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Abstract. In this document, we introduce PKP-DSS: a Digital Signa-
ture Scheme based on the Permuted Kernel Problem(PKP) [21]. PKP is
a simple NP-hard [10] combinatorial problem that consists of finding a
kernel for a publicly known matrix, such that the kernel vector is a per-
mutation of a publicly known vector. This problem was used to develop
an Identification Scheme (IDS) which has a very efficient implementa-
tion on low-cost smart cards. From this zero-knowledge identification
scheme we derive PKP-DSS with the traditional Fiat-Shamir transform
[9]. Thus, PKP-DSS has a security that can be provably reduced, in the
(classical) random oracle model, to the hardness of random instances
of PKP (or, if wanted, to any specific family of PKP instances). We
propose parameter sets following the thorough analysis of the State-of-
the-art attacks on PKP presented in [17]. We show that PKP-DSS is
competitive with other signatures derived from Zero-Knowledge identi-
fication schemes. In particular, PKP-DSS-128 gives a signature size of
approximately 20 KBytes for 128 bits of classical security, which is ap-
proximately 30% smaller than MQDSS. Moreover, our proof-of-concept
implementation shows that PKP-DSS-128 is an order of magnitude faster
than MQDSS which in its turn is faster than Picnic2, SPHINCS,...
Since the PKP is NP hard and since there are no known quantum attacks
for solving PKP significantly better than classical attacks, we believe that
our scheme is post-quantum secure.

Keywords: public-key cryptography, post-quantum cryptography, Fiat-
Shamir, 5-pass identification scheme, Public-key Signature, Permuted
Kernel Problem.

1 Introduction

The construction of large quantum computers would break all public-key cryp-
tographic schemes in use today, because they rely on the discrete logarithm



problem or the integer factorization problem. Despite the fact that it isn’t clear
when large scale quantum computation would be feasible, it is important to an-
ticipate quantum computing and design new public key cryptosytems that are
resistant to quantum attacks.

Therefore, there currently is a large research effort to develop new post-
quantum secure schemes, and a Post-Quantum Cryptography standardization
process has been initiated by the American National Institute of Standards and
Technology (https://www.nist.gov/). Because of this, there has been renewed
interest in constructing signature scheme by applying the Fiat-Shamir trans-
form [9] to Zero-Knowledge Identification Schemes.

In particular, we are interested in post-quantum cryptographic schemes whose
security relies on the quantum hardness of some NP-Hard problem [2]. One of
those problems is the Permuted Kernel Problem: the problem of finding a per-
mutation of a known vector such that the resulting vector is in the kernel of a
given matrix. This is a classical NP-Hard combinatorial problem which requires
only simple operations such as basic linear algebra, and permuting the entries
of a vector. For quite some time, no new attacks on PKP have been discovered,
which makes it possible to confidently estimate the concrete hardness of the
problem. In 1989, Shamir [21] introduced a ZK-Identification scheme, based on
this Permuted Kernel Problem.

Previous work and State-of-the-art. Since quantum computers are ex-
pected not to be capable of solving NP -Hard problems in subexponential time (in
worst case), Zero-knowledge Identification schemes based on such problems are
interesting candidates for Post-Quantum Cryptography. The Fiat-Shamir trans-
form [9] is a technique that can convert such a zero knowledge authentication
scheme into a signature scheme.

This approach was taken by Chen et al. [7], who applied the Fiat-Shamir
transform to a 5-pass identifiation scheme of Sakumoto et al. [20]. This iden-
tification scheme relies on the hardness of the (NP -Hard) problem of finding a
solution to a set of multivariate quadratic equations. Chen et al. proved that,
in the random oracle model, applying the Fiat-Shamir transform to this 5-pass
identification scheme results in a secure signature scheme. A concrete param-
eter choice and an efficient implementation of this signature scheme (which is
called MQDSS) was developed, and this was one of the submissions to the NIST
PQC standardization project. At a security level of 128 bits, the MQDSS scheme
comes with a public key of 46 Bytes, a secret key of 16 Bytes and a signature
size of approximately 16.2 Kilobytes.

