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Abstract. Distributed Oblivious RAM (DORAM) protocols—in which
parties obliviously access a shared location in a shared array—are a
fundamental component of secure-computation protocols in the RAM
model. We show here an efficient, 3-party DORAM protocol with semi-
honest security for a single corrupted party. To the best of our knowl-
edge, ours is the first protocol for this setting that runs in constant
rounds, requires sublinear communication and linear work, and makes
only black-box use of cryptographic primitives. We believe our protocol
is also concretely more efficient than existing solutions.

As a building block of independent interest, we construct a 3-server dis-
tributed point function with security against two colluding servers that
is simpler and has better concrete efficiency than prior work.

1 Introduction

A fundamental problem in the context of privacy-preserving protocols for large
data is ensuring efficient oblivious read/write access to memory. Research in this
area originated with the classical work on oblivious RAM (ORAM) [10], which
can be viewed as allowing a stateful client to store an (encrypted) array on a
server, and then obliviously read/write data from/to specific addresses of that
array with sublinear client-server communication. Roughly, obliviousness here
means that for each memory access the server learns nothing about which address
is being accessed, the specific data being read or written, and even whether a
read or a write is being performed. A long line of work [23, 11, 25, 31, 17, 26, 8, 20,
30, 24, 32, 1] has shown both asymptotic and concrete improvements to ORAM
protocols. More recently [19, 1, 5, 27, 16], the idea of ORAM was extended to a
multi-server setting in which a client stores data on two or more servers and
obliviousness must hold with respect to each of them.

In all the aforementioned work, there is a fundamental distinction between
the client and the server(s): the client knows the address being accessed and,
in the case of writes, the data being written; following a read, the client learns
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the data that was read. That is, there are no privacy/obliviousness requirements
with respect to the client.

One of the primary applications of ORAM protocols is in the realm of secure
computation in the random-access machine (RAM) model of computation [22,
12, 8, 18, 30, 2, 21, 6, 29, 7, 13, 32, 5, 15]. Here, parties may store an array in a dis-
tributed fashion (such that none of them know its contents), and may need to
read from or write to the array during the course of executing some algorithm.
Here, memory accesses must be oblivious to all the parties; there is, in general,
no one party who can act as a “client” and who is allowed to learn information
about, e.g., the positions in memory being accessed. There is thus a need for a
new primitive, which we refer to as distributed ORAM (DORAM), that allows
the parties to collectively maintain an array and to perform reads/writes on that
array. (We refer to Section 5 for a more formal definition.)

An n-party DORAM protocol can be constructed from any n′-party ORAM
scheme (n′ ≤ n) using generic secure computation. The main idea is for n′ of the
parties to act as the servers in the underlying ORAM scheme; a memory access
for an address that is secret-shared among the n parties is carried out by having
those parties run a secure-computation protocol to evaluate the client algorithm
of the underlying ORAM scheme. This approach (with various optimizations)
was followed in some prior work on RAM-model secure computation, and mo-
tivated efforts to design ORAM schemes in which the client algorithm can be
implemented by a low-complexity circuit [30, 28]. In addition to the constructions
of DORAM that are implied by prior work on ORAM, or that are implicit in
previous work on RAM-based secure computation, dedicated DORAM schemes
have been given in the 2-party [5] and 3-party [6, 14] settings.

1.1 Our Contribution

We show here a novel 3-party DORAM protocol, secure against semi-honest
corruption of one of the parties. To the best of our knowledge, it is the first
such protocol that simultaneously runs in constant rounds, requires sublinear
communication and linear work, and makes only black-box use of cryptographic
primitives. (The last property, in particular, rules out constructions that apply
generic secure computation to known ORAM schemes.) We believe our protocol
is also concretely more efficient than existing solutions.

As a building block of independent interest, we show a new construction of
a 3-server distributed point function (see Section 2) that is secure against any
two colluding servers. Our construction has communication complexity O(

√
N),

where N is the size of the domain. This matches the asymptotic communication
complexity of the only previous construction [3], but our scheme is both simpler
and has better concrete efficiency.

