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Abstract. In this document, we introduce PKP-DSS: a Digital Signature Scheme
based on the so-called Permuted Kernel Problem (PKP) [1]. PKP is an NP-
complete [3] algebraic problem that consists of finding a kernel vector with par-
ticular entries for a publicly known matrix. It’s simple, and needs only basic linear
algebra. Hence, this problem was used to develop the first Identification Scheme
(IDS) which has an efficient implementation on low-cost smart cards.
We construct PKP-DSS from a Zero-Knowledge Identification Scheme (ZK-
IDS) based on PKP [1]. We derive the signature scheme PKP-DSS by using the
traditional Fiat-Shamir (FS) transform [4]. Thus, PKP-DSS has a security that
can be provably reduced, in the (classical) random oracle model, to essentially
the hardness of random instances of PKP.
Following the thorough analysis of the State-of-the-art attacks of PKP presented
in [2], we define several sets of parameters for different security levels. Each
parameter set arises a fast scheme coming with small keys and signatures of
length comparable to the other signatures derived from Zero-Knowledge iden-
tification schemes. In particular, PKP-DSS-128 gives a signature size approxi-
mately about 16 KBytes for 128 bits of classical security, while the best known
signature schemes built from a ZK-IDS (such as MQDSS [7], Picnic [22],... ) give
similar signatures (≈ 16 KB for MQDSS, ≈ 33 KB for Picnic,... ).
Moreover, the reference implementation shows that PKP-DSS-128 is nearly 48%
faster than MQDSS which in its turn is faster than Picnic, SPHINCS,...
Since there are no known quantum attacks for solving PKP significantly better
than classical attacks, we believe that effects of quantum computer on our scheme
will be moderate.

Keywords: public-key cryptography · post-quantum cryptography · Fiat-Shamir
· 5-pass identification scheme · Permuted Kernel Problem.

1 Introduction

The construction of large quantum computers would break all public-key cryptographic
schemes in use today based on the traditional number-theoretic problems: the discrete
logarithm (DLOG) and the integer factorization (FACT), like RSA public key encryp-
tion and Diffie-Hellman key exchange. Despite the fact that it isn’t clear when and even
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if enormous quantum computations would be feasible, it is important to anticipate a
technological breakthrough and design new public key cryptosytems that are resistant
to quantum attacks.

Therefore, the effort to develop new schemes is now being intensified, and the most
significant sign is certainly the standardization process initiated by the American orga-
nization NIST (https://www.nist.gov/).

Due to the call for post-quantum standards of the NIST, there has been renewed
interest in the transformed Zero-Knowledge Identification Schemes into Digital Signa-
tures Schemes (DSS) via the Fiat-Shamir paradigm [4]. This transformation method is
important since it yields to efficient signature schemes in terms of minimal and suffi-
cient security assumptions.

Particularly, we are interested in the post-quantum cryptographic schemes which
belongs to the post-quantum branch whose security relies on the fact that there is no
quantum algorithms known to solve NP-Complete problems [5]. Namely, the Permuted
Kernel Problem: the problem of finding a permutation of a known vector such that the
resulting vector is in the kernel of a given matrix.

In 1989, A. SHAMIR [1] introduced a scheme of a new nature, a ZK-Identification
scheme, based on the Permuted Kernel Problem. It is an old-time NP-complete com-
binatorial problem. PKP requires simple operations which involve basic linear algebra
computations. For a little long time, no new attacks on PKP were reported which makes
the construction of schemes based on hard instances of this problem more applicable.
Here, we study the application in cryptography of the PKP problem over a finite field.
We are essentially concerned about this problem because it can be used to build a post-
quantum signature scheme based on the hardness of solving random instances of PKP.

Previous work and State-of-the-art. Since quantum computers are known to be in-
capable to solve NP-Complete problems [5], the Zero-knowledge Identification schemes
(ZK-IDS), based on such problems, are very interesting nowadays. The Fiat-Shamir
transform [4] is a technique to convert a zero knowledge authentication scheme (ZK
scheme) into a signature scheme. Its principle is to turn the exchanged elements during
authentication into a signature [8,9].

Here, we focus on recent signature schemes built from Zero-knowledge Identifica-
tion schemes by applying the Fiat-Shamir transform. Lately, a secure signature scheme
was introduced in [7] with concrete parameters and detailed implementation. It has
opened the doors to consider other Identifaction schemes based on NP-Complete prob-
lems.