A different line of work resulted in the Picnic signature scheme. Chase et
al. [6] constructed this digital signature scheme by applying the Fiat-Shamir
transform to an identification scheme whose security relies purely on symmetric
primitives. At the 128 bit security level Picnic has a public key of 32 Bytes, a
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secret key of 16 Bytes and signatures of approximately 33 Kilobytes. There is
a second version of this signature scheme, where the signatures are only 13.5
Kilobytes, but Picnic2 is 45 times slower than the original Picnic for signing and
25 times slower for verification.

Main results. The main contribution of this paper is to present PKP-DSS,
a new post-quantum secure signature scheme. Similar to the approaches cited
above, we use the Fiat-Shamir transform to construct a signature scheme from
the 5-pass PKP identification scheme by Shamir [21]. Following the complex-
ity analysis of the PKP [17], we choose secure parameter sets for the signature
scheme for multiple security levels. Moreover we have developed a constant time
C implementation of the new signature scheme. By constant-time we mean that
the running time and the memory access pattern of the implementation are inde-
pendent of secret material, therefore blocking attacks from timing side channels.

The resulting signature scheme compares well with MQDSS and Picnic/Picnic2.
Our scheme is much faster than MQDSS and Picnic/Picnic2 in terms of signing
and verification, we have small public and private keys, and the signature sizes
of our scheme are comparable to those of MQDSS and Picnic2. This makes our
signature scheme based on PKP competitive with state of the art post-quantum
signature schemes.

2 The Permuted Kernel Problem

In order to introduce the signature scheme, we first present the PKP problem
[21]. We also briefly present the best technique for solving it. In [11], Georgiades
presents symmetric polynomials equations which will be utilized by all the other
attacks. The authors of [1] investigate also the security of PKP, where a time-
memory trade-off was introduced. Moreover, Patarin and Chauvaud improve
algorithms for the Permuted Kernel Problem[19]. Also, in [14], a new time-
memory trade-off was proposed. After all, it appears in [17] that the attack of
Patarin and Chauvaud [19] is the most efficient.

2.1 Introduction to PKP

PKP [21,10] is the problem on which the security of PKP-DSS is based. PKP
is a linear algebra problem which asks to find a kernel vector of a given matrix
under a vector-entries constraint. It’s a generalization of the Partition problem
[10, pg.224]. More precisely, it is defined as follows:

Definition 1 (Permuted Kernel Problem). Given a finite field Fp, a matrix
A ∈ Fm×np and a n-vector v ∈ Fnp , find a permutation π ∈ Sn such that Avπ = 0,
where vπ = (vπ(1), · · · , vπ(n))
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A reduction of the 3-Partition problem proves PKP to be NP-Hard [10].
Moreover, solving random instances of PKP seems hard in practice. In fact,
this is the fundamental design assumption of PKP-DSS. The hardness of PKP
comes from, on the one hand, the big number of permutations, on the other
hand, from the small number of possible permutations which satisfy the kernel
equations. More precisely, PKP is hard because it obligates the choice of a vector,
with already fixed set of entries, from the kernel of the matrix A. Note that, to
make the problem more difficult, it is desirable that the n-vector v has distinct
coordinates, otherwise if there are repeated entries, the space of permutations
of v gets smaller. In the next section, we give the best known algorithm to solve
the PKP problem.

2.2 The algorithm of Patarin-Chauvaud

The implementation’s efficiency of the first IDS, proposed by Shamir [21], based
on PKP problem has led to several solving tools. In fact, there are various attacks
for PKP, which are all exponential. We will not describe them here, instead we
refer to [17] for further details .

Patarin and Chauvaud combine in [19] the two ideas presented in the previous
attacks [11,1]. The result was a reduction in the time required to attack PKP.
They also present some new ideas in order to reduce this time the memory
needed. Thus, this leads to a new algorithm which is quicker and more efficient
than all the given attacks of PKP [11,1,15]. The details and the numerical results
are given in the main article [17].

2.3 Commitment schemes

In our protocol, we use a commitment scheme Com : {0, 1}λ×{0, 1}? → {0, 1}2λ,
that takes as input λ uniformly random bits bits, where λ is the security pa-
rameter, and a message m ∈ {0, 1}? and outputs a 2λ bit long commitment
Com(bits,m). In the description of our protocols, we often do not explicitly
mention the commitment randomness. We write S ← Com(m), to denote the
process of picking a uniformly random bit string r, and setting C← Com(r,m).
Similarly, when we write check C = Com(m), we actually mean that the prover
communicates r to the verifier, and that the verifier checks if C = Com(r,m).

