
Keeping or Losing Tiny-Error Correctness of Cryptosystems

Implemented by Secure Pseudorandom Generators

Koji Nuida12

1 The University of Tokyo, Japan
(nuida@mist.i.u-tokyo.ac.jp)

2 National Institute of Advanced Industrial Science and Technology (AIST), Japan

August 1, 2018

Abstract

Randomness is essential but expensive resource for cryptography, and secure (and efficient) implemen-
tations of randomness using pseudorandom generators (PRGs) are much concerned in this area. On the
other hand, implementations of randomness without losing the correctness of the underlying cryptosys-
tem should be important but seem to be less concerned in the literature. The results in this paper show
that the problem of the correct implementation of randomness in cryptosystems is in general non-trivial
even by using secure PRGs. Namely, we construct two examples with the following properties:

• There are a secure and correct public key encryption (PKE) scheme (with negligible decryption
error probability) and a secure PRG satisfying that, implementing the key generation algorithm by
using the PRG makes the scheme incorrect. The reason of this phenomenon is that, the standard
formulation of correctness of PKE schemes does in general not imply that erroneous keys (that
yield non-negligible decryption error probability for some plaintext) are efficiently detectable.

• There are a secure and correct PKE scheme and a PRG secure against uniform distinguishers, sat-
isfying that, implementing the encryption algorithm by using the PRG makes the scheme incorrect.
The reason of this phenomenon is that, when a PKE scheme is incorrect, a plaintext that yields
non-negligible decryption error probability is in general not efficiently samplable by a uniform algo-
rithm; hence security of the PRG against non-uniform distinguishers is required. We also discuss
a possibility to avoid the reliance on PRGs secure against non-uniform distinguishers.

1 Introduction

Randomness is a fundamental resource for cryptography; theoretical designs of cryptosystems usually assume
the use of a large amount of ideally random bits. As it is fairly expensive in practice to generate (almost)
ideal random bits, a practical way of securely implementing the randomness, i.e., cryptographically secure
pseudorandom generators (PRGs), has been well studied in cryptography. On the other hand, correctness of
cryptosystems is a further important property than security; an insecure cryptosystem may be problematic
in the presence of adversaries, while an incorrect cryptosystem may be problematic even in the absence
of adversaries. Now we note that cryptosystems may err with non-zero probability, and such errors with
negligible probabilities are often tolerated by rigorous formulations of correct cryptosystems. However, a
way of correctly implementing the randomness in cryptography (i.e., keeping the negligible error probability)
seems to be less concerned in contrast to the case of security. This paper aims at focusing on the correct
implementation of randomness in cryptography, and giving a caution that a naive use of a secure PRG
may be in general not sufficient to preserve the correctness of an implemented cryptosystem. We note that
this paper discusses only the case of public key encryption (PKE) schemes as a simplest and most typical
example, though similar observations might be applicable to other kinds of cryptographic schemes as well.

1

Digest of technical results. Roughly speaking, in this paper we construct (under certain reasonably
weak assumptions) two secure (IND-CPA) PKE schemes Π1,Π2 and two PRGs R1,R2 where

• Π1 and Π2 are correct (in some appropriate sense);

• R1 is secure against any probabilistic polynomial-time (PPT) distinguisher (either uniform or non-
uniform), and R2 is secure against PPT uniform distinguishers;

satisfying the following properties;

• when implementing the key generation algorithm by using the PRGR1, the scheme Π1 will be incorrect;

• when implementing the encryption algorithm by using the PRG R2, the scheme Π2 will be incorrect.

The result shows that, when a negligibly small but non-zero error probability exists in either a key generation
algorithm or an encryption algorithm, the use of a secure PRG to implement this component of a PKE scheme
is in general not sufficient to preserve the correctness of the scheme. See Theorem 1 in Section 3 and Theorem
2 in Section 4 for the details of these results.

More backgrounds on correctness. The safest way of defining the correctness of a PKE scheme is to
require the following: for any pair of a public key and a secret key, and for any plaintext, the decryption
of a random ciphertext for the plaintext results in the original plaintext with probability one. This kind
of correctness is often called the perfect correctness. For example, Definition 5.1.1 of Goldreich’s famous
book [9] adopts this formulation. It is obvious that implementations of randomness for perfectly correct
schemes do not cause any problem for preserving the correctness. We also note that, recently Bitansky
and Vaikuntanathan [4] proposed a generic conversion method for a large class of cryptographic schemes,
including PKE schemes, that obtains a perfectly correct scheme from a not perfectly correct scheme (see
below for some related topics).