1.2 Outline of the Paper

We describe a construction of a 3-server distributed point function (DPF), with
privacy against two semi-honest corruptions, in Section 2. In Section 3 we re-



view known constructions of multi-server schemes for oblivious reading (PIR)
or oblivious writing (PIW) based on DPFs. We then show in Section 4 how to
combine our 3-server DPF with any 2-server PIR scheme to obtain a 3-server
ORAM scheme, secure against semi-honest corruption of one server. Finally, in
Section 5 we discuss how to extend our ORAM scheme to obtain a 3-party dis-
tributed ORAM protocol, secure against one semi-honest corruption. Relevant
definitions are given in each of the corresponding sections.

2 A 2-Private, 3-Server Distributed Point Function

Distributed point functions were introduced by Gilboa and Ishai [9], and further
generalized and improved by Boyle et al. [3, 4].

2.1 Definitions

Fix some parameters N and B. For y ∈ {1, . . . , N} and v ∈ {0, 1}B , define the
point function Fy,v : {1, . . . , N} → {0, 1}B as follows:

Fy,v(x) =

{
v if x = y
0B otherwise.

A distributed point function provides a way for a client to “secret share” a point
function among a set of servers. We define it for the special case of three servers,
with privacy against any set of two colluding servers. The definitions can be
extended in the natural way for other cases.

Definition 1. A 3-server distributed point function consists of a pair of algo-
rithms (Gen,Eval) with the following functionality:

– Gen takes as input the security parameter 1κ, an index y ∈ {1, . . . , N}, and
a value v ∈ {0, 1}B. It outputs keys K1,K2,K3.

– Eval is a deterministic algorithm that takes as input a key K and an index
x ∈ {1, . . . , N}, and outputs a string ṽ ∈ {0, 1}B.

Correctness requires that for any κ, any (y, v) ∈ {1, . . . , N} × {0, 1}B, any
K1,K2,K3 output by Gen(1κ, y, v), and any x ∈ {1, . . . , N}, we have

Eval(K1, x)⊕ Eval(K2, x)⊕ Eval(K3, x) = Fy,v(x).

Definition 2. A 3-server DPF is 2-private if for any i1, i2 ∈ {1, 2, 3} and any
ppt adversary A, the following is negligible in κ:∣∣∣∣Pr

[
(y0, v0, y1, v1)← A(1κ); b← {0, 1};

(K1,K2,K3)← Gen(1κ, yb, vb)
: A(Ki1 ,Ki2) = b

]
− 1

2

∣∣∣∣ .
2.2 Our Construction

Let G : {0, 1}κ →
(
{0, 1}B

)√N
be a pseudorandom generator. We now describe

our construction of a 2-private, 3-server DPF:



Gen(1κ, y, v): View y ∈ {1, . . . , N} as a pair (i, j) with i, j ∈
√
N . Then:

1. For k = 1, . . . ,
√
N do:

(a) Choose seeds s1k, s
2
k, s

3
k, s

4
k ← {0, 1}κ and let ak, bk, ck, dk be a random

permutation of 1, 2, 3, 4.
(b) If k 6= i, then define

S1
k = {(ak, sakk ), (bk, s

bk
k )}, S2

k = {(bk, sbkk ), (ck, s
ck
k )},

and S3
k = {(ak, sakk ), (ck, s

ck
k )}.

Note that in this case, one of the seeds is not used, and the other three
seeds are each in exactly two of the above sets.

If k = i, then define

S1
k = {(ak, sakk ), (bk, s

bk
k )}, S2

k = {(ak, sakk ), (ck, s
ck
k )},

and S3
k = {(ak, sakk ), (dk, s

dk
k )}.

Note that in this case, one seed is in all three of the above sets, and the
other three seeds are each in exactly one set.
We stress that the Sji are all unordered sets.

2. Choose uniform V 1, V 2, V 3, V 4 ∈
(
{0, 1}B

)√N
with

V 1 ⊕ V 2 ⊕ V 3 ⊕ V 4 = (

j︷ ︸︸ ︷
0B , . . . , 0B , v, 0B , . . . , 0B︸ ︷︷ ︸

√
N

).

3. Compute

δ1 = V 1 ⊕G(s1i ), δ2 = V 2 ⊕G(s2i ),

δ3 = V 3 ⊕G(s3i ), δ4 = V 4 ⊕G(s4i ).

4. The keys that are output are

K1 = (S1
1 , . . . , S

1√
N
, δ1, δ2, δ3, δ4),

K2 = (S2
1 , . . . , S

2√
N
, δ1, δ2, δ3, δ4),

K3 = (S3
1 , . . . , S

3√
N
, δ1, δ2, δ3, δ4).

