna, and Yung [49] constructed an accumulator for subset queries.

Although similar in spirit to SVC, the critical difference is that accumulators are not
position binding, which is crucial for the soundness of our argument system.

2 Preliminaries

Throughout this work we denote by λ ∈ N the security parameter, and by poly(λ) and
negl(λ) the sets of polynomials and negligible functions in λ, respectively. We say that a
Turing machine is probabilistic polynomial time (PPT) if its running time is bounded by
some polynomial function poly(λ). An interactive protocol Π between two machines A
and B is referred to as (A,B)Π . Given a set S, we denote sampling a random element
from S as s←$S and the output of an algorithm A on input x is written as z ← A(x).
Let ` ∈ N, the set [`] is defined as [`] := {1, . . . , `}. Vectors are written vertically.

2.1 Subvectors

We define the notion of subvectors. Roughly speaking, a subvector (xi1 , . . . , xi|I|)T is
an ordered subset (indexed by I) of the entries of a given vector (x1, . . . , xq)T .

Definition 1 (Subvectors). Let q ∈ N, X be a set, and (x1, . . . , xq)T ∈ X q be a vector.
Let I = (i1, . . . , i|I|) ⊆ [q] be an ordered index set. The I-subvector of x is defined as
xI := (xi1 , . . . , xi|I|)T .

2.2 Arguments of Knowledge

LetR : {0, 1}∗ × {0, 1}∗ → {0, 1} be an NP-relation with corresponding NP-language
L := {x : ∃w s.t.R(x,w) = 1}. We define arguments of knowledge [19] for interactive
Turing machines [38]. To be as general as possible, we define an additional setup
algorithm S, which is executed once and for all by a trusted party. If the argument is
secure without a setup, then such an algorithm can be omitted.

Definition 2 (Arguments of knowledge). A tuple (S, (P,V)Π) is a (succinct) argu-
ment of knowledge forR if the following conditions hold.
(Completeness) IfR(x,w) = 1 then Pr

y←S(1λ)
[(P(x,w, y),V(x, y))Π = 1] = 1.

7

(Argument of Knowledge) For any PPT adversary A, there exists a PPT extrac-
tor E , such that for all x, z ∈ {0, 1}∗, if there exists a constant c such that

Pr
y←S(1λ)

[(A(x, z, y),V(x, y))Π = 1] ≥ λ−c, then there exists a constant d such that

Pr[R(x,w) = 1|w ← EA(·,·,·)(x)] ≥ λ−d.
(Succinctness) The communication between P and V is at most poly(λ).

An argument of knowledge satisfies the notion of zero-knowledge if the interaction
between the prover and the verifier reveals nothing but the validity of the statement.

Definition 3 (Zero Knowledge). A tuple (S, (P,V)Π) is computationally (statistically,
resp.) zero-knowledge if for all PPT V∗ there exists a PPT S∗ such that the following
ensembles are computationally (statistically, resp.) indistinguishable{
y := S(1λ), (P(x,w, y),V∗(x, y))Π

}
λ∈N,x∈L,w s.t.R(x,w)=1 ≈ {S

∗(x)}λ∈N,x∈L .

2.3 Probabilistically Checkable Proofs

One of the principal tools in the construction of argument systems is probabilistic
checkable proofs (PCP) [3]. The PCP theorem shows that any witness w for an NP-
statement can be encoded into a PCP of length |w|(log |w|)O(1) such that it is sufficient
to probabilistically test O(1) bits of the encoded witness.

Definition 4 (Probabilistically Checkable Proofs). A pair of machines (PPCP,VPCP)
is a PCP for an NP-relationR if the following conditions hold.

(Completeness) IfR(x,w) = 1, then Pr [Vπ
PCP(x) = 1|π ← PPCP(x,w)] = 1.

(Soundness) For all x /∈ L Pr [Vπ
PCP(x) = 1] < 1

3 .

The notation Vπ
PCP(x) means that VPCP does not read the entire string π directly, but is

given oracle access to the string. On input a position i ∈ [|π|], the oracle returns the
value πi. It is well known that one can diminish the soundness error to a negligible
function by parallel repetition. We additionally require that the witness can be efficiently
recovered from the encoding of the witness π [58].

Definition 5 (Witness-Extractability). A PCP is witness-extractable if there exists a
PPT algorithm EPCP and a constant γ ∈ (0, 1) such that, given any strings x and π with
Pr [Vπ

PCP(x) = 1] ≥ 1− γ, EPCP extracts an NP witness w for x.

Linear PCPs. Ishai et al. [44] considered the notion of linear PCP, where the string π
is instead a vector in Fq for some finite field F (or in general a ring) and positive integer
q. The oracle given to the verifier is modified, such that on input f ∈ Fq, it returns the
inner product 〈f ,π〉. Note that this generalizes the classical notion of PCP as one can
recover the original definition by restricting the queries f to be unit vectors. Linear PCPs
typically feature a more efficient computation of the encodings.

8

Unpredictability. To prove the soundness of one of our constructions, we are going to
assume certain properties of the distribution of the queries of Vπ

PCP(x). Specifically, we
need to assume that such queries are unpredictable, i.e., they are hard to guess for any
PPT algorithm. In the following we formally define the notion of unpredictability for a
function sampler FSamp.

Definition 6 (Unpredictability). Let FSamp be a sampler for a function family F .
FSamp is said to be unpredictable, if for all PPT adversary A there exists a negligible
function ε(λ) ∈ negl(λ) such that

Pr

f = f ′ :
(seed, f)← A(1λ)

r←$ {0, 1}λ
f ′ ← FSamp(seed; r)

 ≤ ε(λ).

We stress that virtually all known (linear) PCPs (e.g., [44,15]) have unpredictable queries.

3 Mathematical Background and Assumptions.

To capture the minimal mathematical structure required for one of our constructions, we
follow the module-based cryptography framework of Lipmaa [51].

Background. A (left) R-module RD over the ring R (with identity) consists of an
Abelian group (D,+) and an operation ◦ : R×D → D, denoted r ◦A for r ∈ R and
A ∈ D, such that for all r, s ∈ R and A,B ∈ D, we have

– r ◦ (A+B) = r ◦A+ r ◦B,
– (r + s) ◦A = r ◦A+ s ◦A,
– (r · s) ◦A = r ◦ (s ◦A), and
– 1R ◦ r = r, where 1R is the multiplicative identity of R.

Let S = (s1, . . . , sq) ⊆ N be an ordered set, and r = (rs1 , . . . , rsq)T ∈ Rq and
A = (As1 , . . . , Asq)T ∈ Dq be vectors of ring and group elements respectively. For
notational convenience, we denote

∑
i∈S ri ◦Ai by 〈r,A〉.

A commutative ring R with identity is called an integral domain if for all r, s ∈ R,
rs = 0R implies r = 0R or s = 0R, where 0R is the additive identity of R. A ring R is
Euclidean if it is an integral domain and there exists a function deg : R→ Z+, called the
Euclidean degree, such that i) if r, s ∈ R, then there exist q, k ∈ R such that r = qs+ k
with either k = 0R, k 6= 0R and deg(k) < deg(q), and ii) if r, s ∈ R with rs 6= 0R and
r 6= 0R, then deg(r) < deg(rs). The set of units U(R) := {u ∈ R : ∃v s.t. uv = vu =
1R} contains all invertible elements in R. An element r ∈ R \ ({0R} ∪U(R)) is said to
be irreducible if there are no elements s, t ∈ R \ {1R} such that r = st. The set of all
irreducible elements of R is denoted by IRR(R). An element r ∈ R \ ({0R} ∪ U(R))
is said to be prime if for all s, t ∈ R, whenever r divides st, then r divides s or r divides
t. If R is Euclidean, then an element is irreducible if and only if it is prime.

9

Adaptive Root. The adaptive root assumption (over unknown order groups, and in partic-
ular over class groups of imaginary quadratic orders) was introduced by Wesolowski [60]
and re-formulated by Boneh et al. [17] to establish the security of the verifiable delay
function scheme of Wesolowski [60]. Here we state the same assumption over mod-
ules in two variants – with and without trusted setup – similarly as above. Note that
Wesolowski [60] and Boneh et al. [17] implicitly considered the setup-free variant.

Definition 7 (Adaptive Root (w/o Trusted Setup)). Let I be some ordered set. Let
RD = ((Ri)Di)i∈I be a family of modules. Let MGen(1λ;ω) be a deterministic algo-
rithm which picks some i ∈ I (hence some RD = (Ri)Di ∈ RD) and some element
A ∈ D. For a ring R, let IRRλ(R) ⊆ IRR(R) be some set of prime elements in R of
size 2λ. The adaptive root assumption is said to hold over the family of modules RD
with respect to IRRλ, if for any PPT adversary A there exists ε(λ) ∈ negl(λ) such that

Pr
[
e ◦ Y = X

∣∣∣∣ ω←$ {0, 1}λ; (RD, A) := MGen(1λ;ω)
X ← A(1λ, RD, A , ω); e←$ IRRλ(R);Y ← A(e)

]
≤ ε(λ),

where A is not given ω (highlighted by the dashed box). If the inequality holds even if A
is given ω, then we say that the assumption holds without trusted setup.

Strong Distinct-Prime-Product Root. We define the following variant of the “strong
root assumption” [27] over modules over Euclidean rings, which is a generalization of
the strong RSA assumption. Let RD be a module over some Euclidean ring R, and A be
an element of D. The strong distinct-prime-product root problem with respect to A asks
to find a set of distinct prime elements {ei}i∈S in R and an element Y in D such that(∏

i∈S ei
)
◦ Y = A. We define the assumption in two variants depending on whether

RD and A are sampled with public coins.

Definition 8 (Strong Distinct-Prime-Product Root (w/o Trusted Setup)). Let I be
an ordered set, RD = ((Ri)Di)i∈I be a family of modules, and MGen(1λ;ω) be a
deterministic algorithm which picks some i ∈ I (hence some RD = (Ri)Di ∈ RD) and
some element A ∈ D. The strong distinct-prime-product root assumption is said to hold
over the familyRD, if for any PPT adversary A there exists ε(λ) ∈ negl(λ) such that

Pr

 (∏i∈S ei
)
◦ Y = A

∀i ∈ S, ei ∈ IRR(R)
∀i 6= j ∈ S, ei 6= ej

∣∣∣∣∣∣
ω←$ {0, 1}λ

(RD, A) := MGen(1λ;ω)
({ei}i∈S , Y)← A(1λ, RD, A , ω)

 ≤ ε(λ),

where A is not given ω (highlighted by the dashed box). If the inequality holds even if A
is given ω, then we say that the assumption holds without trusted setup.

Lipmaa [51] defined several variants of the (strong) root assumption with respect to a
random element in D sampled with private coin, given the description of the module RD
sampled with public coin. Note that the strong distinct-prime-product root assumption
(resp. without trusted setup) is weaker than the strong root assumption (resp. without
trusted setup), where the latter requires the adversary to simply output (e, Y) such that
e 6= 1R and e ◦ Y = A. It is apparent that the strong distinct-prime-product root
assumption over RSA groups is implied by the strong RSA assumption.

10

4 Functional Commitments

Functional commitments (FC) for linear functions, specifically for linear forms f :
Fq → F for some field F, were introduced by Libert, Ramanna and Yung [49] and is a
generalization of vector commitments (VC) introduced by Catalano and Fiore [24]. Here
we refine the notion to capture a more general class of function families, which allows
the prover to open a commitment to the output of multiple functions or, equivalently,
to the output of a multi-output function. We also extend the syntax of FC to include
mechanisms for changing a subset of entries of the committed vector, while updating the
commitment strings and openings accordingly.