We assume that Com is computationally binding, which means that no com-
putationally bounded adversary can produce a r, r′,m,m′ with m 6= m′ such that
Com(r,m) = Com(r′,m′). We also assume that Com is computationally hiding,
which means that for every pair of mesages m,m′, no computationally bounded
adversary can distinguish the distributions of Com(m) = Com(m′).
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3 Identification scheme (IDS) based on PKP

In this section, we present the 5-pass Zero-Knowledge Identification Scheme (ZK-
IDS) based on the computational hardness of PKP [21,18], noted here PKP-IDS.

We first quote and refer to some of the general definitions given in [7] :
Identification scheme, Completeness, Soundness (with soundness error), Honest-
verifier zero-knowledge, and also in [13,8] : computationally hiding commitment,
computationally binding commitment. We then apply and adapt these defini-
tions to the Identification scheme based on PKP and give and prove its own
properties of performance and security. This approach will be more convenient
for presenting the signature scheme in the next section.

3.1 Preliminaries

In what follows and as in [7], we assume the existence of a non-interactive
commitment scheme Com which is computationally hiding and computation-
ally binding (see [13,8] for details). The commitments are computed using the
function Com. For notational convenience, we do not explicitly write down the
commitment randomness. In fact, as will be mentioned later, we do not use
commitment randomness in the implementation of the signature.

3.2 PKP 5-pass IDS

In this section, we present (a slightly modified version of) PKP-IDS. It consists
of three probabilistic polynomial time algorithms IDS =

(
KeyGen, P, V

)
which we will describe now.

Generation of the public key and secret key in PKP-IDS. The users
first agree on a prime number p, and on n,m, the dimensions of the matrix A.
The public-key in PKP-IDS is an instance of PKP a solution to this instance is
the secret-key. Thus, the prover picks a (right) kernel-vector w ∈ Ker(A), then
randomly generates a secret permutation of n elements sk = π and finishes by
computing v = wπ−1 . We summarize the key generation algorithm in Alg. 1.

5-pass identification protocol: Prover P and Verifier V.
The prover and verifier are interactive algorithms that realize the identification
protocol in 5 passes. The 5 passes consist of one commitment and two responses
transmitted from the prover to the verifier and two challenges transmitted from
the verifier to the prover. The identification protocol is summarized in Algorithm
3.2.

From Shamir in [21] we have the following results.
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Algorithm 1 KeyGen

A
$←− Fm×np

w
$←− Ker(A)

π
$←− Sn

v← wπ−1

Return (pk = (A,v), sk = π)

Algorithm 2 The 5 pass PKP identification protocol

P(sk, pk) V(pk)

σ
$←− Sn

r
$←− Fnp

C0 ← Com(σ,Ar)
C1 ← Com(πσ, rσ)

C0,C1−−−−→
c

$←− Fp

z← rσ + cvπσ

c←−−−−

z−−−−→
b

$←− {0, 1}

if b = 0 then
resp← σ

else
resp← πσ

end if

b←−−−−

resp−−→
if b = 0 then

accept if C0 = Com(σ,Azσ−1)
else

accept if C1 = Com(πσ, z− cvπσ)
end if
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Theorem 1. PKP-IDS is complete, moreover if the used commitment scheme
is computationally hiding then PKP-IDS is computationally honest-verifier zero-
knowledge and if the commitment scheme is computationally binding, then PKP-IDS
is sound with soundness error κ = p+1

2p .

The soundness error comes from the fact that the prover can easily cheat if
he can predict either c (which he can do with probability 1/p) or b (which he can
do with probability 1/2). The probability of guessing either c or b is then p+1

2p .
For example, a prover cheater without knowledge of π can always respond with
z = rσ, in the case b = 1 he just responds with a random permutation. In this
case the prover will accept the proof if c = 0 or b = 0. The soundness proof says
that for any cheating prover, the success probability is at most p+1

2p + ε, where ε
is a negligible function of the security parameter. To get the cheating probability
down, we repeat the protocol several times. Repeating the zero-knowledge proof
N times results in an Identification scheme with knowlegde error

κ =

(
p+ 1

2p

)N
,

hence it suffices to repeat the protocol dλ/ log2( 2p
p+1 )e times to get a soundness

error κ ≤ 2−λ.