In [7], a new multivariate-based digital signature scheme called MQDSS and uti-
lizing the Fiat-Shamir paradigm was presented. MQDSS is based on the MQ problem
i.e.the problem of solving systems of multivariate quadratic polynomials.

The authors of [7] have introduced MQDSS-31-48 for a security of 128 bits (resp.
MQDSS-31-64 for a security of 192 bits) coming with a public key of 46 Bytes (resp.
64), a secret key of 16 Bytes (resp. 24) and a signature size of approximately 16.15
K-Bytes (resp. 33.23).

As well and besides zero knowledge proof, Picnic [22] is a digital signature scheme
whose security relies on hash functions, symmetric cryptography, and block ciphers. In
Picnic, suitable parameters give a signature size, for the security level L1 identified by
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NIST ( which is equivalent to the security level of AES128 [6]), about approximately
33 K-Bytes (resp. 75 K-Bytes for the level L3), with a public key of 32 Bytes (resp. 48),
and a secret key of 16 Bytes (resp. 24).

Additionally, we can cite the lattice-based signature scheme presented in Fiat-Shamir
with aborts [10]. It also includes the Fiat-Shamir method to transform the IDS into a
signature scheme. The resulting schemes gives signatures of small sizes, while the pub-
lic/secret keys are large. Moreover, Dilithium [11] is a scheme based on the Fiat-Shamir
with aborts approach. This lattice-based signature scheme provides signatures of ap-
proximately 2.6 K-Bytes for the security level L1 [6], coming with a large public key
of 1472 Bytes.

The results give post-quantum schemes in the strong sense, and this opens the way
to consider other algebraic problems like PKP. However, in order to compare with our
scheme, we keep the digital signatures converted from Zero-knowledge Identification
schemes.

Main results. The main contribution of this paper is to present a new post-quantum
signature scheme. After the complexity analysis of the PKP [2], we are particularly
interested in the design of a signature scheme.
Similarly to the approaches cited above, by applying the Fiat-Shamir transform, we
study the design of a post-quantum signature constructed from a 5-pass authentication
scheme based on the PKP problem.

Our objective is to define the most optimal parameters for hard instances of this
problem, with respect to the security levels identified by NIST [6].
The signature scheme PKP-DSS based on PKP compared well (in terms of construc-
tion) with the schemes listed in Section 1 . We obtained the following results: a fast
scheme concerning both signing and verification process, a small public-key, and a
comparable signature size for the same security levels. Then, this makes the signature
scheme based on PKP a competitive cryptosystem.

2 The Permuted Kernel Problem

In order to introduce the signature scheme, we first present the PKP problem [1]. We
also briefly present the best technique for solving it. In [12], J. GEORGIADES presents
symmetric polynomials equations which will be utilized by all the other attacks. The
authors of [13] investigate also the security of PKP, where a time-memory trade-off
was introduced. Moreover, J. PATARIN and P. CHAUVAUD improve algorithms for
the Permuted Kernel Problem[14]. Also, in [16], a new time-memory trade-off was
proposed. After all, it appears in [2] that the attack of PATARIN-CHAUVAUD [14] is the
most efficient one.

2.1 Introduction to PKP

PKP [1,3] is the problem on which the security of PKP-DSS is based. PKP is a linear
algebra problem which asks to find a kernel vector of given matrix under a vector-entries
constraint. It’s a generalization of the Partition problem [3, pg.224]. More precisely, it
is defined as follows:
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Input. A finite field Fp, a matrix A ∈Mm×n(Fp) and a n-vector V ∈ Fp
n.

Question. Find a permutation π over (1, . . . ,n) such that A×Vπ = 0, where
Vπ = (Vπ( j)), j = 1, . . . ,n.

A reduction of the 3-Partition problem proves PKP to be NP-Complete [3] in the
good reasoning (i.e.its hardness grows exponentially with p). A fundamental design as-
sumption of PKP-DSS is that solving random instances of PKP are hard to solve in
practice ( ). In fact, the solidity of PKP comes from, on the one hand, the big number
of permutations, on the other hand, from the small number of possible permutations
which may suit the kernel equations. More precisely, PKP is hard because it obligates
the choice of a vector, with already fixed set of entries, from the kernel of the matrix A.
Note that, to reach higher security levels, it’s more desirable that the n-vector V has
distinct coordinates. In the next section, we give the best well known attack on the PKP
problem.