Definition 9 (Functional Commitments (FC)). Let q, n ∈ poly(λ) be positive inte-
gers, and F ⊆ {f : X q → Yn} be a family of functions defined over some spaces X and
Y . A functional commitment scheme FC for a function family F consists of the following
PPT algorithms (Setup,Com,Open,Verify):

Setup(1λ,F ;ω): The deterministic setup algorithm inputs the security parameter 1λ, the
description of the function family F , and a random tape ω. It outputs a public parameter
pp. We assume that all other algorithms input pp which we omit.

Com(x): The committing algorithm inputs a vector x ∈ X q. It outputs a commitment
string C and some auxiliary information aux.

Open(f,y, aux): The opening algorithm inputs a function f ∈ F , an image y ∈ Yn,
and some auxiliary information aux. It outputs a proof Λ that y = f(x).

Verify(C, f,y, Λ): The verification algorithm inputs a commitment string C, a function
f ∈ F , an image y, and a proof Λ. It accepts (i.e., it outputs 1) if and only if C is a
commitment to x and y = f(x).

Definition 10 (Correctness). A functional commitment scheme FC for the function
family F is said to be correct if, for any security parameter λ ∈ N, random tape
ω ∈ {0, 1}λ, public parameters pp ∈ Setup(1λ,F ;ω), x ∈ X q, function f ∈ F ,
(C, aux) ∈ Com(x), Λ ∈ Open(f, f(x), aux), there exists ε(λ) ∈ negl(λ) such that

Pr [Verify(C, f, f(x), Λ) = 1] ≥ 1− ε(λ).

We next generalize the notion of function binding for FC for general function families.
For linear forms, as considered by Libert, Ramanna and Yung [49], it is required that it is
hard to open a commitment to (f, y) and (f, y′) where y 6= y′. When considering broader
classes of functions, such as linear maps where the target space is multidimensional,
each opening defines a system of equations. Note that in this case one might be able to
generate an inconsistent system with just a single opening, or generate openings to (f, y)
and (f ′, y′) with f 6= f ′ but the systems defined by the tuples are inconsistent. Therefore,
our definition explicitly forbids the adversary to generate inconsistent equations.

Definition 11 (Function Binding (w/o Trusted Setup)). A functional commitment FC
for the function family F is function binding if for any PPT adversary A and L ∈

11

poly(λ), there exists a negligible function ε(λ) ∈ negl(λ) such that

Pr

∀` ∈ [L], Verify(C, f`,y`, Λ`) = 1
@x ∈ X q s.t. ∀` ∈ [L], f`(x) = y`

∣∣∣∣∣∣
ω←$ {0, 1}λ

pp← Setup(1λ,F ;ω)
(C, {(f`,y`, Λ`)}`∈[L])← A(1λ, pp , ω)

≤ ε(λ)

where A is not given ω (highlighted by the dashed box). If the inequality holds even if A
is given ω, then we say that FC is function binding without trusted setup.

For the purpose of constructing argument systems, it turns out that the above property
is more than what is necessary. We therefore define a weaker variant below which is
still sufficient for the purpose. In this variant, the adversary is split into two stages A1
and A2. In the first stage, A1 outputs a commitment string C. A set of functions is then
sampled using some sampling algorithm FSamp and is given to A2. The latter must
then produce openings of the commitment C with respect to these functions and their
respective function values, such that all openings pass the verification, yet the function-
value tuples are inconsistent. Apparently function binding implies weak function binding
with respect to any function sampler.

Definition 12 (Weak Function Binding (w/o Trusted Setup)). A functional commit-
ment FC for the function family F is weakly function binding with respect to the function
sampler FSamp, if for any PPT adversary A = (A1,A2) and L ∈ poly(λ), there exists
a negligible function ε(λ) ∈ negl(λ) such that

Pr

∀` ∈ [L], Verify(C, f`,y`, Λ`) = 1
@x ∈ X q s.t. ∀` ∈ [L], f`(x) = y`

∣∣∣∣∣∣∣∣∣∣∣∣

ω←$ {0, 1}λ
pp← Setup(1λ,F ;ω)

(C, seed, state)← A1(1λ, pp , ω)
∀` ∈ [L], r`←$ {0, 1}λ

∀` ∈ [L], f` ← FSamp(seed; r`)
{(y`, Λ`)}`∈[L] ← A2(state, {f`}`∈[L])

≤ ε(λ)

whereA does not receive ω (highlighted by the dashed box) as an input. If the inequality
holds even if A receives ω as an input, then we say that FC is weakly function binding
with respect to FSamp without trusted setup.

Theorem 5. Let FC be a functional commitment for a function familyF . If FC is function
binding (resp. without trusted setup), then for any PPT function sampler FSamp for F ,
FC is weakly function binding with respect to FSamp (resp. without trusted setup).

Since we are considering more general classes of function families, it is meaningful
to consider a new property of FC that we call compactness, which requires that the size
of the commitment strings and the openings are not only independent of the length of the
committed message, but also independent of the description of the function. In particular,
it does not depend on the length of outputs of the functions.

12

Definition 13 (Compactness). A functional commitment FC for the function family F
is compact if there exists a universal polynomial p ∈ poly(λ) (independent of q and n),
such that for any random tape ω ∈ {0, 1}λ, public parameters pp ∈ Setup(1λ,F ;ω),
vector x ∈ X q , function f ∈ F , (C, aux) ∈ Com(x), Λ ∈ Open(f, f(x), aux), it holds
that |C| ≤ p(λ) and |Λ| ≤ p(λ).

We remark that hiding properties, which require that the commitment strings do not
leak information about the committed messages, was defined for FC [49] and VC [24]
respectively. The definition of VC [24] also requires the commitment strings and the
openings to be efficiently updatable. Since for the purpose of this paper, we do not require
our FC schemes to be hiding nor updatable, we omit their definitions. Nevertheless, these
properties can be defined and supported using existing techniques [49,24].

Finally, we remark that by letting F be the family of linear forms from X q to X ,
we recover the definition of functional commitments for linear forms [49]. By letting
F to be the family of point functions from X q to X , which are functions that input
(x1, . . . , xq) ∈ X q and output xi for some i ∈ [q], we recover the definition of VC [24].

4.1 Linear Map Commitments

In the remaining parts of the paper, we will focus on FC for linear maps. That is, we
let X = Y = R for some Euclidean ring R, q and n be positive integers, and F be the
family of linear maps from Rq to Rn. We call such FC linear map commitments (LMC).
Note that any linear map from Rq to Rn can be represented by a matrix F ∈ Rn×q .

Subvector Commitments. We also consider a special case of linear maps where each
map in F can be represented by an n-by-q binary matrix where each row contains exactly
one 1 and 0 everywhere else, or equivalently by a tuple (f1, . . . , fn) ∈ [q]n with possibly
repeated entries. As illustrated by the following example, this essentially corresponds to
the selection of a subvector of the original vector x ∈ Rq .0, 0, 0, 0, 1, 0, 0

0, 1, 0, 0, 0, 0, 0
0, 0, 0, 0, 0, 0, 1

x =

x5
x2
x7

 = x(5,2,7).

We refer to this special class of FC as subvector commitments (SVC). Due to the simple
functionality of SVC, its syntax can be slightly simplified. First, the function family F
can be represented by q. Next, consider the verification algorithm Verify(C,F,y, Λ) of an
SVC, where F = (f1, . . . , fn) ∈ [q]n. Suppose that F contains repeated entries yet the
corresponding entries in y are different. That is, there exists i, j ∈ [n] with i 6= j, fi = fj ,
and yi 6= yj . As such a tuple (F,y) is inconsistent when interpreted as a linear system
of equations, the verification algorithm can simply output 0 without further computation.
Therefore, without loss of generality, we assume that the verification algorithm takes
as input an ordered index set I ⊆ [q] and an I-subvector xI instead of F ∈ [q]n and
y ∈ Fn respectively, and is written as Verify(C, I,xI , Λ). Correspondingly, the opening
algorithm also takes as input I and xI , instead of F and y respectively.

13

We can also simplify the binding definition of SVC. Let {(I`,xI`)}`∈L be a set
of tuples of ordered index sets and subvectors. Suppose the set is inconsistent when
interpreted as a system of linear equations, then there must exist i ∈ I` ∩ I`′ , for some
` and `′, such that x`,i 6= x`′,i. Therefore it suffices to show that it is infeasible for an
adversary to produce a commitment C and a tuple (I, J,xI ,x′J , ΛI , Λ′J) such that both
ΛI and Λ′J are valid openings of C to (I,xI) and (J,x′J) respectively, but there exists
i ∈ I ∩ J such that xi 6= x′i. Conversely, if no efficiently adversary can produce such a
tuple, then no efficient adversary against function binding exists either. For this reason,
we re-state the definition of function binding of SVC in the following simpler form. We
call this equivalent property position binding, as it can be seen as a generalization of the
position binding property of vector commitments [24].

Definition 14 (Position Binding for SVC (without Trusted Setup)). A subvector com-
mitment SVC is position binding if for any PPT adversary A, there exists a negligible
function ε(λ) ∈ negl(λ) such that

Pr

Verify(C, I,xI , ΛI) = 1
Verify(C, J,x′J , Λ′J) = 1
∃i ∈ I ∩ J s.t. xi 6= x′i

∣∣∣∣∣∣
ω←$ {0, 1}λ

pp← Setup(1λ, q;ω)
(C, I, J,xI ,x′J , ΛI , Λ′J)← A(1λ, pp , ω)

 ≤ ε(λ)

where A is not given ω (highlighted by the dashed box). If the inequality holds even if A
is given ω, then we say that SVC is function binding without trusted setup.

Theorem 6. Let SVC be a subvector commitment scheme. SVC is position binding (resp.
without trusted setup) if and only if SVC is function binding (resp. without trusted setup).

5 Succinct Arguments of Knowledge for NP

We construct interactive arguments of knowledge either from (traditional) PCPs and sub-
vector commitments (Section 6), or from linear PCPs [44] and linear map commitments
(Section 7). The constructions for both cases are in fact identical.

Let (PPCP,VPCP) be a witness extractable (linear) PCP over some field F for NP with
q being a bound on the size of the encoded proof, r being a bound on the length of the
random coins of the possibly adaptive verifier, h being a bound on the number of queries
made by VPCP, and k being a statistical security parameter. We will set k = O(λ) so
that γk ∈ negl(λ), where γ ∈ (0, 1) is the soundness constant associated with the PCP
(see Definition 5). Let PRG : {0, 1}λ → {0, 1}k·r be a pseudo-random generator and
let FC := (Setup,Com,Open,Verify) be a linear map commitment for some function
family F ⊆ {f : Fq → Fhk}, possibly without trusted setup. We present a 4-move
interactive argument of knowledge in Figure 1.