The length of each key is O((κ+B) ·
√
N).

Eval(K,x). View x ∈ {1, . . . , N} as a pair (i′, j′) with i′, j′ ∈
√
N . Let

K = (S1, . . . , S√N , δ
1, δ2, δ3, δ4),

where Sk = {(αk, sαk

k ), (βk, s
βk

k )} for k = 1, . . . ,
√
N with αk, βk ∈ {1, 2, 3, 4}.

Compute the vector

Ṽ = G(s
αi′
i′ )⊕G(s

βi′
i′ )⊕ δαi′ ⊕ δβi′ ∈

(
{0, 1}B

)√N
,



and output the B-bit string in position j′ of Ṽ .

Correctness. Let y = (i, j) and say K1,K2,K3 are output by Gen(1κ, y, v). Let
x = (i′, j′) and consider the outputs ṽ1 = Eval(K1, x), ṽ2 = Eval(K2, x), and
ṽ3 = Eval(K3, x). Let Ṽ 1, Ṽ 2, Ṽ 3 denote the intermediate vectors computed by
these three executions of Eval. We consider two cases:

1. Say i′ 6= i. Then

Ṽ 1 ⊕ Ṽ 2 ⊕ Ṽ 3

=
(
G(sai′)⊕G(sbi′)⊕ δa ⊕ δb

)
⊕
(
G(sbi′)⊕G(sci′)⊕ δb ⊕ δc

)
⊕ (G(sai′)⊕G(sci′)⊕ δa ⊕ δc) = 0B·

√
N .

Hence ṽ1 ⊕ ṽ2 ⊕ ṽ3 = 0B for any j′.
2. Say i′ = i. Then

Ṽ 1 ⊕ Ṽ 2 ⊕ Ṽ 3

=
(
G(sai )⊕G(sbi )⊕ δa ⊕ δb

)
⊕ (G(sai )⊕G(sci )⊕ δa ⊕ δc)

⊕
(
G(sai )⊕G(sdi )⊕ δa ⊕ δd

)
= G(sai )⊕G(sbi )⊕G(sci )⊕G(sdi )⊕ δa ⊕ δb ⊕ δc ⊕ δd

= V 1 ⊕ V 2 ⊕ V 3 ⊕ V 4 = (

j︷ ︸︸ ︷
0B , . . . , 0B , v, 0B , . . . , 0B︸ ︷︷ ︸

√
N

).

Hence ṽ1 ⊕ ṽ2 ⊕ ṽ3 is equal to 0B if j′ 6= j, and is equal to v if j′ = j.

Theorem 1. The above scheme is 2-private.

Proof. By symmetry we may assume without loss of generality that servers 1
and 2 are corrupted. Fix a ppt algorithm A and let Expt0 denote the experiment
as in Definition 2. Let ε0 denote the probability with which A correctly outputs b
in that experiment, i.e.,

ε0 = Pr

[
(y0, v0, y1, v1)← A(1κ); b← {0, 1};

(K1,K2,K3)← Gen(1κ, yb, vb)
: A(K1,K2) = b

]
.

Now consider an experiment Expt1 in which Gen is modified as follows:

1. Compute S1
k and S2

k as before. Note that S3
k need not be defined, since we

only care about the keys K1,K2 that are provided to A.
2. As before.

3. Compute δai , δbi , and δci as before, but choose uniform δdi ∈
(
{0, 1}B

)√N
.

4. Keys K1,K2 are then computed as before.

Observe that seed sdii is never used. It follows from pseudorandomness of G
that the view of A in Expt1 is computationally indistinguishable from its view
in Expt0; hence if we let ε1 denote the probability that A correctly outputs b in
Expt1 we must have |ε1 − ε0| ≤ negl(κ).

We next define another experiment Expt2 in which Gen works as follows:



1. For k = 1, . . . ,
√
N , let ak, bk, ck, dk be a random permutation of 1, 2, 3, 4.

Choose sakk , s
bk
k , s

ck
k ← {0, 1}κ and set

S1
k = {(ak, sakk ), (bk, s

bk
i )} and S2

k = {(bk, sbkk ), (ck, s
ck
k )}.