On the other hand, there are also different ways of defining the correctness of a PKE scheme in the
literature, which allow negligible but non-zero error probabilities. For example, a comment given after
Definition 5.1.1 of the aforementioned book [9] says:

Definition 5.1.1 may be relaxed in several ways without significantly harming its usefulness. For
example, we may relax Condition (2) and allow a negligible decryption error (e.g., Pr[Dd(Ee(α)) ̸=
α] < 2−n). Alternatively, one may postulate that Condition (2) holds for all but a negligible mea-
sure of the key-pairs generated by G(1n). At least one of these relaxations is essential for some
suggestions of (public-key) encryption schemes.

The first part of the quoted comment concerns the existence of decryption errors for any fixed key pair
and any fixed plaintext. Such a formulation of correctness is also found in, e.g., papers [2, 6, 14, 22] from
recent leading conferences in cryptography. The second part of the quoted comment concerns the existence
of “erroneous” key pairs, which may cause decryption errors. Such a formulation of correctness is also found
in, e.g., a recent book by Katz and Lindell [15]; Definition 11.1 of the book says:

It is required that, except possibly with negligible probability over (pk, sk) output by Gen(1n), we
have Decsk(Encpk(m)) = m for any (legal) message m.

As shown above, such relaxed versions of correctness for PKE schemes have been popular in the area of
cryptography. Here we emphasize that, these two relaxed formulations of correctness can be unified (roughly)
into the following form: for almost all key pairs, and for any choice of plaintext, the probability of decryption
error for this plaintext is negligible. In other words: we say (roughly) that a key pair is erroneous, if for
some plaintext, this key pair yields non-negligible probability of decryption error. Then the aforementioned
relaxed correctness is equivalent to that the fraction of the erroneous key pairs is negligible.

2

First lesson: Importance of detectability of erroneous keys. The first part of our technical result
shows that, when implementing the key generation algorithm for a PKE scheme by using even a secure
PRG, the ratio of the erroneous key pairs may increase intolerably, e.g., from exponentially rare to all, in
the case of our example. The reason of such non-negligible increase of erroneous keys by using PRGs is as
follows: it is not an intrinsic property of PKE schemes that efficient detection of erroneous keys is possible.
Namely, if there is a polynomial-time recognizable set K† of keys that involves all erroneous keys (as well as,
possibly, some non-erroneous keys) and if a random key belongs to this set K† with negligible probability,
then implementing the key generation algorithm by using a secure PRG will ensure that the probability for
a key to belong to K† is still negligible, meaning that the scheme remains correct. However, the existence of
such a set K† is not required by the standard formulation of the notion of PKE schemes (though such a set
does exist at least for most of the known PKE schemes), and our example in this paper is certainly the case
where such an efficiently recognizable set K† does not exist. This observation suggests that, when designing
a new PKE scheme, it is important to make the erroneous keys efficiently detectable (we note that, this
does not mean that such a detection process for erroneous keys should be included in the key generation
algorithm; just the existence of such an efficient detection process works for this purpose).

Second lesson: Implicit non-uniformity in correctness. The second part of our technical result
shows that, when implementing the encryption algorithm for a PKE scheme by using even a PRG secure
against uniform distinguishers, a non-erroneous key pair may become erroneous; in fact, this happens for
all key pairs in the case of our example. Roughly speaking, the reason of such non-negligible increase of
decryption error probability is that, the formulation of correctness relies implicitly on the notion of non-
uniform computation, therefore the security of a PRG against uniform distinguishers only is in general not
sufficient to preserve the correctness.

Recall that a non-uniform algorithm is endowed with, in addition to the input, an auxiliary advice string,
which depends solely on the input length and need not be efficiently computable. In contrast, a uniform
algorithm is not endowed with such advice. Now we imagine that, implementing the encryption algorithm
of a PKE scheme by using a PRG makes some originally non-erroneous key pair erroneous; namely, the
decryption error probability for some plaintext is non-negligibly increased. In this case, one may naively
expect that, an output of the PRG and a random string could be efficiently distinguished (which would
contradict the security of the PRG) by taking these key pair and plaintext, trying encryption and decryption
by using the target random string (either output by the PRG or truly random), and then observing if
decryption error occurs. However, we should note that such a plaintext (as well as such a key pair) may in
general be not efficiently found, therefore the virtual distinguisher constructed above is not a PPT uniform
algorithm in general. Hence the security of a PRG against uniform distinguishers may be insufficient.