5.1 Protocol Description

We first describe some subroutines to be used in the protocol. We construct polynomial
time algorithms Record, Reconstruct, and Decide which perform the following:

14

S(1λ;ω)

ω←$ {0, 1}λ

pp← Setup(1λ,F ;ω)
return y := (pp , ω)

P(x,w, y) V(x, y)
π ← PPCP(x,w)
(C, aux)← Com(π)

C−−−−−−−−→
α←$ {0, 1}λ

α←−−−−−−−−
ρ1‖ . . . ‖ρk ← PRG(α) ρ1‖ . . . ‖ρk ← PRG(α)
∀i ∈ [k], Fi := Record(x,π, ρi)
yi := Fiπ

F := [FT1 | . . . |FTk]T

y := [yT1 | . . . |yTk]T

Λ← Open(F,y, aux)
Λ,y1, . . . ,yk−−−−−−−−→

∀i ∈ [k], Fi := Reconstruct(x,yi, ρi)
F := [FT1 | . . . |FTk]T

y := [yT1 | . . . |yTk]T

b0 := Verify(C,F,y, Λ)
∀i ∈ [k], bi := Decide(x,yi, ρi)

return b0 ∩
(⋂

i∈[k] bi

)
Fig. 1: Succinct Argument of Knowledge for NP

– Record: On input a statement x, a proof π, a randomness ρ, it runs Vπ
PCP(x; ρ) and

records the queries f1, . . . ,fh ∈ Fq made by VPCP. It outputs a query matrix
F := [f1| . . . |fh]T ∈ Fh×q .

– Reconstruct: On input a statement x, a response vector y ∈ Fh, and a randomness
ρ, it runs Vπ

PCP(x; ρ) by simulating the oracle π using the response vector y. That is,
when VPCP makes the i-th query fi for i ∈ [h], it responds by returning the value yi.
It outputs a query matrix F := [f1| . . . |fh]T ∈ Fh×q .

– Decide: On input a statement x, a response vector y ∈ Fh, it runs Vπ
PCP(x; ρ) by

simulating the oracle π as in Reconstruct, and outputs whatever Vπ
PCP(x; ρ) outputs.

It is clear that for any strings x and π and randomness ρ, if y is formed in such a way
that yi is the response to the i-th query made by Vπ

PCP(x; ρ), then Record(x,π, ρ) =
Reconstruct(x,y, ρ), and Decide(x,y, ρ) = Vπ

PCP(x; ρ).

15

We now describe the protocol. The setup algorithm S samples a random string ω and
computes the public parameters pp of FC using ω. It outputs pp if an FC with trusted
setup is used, which results in an argument system with private-coin setup. Alternatively,
if an FC without trusted setup is used, it outputs additionally ω (as highlighted in the
dashed box). This results in a public-coin setup.

In the rest of the protocol, the verifier is entirely public-coin. On input the public
parameter pp, the statement x and the witness w, the prover P produces π as the PCP
encoding of the witness w, then it commits to π and sends its commitment C to the
verifier V . Upon receiving the commitment C, V responds with a random string α. The
prover P stretches α with a PRG into ρ1‖ . . . ‖ρk and executes VPCP on ρi for i ∈ [k].

The prover P then records the sets of queries Fi = Record(x,π, ρi) of VPCP using
randomness ρi to π, and computes the responses yi = Fiπ. Let F and y be the vertical
concatenation of Fi and yi respectively for i ∈ [k]. It computes the opening Λ of the
commitment C to the tuple (F,y). The opening Λ along with the responses y1, . . . ,yk
are sent to the verifier V .

The verifier V runs Reconstruct(x,yi, ρi) to reconstruct the query matrices Fi for
each i ∈ [k]. It then reconstructs the tuple (F,y) and checks if Λ is a valid opening of C
to (F,y). Finally, it checks if Decide(x,yi, ρi) returns 1 for all i ∈ [k]. If all checks are
passed, it outputs 1. Otherwise, it outputs 0.

5.2 Analysis

Clearly, if (PPCP,VPCP) is a linear PCP, and FC is an LMC, then the argument system
is complete. Alternatively, if (PPCP,VPCP) is a traditional PCP, and FC is an SVC, then
the system is also complete. The succinctness of the system follows directly from the
compactness of FC. Next, we show that the argument system is of knowledge by the
following theorem. Due to space constraints, we refer to Section C.1 for a full proof.

Let FSamp be the following algorithm. It takes as input a statement x,
vectors (y1, . . . ,yk), and randomness α. It runs ρ1‖ . . . ‖ρk ← PRG(α), and
Fi ← Reconstruct(x,yi, ρi) for i ∈ [k]. It then sets F to be the vertical concatenation
of F1, . . . , Fk, and outputs F .

Theorem 7. Let (PPCP,VPCP) be a witness extractable PCP for NP, PRG be a pseudo-
random generator, and FC := (Setup,Com,Open,Verify) be weakly function binding
with respect to FSamp (resp. without trusted setup). Let k = O(λ). Then the protocol
in Figure 1 is a (resp. public-coin) argument of knowledge.

By Theorem 5, a function binding FC is also weakly function binding with respect to
any function sampler. We therefore have the following corollary.

Corollary 1. Let (PPCP,VPCP) be a witness extractable PCP for NP, PRG be a pseudo-
random generator, and FC := (Setup,Com,Open,Verify) be function binding (resp.
without trusted setup). Let k = O(λ). Then the protocol in Figure 1 is a (resp. public-
coin) argument of knowledge.

16

6 Subvector Commitments

Subvector commitments (SVC) capture a specific class of functional commitments that
allow the prover to open to subvectors of the committed vector. The proofs are compact
in the sense that do not depend neither on the size of the committed vector, nor on the
size of the output subvector. SVCs constitute the main cryptographic building block to
instantiate succinct arguments using standard PCPs in Section 5.

We give two direct constructions of SVC, one from modules over Euclidean rings
where certain variants of the root assumption hold, and one from pairing groups where
the CDH assumption holds. Our constructions are inspired by the work of Catalano and
Fiore [24] and extend the opening algorithms of their vector commitment schemes to
simultaneously handle multiple positions. These modifications introduce several compli-
cations in the security proofs that require a careful manipulation of the exponents. It is
worth noting that SVC can also be generically constructed from linear map commitments
(e.g., those constructed in Section 7), by restricting the class of linear maps. However, the
resulting schemes would require pairing groups and somewhat stronger number-theoretic
assumptions (see Section 7 for further details).

6.1 SVC from Modules over Euclidean Rings

Our first SVC scheme relies on modules over Euclidean rings where some variants
of the root problem (the natural generalization of the RSA problem over composite
order groups) is hard. Let q ∈ poly(λ) be a positive integer. Let MGen be an efficient
module sampling algorithm as defined in Section 3 and let R be an Euclidean ring
sampled by MGen. Let IRRλ(R) be a set of prime elements in R of size 2λ. Let
H : {0, 1}∗ → IRRλ(R)q be a prime-valued function which maps finite bit strings
to tuples of q distinct elements in IRRλ(R). That is, for all string s ∈ {0, 1}∗, if
(e1, . . . , eq) = H(s), then ei 6= ej for all i, j ∈ [q] where i 6= j. Let X := {0R, 1R}1

where 0R and 1R are the additive and multiplicative identity elements of R respectively.
We construct our first subvector commitment scheme in Figure 2.

Note that in the opening algorithm, it is required to compute

ΛI :=
(∏
i∈I

ei

)−1

◦ 〈x[q]\I ,S[q]\I〉.

Although multiplicative inverses of ring elements do not exist in general, and if so, they
may be hard to compute, the above are efficiently computable because, for all i ∈ [q] \ I
and hence for all i ∈ J \ I , we have

Si :=

 ∏
j∈[q]\{i}

ej

 ◦X =

∏
j∈I

ej
∏

j∈[q]\(I∪{i})

ej

 ◦X.
The correctness of the construction follows straightforwardly by inspection. Depending
on the instantiation of H , we can prove our scheme secure against different assumptions:

1 In general, X can be set such that for all x, x′ ∈ X , gcd(x− x′, ei) = 1 for all i ∈ [q].

17

Setup(1λ, q;ω)

(RD, X)←$ MGen(1λ, ω)
(e1, . . . , eq)← H(RD, X)

∀i ∈ [q], Si :=
(∏

j∈[q]\{i} ej

)
◦X

S := (S1, . . . , Sq)T , e := (e1, . . . , eq)
return pp := (RD, X,S, e)

Com(x)

return (C, aux) := (〈x,S〉,x)

Open(I,x′I , aux)

parse aux as x

ΛI :=
(∏

i∈I ei
)−1 ◦ 〈x[q]\I ,S[q]\I〉

return ΛI

Verify(C, I,x′I , ΛI)

b0 := (x′I ∈M|I|)

b1 := (C = 〈x′I ,SI〉+
(∏

i∈I ei
)
◦ ΛI)

return b0 ∩ b1

Fig. 2: SVC from variants of the root assumption.

– H is a (non-cryptographic) hash: Our construction is secure if the strong distinct-
prime-product root assumption (introduced in Section 3) holds over the module
familyRD. This is shown in Theorem 8.

– H is a random oracle: Our construction is secure if the adaptive root problem
(introduced in [17]) is hard over the module family. This is shown in Theorem 9.

Theorem 8. If the strong distinct-prime-product root assumption holds over the module
familyRD (resp. without trusted setup), then the scheme in Figure 2 is position binding
(resp. without trusted setup).

Proof. Suppose not, let A be a PPT adversary such that

Pr

Verify(C, I,xI , ΛI) = 1
Verify(C, J,x′J , Λ′J) = 1
∃i ∈ I ∩ J s.t. xi 6= x′i

∣∣∣∣∣∣
ω←$ {0, 1}λ

pp← Setup(1λ, q;ω)
(C, I, J,xI ,x′J , ΛI , Λ′J)← A(1λ, pp , ω)

 > 1
f(λ)

for some polynomial f(λ) ∈ poly(λ), where A gets ω as input (highlighted by the
dashed box) only in the variant without trusted setup. We construct an algorithm C as
follows, whose existence contracts the fact thatRD is a strong distinct-prime-product
root modules family (without trusted setup).

In the with-trusted-setup setting, C receives as input (RD, A) generated by
MGen(1λ;ω) for some ω←$ {0, 1}λ. It sets X := A, and computes (e1, . . . , eq) ←
H(RD, X). It then sets Si :=

(∏
j∈[q]\{i} ej

)
◦X for all i ∈ [q], S := (S1, . . . , Sq)T ,

and e := (e1, . . . , eq). It sets pp := (RD, X,S, e) and runs A on input (1λ, pp). In
the without-trusted-setup setting, C receives additionally ω and runs A on (1λ, pp, ω)
instead. In any case, it is clear that pp and ω obtained above distribute identically as

{(pp, ω) : ω←$ {0, 1}λ; pp← Setup(1λ, q;ω)}λ.

Hence, with probability at least 1/f(λ), C obtains (C, I, J,xI ,x′J , ΛI , Λ′J) such that

〈xI ,SI〉+
(∏
i∈I

ei

)
◦ ΛI = 〈x′J ,SJ〉+

(∏
i∈J

ei

)
◦ Λ′J

18

which implies

〈xI\J ,SI\J〉 − 〈x′J\I ,SJ\I〉+ 〈xI∩J − x′I∩J ,SI∩J〉

=
(∏
i∈I∩J

ei

) ∏
i∈J\I

ei

 ◦ Λ′J −
 ∏
i∈I\J

ei

 ◦ ΛI
 .

Recall that Si =
(∏

j∈[q]\{i} ej

)
◦A. Define δi :=

xi i ∈ I \ J
−x′i i ∈ J \ I
xi − x′i i ∈ I ∩ J

and

Λ :=
((∏

i∈J\I ei

)
◦ Λ′J −

(∏
i∈I\J ei

)
◦ ΛI

)
. C obtains ∑

i∈I∪J
δi

∏
j∈[q]\{i}

ej

 ◦A =
(∏
i∈I∩J

ei

)
◦ Λ.