3.3 Optimizations

We now describe a number of optimizations to reduce the communication cost
of the identification scheme, as well as the computational cost of the algorithms.
We will start by explaining a few standard optimizations that are common for
identification protocols based on zero knowledge proofs. Then, we will explain
some novel optimizations that apply to the specific context of PKP-IDS.

Hashing the commitments. In the commitment phase of the protocol,

instead of transmitting all the 2N commitments C
(1)
0 ,C

(1)
1 , · · · ,C(N)

0 ,C
(N)
1 the

prover can just hash all these commitments together with a collision resistant

hash function H and only transmit the hash h = H(C
(1)
0 , · · · ,C(N)

1 ). Then, the

prover includes the N commitments C
(i)
1−bi in the second response. Since the ver-

ifier can reconstruct the Cibi himself, he now has all the 2N commitments, so he
can hash them together and check if their hash matched h. With this optimiza-
tion we reduce the number of communicated commitments from 2N to N , at
the cost of transmitting a single hash value.
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Use seeds and PRG. Instead of directly choosing the permutation σ at
random, we can instead choose a random seed of λ bits and use a PRG to expand
this seed into a permutation σ. This way, instead of transmitting σ, we can just
transmit the λ-bit seed. This reduces the communication cost per permutation
from log2(n!) bits to just λ bits. For example for 128-bits of security, we have
n = 69, so the communication cost per permutation drops from log2(69!) ≈ 327
bits to just 128 bits.

Matrix A in systematic form. Now we get to the PKP-IDS-specific opti-
mizations. With high probability, we can perform elementary row operations on
A to put it in the form

(
Im A′

)
, for some (n −m)-by-m matrix A′. Since row

operations do not affect the right kernel of A, we can just choose the matrix A
of this form during key generation, without affecting the security of the scheme.
This makes the protocol more efficient, because multiplying by a matrix of this
form requires only (n−m) ∗m multiplications instead of n ∗m multiplications
for a general matrix multiplication.

Optimizing key generation. It is of course not very efficient to include the
matrix A in the public key, because this is a large matrix. The first idea is to just
pick a random seed, and use a PRG to expand this seed to obtain the matrix
A. The public key then consists of a random seed, and the vector v of length n.
However, we can do slightly better than this. We can use a seed to generate the
first n− 1 columns of A and the vector v. Then we pick a random permutation
π, and we solve for the last column of A such that vπ is in the right kernel of
A. Now the public key only consists of a seed and a vector of length m (instead
of a vector of length n). Another important advantage of this approach is that
we do not need to do Gaussian elimination this way (and if fact this was the
motivation behind this optimization).

Use seeds and PRG again. Because of the second optimization, we can send
a λ-bit seed instead of σ, if the challenge bit b = 0. However, in the case b = 1,
we still need to send the permutation πσ, because we cannot generate both σ
and πσ with a PRG. However, this problem can be solved. We can generate rσ
with a PRG, and then we can send this seed instead of πσ. This seed can be
used to compute πσ, because if the verifier knows z and rσ, then he can compute
z− rσ = cvπσ. And since v and c are known, it is easy to recover πσ from cvπσ
(we choose the parameters such that the entries of v are all distinct, so there
is a unique permutation that maps v to vπσ). Morever, sending the seed for rσ
does not reveal more information than sending πσ, because given z and πσ it
is trivial to compute rσ, so this optimization does not affect the security of the
scheme. However, there is a problem: If c = 0, then the cvπσ = 0, and so the
verifier cannot recover πσ. To solve this problem we just restrict the challenge
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space to Fp \ {0}. This increases the soundness error to p
2p−2 (instead of p+1

2p ),
but this is not a big problem. An important advantage of this optimization is
that the signature size is now constant. Without this optimization, a response
to the challenge b = 0 would be smaller than a response to b = 1. But with
the optimization the second response is always a random seed, regardless of the
value of b.