2. Do not define V 1, V 2, V 3, V 4 at all.

3. Choose δ1, δ2, δ3, δ4 ←
(
{0, 1}B

)√N
.

4. Keys K1,K2 are then computed as before.

The joint distribution of K1,K2 above is identical to their joint distribution
in Expt1. Thus, if we let ε2 be the probability that A correctly outputs b in
Expt2, we have ε2 = ε1.

Finally, observe that in Expt2 the view of A does not depend on the inputs
y, v provided to Gen at all, and so ε2 = 1/2. This completes the proof.

3 Oblivious Reading and Writing

We describe here n-server private information retrieval (PIR) protocols for obliv-
ious reading and private information writing (PIW) protocols for oblivious writ-
ing, based on any n-server DPF [9]. In the context, as in the case of ORAM,
we have a client interacting with these servers, and their is no obliviousness re-
quirement with respect to the client. If the DPF is t-private, these protocols are
t-private as well. (Formal definitions are given by Gilboa and Ishai [9].)

PIR. Let D ∈ ({0, 1}B)N be an encrypted data array. Let (Gen,Eval) be an n-
server DPF for point functions with 1-bit output. Each of the n servers is given
a copy of D. To retrieve the data D[y] stored at address y, the client computes
Gen(1κ, y, 1) to obtain keys K1, . . . ,Kn, and sends Ki to the ith server. The ith
server computes cix = Eval(Ki, x) for x ∈ {1, . . . , N}, and sends

ri =
⊕

x∈{1,...,N}

cix ·D[x]

to the client. Finally, the client computes the result
⊕n

i=1 r
i. Correctness holds

since

n⊕
i=1

ri =
⊕

x∈{1,...,N}

n⊕
i=1

cix ·D[x]

=
⊕

x∈{1,...,N}

Fy,1(x) ·D[x] = D[y].

Privacy follows immediately from privacy of the DPF.

PIW. Let D ∈ ({0, 1}B)N be a data array. Let (Gen,Eval) be an n-server DPF
for point functions with B-bit output. Now, each of the servers is given an
additive share Di of D, where

⊕
Di = D. When the client wants to write



the value v to address y, we require the client to know the current value vold
stored at that address. (Here, we simply assume the client knows this value; in
applications of PIW we will need to provide a way for the client to learn it.)
The client computes Gen(1κ, y, v ⊕ vold) to obtain keys K1, . . . ,Kn, and sends
Ki to the ith server. The ith server computes Eval(Ki, x) for x = 1, . . . , N to
obtain a sequence of B-bit values Ṽ i = (ṽi1, . . . , ṽ

i
N ), and then updates its share

Di to D̃i = Di ⊕ Ṽ i. Note that if we define D̃ =
⊕
D̃i, then D̃ is equal to

D everywhere except at address y, where the value at that address has been
“shifted” by v ⊕ vold so that the new value stored there is v.

4 3-Server ORAM

In this section we describe a 3-server ORAM scheme secure against a single
semi-honest server. The scheme can be built from any 2-private, 3-server DPF
in conjunction with any 2-server PIR protocol. (As discussed in the previous
section, a 2-server PIR protocol can be constructed from any 1-private, 2-server
DPF; efficient constructions of the latter are known [9, 4].)

A 4-server ORAM scheme. As a warm-up, we sketch a 4-server ORAM
protocol (secure against a single semi-honest server), inspired by ideas of [22],
based on 2-server PIR and PIW schemes constructed as in the previous section.
Let D ∈ ({0, 1}B)N be the client’s (encrypted) data, and let D1, D2 be shares
so that D1 ⊕D2 = D. Servers 1 and 2 store D1, and servers 3 and 4 store D2.
The client can then obliviously read from and write to D as follows: to read
the value at address y, the client runs a 2-server PIR protocol with servers 1
and 2 to obtain D1[y] and with servers 3 and 4 to obtain D2[y]. It then computes
D[y] = D1[y]⊕D2[y].

To write the value v to address y, the client first performs an oblivious read
(as above) to learn the value vold currently stored at that address. It then runs
a 2-server PIW protocol with servers 1 and 3 to store v at address y in the
array shared by those servers. Next, it sends the same PIW messages to servers
2 and 4, respectively. (The client does not run a fresh invocation of the PIW
scheme; rather, it sends server 2 the same message it sent to server 1 and sends
server 4 the same message it sent to server 3.) This ensures that (1) servers 1
and 2 hold the same updated data D̃1; (2) servers 3 and 4 hold the same updated
data D̃2; and (3) the updated array D̃ = D̃1 ⊕ D̃2 is identical to the previously
stored array except at position y (where the value stored is now v).