LetK0 := {i ∈ I ∩J : δi = 0R} andK1 := {i ∈ I ∪J : δi 6= 0R}. Next, we show that
d := gcd

(∑
i∈I∪J δi

∏
j∈[q]\{i} ej ,

∏
i∈I∩J ei

)
=
∏
j∈K0

ej . Furthermore, suppose
that this is the case, we have (I ∩ J) \K0 6= ∅ since there exists i ∈ I ∩ J such that
δi = xi − x′i 6= 0R. To prove the above, we first note that

∑
i∈I∪J

δi
∏

j∈[q]\{i}

ej =
∑
i∈K1

δi
∏

j∈[q]\{i}

ej =
∏

j∈[q]\(I∪J)

ej

∑
i∈K1

δi
∏

j∈(I∪J)\{i}

ej

 .

Hence

d = gcd

∑
i∈K1

δi
∏

j∈(I∪J)\{i}

ej ,
∏
i∈I∩J

ei

=
∏
j∈K0

ej · gcd

∑
i∈K1

δi
∏

j∈(I∪J)\(K0∪{i})

ej ,
∏

i∈(I∩J)\K0

ei

 .

It remains to show that d′ := gcd
(∑

i∈K1
δi
∏
j∈(I∪J)\(K0∪{i}) ej ,

∏
i∈(I∩J)\K0

ei

)
=

1R. Suppose not, let d′ =
∏
i∈L ei for some L ⊆ (I ∩ J) \K0. Suppose ` ∈ L 6= ∅.

This means δ` 6= 0R and hence ` ∈ K1. Then there exists r ∈ R such that

e` · r =
∑
i∈K1

δi
∏

j∈(I∪J)\(K0∪{i})

ej

=δ`
∏

j∈(I∪J)\(K0∪{`})

ej + e`
∑

i∈K1\{`}

δi
∏

j∈(I∪J)\(K0∪{i})

ej .

Let r′ := r −
∑
i∈K1\{`} δi

∏
j∈(I∪J)\(K0∪{i}) ej . We have

e` · r′ = δ`
∏

j∈(I∪J)\(K0∪{`})

ej .

19

Since δ` 6= 0R, i.e., δ` ∈ {−1R, 1R}, the above contradicts the fact that e` is a prime
element. Thus we must have L = ∅ and hence d′ = 1R.

Now that we have concluded d = gcd
(∑

i∈I∪J δi
∏
j∈[q]\{i} ej ,

∏
i∈I∩J ei

)
=∏

j∈K0
ej , C can use the extended Euclidean algorithm to find a, b ∈ R such that

a
∑
i∈I∪J

δi
∏

j∈[q]\{i}

ej + b
∏
i∈I∩J

ei =
∏
j∈K0

ej .

Multiplying this to A, it gets ∏
j∈K0

ej

 ◦A =

a ∑
i∈I∪J

δi
∏

j∈[q]\{i}

ej + b
∏
i∈I∩J

ei =
∏
j∈K0

ej

 ◦A
=
(
a
∏
i∈I∩J

ei

)
◦ Λ+

(
b
∏
i∈I∩J

ei

)
◦A

=
(∏
i∈I∩J

ei

)
(a ◦ Λ+ b ◦A) .

Since (I ∩ J) \K0 6= ∅, C can set S := (I ∩ J) \K0 and Y := (a ◦ Λ+ b ◦A), and
output ({ei}i∈S , Y) as a solution to the strong distinct-prime-product root problem. ut

Remark 1. Note that the proof of Theorem 8 does not rely on any properties of the
function H other than that it outputs distinct primes. In particular, the primes output by
H need not be (pseudo)random.

Theorem 9. If the adaptive root assumption holds over the module family RD with
respect to IRRλ (resp. without trusted setup), then the scheme in Figure 2 is position
binding (without trusted setup) in the random oracle model.

Proof. The proof is similar to that of Theorem 8 except with a few changes which we
highlight below. Let H : {0, 1}∗ → IRRλ(R)q be modeled as a random oracle to which
A has oracle access. Similar to the proof of Theorem 8, we will construct an algorithm
C whose existence contracts the fact that the adaptive root assumption holds overRD
(without trusted setup) in the random oracle model.
C simulates the public parameters pp slightly differently. In the with-trusted-setup

setting, C receives as input (RD, A) generated by MGen(1λ;ω) for some ω←$ {0, 1}λ.
It sets X := A, and receives a random prime element e←$ IRRλ(R). C chooses a
random index i∗←$ [q], and sets ei∗ := e. For the other indices i ∈ [q] with i 6= i∗,
it samples ei←$ IRRλ(R) with the constraint that ei 6= ej for all i, j ∈ [q] where

i 6= j. It then sets Si :=
(∏

j∈[q]\{i} ej

)
◦ X for all i ∈ [q], S := (S1, . . . , Sq)T ,

and e := (e1, . . . , eq). It sets pp := (RD, X,S, e) and runs AH on input (1λ, pp). C
simulates the random oracle H for A by programming H(RD, X) := (e1, . . . , eq), and
answering all other queries by sampling random distinct primes from IRR(R)q. In the
setup-free setting, C receives additionally ω and runs AH on (1λ, pp, ω) instead.

20

Setup(1λ, q;ω)

(p,G,GT , G, e)← GGen(1λ;ω)
∀i ∈ [q], zi ←$ Zp
∀i, i′ ∈ [q], Gi := Gzi , Hi,i′ := Gzizi′

pp :=
(
p,G,GT , G, {Gi}i∈[q],
{Hi,i′}i,i′∈[q],i 6=i′ , e

)
return pp

Com(x)

return (C, aux) :=

∏
i∈[q]

Gxii ,x

Open(I,x′I , aux)

parse aux as x

return ΛI :=
∏
i∈I

∏
i′ /∈I

H
xi′
i,i′

Verify(C, I,x′I , ΛI)

b0 := (x′I ∈ X |I|)

b1 :=

(
e

(
C∏

i∈I G
xi
i

,
∏
i∈I

Gi

)
= e(ΛI , G)

)
return b0 ∩ b1

Fig. 3: SVC from CDH.

Using the same argument as in the proof of Theorem 8, with probability at least
1/f(λ) for some f ∈ poly(λ), C obtains a tuple ({ei}i∈S , Y) such that

(∏
i∈S ei

)
◦Y =

X (since X = A). Conditioned on this event, with probability at least 1/q, it holds that
i∗ ∈ S. If that is the case, then C sets Y ′ :=

(∏
i∈S\{i∗} ei

)
◦ Y which satisfies

e ◦ Y ′ = ei∗ ◦ Y ′ = X . It thus output Y ′ as a solution to the adaptive root problem. ut

Optimizations. We observe that the values S1, . . . , Sq do not depend on the committed
vector and can be precomputed by both parties. Also, the two assumptions offer a tradeoff
in terms of verifier efficiency: The main workload for the verifier is to compute the term(∏

i∈I ei
)
◦ ΛI . Assuming R = Z, and the term is computed by repeated squaring, the

complexity of the computation depends on the bit-length of the primes ei. In the adaptive
root assumption, the primes (e1, . . . , eq) are sampled randomly from a set of primes of
size 2λ, therefore representing each prime requires at least λ bits. On the other hand,
under the strong distinct-prime-product root assumption we can set (e1, . . . , eq) to be
the smallest q primes. Since q ∈ poly(λ), each prime can be represented by O(log λ)
bits. This greatly reduces the computational effort of the verifier.

6.2 SVC from the Computational Diffie-Hellman Assumption

Next we present our SVC construction from pairing groups. The public parameters
consist of a set of random elements {Gi = Gzi}i∈[q] and their pairwise “Diffie-Hellman
products” Hi,i′ = Gzizi′ with i 6= i′. To commit to a vector x one computes C :=∏
iG

xi
i . The opening of a subvector xI is then

∏
i∈I
∏
i′ /∈I H

xi′
i,i′ . Note that since i ∈ I

and i′ /∈ I , it is always true that i 6= i′. Therefore the product is efficiently computable
for an honest prover. The relation can be easily checked using the pairing. A shortcoming
of this scheme is that the public parameters grow quadratically with the vector size q.

21

Let GGen be an efficient bilinear group sampling algorithm (defined in Section B).
Let (p,G,GT , G, e) be a group description output by GGen. Let X := Zp. Our second
subvector commitment scheme is shown in Figure 3. In the following we show that our
SVC scheme is position binding. Since the public parameters are highly structured, we
can only prove function binding in the presence of a trusted-setup.

Theorem 10. If the computational Diffie-Hellman (CDH) assumption holds with respect
to GGen, then the scheme in Figure 3 is position binding.

Proof. Suppose not, let A be a PPT adversary such that

Pr

Verify(C, I,xI , ΛI) = 1
Verify(C, J,x′J , Λ′J) = 1
∃i ∈ I ∩ J s.t. xi 6= x′i

∣∣∣∣∣∣
ω←$ {0, 1}λ

pp← Setup(1λ, q;ω)
(C, I, J,xI ,x′J , ΛI , Λ′J)← A(1λ, pp)

 > 1
f(λ)

for some f(λ) ∈ poly(λ). We construct a square-DH solver C, which implies a CDH
solver [6], as follows.
C receives as input (p,G,GT , G,H, e), where (p,G,GT , G, e) ← GGen(1λ) and

H = Gz for some random z←$ Zp, and must output Gz
2
. It picks an index i∗←$ [q]

and set Gi∗ := H . Symbolically, let zi∗ := z, which is not known by C. For the
other indices i, i′ ∈ [q] \ {i∗}, it samples zi←$ Zp and sets Gi := Gzi and Hi,i′ :=
Gzizi′ . It also sets Hi∗,i = Hi,i∗ = Gzzi for each i ∈ [q] \ {i∗}. It then sets pp =
(p,G,GT , G, {Gi}i∈[q], {Hi,i′}i,i′∈[q],i6=i′ , e), which is identically distributed as pp out-
put by Setup. C runs A on input (1λ, pp). With probability at least 1/f(λ), it obtains
(C, I, J,xI ,x′J , ΛI , Λ′J) such that Verify(C, I,xI , ΛI) = 1, Verify(C, J,x′J , Λ′J) = 1,
and ∃i ∈ I ∩ J s.t. xi 6= x′i. Conditioning on the above, with probability 1/q, it holds
that i∗ ∈ I ∩ J and xi∗ 6= x′i∗ . By examining the verification equations, we have

e(
∏
i∈I

Gxii ,
∏
i∈I

Gi) · e(ΛI , G) = e(
∏
i∈J

G
x′i
i ,
∏
i∈J

Gi) · e(ΛJ , G)

e(
∏
i∈J

G
x′i
i ,
∏
i∈J

Gi) · e(
∏
i∈I

G−mii ,
∏
i∈I

Gi) = e(Λ,G), where Λ := ΛI/ΛJ

(
∑
i∈J

zix
′
i)(
∑
i∈J

zi)− (
∑
i∈I

zixi)(
∑
i∈I

zi) = logG Λ

αz2
i∗ + βzi∗ + γ = logG Λ

where

α := (x′i∗ − xi∗) β :=
∑

i∈J\{i∗}

zi(x′i + x′i∗)−
∑

i∈I\{i∗}

zi(xi + xi∗)

γ := (
∑

i∈J\{i∗}

zix
′
i)(

∑
i∈J\{i∗}

zi)− (
∑

i∈I\{i∗}

zixi)(
∑

i∈I\{i∗}

zi)

are computable by C since they do not depend on z = zi∗ . C then outputs Gz
2 =(

Λ
HβGγ

)1/α
which is the solution to the square-DH instance. ut

22

Setup(1λ,F ;ω)

(p,G,GT , G, e)← GGen(1λ;ω)
α, z1, . . . , zn ←$ Zp

∀j ∈ [q], Gj := Gα
j

∀i ∈ [n], j ∈ [2q], Hi,j := Gzij

pp :=
(

p,G,GT , G, {Gj}j∈[q],
{Hi,j}i∈[n],j∈[2q]\{q+1}, e

)
return pp

Com(x)

return (C, aux) :=

∏
j∈[q]

G
xj
j ,x

Open(F,y, aux)

parse aux as x

Λ :=
∏
i∈[n]

∏
j,j′∈[q]
j 6=j′

H
fi,jxj′

i,q+1+j−j′

return Λ

Verify(C,F,y, Λ)

b0 := (y ∈ Znp)

b1 :=

(
e
(
C,
∏
i∈[n]

∏
j∈[q] H

fi,j
i,q+1−j

)
=

e(G1,
∏
i∈[n] H

yi
i,q) · e(Λ,G)

)
return b0 ∩ b1

Fig. 4: Function Binding LMC in Generic Group Model.