3.4 Communication cost

We can now provide the communication complexity of N rounds of the IDS, of

which the soundness error is
(

p
2p−2

)N
. The commitment consists of a single hash

value, which is only 2λ bits. The first response consists of N vectors of length
n over Fp, so this costs Nndlog2 pe bits of communication. Lastly, the second
responses consist of N random λ-bit seeds, N commitments (which consist of 2λ
bits each) and N commitment random strings (which consist of λ bits each), so
this costs 4Nλ bits of communcation. In total, the communication cost (ignoring
the challenges) is

2λ+N (ndlog2 pe+ 4λ) .

4 Digital signature scheme (DSS) based on PKP

We present here the main contribution of this work which is to construct a digital
signature scheme, based on the PKP problem, from the optimized IDS defined
in Section 3. This is simply a direct application of the well-known Fiat Shamir
transformation [9].

The key generation algorithm is identical to the key generation algorithm
for the identification scheme. To sign a message m, the signer executes the first
phase of the commitment scheme to get a commitment com. Then he derives the
first challenge c = (c1, · · · , cN ) from m and com by evaluating a hash function
H1(m||com). Then he does the next phase of the identification protocol to get the
N response vectors rsp1 = (z(1), · · · , z(N)). Then he uses a second hash function
to derive b = (b1, . . . , bN ) from m, com and resp1 as H2(m||com, resp1). Then
he finishes the identification protocol to obtain the vector of second responses
resp2 = (resp(1), · · · , resp(N)). Then, the signature is simply (com, resp1, resp2).

To verify a signature (com, resp1, resp2) for a message m, the verifier simply
uses the hash function H1 and H2 to obtain c and b respectively. Then, he verifies
that (com, c, resp1,b, resp2) is a valid transcript of the identification protocol.

The signing and verification algorithms are displayed in Algorithm 3 and 4
in more detail.

We then get the same security result as Th. 5.1 in [7].
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Algorithm 3 Sign(sk,m)

1: derive A,v and π from sk.
2: for i from 1 to N do
3: pick λ-bit seeds seed

(i)
0 and seed

(i)
1 uniformly at random

4: σ(i) ← PRG1(seed
(i)
0 )

5: r
(i)
σ ← PRG2(seed

(i)
1 )

6: C
(i)
0 = Com

(
σ(i),Ar(i)

)
,

7: C
(i)
1 = Com

(
πσ(i), r

(i)
σ

)
.

8: end for
9: com := Hcom

(
C
(1)
0 , C

(1)
1 , · · · ,C(N)

0 , C
(N)
1

)
10: c(1), · · · , c(N) ← H1

(
m||com

)
. ci ∈ Fp \ {0}

11: for i from 1 to N do
12: z(i) ← r

(i)
σ + c(i)vπσ(i)

13: end for
14: resp1 ← (z(1), · · · , z(N))
15: b(1), · · · , b(N) ← H2(m||com||resp1)
16: for i from 1 to N do
17: resp

(i)
2 ← (seed

(i)

b(i)
||C(i)

1−b(i))

18: end for
19: resp2 ← (resp2

(1), · · · , resp2(N))
20: Return (com, resp1, resp2)

Algorithm 4 Verify(m, pk, σ = (com, resp1, resp2))

1: c(1), · · · , c(N) ← H1

(
m||com

)
.

2: b(1), · · · , b(N) ← H2(m||com||resp1)
3: Parse resp1 as z(1), · · · , z(N)

4: Parse resp2 as seed(1), · · · , seed(N),C
(1)

1−b(1) , · · · ,C
(N)

1−b(N)

5: for i from 1 to N do
6: if b(i) = 0 then
7: σ(i) ← PRG1(seed(i))

8: C
(i)
0 ← Com(σ(i),Az

σ(i)−1)
9: else

10: r
(i)
σ ← PRG2(seed(i))

11: if z(i) − rσ is not a permutation of cv then
12: Return reject
13: else
14: πσ(i) ← the permutation that maps cv to z(i) − rσ.
15: end if
16: C

(i)
1 ← Com(πσ(i), r

(i)
σ )

17: end if
18: end for
19: com′ := Hcom

(
C
(1)
0 , C

(1)
1 , · · · ,C(N)

0 , C
(N)
1

)
20: Return accept if and only if com = com′

10



Theorem 2. PKP-DSS is Existential-Unforgeable under Chosen Adaptive Mes-
sage Attacks (EU-CMA) in the random oracle model, if

– the search version of the Permuted Kernel problem is intractable,
– the hash functions and pseudo-random generators are modeled as random

oracles,
– the commitment functions are computationally binding, computationally hid-

ing, and the probability that their output takes a given value is negligible in
the security parameter.