A 3-server ORAM scheme. We now show how to adapt the above ideas to
the 3-server case, using a 2-server PIR scheme and a 2-private, 3-server DPF.
The data D of the client is again viewed as an N -element array of B-bit entries.
The invariant of the ORAM scheme is that at all times there will exist three
shares D1, D2, D3 with D1 ⊕D2 ⊕D3 = D; server 1 will hold D1, D2, server 2
will hold D2, D3, and server 3 will hold D3, D1.

Before describing how read and write are performed, we define two subrou-
tines GetValue and ShiftValue.



GetValue. To learn the entry at address y, the client uses three independent
executions of a 2-server PIR scheme. Specifically, it uses an execution of the PIR
protocol with servers 1 and 2 to learn D2[y]; an execution of the PIR protocol
with servers 2 and 3 to learn D3[y]; and an execution of the PIR protocol with
servers 1 and 3 to learn D1[y]. Finally, it XORs the three values just obtained
to obtain D[y] = D1[y]⊕D2[y]⊕D3[y].

ShiftValue. Let (Gen,Eval) be a 2-private, 3-server DPF scheme with B-bit out-
put. This subroutine allows the client to shift the value stored at position y
by ∆ ∈ {0, 1}B , i.e., to change D to D̃ where D̃[x] = D[x] for x 6= y and
D̃[y] = D[y] ⊕ ∆. To do so, the client computes K1,K2,K3 ← Gen(y,∆) and
sends K1 to server 1, K2 to server 2, and K3 to server 3. Each server s re-
spectively computes Eval(Ks, x) for x = 1, . . . , N to obtain a sequence of B-bit
values Ṽ s = (ṽs1, . . . , ṽ

s
N ), and then updates its share Ds to D̃s = Ds⊕ Ṽ s. Note

that if D̃ denotes the updated version of the array, then D̃1 ⊕ D̃2 ⊕ D̃3 = D̃.
After the above, server 1 holds D̃1, D2, server 2 holds D̃2, D3, and server 3

holds D̃3, D1, and so the desired invariant does not hold. To fix this, the client
also sends K1 to server 3, K2 to server 1, and K3 to server 2. (We stress that
the same keys used before are being used here, i.e., the client does not run a
fresh execution of the DPF.) This allows each server to update its “other” share
and hence restore the invariant.

With these in place, we may now define our read and write protocols.

Read. To read the entry at index y, the client runs GetValue(y) followed by
ShiftValue(y, 0B).

Write. To write a value v to index y, the client first runs GetValue(y) to learn
the current value vold stored at index y. It then runs ShiftValue(y, v ⊕ vold).

Correctness of the construction is immediate. Security against a single semi-
honest server follows from security of the GetValue and ShiftValue subroutines,
which in turn follow from security of the primitives used: GetValue is secure
because the PIR scheme hides y from any single corrupted server; ShiftValue
is secure against any single corrupted server—even though that server sees two
keys from the DPF—by virtue of the fact that the DPF is 2-private.

5 3-party Distributed ORAM

5.1 Definition

In the previous section we considered the client/server setting where a single
client outsources its data to three servers, and can perform reads and writes on
that data. In that setting, the client knows the index y when reading and knows
the index y and value v when writing. Here, in contrast, we consider a setting
where three parties P1, P2, P3 distributively implement the client (as well as the
servers), and none of them should learn the input(s) or output of read/write
requests—in fact, they should not even learn whether a read or a write was



performed. Instead, all inputs/outputs are additively shared among the three
parties, and should remain hidden from any single (semi-honest) party.

More formally, we may define an ideal, reactive functionality Fmem corre-
sponding to distributed storage of an array with support for memory accesses.
For simplicity we leave initialization implicit, and so assume the functionality
always stores an array D ∈ ({0, 1}B)N . The functionality works as follows:

1. On input additive shares of (op, y, v) from the three parties, do:
(a) If op = read then set o = D[y].
(b) If op = write then set D[y] = v and o = 0B .