6.3 Instantiations and Resulting SNARKs.

For our first construction, regardless of the assumption used, we can instantiate the con-
struction over Cl(∆), the class group of an imaginary quadratic order with discriminant
∆ ∈ Z. With a 2048-bit ∆, which offers roughly 100 bits of security, each element in
Cl(∆) can be represented by at most 2048 bits. For more details, we refer to Section 8.
Assuming a statistical security parameter k = 80, and a PCP which checks 3 bits per
query, the resulting SNARK has proof size 2 · 2048 + 3 · 80 = 4336 bits. For our second
construction, we can instantiate the construction over the elliptic curve “BN128” [7],
which offers also roughly 100 bits of security. In BN128, each group element can be
represented by 256 bits. Therefore the resulting proof size is 2 · 256 + 3 · 80 = 752 bits.

7 Linear Map Commitments

Linear map commitments (LMC) are functional commitments for linear maps. In contrast
to functional commitments for linear forms [49], they allow the prover to open to a set of
linear forms, or equivalently a linear map, computed over the committed vector. LMCs
allow us to extend our argument system construction to be based on linear PCPs.

Inspired by the construction of FC for linear forms by Libert, Ramanna, and
Yung [49], we give two constructions of LMC from pairing groups. The constructions
are based on the following observations. First, when the vectors x,f ∈ Fq for some
field F are encoded as the polynomials

∑
j∈[q] xjα

j and
∑
j∈[q] fjα

q+1−i with variable
α respectively, their inner product is the coefficient of the monomial αq+1 in the
polynomial product

(∑
j∈[q] xjα

j
)(∑

j∈[q] fjα
q+1−j

)
. Second, due to linearity

of polynomial multiplication, if a matrix F ∈ Fn×q is encoded in the polynomial

23

Setup(1λ,F ;ω)

(p,G,GT , G, e)← GGen(1λ;ω)
α←$ Zp

∀j ∈ [2q], Gj := Gα
j

pp :=
(
p,G,GT , G, {Gj}j∈[2q]\{q+1}, e

)
return pp

Com(x)

C :=
∏
j∈[q]

G
xj
j

aux := (C,x)
return (C, aux)

Open(F,y, aux)

parse aux as (C,x)
(z1, . . . , zq) := H(pp, C, F,y)

return Λ :=
∏
i∈[n]

∏
j,j′∈[q]
j 6=j′

G
zifi,jxj′

q+1+j−j′

Verify(C,F,y, Λ)

(z1, . . . , zk) := H(pp, C, F,y)

b0 := (y ∈ Zkp)

b1 :=

(
e
(
C,
∏
i∈[n]

∏
j∈[q] G

zifi,j
q+1−j

)
=

e(G1,
∏
i∈[n] G

ziyi
q) · e(Λ,G)

)
return b0 ∩ b1

Fig. 5: Weakly Function Binding LMC from q-DHE in Random Oracle Model.

∑
i∈[n],j∈[q] fi,jziα

q+1−i with variables (α, z1, . . . , zn), then the matrix-vector product
Fx is given in the coefficients of the monomials ziαq+1 for i ∈ [n] in the polynomial(∑

j∈[q] xjα
j
)(∑

i∈[n],j∈[q] fi,jziα
q+1−j

)
.

The first construction can be proven function binding rather easily in the generic
bilinear group model. The second construction is weakly function binding with respect
to any unpredictable sampler under the q-DHE assumption in the random oracle model.
It is worth mentioning that the public parameters in the second construction grow only
linearly in the size of q whereas those in the first grow quadratically. Both constructions
are compact by inspection and require a trusted setup.

Let GGen be an efficient bilinear group sampling algorithm. Let (p,G,GT , G, e) be
a group description output by GGen. Let X := Zp. Let H : {0, 1}∗ → Zqp be a hash
function to be modeled as a random oracle (only used in the second construction). Our
two LMC constructions are given in Figure 4 and Figure 5, respectively. We show that
our constructions are function binding and weakly function binding, respectively. Due to
space constraints, we defer the formal argument to Section C.2 and Section C.3.

Theorem 11. Let q ∈ poly(λ) and 1/p ∈ negl(λ). The scheme in Figure 4 is function
binding in the generic bilinear group model.

Theorem 12. Let FSamp be an unpredictable sampler for F . If the q-DHE assumption
holds with respect to GGen, then the scheme in Figure 5 is weakly function binding with
respect to FSamp in the random oracle model.

24

8 Candidate Module Families

In the following we suggest some candidate instantiations for modules (specifically
groups) where the strong distinct-prime-root assumption and/or the adaptive root as-
sumption are believed to hold.

8.1 Class Groups of Imaginary Quadratic Orders

The use of class groups in cryptography was first proposed by Buchmann and
Williams [22]. We refer to, e.g., [20,21], for more detailed discussions. We recall the
basic properties of class groups necessary for our purpose. Let ∆ be a negative integer
such that ∆ ≡ 0 or 1 (mod 4). The ring O∆ := Z + ∆+

√
∆

2 Z is called an imaginary
quadratic order of discriminant ∆. Its field of fractions is Q(

√
∆). The discriminant is

fundamental if ∆/4 (resp. ∆) is square-free in the case of ∆ ≡ 0 (mod 4) (resp. ∆ ≡ 1
(mod 4)). If ∆ is fundamental, then O∆ is a maximal order. The fractional ideals of
O∆ are of the form q

(
aZ + b+

√
∆

2 Z
)

with q ∈ Q, a ∈ Z+, and b ∈ Z, subject to

the constraint that there exists c ∈ Z+ such that ∆ = b2 − 4ac and gcd(a, b, c) = 1.
A fractional ideal can therefore be represented by a tuple (q, a, b). If q = 1, then the
ideal is called integral and can be represented by a tuple (a, b). An integral ideal (a, b)
is reduced if it satisfies −a < b ≤ a ≤ c and b > 0 if a = c. It is known that if an
ideal (a, b) is reduced, then a ≤

√
|∆|/3. Two ideals a, b ⊆ O∆ are equivalent if there

exists 0 6= α ∈ Q(
√
∆) such that b = αa. It is known that, for each equivalence class

of ideals, there exists exactly one reduced ideal which serves as the representative of
the equivalence class. The set of equivalence classes of ideals equipped with ideal
multiplication forms an Abelian group Cl(∆) known as a class group.

Properties Useful in Cryptography. Since for all reduced ideals, |b| ≤ a ≤
√
|∆|/3,

Cl(∆) is finite. For sufficiently large |∆|, no efficient algorithm is known for finding the
cardinality ofCl(∆), also known as the class number. Group operations can be performed
efficiently, as there exist efficient algorithms for ideal multiplication and computing
reduced ideals [20]. Assuming the extended Riemann hypothesis, Cl(∆) is generated by
the classes of all invertible prime ideals of norm smaller than 12(log |∆|)2 [4], where the
norm of a fractional ideal (q, a, b) is defined as q2a (= a for integral ideals). Since these
ideals have norms logarithmic in |∆|, they can be found in polynomial time through
exhaustive search. A random element can then be sampled by computing a power product
of the elements in the generating set, with exponents randomly chosen from [|∆|].

(Strong) Root Problem and its Variants inCl(∆). To recall, the strong root problem
in Cl(∆) is to find a prime e ∈ Z and a group element Y ∈ Cl(∆) such that Y e = X ,
for some given element X ∈ Cl(∆). It is widely believed that root problems in Cl(∆)
for a large enough ∆ are hard if the problem instances are sampled randomly with
private coin [22]. Although the strong root problem in Cl(∆) is not as well studied, it is
shown to be hard for generic group algorithms [28]. The best attacks currently known
are the ones for the root problem which runs in time proportional to L|∆|(1

2 , 1) [41],

25

where Lx(d, c) := exp(c(log x)d(log log x)1−d). As discussed in [41], using a 2048-bit
∆ offers approximately 100 bits of computational security.

The position binding property (resp. without trusted setup) of our first construction
of SVC can be proven under either the strong distinct-prime-product root assumption
(resp. without trusted setup) or the adaptive root assumption (resp. without trusted setup).
Note that these two assumptions are somewhat “dual” to each other, in the sense that the
former allows the adversary to choose which root it is going to compute, while the latter
allows the adversary to choose the element whose root is to be found.

In the trusted-setup setting, it is clear that the strong distinct-prime-product root
assumption is implied by the standard strong root assumption. In the setup-free setting, it
is conjectured [60,17] that the adaptive root assumption holds in Cl(∆). In the following,
we first propose a simple candidate sampling algorithm MGen for sampling Cl(∆) and
random elements in Cl(∆) with public coin, and then elaborate more about the strong
distinct-prime-product root assumption with respect to MGen.

The sampling algorithm MGen first samples random integers of the appropriate
length until it finds a fundamental discriminant ∆. Let {G1, . . . , Gk} be a generating set
of Cl(∆). Our sampling algorithm samples random primes c1, . . . , ck ∈ [|∆|] subject to
the constraint that the ci’s are pairwise coprime2. That is gcd(ci, cj) = 1 for all i, j ∈ [k]
with i 6= j. The algorithm then outputs ∆ along with A =

∏
i∈[k] G

ci
i .

With the above restriction in place, it seems that the best strategy of finding an
e-th root of A is to find an e-th root of Gi for all i ∈ [k] simultaneously. On the
other hand, the additional constraint seems necessary for the strong distinct-prime-
product root problem with respect to A to be hard. Suppose that 1) there exists a subset
I = {ci1 , . . . , ci`} ⊆ [k] such that gcd(ci1 , . . . , ci`) = d 6= 1; 2) d can be efficiently
factorized into {ei}i∈S such that d =

∏
i∈S ei for distinct primes ei 6= 1; and 3) for all

j ∈ [k] \ I , Gj can be efficiently represented as a product Gj =
∏
i∈I G

ai,j
i for some

ai,j . Then one can efficiently find a d-th root of A, say Y , and output ({ei}i∈S , Y) as a
solution to the strong distinct-prime-product root problem. Since it seems unreasonable
to assume that d cannot be efficiently factorized into a product of distinct primes (see
also the discussion of RSA-UFO below), nor is it sound to assume that none of the Gj
can be represented with a power product of the Gi’s where i 6= j, we impose the more
reasonable restriction that the ci’s are pairwise coprime.