2.2 The algorithm of PATARIN-CHAUVAUD

The implementation’s efficiency of the first IDS, proposed by A. SHAMIR [1], based
on PKP problem has led to several solving tools. In fact, there are various attacks for
PKP, which are all exponential. We will not describe them here, instead we refer to [2]
for further details .

J. PATARIN and P. CHAUVAUD combine in [14] the two ideas presented in the
previous attacks [12,13]. The result was a reduction in the time required to attack PKP.
They also present some new ideas in order to reduce this time the memory needed.
Thus, this leads to a new algorithm which is quicker and more efficient than all the
given attacks of PKP [12,13,17]. The details and the numerical results are given in the
main article [2].

3 Identification scheme (IDS) based on PKP

In this section, we present the 5-pass Zero-Knowledge Identification Scheme (ZK-IDS)
based on the computational hardness of PKP [1,23], noted here PKP-IDS.

We first quote and refer to some of the general definitions given in [7] : Identifi-
cation scheme, Completeness, Soundness (with soundness error), Honest-verifier zero-
knowledge, and also in [21,29] : statistically hiding commitment, computationally bind-
ing commitment. We then apply and adapt these definitions to the Identification scheme
based on PKP and give and prove its own properties of performance and security. This
approach will be more convenient for presenting the signature scheme in the next sec-
tion.

3.1 Preliminaries

In what follows and as in [7], we assume the existence of a non-interactive commitment
scheme Com which verifies the two properties : statistically hiding and computationally
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binding (see [21,29] for details). The commitments are computed using the function
Com. Note that, it is possible to let Com be H a one way hash and collision intractable
function, behaving like a random oracle.

3.2 PKP 5-pass IDS

In this section, we present (slightly modified version of) PKP-IDS. It can be described
as three probabilistic polynomial time algorithms IDS =

(
KEYGEN, P, V

)
for which

we give below a literal description. The security parameter of the identification scheme
is noted λ .

Generation of the public key and secret key in PKP-IDS. The users first agree
on a prime number p, and a For. The public-key in PKP-IDS is given by an instance
of PKP with a preassigned solution that will be the secret-key. Thus, each user picks
a (right) kernel-vector W ∈ Ker(A), then randomly generates a secret permutation of n
elements sk= π and finishes by computing V =Wπ−1 .
We summarize the public-key/secret-key generation in Algorithm 1. It takes the security
parameter λ as input.

Algorithm 1 pk/sk generation in PKP-IDS
1: procedure PKP-IDS.KEYGEN(n,m, p)
2: Randomly sample a matrix A ∈Mm×n(Fp)
3: Randomly pick a n-vector W ∈ Ker(A)
4: Generate a random permutation π ∈ Sn
5: sk← π

6: Compute V =Wπ−1

7: pk← (A,V )
8: Return (pk,sk)
9: end procedure

One 5-pass round of identification : Prover P and Verifier V.
Prover and Verifier are interactive algorithms that realize the identification protocol in
5 passes. The 5 passes consist in one commitment and two responses transmitted from
the prover to the verifier and two challenges transmitted from the verifier to the prover.
Random choices of prover and verifier are made using the uniform distribution. The
protocol of identification is summarized in Algorithm 2.
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Algorithm 2 One round of the 5-pass identification scheme
1: procedures P(sk),V(pk)
2: //Prover setup
3: P sets R← Random vector in Fp

n

4: P sets σ .seed← Random seed of λ bits
5: P sets σ ← Random permutation in Sn using a pseudo-random generator with σ .seed
6: //Commitment step by the Prover
7: P sets C0← Com

(
σ ,AR

)
8: P sets C1← Com

(
πσ ,Rσ

)
9: P sends (C0,C1) to V

10: //First challenge by the verifier
11: V sets Ch0← c random in Fp
12: V sends Ch0 to P

13: P sets Z← Rσ + cVπσ and sends Z to V

14: V sets Ch1← b random bit
15: V sends Ch1 to P

16: if Ch1 = 0 then
17: P reveals σ .seed to V

18: V accepts if Com
(
σ ,Aσ Z

)
= C0

19: else
20: P reveals πσ to V

21: V accepts if Com
(
πσ ,Z− cVπσ

)
= C1

22: end if
23: end procedure

From SHAMIR in [1] we have the following results.