2. Let o1, o2, o3 be random, additive shares of o. Return os to party s.

We then define a 1-private, 3-party distributed ORAM (DORAM) protocol to
be a 3-party protocol that realizes the above ideal functionality in the presence
of a single (semi-honest) corrupted party.

5.2 Our Construction

The data is shared as in the 3-server ORAM scheme from the previous section,
namely, at all times there are three shares D1, D2, D3 with D1 ⊕D2 ⊕D3 = D;
party 1 will hold D1, D2, party 2 will hold D2, D3, and party 3 will hold D3, D1.

As in the previous section, we begin by constructing subroutines GetValue
and ShiftValue.

GetValue. Here the parties hold y1, y2, y3, respectively, with y = y1 ⊕ y2 ⊕ y3;
after running this protocol the parties should hold additive shares v1, v2, v3 of
the value D[y]. This is accomplished as follows:

1. P2 chooses uniform r2 and sends y2 ⊕ r2 to P3 and r2 to P1. Party P3

chooses uniform r3 and sends y3 ⊕ r3 to P2 and r3 to P1. Then P2 and P3

each compute ω = y2 ⊕ r2 ⊕ y3 ⊕ r3, and P1 computes

y1 ⊕ r2 ⊕ r3 = y ⊕ ω.

2. P1 runs the client algorithm in the 2-server PIR protocol using the “shifted
index” y ⊕ ω. Parties P2 and P3 will play the roles of the servers using
the “shifted database” that results by shifting the position of every entry
in D3 by ω. Rather than sending their responses to P1, however, P2 and
P3 simply record those values locally. Note that this results in P2 and P3

holding additive shares of D3[y].

Repeating the above with P2 acting as client (reading from D1) and P3 acting as
client (reading from D2)—and then having the parties locally XOR their shares
together—results in the three parties holding additive shares of D[y].

ShiftValue. Here we assume the parties have shares i1, i2, i3 and j1, j2, j3 such
that, if i = i1 ⊕ i2 ⊕ i3 and j = j1 ⊕ j2 ⊕ j3, the shared index is y = (i, j).
The parties also have shares v1, v2, v3 with v1 ⊕ v2 ⊕ v3 = v. At the end of this



protocol, the parties should hold shares of the updated data D̃ where all entries
are the same as in the original data D except that D̃[y] = D[y]⊕ v.

We show how to implement a distributed version of the Gen algorithm in
our 3-server DPF. A distributed version of ShiftValue can then be implemented
following the ideas from the previous section.

Intuitively, we define a particular pseudorandom generator G′ to use in our
DPF construction, namely,

G′(s1, s2, s3) = G(s1)⊕G(s2)⊕G(s3),

where G is a pseudorandom generator. Note that this has the property that
the output of G′ remains pseudorandom as long as at least one of the seeds is
unknown. The high-level idea is that every seed in the original DPF will now be
split into three seeds, with each seed known to two parties.

The protocol proceeds as follows:

1. For k = 1, . . . ,
√
N do:

(a) P1 chooses values s1k,1, s
2
k,1, s

3
k,1, s

4
k,1 ← {0, 1}κ and shares them with P3.

Similarly, P2 chooses s1k,2, s
2
k,2, s

3
k,2, s

4
k,2 and shares them with P1, and

P3 chooses s1k,3, s
2
k,3, s

3
k,3, s

4
k,3 and shares them with P2.

(b) The parties run a secure multi-party computation implementing the fol-
lowing functionality:

Choose a random permutation a, b, c, d of 1, 2, 3, 4.

If k 6= i then give {(a, sak,1, sak,2, sak,3), (b, sbk,1, s
b
k,2, s

b
k,3)} to P1;

give {(b, sbk,1, sbk,2, sbk,3), (c, sck,1, s
c
k,2, s

c
k,3)} to P2; and finally give

{(a, sak,1, sak,2, sak,3), (c, sck,1, s
c
k,2, s

c
k,3)} to P3.

If k = i then give {(a, sai,1, sai,2, sai,3), (b, sbi,1, s
b
i,2, s

b
i,3)} to P1;

give {(a, sai,1, sai,2, sai,3), (c, sci,1, s
c
i,2, s

c
i,3)} to P2; and give values

{(a, sai,1, sai,2, sai,3), (d, sdi,1, s
d
i,2, s

d
i,3)} to P3.