8.2 RSA Groups

RSA-based cryptosystems operate over Z∗N , the group of positive integers smaller and
coprime with N , equipped with modular multiplication, where N is an integer with at
least two distinct large prime factors. The security of these systems relies on the hardness
of the (strong) root problem over Z∗N , known as the (strong) RSA assumption. Typically,
N is chosen as a product of two secret distinct large primes p, q. However, the (strong)
root problem over Z∗N is easy if p and q are known. In other words, for N generated this
way, the (strong) root assumption without trusted setup does not hold over Z∗N .

2 This is assuming k > 1, else just set c1 = 1.

26

RSA-UFOs. The problem of constructing RSA-based accumulators without trapdoors
was considered by Sander [55], who proposed a way to generate (k, ε)-“generalized RSA
moduli of unknown complete factionization (RSA-UFOs)” N which has at least two
distinct k-bit prime factors with probability 1−ε, summarized as follows. LetN1, . . . , Nr
be random 3k-bit integers with r = O(log 1/ε). It is known that with constant probability
Ni has at least two distinct k-bit prime factors [55]. It then follows that N :=

∏
i∈[r] Ni

has at least two distinct k-bit prime factors. An important observation is that N can
be generated with public coin, e.g., using a random oracle. However, since N is a
3kr-bit integer, any cryptosystem based on Z∗N seems impractical. Nevertheless, one
can show that strong RSA over RSA-UFO groups is implied by the standard strong
RSA assumption in the presence of a random oracle. This result is implicitly shown by
Sander [55] and a proof sketch is given in Section C.4.

References

1. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajkac. A subversion-
resistant snark. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 3–33. Springer, 2017.

2. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 2087–2104. ACM,
2017.

3. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
np. Journal of the ACM (JACM), 45(1):70–122, 1998.

4. Eric Bach. Explicit bounds for primality testing and related problems. In Mathematics of
Computation, volume 55 (191), pages 355–380, 1990.

5. Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk. ADSNARK:
Nearly practical and privacy-preserving proofs on authenticated data. In IEEE S&P 2015
[42], pages 271–286.

6. Feng Bao, Robert H. Deng, and Huafei Zhu. Variations of Diffie-Hellman problem. In Sihan
Qing, Dieter Gollmann, and Jianying Zhou, editors, ICICS 03, volume 2836 of LNCS, pages
301–312, Huhehaote, China, October 10–13, 2003. Springer, Heidelberg, Germany.

7. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In
Bart Preneel and Stafford Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 319–331,
Kingston, Ontario, Canada, August 11–12, 2006. Springer, Heidelberg, Germany.

8. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press.

9. Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan
Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and Madars
Virza. Computational integrity with a public random string from quasi-linear PCPs. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211
of LNCS, pages 551–579, Paris, France, May 8–12, 2017. Springer, Heidelberg, Germany.

10. Eli Ben-Sasson, Iddo Bentov, Ynon Horesh, and Michael Riabzev. Fast reed-solomon inter-
active oracle proofs of proximity. In Electronic Colloquium on Computational Complexity
(ECCC), volume 24, page 134, 2017.

11. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs
for C: Verifying program executions succinctly and in zero knowledge. In Ran Canetti and

27

Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108, Santa
Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany.

12. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages
31–60, Beijing, China, October 31 – November 3, 2016. Springer, Heidelberg, Germany.

13. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge
via cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 276–294, Santa Barbara, CA, USA, August 17–21, 2014.
Springer, Heidelberg, Germany.

14. Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,
and Eran Tromer. The hunting of the SNARK. Journal of Cryptology, 30(4):989–1066,
October 2017.

15. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct
non-interactive arguments via linear interactive proofs. In Amit Sahai, editor, TCC 2013,
volume 7785 of LNCS, pages 315–333, Tokyo, Japan, March 3–6, 2013. Springer, Heidelberg,
Germany.

16. Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 223–238, Interlaken, Switzerland, May 2–6, 2004. Springer, Heidelberg,
Germany.

17. Dan Boneh, Benedikt Bünz, and Ben Fisch. A survey of two verifiable delay functions.
Technical report, Cryptology ePrint Archive, Report 2018/712, 2018. https://eprint. iacr.
org/2018/712, 2018.

18. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. Efficient
zero-knowledge arguments for arithmetic circuits in the discrete log setting. In Fischlin and
Coron [35], pages 327–357.

19. Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowl-
edge. Journal of Computer and System Sciences, 37(2):156–189, 1988.

20. Johannes Buchmann and Safuat Hamdy. A survey on iq-cryptography. In Tech. Report
TI-4/01, Technische Universitäat Darmstadt, Fachbereich Informatik, 2000.

21. Johannes Buchmann, Tsuyoshi Takagi, and Ulrich Vollmer. Number field cryptography. In
High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie
Williams, volume 41, pages 111–125, 2004.

22. Johannes Buchmann and Hugh C. Williams. A key-exchange system based on imaginary
quadratic fields. Journal of Cryptology, 1(2):107–118, 1988.

23. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. Bulletproofs: Short proofs for confidential transactions and more.

24. Dario Catalano and Dario Fiore. Vector commitments and their applications. In Kaoru
Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 55–72,
Nara, Japan, February 26 – March 1, 2013. Springer, Heidelberg, Germany.

25. Alessandro Chiesa, Eran Tromer, and Madars Virza. Cluster computing in zero knowledge.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 371–403, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

26. Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter, Michael
Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable computation. In IEEE
S&P 2015 [42], pages 253–270.

27. Ivan Damgård and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based
on groups with hidden order. In Yuliang Zheng, editor, ASIACRYPT 2002, volume 2501 of
LNCS, pages 125–142, Queenstown, New Zealand, December 1–5, 2002. Springer, Heidelberg,
Germany.

28

28. Ivan Damgård and Maciej Koprowski. Generic lower bounds for root extraction and signature
schemes in general groups. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332
of LNCS, pages 256–271, Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer,
Heidelberg, Germany.

29. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs
with applications to succinct NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 532–550, Kaoshiung, Taiwan, R.O.C.,
December 7–11, 2014. Springer, Heidelberg, Germany.

30. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss. Square span programs
with applications to succinct nizk arguments. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 532–550. Springer, 2014.

31. Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge
proof systems. In Carl Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 52–72,
Santa Barbara, CA, USA, August 16–20, 1988. Springer, Heidelberg, Germany.

32. Giovanni Di Crescenzo and Helger Lipmaa. Succinct np proofs from an extractability
assumption. In Conference on Computability in Europe, pages 175–185. Springer, 2008.

33. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg, Germany.

34. Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently verifiable computation on
encrypted data. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14, pages
844–855, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.

35. Marc Fischlin and Jean-Sébastien Coron, editors. EUROCRYPT 2016, Part II, volume 9666
of LNCS, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

36. Georg Fuchsbauer. Subversion-zero-knowledge snarks. In IACR International Workshop on
Public Key Cryptography, pages 315–347. Springer, 2018.

37. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 626–645, Athens, Greece, May 26–30,
2013. Springer, Heidelberg, Germany.

38. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interac-
tive proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

39. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340, Singapore, December 5–9,
2010. Springer, Heidelberg, Germany.

40. Jens Groth. On the size of pairing-based non-interactive arguments. In Fischlin and Coron
[35], pages 305–326.

41. Safuat Hamdy and Bodo Möller. Security of cryptosystems based on class groups of imaginary
quadratic orders. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS,
pages 234–247, Kyoto, Japan, December 3–7, 2000. Springer, Heidelberg, Germany.

42. 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, May 17–21, 2015. IEEE
Computer Society Press.

43. Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from
one-way functions (extended abstracts). In 21st ACM STOC, pages 12–24, Seattle, WA, USA,
May 15–17, 1989. ACM Press.

44. Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short pcps.
In Computational Complexity, 2007. CCC’07. Twenty-Second Annual IEEE Conference on,
pages 278–291. IEEE, 2007.

45. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure
multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages
21–30, San Diego, CA, USA, June 11–13, 2007. ACM Press.

29

46. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
24th ACM STOC, pages 723–732, Victoria, British Columbia, Canada, May 4–6, 1992. ACM
Press.

47. Joe Kilian. Improved efficient arguments (preliminary version). In Don Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 311–324, Santa Barbara, CA, USA, August 27–31,
1995. Springer, Heidelberg, Germany.

48. Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically checkable proofs with zero
knowledge. In 29th ACM STOC, pages 496–505, El Paso, TX, USA, May 4–6, 1997. ACM
Press.

49. Benoı̂t Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes:
From polynomial commitments to pairing-based accumulators from simple assumptions. In
Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors,
ICALP 2016, volume 55 of LIPIcs, pages 30:1–30:14, Rome, Italy, July 11–15, 2016. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik.

50. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages
169–189, Taormina, Sicily, Italy, March 19–21, 2012. Springer, Heidelberg, Germany.

51. Helger Lipmaa. Secure accumulators from euclidean rings without trusted setup. In Feng
Bao, Pierangela Samarati, and Jianying Zhou, editors, ACNS 12, volume 7341 of LNCS, pages
224–240, Singapore, June 26–29, 2012. Springer, Heidelberg, Germany.

52. Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453, Santa Fe, New
Mexico, November 20–22, 1994. IEEE Computer Society Press.

53. Thilo Mie. Polylogarithmic two-round argument systems. Journal of Mathematical Cryptol-
ogy, 2(4):343–363, 2008.

54. Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs
for delegating computation. In Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC,
pages 49–62, Cambridge, MA, USA, June 18–21, 2016. ACM Press.

55. Tomas Sander. Efficient accumulators without trapdoor extended abstracts. In Vijay Varadhara-
jan and Yi Mu, editors, ICICS 99, volume 1726 of LNCS, pages 252–262, Sydney, Australia,
November 9–11, 1999. Springer, Heidelberg, Germany.

56. Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266, Konstanz, Germany, May 11–
15, 1997. Springer, Heidelberg, Germany.

57. Victor Shoup. OAEP reconsidered. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of
LNCS, pages 239–259, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg,
Germany.

58. Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 1–18, San Francisco,
CA, USA, March 19–21, 2008. Springer, Heidelberg, Germany.

59. Riad S Wahby, Ioanna Tzialla, Justin Thaler, and Michael Walfish. Doubly-efficient zksnarks
without trusted setup.

60. Benjamin Wesolowski. Efficient verifiable delay functions. IACR Cryptology ePrint Archive,
2018:623, 2018.

61. Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos
Papamanthou. vSQL: Verifying arbitrary SQL queries over dynamic outsourced databases.
In 2017 IEEE Symposium on Security and Privacy, pages 863–880, San Jose, CA, USA,
May 22–26, 2017. IEEE Computer Society Press.

30

A More Preliminaries

A.1 Hoeffding’s Inequality

We recall a useful inequality by Hoeffding. Let X1, . . . , Xn be independent random
variables bounded by the interval [0, 1], let X := X1+...+Xn

n , and let 0 < d < X −
E
[
X
]
, then it holds that

Pr
[
X − E

[
X
]
≥ d
]
≤ e−2nd2

.

A.2 Pseudo-Random Generators

A pseudorandom generator [43] stretches random strings into new random looking ones.

Definition 15 (Pseudo-Random Generator). A function PRG : {0, 1}n → {0, 1}m
is a pseudo-random generator if m > n and for all PPT adversaries A the following
ensembles are computationally indistinguishable

{PRG(s)}s←$ {0,1}n ≈ {r}r ←$ {0,1}m .

B Pairing Groups

Let GGen be a probabilistic algorithm which inputs the security parameter 1λ and outputs
a tuple (p,G,GT , G, e), where p is a positive prime, G and GT are (descriptions of)
cyclic groups of order p (written multiplicatively) with identities 1G and 1GT respectively,
G ∈ G is a generator of G, and e : G×G→ GT is a pairing satisfying the following:

– The map e is efficiently computable.
– The map e is non degenerate, i.e., e(G,G) 6= 1GT .
– The map e is bilinear, i.e., ∀(U, V) ∈ G2,∀(a, b) ∈ Z2, e(Ua, V b) = e(U, V)ab.