Theorem 1. PKP-IDS is complete. PKP-IDS is statistically zero knowledge when the
commitment scheme Com is computationally binding. PKP-IDS is sound with sound-
ness error κ = p+1

2p when the commitment scheme Com is computationally binding.

In such ZK-IDS, it is usually possible to cheat: a cheater is generally able to predict
some questions, but not all of them, so there is a possibility to fraud. The systems are
constructed in a manner that answering a question reveals no secret (Zero-knowledge),
when giving the answers to all the questions verifies the possession of a secret (Sound-
ness). It is obvious that the security of a ZK-IDS relies on the difficulty by a prover P
to prepare in advance to answer the verifier’s questions. Thus, it is necessary to repeat
the protocol several time in order to reduce the probability of fraud.
Thus, the cheating (fraud) probability for numerous iterations defined as follows:

Definition 1 (N rounds of PKP-IDS). Let PKP-IDS= (KEYGEN,P,V) then PKP−
IDSN = (KEYGEN,PN ,VN) is the parallel composition of N rounds of PKP− IDS.

Performance of the scheme. We can now provide the communication complexity
of the IDS, where its fraud’s probability is p+1

2p . Consider that the commitment function
Com used in the protocol, returns values of 2λ bits. The transfer of the n-vector Z ∈ Fp

n

requires n log2 p Thus, the fourth passes demand 4λ +(n+1) log2 p+1 bits.
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Note also that, compared to the original scheme of Shamir in [1], we have re-
duced the complexity in communication by revealing only the seed used to generate
the random elements. More precisely, instead of revealing the random permutation σ ,
the prover P only sends its seed sigma.seed.

So, the last pass needs, according to Ch1, λ bits to reveal the permutation σ if
Ch1 = 0; and log2(n!) bits to reveal the permutation πσ , if Ch1 = 1.
In total, the weighted average bit complexity of the scheme repeated N rounds is given
by: (

4λ +(n+1) log2 p+1+
1
2
(λ + log2(n!))

)
×N.

4 Digital signature scheme (DSS) based on PKP

We present here the main contribution of this work which is to construct a DSS i.e. a
digital signature scheme, based on the PKP problem, from the IDS defined in Section
3. This construction uses the well-known Fiat Shamir transformation [4].

So next, we introduce the basic definitions needed. Then, similarly to the MQ-based
signatures and Picnic, we define our scheme, and we finish with a comparison with other
cryptosystems.

4.1 Introduction

The classical method of Fiat-Shamir (FS) transforms an interactive proof of knowledge
(identification scheme) into a non interactive one (signature scheme). This work is a
direct application of this method to get PKP-DSS from PKP-IDS.

Fiat-Shamir transform for PKP-IDS. We recall that PKP-IDS the previously de-
fined identification scheme achieves soundness with soundness error κ = 1+p

2p .

Construction. The Signature Scheme is the Fiat-Shamir Transform of N parallel
rounds of the 5-pass Identification protocol. All random generations are turned into de-
terministic generations using Pseudo-random generators and secret seeds. We need the
following:

– Three cryptographic hash functions H0 : {0,1}∗→{0,1}2λ , H1 : {0,1}∗→ FN
p and

H2 : {0,1}∗ → {0,1}N , where N is the number of iterations needed to attend the
security level λ needed.

– A commitment function Com to compute the commitments, as the authentication
scheme, and its outputs is of 2λ bits.

– Pseudo-random generators.

By applying the well-known Fiat Shamir transformation [4], we get PKP-DSS=
(KEYGEN,SIGN,VERIFY) (4).
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Key generation. The KeyGen algorithm output a secret key sk, a public key pk
defined in terms of seeds in order to minimize their size. In order to have a constant
time of generation of the vector V , The matrix A is generated but its last column. The
last column of A (noted LC) is computed using the relation AVπ = 0. This computation
involves divisions by the last coordinate of Vπ . Therefore we require that all coordinates
of V are non zero, which does not decrease security, since these coordinates are public.
Our key generation procedure is given in (3).

Signing. The Sign algorithm takes as input a message m ∈ {0,1}∗ and a secret key
sk. Our signing process is given in (4). It is constructed from the iterations of the IDS.
Denote by N the number of iterations to achieve the security level λ .