Note that the above computation is quite simple (in particular, it can be
implemented by an NC0 circuit), and does no cryptographic computa-
tion. In ongoing work, we are designing a dedicated protocol implement-
ing the above without relying on generic secure computation.)

2. For ` = 1, . . . , 4, party P1 computes G`k,1 = G(s`k,1) and G`k,2 = G(s`k,2);

party P2 computes G`k,2 = G(s`k,2) and G`k,3 = G(s`k,3); and party P3 com-

putes G`k,3 = G(s`k,3) and G`k,1 = G(s`k,1).

3. For k = 1, . . . ,
√
N and ` = 1, . . . , 4, define G`[k] = G`k,1⊕G`k,2⊕G`k,3. Note

that the parties share G` in the same manner as required for the GetValue
protocol described earlier, and so can distributively compute shares δ̂`1, δ̂

`
2, δ̂

`
3

(with P1 holding δ̂`1, P2 holding δ̂`2, and P3 holding δ̂`3) such that

G`[i] = δ̂`1 ⊕ δ̂`2 ⊕ δ̂`3.

4. The parties run a protocol (see below) to generate shares {V 1
s , V

2
s , V

3
s , V

4
s }

(where the share with subscript s is held by party Ps) such that, if we define



V ` = V `1 ⊕ V `2 ⊕ V `3 (for ` = 1, . . . , 4) then

V 1 ⊕ V 2 ⊕ V 3 ⊕ V 4 = (

j︷ ︸︸ ︷
0`, . . . , 0`, v, 0`, . . . , 0`︸ ︷︷ ︸

√
N

).

This is done as follows:
(a) As earlier, the parties exchange values so that P1 holds j ⊕ ω and P2

and P3 hold ω for a uniform shift ω.
(b) P1 runs the client algorithm for a 2-server DPF with index j ⊕ ω and

value v1. Parties P2 and P3 shift the local outputs they get by ω. As a
result, P2 and P3 now have shares a2 and a3 such that

a2 ⊕ a3 = (

j︷ ︸︸ ︷
0`, . . . , 0`, v1, 0`, . . . , 0`︸ ︷︷ ︸

√
N

).

(c) Symmetrically, the parties compute shares b1 and b2 (held by P1 and P2,
respectively) such that

b1 ⊕ b2 = (

j︷ ︸︸ ︷
0`, . . . , 0`, v3, 0`, . . . , 0`︸ ︷︷ ︸

√
N

),

and shares c1, c3 (held by P1 and P3, respectively) such that

c1 ⊕ c3 = (

j︷ ︸︸ ︷
0`, . . . , 0`, v2, 0`, . . . , 0`︸ ︷︷ ︸

√
N

).

Each party Ps can then locally compute four random shares V 1
s , V

2
s , V

3
s , V

4
s

whose XOR is equal to the XOR of the two shares they just learned.
5. Each party Ps locally computes δ`p = V `p ⊕ δ̂`p for ` = 1, . . . , 4. The parties

then all send their shares δ`p to each other, so each party can compute

δ1 = δ11 ⊕ δ12 ⊕ δ13 , δ2 = δ21 ⊕ δ22 ⊕ δ23 ,
δ3 = δ31 ⊕ δ32 ⊕ δ33 , δ4 = δ41 ⊕ δ42 ⊕ δ43 .

Note that after the above, each party Ps has a key Ks corresponding to the
output of the Gen algorithm for the 3-server DPF.

Memory access. We can now handle a memory access by suitably modifying
the approach from the previous section. The parties begin holding additive shares
of a memory-access instruction (op, y, v) and data D, and proceed as follows:

1. The parties run the GetValue protocol using their shares of y. This results
in the parties holding shares v1, v2, v3 such that v1 ⊕ v2 ⊕ v3 = D[y] = vold.



2. The parties run a secure multi-party computation implementing the follow-
ing functionality:

If op = read then set w = 0B and o = vold. Otherwise, set w = v⊕vold
and o = 0B . Output random additive shares w1, w2, w3 of w and
random additive shares o1, o2, o3 of o to the parties.

3. The parties run the ShiftValue protocol using their shares of y and their
shares of w. The parties locally output their shares of o.

A proof of the following is tedious, but straightforward.

Theorem 2. The above is a 1-private, 3-party DORAM protocol in which each
memory access requires constant rounds and O(

√
N) communication.
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