When the context is clear, we drop the subscripts and denote identity elements by 1.

Computational Diffie-Hellman. The computational Diffie-Hellman (CDH) assumption
is one of the classical assumptions in cryptography. We re-state it over pairing groups.

Definition 16 (Computational Diffie-Hellman (CDH)). The computational Diffie-
Hellman assumption is said to hold with respect to GGen if for all PPT adversary A
there exists ε(λ) ∈ negl(λ) such that

Pr
[
Z = Gxy

∣∣∣∣ (p,G,GT , G, e)← GGen(1λ);
(x, y)←$ Z2

p;Z ← A(p,G,GT , G,Gx, Gy, e)

]
≤ ε(λ).

For convenience, we define the following variant of the assumption that can be shown to
be equivalent to the CDH assumption [6].

Definition 17 (Square Diffie-Hellman (square-DH)). The square Diffie-Hellman as-
sumption is said to hold with respect to GGen if for all PPT adversary A there exists
ε(λ) ∈ negl(λ) such that

Pr
[
Z = Gx

2
∣∣∣∣ (p,G,GT , G, e)← GGen(1λ);
x←$ Zp;Z ← A(p,G,GT , G,Gx, e)

]
≤ ε(λ),

31

q-Diffie-Hellman Exponent. We are also going to rely on the q-Diffie-Hellman Exponent
(q-DHE) assumption over bilinear groups. Loosely speaking, the problem is to compute
Gx

q

given all the powers
(
Gx, . . . , Gx

2q
)

except Gx
q

.

Definition 18 (q-Diffie-Hellman Exponent (q-DHE)). The q-Diffie-Hellman Exponent
assumption is said to hold with respect to GGen if for all PPT adversary A there exists
ε(λ) ∈ negl(λ) such that

Pr
[
Z = Gx

q

∣∣∣∣∣ (p,G,GT , G, e)← GGen(1λ);x←$ Zp;
Z ← A

(
p,G,GT , G,Gx, . . . , Gx

q−1
, Gx

q+1
, . . . , Gx

2q
, e
)] ≤ ε(λ),

C Analysis

We supplement the proofs which are omitted in the main text due to space constraints.

C.1 Proof of Theorem 7

Proof. Without loss of generality, let A = (A1,A2) be a two-stage adversary. Consider
the following extractor EA(x): On input a statement x, the extractor initializes a vector
space V = Fq, samples ω←$ {0, 1}λ, computes pp ← Setup(1λ,F ;ω) and sends
y = pp (or y = (pp, ω) if using FC without trusted setup) to A1. The adversary A1
replies with a certain commitment C, and a state state which is passed to the second
stage A2. In the following, we omit the input state to A2. The extractor enters into a
loop. In the `-th iteration of the loop, it performs the following:

1. Take an arbitrary vector π from the space V . Run w ← EPCP(π), if R(x,w) = 1
then return w and terminate the execution.

2. Sample a random α`←$ {0, 1}λ and send it to A2. Set ρ`,1‖ . . . ‖ρ`,k := PRG(α`).
3. A2 responds with (Λ`,y`,1, . . . ,y`,k). Let F ∗`,i = Reconstruct(x,y`,i, ρ`,i) for
i ∈ [n], and let F` and y` be the vertical concatenations of F`,1, . . . , F`,k and
y`,1, . . . ,y`,k respectively.

4. If Verify(C,F`,y`, Λ`) = 0 or Decide(x, F`,i,y`,i, ρ`,i) = 0 for some i ∈ [n], then
go to step 1 of the (`+ 1)-th iteration with fresh randomness.

5. Let W = {x ∈ Fq : F`x = y`} be a subspace of Fq which satisfies the system of
equations defined by (F`,y`). If V ∩W = ∅, then abort. Otherwise, set V = V ∩W .

6. Go to step 1 of the (`+ 1)-th iteration with fresh randomness

Note that step 1 and 5 are efficiently computable, e.g., by Gaussian elimination. It is clear
that whenever the extractor terminates without aborting, then the extraction is successful.
We first argue that the extractor does not abort within polynomially-many steps except
with negligible probability.

Lemma 1. Let FC be weakly function binding with respect to FSamp. Then for all
statements x, all auxiliary information z, all PPT adversary A, and all polynomials
L ∈ poly(λ) it holds that

Pr
[
⊥ ← EA(x,z,y)(x) within L iterations

]
≤ negl(λ) .

32

Proof (Lemma 1). Let L′ ⊆ L be the set of iterations where the extractor reaches step
5. We observe that the extractor aborts if and only if the A2 successfully opens the
commitment C (output by A1) to some function-value tuples {(F`,y`)}`∈L′ , where y`
is the vertical concatenation of y`,1, . . . ,y`,k, such that there does not exist x ∈ Fq so
that F`x = y` for all ` ∈ [L]. This directly contradicts the assumption that FC is weakly
function binding with respect to FSamp. ut

The rest of the analysis establishes the probability that the extractor terminates. First we
introduce the following helping lemma.

Lemma 2. For all statements x, all f(λ) ∈ poly(λ), all π ∈ Fq , all constant γ ∈ (0, 1),
all k ≥ − log f(λ)

log(1−γ) such that

pk := Pr∀i∈[n], ρi ←$ {0,1}λ [∀i ∈ [n], Vπ
PCP(x; ρi) = 1] ≥ 1

f(λ)

then Pr [R(x,w) = 1|w ← EPCP(π)] = 1.

Proof (Lemma 2). Let p1 := Prρ←$ {0,1}λ [Vπ
PCP(x; ρ) = 1]. Since the random tapes ρi

for i ∈ [n] of the verifier are chosen uniformly we have that pk = (p1)k and therefore
p1 = (pk) 1

k ≥ f(λ)−1
k . The following shows that 1

f(λ)k ≥ (1− γ):

k ≥ − log f(λ)
log(1− γ)

1
k

log
(

1
f(λ)

)
≥ log(1− γ)

1
f(λ) 1

k

≥ (1− γ).

By Definition 5 it follows that the extractor EPCP is successful with probability 1. ut

Next we argue that for any given strings x andπ ∈ Fq , running Vπ
PCP(x; ρi) over truly

random coins ρi for i ∈ [n] induces a distribution of outputs which is computationally
indistinguishable from the distribution induced by Vπ

PCP(x; ρi), where ρ1‖ . . . ‖ρk ←
PRG(α), executed over pseudo-random coins produced by PRG(α). This is proven in
the following lemma.

Lemma 3. Let PRG be a pseudorandom generator. For all statements x, and all proof
encodings π ∈ Fq , the ensembles{

(Vπ
PCP(x; ρi))i∈[n] : ρ1‖ . . . ‖ρk := PRG(α)

}
α←$ {0,1}λ

and {
(Vπ

PCP(x; ρi))i∈[n]
}
∀i∈[n], ρi ←$ {0,1}r

are computationally indistinguishable.

33

Proof (Lemma 3). Assume the contrary, then we can construct the following distinguisher
against PRG: On input a string ρ, it executes b← Vπ

PCP(x; ρ) using ρ as the random tape.
Then it outputs b. By initial assumption we have that the distributions of the output of
the verifier are non-negligibly far depending on the random tape, consequently so are
the distributions of the output of the distinguisher for the two cases. This contradicts the
pseudo-randomness of PRG and shows the veracity of our proposition. ut

Next we show that if the adversary convinces the verifier with non-negligible probability,
then the extractor outputs w in polynomially many steps. This is shown in two steps.
First, we show that if the adversary convinces the verifier with non-negligible probability,
then the extractor produces a string π which is accepted by VPCP with non-negligible
probability. Second, given such a string π, we show that the PCP extractor must succeed
in extracting a witness w.

Concretely, for any statement x and for any auxiliary input z consider an adversary
A such that

εA := Pr [(A(x, z, y),V(x, y))Π = 1] > 1
λc

for some constant c, which is given by assumption. Set t = λ
εA
≤ λc+1, and for i ∈ [t],

let Πi be an independent execution of the protocol. Then we have that

Pr
[
∀i ∈ [t], (A(x, z, y),V(x, y))Πi = 0

]
= (1− εA)t ≤ e−εAt ≤ e−λ.

This means that with all but negligible probability the adversary is going to convince
the verifier in at least one of these t executions. Let V be the subspace maintained by E
after t · s-many iterations, for s := tλ = λ2

εA
≤ λc+2 ∈ poly(λ). Let π be an arbitrary

vector picked from V . In the following we are going to show that, with overwhelming
probability, there exists a constant d such that

εV := Prα←$ {0,1}λ [Vπ
PCP(x; PRG(α)) = 1] ≥ 1

λd
. (1)

Assume the contrary that, with non-negligible probability, there exists a constant c with
ε ≥ 1

λc and εV < 1
λd

for all constants d. We define a random variable X` which is
equal to 1 if the extractor reaches step 5 in the `-th iteration, and 0 otherwise. Note that
if X` = 1, then Verify(C,F`,y`, Λ`) = Decide(x, F`,i,y`,i, ρ`,i) = 1 for all i ∈ [n].
Let X∗` be another random variable defined like X` except that, instead of running
Decide(x, F`,i,y`,i, ρ`,i), the extractor runs Vπ

PCP(x; ρ`,i) and check if it equals 1 for all
i ∈ [n]. By Lemma 1, with overwhelming probability E does not abort within ts steps.

Consider the set L := {` ∈ [t · s] : X` = 1}. By the definition of V , for any
x ∈ V , it holds that F`,ix = y`,i for all i ∈ [n] and ` ∈ L. This implies that whenever
Decide(x, F`,i,y`,i, ρ`,i) = 1, then Vπ

PCP(x; ρ`,i) = 1. In other words, for all ` ∈ L, if
X` = 1, then X∗` = 1, which implies X∗` ≥ X`.

The empirical mean X
∗

of X∗1 , . . . , X
∗
t·s can be computed as

X
∗ := X∗1 + . . .+X∗t·s

t · s
≥ X1 + . . .+Xt·s

t · s
≥ s

t · s
= 1
t
.

By assumption that Equation 1 is false, for all constants d,

E[X∗] = Prα←$ {0,1}λ [Vπ
PCP(x; PRG(α)) = 1] ≤ 1

λd
.

34

Let d = c+ 2. By Hoeffding’s inequality we have that

Pr
[
X
∗ − E[X∗] ≥ 1

t
− 1
λd

]
≤ e−2ts(1

t−
1
λd

)2

= e−2ts(1
t2
− 2
tλd

+λ−2d) = e
−2
(
λ− 2s

λd
+ s2
λ2d+1

)
≤ e−2(λ− 2s

λd
) ≤ e−2

(
λ− 2λc+2

λd

)
≤ e−2(λ−2) = negl(λ) .

contradicting the assumption that this event happens with non-negligible probability.
To recap, we have shown that our extractor is able to produce a vector π such that

εV := Prα←$ {0,1}λ [Vπ
PCP(x; PRG(α)) = 1] ≥ 1

λc+2 .

By Lemma 3, there exists a negligible function negl(λ) such that

Prρ←$ {0,1}rk [Vπ
PCP(x; ρ) = 1]

≥ Prα←$ {0,1}λ [Vπ
PCP(x; PRG(α)) = 1]− negl(λ)

≥ 1
λc+2 − negl(λ)

Since k = O(λ), with sufficiently large λ, by Lemma 2, we have that

Pr [R(x,w) = 1|w ← EPCP(π)] = 1.