Verification. The verification function takes as input the message m, the signature
σ and the public key pk.
The verification process is listed in (5).
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Algorithm 3 Key generation in PKP-DSS

1: procedure PKP-DSS.KeyGen(1λ )
2: seed← Randomly sample λ bits
3: (seedπ ,seedA∗ ,seedV ,seedR,seedS)← PRG0(seed)
4: π ← PRG1(seedπ )
5: A∗← PRG2(seedA∗)
6: V ← PRG3(seedV )
7: Compute LC from A∗ and Vπ

8: sk← seed
9: pk← (seedA∗ ,seedV ,LC)

10: Return (pk,sk)
11: end procedure

A valid signature of a message m by PKP-DSS 5 is then a tuple (m,σ0,σ1,σ2),
where σ0,σ1,σ2 hold the (vector of parallel) commitments and responses of the non
interactive prover. The implicit values h1 = H1(m,σ0) and h2 = H2(m,σ0,h1,σ1) rep-
resent the (vector of parallel) challenges of the non interactive verifier.
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Algorithm 4 Signing process in PKP-DSS

1: procedure PKP-DSS.Sign(m,sk)
2: (seedπ ,seedA∗ ,seedV ,seedR,seedS)← PRG0(sk)
3: π ← PRG1(seedπ )
4: A∗← PRG2(seedA∗)
5: V ← PRG3(seedV )
6: Compute LC (last column of A) from A∗ and V
7: A← A∗||LC
8: R←H0

(
sk || m

)
, R is a message-dependent random value

9: D←H0
(
pk || R || m

)
, D is the randomized message digest

10: R(1), . . . ,R(N)← PRG4
(
seedR || D

)
11: seed

σ (1) , . . . ,seedσ (N) ← PRG5
(
seedS || D

)
12: for j f rom 1 to N do
13: σ ( j)← PRG1(seed

σ ( j))

14: C
( j)
0 = Com

(
σ ( j),AR( j)),

15: C
( j)
1 = Com

(
πσ ( j),R( j)

σ ( j)

)
.

16: COM(j) :=
(
C
( j)
0 , C

( j)
1
)

17: end for
18: S0←H0

(
COM(1)|| . . . ||COM(N)

)
.

19: Ch0←H1
(
D, S0

)
20: (c(1), . . . ,c(N))← PRG6(Ch0), c( j) ∈ Fp
21: for j f rom 1 to N do
22: Z( j)← R( j)

σ ( j) + c( j)V
πσ ( j) ,

23: resp
( j)
0 := Z( j).

24: end for
25: S1←

(
resp

(1)
0 || . . . ||resp

(N)
0
)
=
(
Z(1)|| . . . ||,Z(N)

)
.

26: Ch1←H2
(
D, S0, Ch0, S1

)
27: Parse Ch1 as Ch1 := (b(1), . . . ,b(N)), b( j) ∈ {0,1}
28: for j in(1 . . .N) do
29: if b( j) = 0 then
30: resp

( j)
1 ← seed

σ ( j) .
31: else
32: resp

( j)
1 ← πσ ( j).

33: end if
34: end for
35: S2←

(
resp

(1)
1 || . . . ||resp

(N)
1 ||C

(1)
1−b(1) || . . . ||C

(N)

1−b(N)

)
.

36: Return
(
R, S0, S1, S2

)
.

37: end procedure
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Algorithm 5 Verification process in PKP-DSS

1: procedure PKP-DSS.Verify
(
m,pk,S= (R,S0,S1,S2)

)
2: D←H0

(
pk || R || m

)
, D is the randomized message digest

3: Ch0←H1
(

(D, S0)
)

4: (c(1), . . . ,c(N))← PRG6(Ch0), c( j) ∈ Fp
5: Ch1←H2

(
D, S0, Ch0, S1

)
6: Parse Ch1 as Ch1 := (b(1), . . . ,b(N)), b( j) ∈ {0,1}
7: Parse S1 as S1 :=

(
resp

(1)
0 || . . . ||resp

(N)
0
)

8: Parse S2 as S2 :=
(
resp

(1)
1 || . . . ||resp

(N)
1 ||C

(1)
1−b(1) || . . . ||C

(N)

1−b(N)

)
.

9: for j in(1 . . .N) do
10: Z( j) := resp

( j)
0 ,

11: if b( j) = 0 then
12: σ ( j) := PRG1(resp( j)

1 ),

13: C
( j)
0 := Com

(
σ ( j),A

σ ( j)Z( j))
14: else
15: πσ ( j)=resp

( j)
1

16: C
( j)
1 = Com

(
πσ ( j),Z( j)− c( j)V

πσ ( j)

)
17: end if
18: COM(j) :=

(
C
( j)
0 , C

( j)
1
)

19: end for
20: S′0←H0

(
COM(1)|| . . . ||COM(N)

)
.