The proof is the same as in [7].

4.1 Generic attack

If the number of iterations N is chosen such that ( p
2p−2 )N ≤ 2−λ, then the

cheating probability of the identification protocol is bounded by 2−λ. However,
a recent attack by Kales and Zaverucha on MQDSS reveals that this does not
meant that the Fiat-Shamir signature scheme has λ bits of security [16]. They
give a generic attack that also applies to PKP-DSS. The attack exploits the fact
that if an attacker can guess the first challenge or the second challenge, he can
produce responses that the verifier will accept. The idea is to split up the attack
in two phases. In the first phase, the attacker guesses the values of the N first
challenges, and uses this guess to produce commitments. Then, he derives the
challenges from the commitment and he hopes that at least k of his N guesses
are correct. This requires on average

Cost1(N, k) =

N∑
i=k

(
1

p− 1

)k (
p− 2

p− 1

)N−k (
N

k

)
trials. In the second phase, the attacker guesses the values of second challenges,
and uses these guesses to generate a response. Then he derives the second chal-
lenges with a hash function and he hopes that his guess was correct for the N−k
rounds of the identification protocol where he did not guess the first challenge
correctly. This requires on average 2N−k tries. Therefore, the total cost of the
attack is

min
0≤k≤N

Cost1(N, k) + 2N−k .

5 Parameter choice and Implementation

5.1 Parameter choice

The choice for p was to select prime numbers close to powers of 2, such as
251, 509 and 4093. Then, n and m were related by the formula pm ≈ n!. And
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finally, using the time complexity of Poupard’s algorithm, triplets of (p, n,m)
were selected matching the security requirements and optimizing the size of the
signature. With these parameter choices the scheme is secure against the attacks
described in [17]. We pick the value of N just large enough such that

min
0≤k≤N

Cost1(N, k) + 2N−k ≥ 2λ ,

such that the scheme is secure against the generic attack of Kales and Za-
verucha [16]. The chosen parameter sets for three different security levels are
shown in Table 1. security levels are shown in Table 1.

Parameter Security p n m Iterations Attack
Set level N cost

PKP-DSS-128 128 251 69 41 157 2130

PKP-DSS-192 192 509 94 54 229 2193

PKP-DSS-256 256 4093 106 47 289 2257

Table 1. PKP-DSS Parameters sets

5.2 Key and signature sizes

Public key. A public key consists of the last column of A and a random seed,
which is used to generate all but the last column of A and the vector v. Therefore,
the public key consist of λ+mblog2(p)c bits.

Secret key. A secret key is just a random seed that was used to seed the
key generation algorithm, therefore it consists of only λ bits.

Signature. Finally, a signature consists of a transcript of the identifica-
tion protocol (excluding the challenges, because they are computed with a hash
function). In Sect 3.4 we calculated that a transcript can be represented with
2λ+N (ndlog2 pe+ 3λ) bits, so this is also the signature size.

In Table 2 we summarize the key and signature sizes for the parameter sets
proposed in the previous section.

5.3 Implementation

To showcase the efficiency of PKP-DSS and to compare the performance to exist-
ing Fiat-Shamir signatures we made a proof-of-concept implementation in plain
C. The code of our implementation is available on github at [4]. We have used
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Security Parameters |sk| |pk| |sig|
level (p, n,m,N) Bytes Bytes Kilobytes

128 (251, 69, 41, 157) 16 57 20.4
192 (509, 94, 54, 229) 24 85 43.4
256 (4093, 106, 47, 289) 32 103 76.5

Table 2. Key and signature sizes for PKP-DSS with the three proposed parameter
sets.