This implies that the extractor terminates after t·s steps, except with negligible probability,
and concludes the proof. ut

C.2 Proof of Theorem 11

Proof. The proof uses the generic group model abstraction of Shoup [56] and we refer
the reader to [16] for a comprehensive introduction to the bilinear group model. Here we
state the central lemma useful for proving facts about generic attackers.

Lemma 4 (Schwartz-Zippel). Let F (X1, . . . , Xm) be a non-zero polynomial of degree
d ≥ 0 over a field F. Then the probability that F (x1, . . . , xm) = 0 for randomly chosen
values (x1, . . . , xm) in Fn is bounded from above by d

|F| .

Fix L ∈ N. Suppose there exists an adversary A, who only performs generic bilinear
group operations, such that there exists a polynomial f ∈ poly(λ) with

Pr
[
∀` ∈ [L], Verify(C,F`,y`, Λ`) = 1
6 ∃x ∈ Zqp s.t. ∀` ∈ [L], F`(x) = y`

∣∣∣∣ pp← Setup(1λ)
(C, {(F`,y`, Λ`)}`∈[L])← A(1λ, pp)

]
> 1

f(λ) .

35

Since A is generic, and C and each of Λ` are G elements, we can write logG C and each
logG Λ` in the following form:

logG C = γ0 +
∑
j∈[q]

γjα
j +

∑
i∈[n]

j∈[2q]\{q+1}

γi,jziα
j

logG Λ` = λ0 +
∑
j∈[q]

λjα
j +

∑
i∈[n]

j∈[2q]\{q+1}

λi,jziα
j

for some integer coefficients γj , γi,j , λj , and λi,j for i and j in the appropriate ranges.
Since for each ` ∈ [L], Verify(C,F`,y`, Λ`) = 1, the following relations hold:

(logG C)(
∑
i∈[n]

∑
j∈[q]

f`,i,jziα
q+1−j) =

∑
i∈[n]

y`,iziα
q+1 + logG Λ`.

Note that the above defines a (n+1)-variate polynomial of degree 3q+2 which evaluates
to zero at a random point (α, z1, . . . , zn). Suppose that the polynomial is non-zero. By
the Schwartz-Zippel lemma, the probability that the above happens is bounded by 3q+2

p

which is negligible as q ∈ poly(λ) and 1/p ∈ negl(λ). We can therefore assume that
the polynomial is always zero. In particular, the coefficients of the monomials ziαq+1

are zero for all i ∈ [q]. Thus, we have the following relations for all ` ∈ [L] and i ∈ [n]:∑
j∈[q]

f`,i,jγj = y`,j .

In other words, there exists x := (γ1, . . . , γq) mod p ∈ Zqp such that F`(x) = y`,
for all ` ∈ [L], which contradicts the assumption about A. We thus conclude that such
adversaries exist only with negligible probability. Since the above holds for any L ∈ N,
we conclude that the construction is function binding. ut

C.3 Proof of Theorem 12

Proof. Fix a positive integer L ∈ poly(λ). Suppose there exists an efficient adversary
A, who is given oracle access to H , and a polynomial f ∈ poly(λ) with

Pr

∀` ∈ [L], Verify(C,F`,y`, Λ`) = 1
6 ∃x ∈ Zqp s.t. ∀` ∈ [L], F`(x) = y`

∣∣∣∣∣∣∣∣∣∣
pp← Setup(1λ,F)

(C, seed, state)← AH1 (1λ, pp)
∀` ∈ [L], r`←$ {0, 1}λ

∀` ∈ [L], F` ← FSamp(seed; r`)
{(y`, Λ`)}`∈[L] ← AH2 (state, {F`}`∈[L])

> 1

f(λ) .

We construct a q-DHE solver C which runs A1 and A2 polynomially many times.
C receives as input a q-DHE instance (p,G,GT , G, {Gα

j}j∈[2q]\{q+1}). It sets pp
to be equal to the q-DHE instance and runs A1 on pp. C simulates the random oracle H
for A1 honestly. Let (C, seed, state) be the output of A1. C samples r`←$ {0, 1}λ, and

36

F` ← FSamp(seed; r`), for ` ∈ [L]. It then runs A2 on (state, {F`}`∈[L]) who outputs
{(y`, Λ`)}`∈[L]. With probability at least 1

f(λ) , it holds that Verify(C,F`,y`, Λ`) = 1 for
all ` ∈ [L]. This means that, conditioned on the above,A1 orA2 must have queriedH on
(pp, C, F`,y`) for all ` ∈ [L] except with negligible probability. By the unpredictability
of FSamp, all such queries must be made by A2 except with negligible probability, for
otherwise C can extract a query (pp, C, F ∗,y∗) made by A1 and output (seed, F ∗) with
F ∗ = FSamp(seed; r`) for some ` ∈ [L]. We can therefore assume that the view of A1,
and in particular state, is independent of the values H(pp, C, F`,y`) for all ` ∈ [L].

With the above analysis, C further runs A2 on (state, {F`}`∈[L]) for additionally
n − 1 times, in such a way that at each instance C answer queries to H with inde-
pendent randomness. Since the input (state, {F`}`∈[L]) of A2 is independent of the
values H(pp, C, F`,y`) set during the first execution of A2, the view of A2 during
all n executions is identical to that in the definition of weakly function binding. Let
H(pp, C, F`,y(t)

`) = (z(t)
`,1, . . . , z

(t)
`,n) at the t-th execution ofA2, and {(y(t)

` , Λ
(t)
`)}`∈[L]

be its output. We argue that y(t)
` = y

(t′)
` for all t, t′ ∈ [n] and ` ∈ [L] except with negli-

gible probability.
Suppose not, we tweak C slightly in the following way. It guesses a tuple (t, t′, `) such

that the above event happens. C programs H(pp, C, F`,y(t)
`) and H(pp, C, F`,y(t′)

`)
such that H(pp, C, F`,y(t)

`) = µ ·H(pp, C, F`,y(t′)
`) for some µ←$ Zp. Since the t-th

and t′-th execution of A2 are independent of each other, the distributions these answers
are proper. Conditioning on the probability that the above event indeed happens, the
probability that C guesses correctly is at least 1

n2L which is non-negligible as n,L ∈
poly(λ). Suppose that is the case, then it holds that

e

(
C,
∏
i∈[n]

∏
j∈[q] G

z
(t)
`,i
f`,i,j

q+1−j

)
= e(G1,

∏
i∈[n] G

z
(t)
`,i
y

(t)
`,i

q) · e(Λ(t)
` , G)

e

(
C,
∏
i∈[n]

∏
j∈[q] G

µz
(t′)
`,i

f`,i,j

q+1−j

)
= e(G1,

∏
i∈[n] G

µz
(t′)
`,i

y
(t′)
`,i

q) · e(Λ(t′)
` , G)

which implies

e(G1,
∏
i∈[n]

G
µz

(t′)
`,i

y
(t)
`,i

q) · e(Λ(t)
` , G) = e(G1,

∏
i∈[n]

G
µz

(t′)
`,i

y
(t′)
`,i

q) · e(Λ(t′)
` , G)

Λ
(t′)
`

Λ
(t)
`

= G

∑
i∈[n]

µz
(t′)
`,i

(y(t)
`,i
−y(t′)

`,i
)

q+1 .

Since y(t)
` 6= y

(t′)
` , and µ and z

(t′)
`,i are random in Zp for i ∈ [n], we have∑

i∈[n] µz
(t′)
`,i (y(t)

`,i − y
(t′)
`,i) 6= 0 except with negligible probability. C can thus output

Gα
q+1 = Gq+1 =

(
Λ

(t′)
`

Λ
(t)
`

) 1∑
i∈[n]

µz
(t′)
`,i

(y(t)
`,i
−y(t′)
`,i

)
which is a solution to the q-DHE

instance. We can thus assume that y(t)
` = y

(t′)
` for all t, t′ ∈ [n] and ` ∈ [L], and denote

y` = y
(t)
` for all t ∈ [n] and ` ∈ [L].

37

We resume the analysis of C after running A2 n times (without the above change).
Upon completion, C has collected the following relations

e

C, ∏
i∈[n]

∏
j∈[q]

G
z

(t)
`,i
f`,i,j

q+1−j

 = e(G1,
∏
i∈[n]

G
z

(t)
`,i
y`,i

q) · e(Λ(t)
` , G)

for all t ∈ [n] and ` ∈ [L]. Let α be a vector such that αj = αq+1−j for j ∈ [q], Λ` be
a vector such that Λ`,i = Λ

(i)
` for all i ∈ [n] and ` ∈ [L], and Z` be an n-by-n matrix

such that Z`,i,j = z
(i)
`,j for all i, j ∈ [n] and ` ∈ [L]. For clarity we rewrite the relations

collected by C as

(logG C)Z`F`α = αq+1Z`y` + logGΛ`.

Since Z` is uniformly random, it is invertible except with negligible probability. C can
therefore compute

logG Λ̄` := Z−1
` logGΛ`

such that logG Λ̄` satisfies

(logG C)F`α = αq+1y` + logG Λ̄`

for all ` ∈ [L]. Next, we make use of the fact that the linear system of equations given
by the tuples {(F`,y`)}`∈[L] is inconsistent. Let F and y be the vertical concatenations
of F1, . . . , FL and y1, . . . ,yL respectively. Consider the augmented matrix A := [F |y].
Using Gaussian elimination, C can efficiently compute matrices U and A′ = [F ′|y′]
such that A = UA and A′ is in reduced row echelon form. By multiplying the relations
obtained above by U , C obtains

(logG C)F ′α = αq+1y′ + logGΛ′

Since the system is inconsistent, there must be a row i∗, such that the i∗-th row of F ′,
denoted F ′i∗ , are all zero, and y′i∗ is non-zero. C can therefore obtain the relation

αq+1y′i∗ + logG Λ′i∗ = (logG C)F ′i∗α = 0.

Finally C outputs Gα
q+1 = (Λ′i∗)

1
y′
i∗ as a solution to the q-DHE instance. Since the

above analysis holds for all L ∈ poly(λ), we conclude that the construction is weakly
function binding. ut

C.4 Proof that strong RSA implies strong root in RSA-UFO groups

Proof (Sketch). Let A be an adversary against the strong RSA assumption in RSA-UFO
groups. Then, on input some (standard) RSA modulus N and a group element A, we can
sample a set of primes (p1, . . . , pm) and set N ′ = N ·

∏
i∈[m] pi and A′ = A+ qN for

some random q ∈
[∏

i∈[m] pi

]
. Now we give (N ′, A′) to A. Note that the distribution

38

of prime factors of a random number is easy to simulate, and therefore N ′ is a correctly
distributed RSA-UFO. Also note that A′ is an element of Z∗N ′ with high probability.
When A returns some (e, Y) such that e > 1, Y ∈ Z∗N ′ and Y e = A′ mod N ′, we
have

Y e = A′ mod N ′ =⇒ Y e = A′ mod N

since N ′ is multiple of N . Furthermore,

A′ mod N = A+ qN mod N = A mod N

and, for some integers Z ∈ Z∗N and h ∈ Z, we have

Y e mod N = (Z + hN)e mod N = Ze mod N

To conclude, we obtain (Z, e) with e > 1 and Ze = A mod N , which is a solution the
strong RSA problem. ut

39

	Succinct Arguments from Subvector Commitments and Linear Map Commitments