21: return S′0 = S0.
22: end procedure

We get the similar result as Th. 5.1 in [7].

Theorem 2. PKP-DSS is Existential-Unforgeable under Chosen Adaptive Message At-
tacks (EU-CMA) in the random oracle model, if

– the search version of the Permuted Kernel problem is intractable,
– the hash functions are modeled as random oracles,
– the commitment functions are computationally binding, computationally hiding,

and the probability that their output takes a given value is negligible in the security
parameter,

– the pseudo-random generators are modeled as random oracle, and
– the pseudo-random generators have outputs computationally indistinguishable from

random.

The proof is exactly the same as in [7].

4.2 Performance of the scheme

Our main goal is to find the best parameters which can ensure the minimal size of a
signature. We show, in the next sections, that the PKP-based signature scheme provides
a signature’s size similar and even smaller than the other signature schemes, precisely
MQDSS [7] and Picnic [22].
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Signature size: We said that our signing scheme is constructed from the iterations of
the IDS (given in 2). Now, to have the total cost, it is important to define the number of
rounds N needed to achieve EU-CMA for λ bits of security. By considering the scheme
where the fraud’s probability is Pf =

p+1
2p . We require that

PN
f ≤ 2−λ ,

as an attacker could perform a preimage search to control the challenges. Hence, we get
that N ≥ λ/ log2(

p+1
2p ).

We begin to present how to compute the complexity in bits. Recall that the signature
is composed of R the message-dependent random value, S0, S1 and S2, where S0 is the
hashed value of the commitments of all rounds, S1 is formed by the first responses,
and S2 is the concatenation of the some commitments and the second responses to the
challenges.
For S0 which is a hashed value, it costs 2λ bits. S1 depends on the size of Z, so it is in
N×n log2 p. For S2, we present next each case:

– b=0: The signer reveals one seed sigma.seed (similarly to 2) as a response. It costs
the seed size which is presented by λ bits. In addition to the size of the commitment
C1, we have in average:

A =
1
2
(
Size(C1)+Size(resp1)

)
=

3
2

λ .

– b=1: The signer reveals the permutation πσ ( j) as a response resp1 to the challenge
b( j). By adding also the commitment C0 of size 2λ bits, we have in total:

B =
1
2
(
2λ + log2(n!)

)
.

We have thus the following weighted average signature size:

size o f R︷︸︸︷
2λ +

size o f S0︷︸︸︷
2λ +N

(
n log2(p)+A+B

)︸ ︷︷ ︸
size o f S1 and S2

.

How parameters affect performance As we said previously, the DSS is mainly af-
fected by the following set of parameters: (p,n,m). We now explicitly detail the choice
of parameters. Recall that firstly the IDS [1] was designed to suit small devices. Thus,
A. SHAMIR proposed p = 251. Nowadays, with the 64−bit computer architecture, the
computations modulo a prime number of 32 or 64 bits are feasible. Thus, we consider
that p is of 8, 16, 32, or 64 bits.

A solution of a random instance of PKP is to find a kernel n-vector (Vπ) with dis-
tinct coordinates in Fp. Hence, the probability to find such vector shouldn’t be too
small. Also in [1], A. SHAMIR estimated n to be between 32 and 64. Later on, several
attacks [13,14] shows that the choice n = 32 is not recommended for strong security
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requirements. So, to find an n-vector with no double in Fp, and by considering the
Birthday Paradox, we keep the choice of n around 64, in addition to n≈ O

(√
p
)
.

On the other hand, the probability of an arbitrary vector to be in the kernel of the
matrix A ∈Mm×n whose rank is equal to m, is p−m. Moreover, if the n-vector V has no
double, the cardinal of its orbit under the possible permutations π is n!. Thus, in order
to get one solution, we have the following constraint: n!≈ pm.

Hence, following these criteria, we have in total:

p≈ O
(
n2
)
, n!≈ pm.

This leads to take m≈ n log(n)/log(p)≈ n/2.

How to choose the security parameter λ . Recall that, the security parameter
λ controls the number of iterations N = λ/ log2(

p+1
2p ) performed to achieve a security

level needed. It also defines the output of the hash and commitments functions which is
in 2λ , in addition to the seeds length.