SHA-3 as hash function and commitment scheme, and we have used SHAKE128
as extendable output function. The running time of the signing and verification
algorithms is dominated by expanding seeds into random vectors and random
permutations. This can be sped up by using a vectorized implementation of
SHAKE128, and using vector instructions to convert the random bitstring into
a vector over Fp or a permutation in Sn. We leave this task for future work.

Making the implementation constant time. Most of the key generation
and signing algorithms is inherently constant time (signing branches on the value
of the challenge bits b, but this does not leak information because b is public).
The only problem was that applying a secret permutation to the entries of a
vector, when implemented naively, involves accessing data at secret indices. To
prevent this potential timing leak we used the “djbsort” constant time sorting
code [3]. More specifically, we combine the permutation and the vector into a
single list of n integers, where the permutation is stored in the most significant
bits, and the entries of the vector are stored in the least significant bits. Then
we sort this list of integers in constant time and we extract the permuted vector
from the low order bits. Relative to the naive implementation this slows down
signing by only 11%. There is no significant slowdown for key generation.

5.4 Performance results

To measure the performance of our implementation we ran experiments on a
laptop with a i5-8250U CPU running at 1.8 GHz. The C code was compiled
with gcc version 7.4.0 with the compile option -O3. The cycle counts in Table 3
are averages of 10000 key generations, signings and verifications.

5.5 Comparison with existing FS signatures

In Table 4, we compare PKP-DSS to MQDSS, Picnic, and Picnic2. We can
see that for all the schemes the public and secret keys are all very small. The
main differences are signature size and speed. When compared to MQDSS, the
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Security Parameters KeyGen Sign Verify
level (p, n,m,N) 103 cycles 103 cycles 103 cycles

128 (251, 69, 41, 157) 72 2518 896
192 (509, 94, 54, 229) 121 5486 2088
256 (4093, 106, 47, 289) 151 7411 3491

Table 3. Average cycle counts for key generation, signing and verification, for our
implementation of PKP-DSS with the three proposed parameter sets.

signature sizes of PKP-DSS are roughly 30% smaller, while being a factor 14
and 30 faster for signing and verification respectively. Compared to Picnic, the
PKP-DSS signatures are roughly 40% smaller, and signing and verification is 4
and 9 times faster respectively. Compared to Picinc2 our scheme is 153 and 170
times faster for signing and verification, but this comes at the cos of signatures
which are 50% larger. Finally, compared to SUSHSYFISH [12], a different scheme
based on the Permuted Kernel Problem, our scheme is 3.4 and 6.6 times faster,
but at the cost of signatures that are 45% larger.

Security Scheme Secret key Public key Signature Sign Verify
level (Bytes) (Bytes) (KBytes) 106 cycles 106 cycles

PKP-DSS-128 16 57 20.4 2.5 0.9
MQDSS-31-48 16 46 28.0 36 27

128 Picnic-L1-FS 16 32 33.2 10 8.4
Picnic2-L1-FS 16 32 13.5 384 153
SUSHSYFISH-1 16 72 14.0 8.6 6

PKP-DSS-192 24 85 43.4 5.5 2.1
MQDSS-31-64 24 64 58.6 116 85

192 Picnic-L3-FS 24 48 74.9 24 20
Picnic2-L3-FS 24 48 29.1 1183 357
SUSHSYFISH-3 24 108 30.8 22.7 16.5

PKP-DSS-256 32 103 76.5 7.4 3.5
256 Picnic-L5-FS 32 64 129.7 44 38

Picnic2-L5-FS 32 64 53.5 2551 643
SUSHSYFISH-5 32 142 54.9 25.7 18

Table 4. Comparison of different post-quantum Fiat-Shamir schemes

6 Conclusion

We introduces a new post-quantum secure signature scheme PKP-DSS, which is
based on a PKP Zero-knowledge identification scheme [21]. We optimized this
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identification scheme, and to make it non-interactive, we used the well-known
Fiat-Shamir transform.

We developped a constant time implementation of PKP-DSS and we con-
clude that our scheme is competitive with other Post-Quantum Fiat-Shamir sig-
nature schemes such as MQDSS, Picnic/Picnic2 and SUSHSYFISH. The main
advantages of our scheme are that signing and verification are much faster than
existing FS signatures, and that the scheme is very simple to implement. Our
implementation takes only 600 lines of C code, including comments and empty
lines.
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