In general, the hash and commitment functions require collision resistance, preim-
age resistance, and/or second preimage resistance. Thus, in this article, to reach for
example a security of 128 bits, we initiate λ to be exactly of 128 bits. As well for the
others security levels (192 and 256).

However, as shown in [28], it is always possible to reduce this choice of 256-bit
hash values while keeping a security level of 128 bits. Yet, to compare PKP-DSS to the
other schemes (as MQDSS) we keep this doubling. Note that, the optimization of [28]
can be applied to PKP-DSS as well to the other schemes (MQDSS, Picnic,...).

In the following table we present several parameters sets for different levels of se-
curity. We define these parameters by considering the formulas given in Section 4.2 and
the criteria defined above. Furthermore, our parameters raise a secure scheme against
all the attacks described in [2], mainly, against the most efficient attack: the algorithm
of PATARIN-CHAUVAUD [14].

Parameters Security parameter p n m Iterations number Best classical
Set λ N attack
PKP-DSS-128 128 251 69 41 129 2130 op.
PKP-DSS-192 192 509 94 54 193 2193 op.
PKP-DSS-256 256 4093 106 47 257 2257 op.

Table 1. PKP-DSS Parameters sets

Next, we compare PKP-DSS to MQDSS [7] and Picnic [22]. We consider the pub-
lic/secret (pk/sk) keys size and the signature size, for different security levels.
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Security level Parameters Sets Secret key Public key Signature
size (Bytes) size (Bytes) size (KBytes)

12
8

PKP-DSS-128 16 73 16.37
MQDSS-31-48 16 46 16.15
Picnic-L1-FS 16 32 33.2

19
2

PKP-DSS-192 24 109 37.06
MQDSS-31-64 24 64 33.23
Picnic-L3-FS 24 48 74.9

25
6

PKP-DSS-256 32 135 68.97
MQDSS-31-88 32 87 60.28
Picnic-L5-FS 32 64 129.7
Table 2. Comparison of different schemes

4.3 Detailed performance analysis

In order to determine the implementation’s efficiency of our scheme, we evaluate the
performance over 1000 executions of keygen, sign, verf on 32 bytes messages. In par-
ticular, our analysis is performed on a machine using Win7, Visual Studio 2017 Com-
munity, Release build, Intel Core i5-6300U 2.4GHz. keygen, sign, verif are expressed
on the number of cycles. The values given below are the medians of 1000 executions.

PKP-DSS-128 PKP-DSS-192 PKP-DSS-256
keygen 663254 1501931 2722117
sign 17947216 44624112 78550809
verif 14578081 37842135 67173820

Table 3. Performances in cycles

By considering the parameters of 128 (resp. 192) bits of security, it appears that
the reference implementation of PKP-DSS is approximately (in terms of signing pro-
cess) 48% (resp. 90%) faster than than MQDSS which in its turn is faster than Picnic,
SPHINCS,...
The signature verification process is also quicker than the other schemes.
One can conclude that the signature scheme based on PKP constitutes one of the most
efficient schemes.

5 Conclusion

The main thing that we have essentially looked at is the construction of a post-quantum
secure cryptosystem. In [1], a Zero-knowledge identification scheme (ZK-IDS) was
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introduced. A well-known method, namely FIAT-SHAMIR technique [4], is used to turn
an IDS into a digital signature scheme (DSS).

The authors of [7], presents a DSS, named MQDSS. It was built from an IDS based
on the MQ problem (Multivariate quadratic equations solving problem). Thus, they give
several sets of parameters which provide post-quantum security.
As well, Picnic [22] is designed to be secure against classical and quantum attacks. It
was also constructed from a Zero-knowledge identification scheme to match different
security levels.

Hence, similarly to the technique used to build these schemes, we have constructed a
DSS based on the PKP problem. We utilized the ZK-authentication scheme presented in
[1] to deduce the signature scheme. In order to compare this latter to the other schemes,
we have tested the most known techniques to solve PKP.

We finally conclude several sets of parameters given in 4.2 which provides 128, 192
and 256 bits of classical security. Mainly, we conclude that the DSS based on PKP
gives an efficient and fast scheme in terms of signing and verification processes. It also
has small keys and a signature size comparable to the ones in MQDSS and smaller
than the ones given by Picnic. Consequently, this is what makes from this PKP-DSS a
competitive scheme to the other related cryptosystems.
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