The same argument above also implies that, such non-negligible increase of decryption error probability
will not occur when the security of the PRG is against non-uniform distinguishers (which may be given
the key pair and the plaintext as advice). However, it has been pointed out, e.g., by Koblitz and Menezes
[16], that developing and practically using cryptographic primitives (such as PRGs) with security against
non-uniform adversaries require stronger computational hardness assumptions for non-uniform algorithms.
This affects the evaluation of the practical security level for such primitives, due to not just the potentially
stronger power of non-uniform algorithms in comparison to uniform ones for solving the underlying hard
problems, but also some concrete attempts in the literature to utilize the power of non-uniformity for breaking
the security. For example, the authors of [16] gave non-uniform attacks against some message authentication
codes and leakage-resilient stream ciphers. There are also previous results using non-uniformity towards
breaking PRGs (e.g., [5, 20]) or solving hard problems on which PRGs can be based (e.g., [3]). Although the
latter are yet superpolynomial-time attacks and hence do not mean total break of the security, the existence
of such attacks should still be concerned when choosing a practically reasonable security parameter.

Due to these facts, it might be desirable if we do not rely on PRGs secure against non-uniform distin-
guishers. For this purpose we point out that, the known technique in cryptography of constructing a PRG
by taking bitwise XOR of two PRGs with security of different types (e.g., [4, 7, 19]) is also effective in the
present case. Namely, we choose a PRG R1 secure against uniform distinguishers, and another PRG R2

3

that fools a certain class of functions constructed from the encryption and decryption algorithms for a given
PKE scheme. We show (Theorem 3 in Section 4.2) that, by using the PRG R(s1, s2) = R1(s1) ⊕ R2(s2)
to implement the encryption algorithm, the security is preserved owing to the security of R1, while the
correctness is also preserved owing to the choice of R2. We note that, in contrast to requiring for a PRG
to fool non-uniform and unknown distinguishers, it should be relatively easier to develop the PRG R2 that
fools non-uniform but known algorithms only. Several construction techniques for PRGs in the area of
derandomization (e.g., [18, 21]) would be effective to construct such a PRG against known algorithms.

Related Work: Immunization towards perfect correctness. Needless to say, an ultimate counter-
measure for preventing the loss of correctness by the use of PRGs is to make the original scheme itself
completely error-free. A direction of such an “immunization” method to eliminate errors is to modify each
individual scheme; a famous example in this direction is the work by Goldreich, Goldwasser, and Halevi [10]
to establish an error-free version of Ajtai–Dwork lattice-based cryptosystem [1].

Another direction is to establish a generic method to convert a cryptographic scheme having some errors
into a perfectly correct scheme with the same functionality. For this direction, Dwork, Naor, and Reingold
[7] proposed a method to eliminate decryption errors in PKE schemes for almost all key pairs (though a
negligible but non-zero fraction of erroneous keys may remain). Holenstein and Renner [12], and Lin and
Tessaro [17] also realized a similar kind of results by different approaches. We note that these results do not
eliminate errors perfectly (e.g., for the key generation algorithm) and hence the obtained, almost perfectly
correct PKE schemes may still suffer from the loss of correctness by the use of PRGs as in our examples.
On the other hand, a recent work by Bitansky and Vaikuntanathan [4] achieved a generic conversion that
eliminates errors in not only encryption but also key generation, hence obtaining perfectly correct PKE
schemes (their result is also applicable to many other kinds of cryptographic schemes). However, the method
of [4] has large overhead and might be not suitable for practical purposes. We note also that, those conversion
methods were motivated by e.g., the facts that decryption errors in a PKE scheme may be utilized to break
the scheme (e.g., [13]) and the existence of decryption errors (even though with negligible probability) will
be problematic when used as a building block of some other cryptographic scheme. These preceding results
did not concern the loss of correctness by the use of PRGs as discussed in the present paper.

2 Preliminaries

2.1 Basic Notations and Settings

In this paper, we say that a function ε(λ) ∈ [0, 1] of an integer λ ≥ 1 is negligible, if for any integer k ≥ 1,
there exists an integer λ0 ≥ 1 satisfying ε(λ) < λ−k for any λ > λ0. We let a positive polynomial mean a
non-zero polynomial with non-negative coefficients. For a function f(λ) of positive integer λ, we say that
f(λ) is polynomially bounded, if f(λ) ≤ poly(λ) for some positive polynomial poly(λ); and we say that f(λ)
is polynomial-time computable, if there is a deterministic polynomial-time algorithm A that for an input 1λ

outputs f(λ).
For a probability distribution D, we write a ↢ D to indicate that the element a is chosen according to

the distribution D. Let U [X] denote the uniform distribution on a set X. For two probability distributions
X and Y over a (finite) set Z, their statistical distance ∆(X,Y) is defined by

∆(X,Y)
def
=

1

2

∑
z∈Z
|Pr[z ↢ X]− Pr[z ↢ Y]| = max

E⊆Z

(
Pr

z↢X
[z ∈ E]− Pr

z↢Y
[z ∈ E]

)
.

It is known that ∆(f(X,D), f(Y,D)) ≤ ∆(X,Y) for any function f and any probability distribution D
independent of X and Y . We say that probability distributions X = Xλ and Y = Yλ indexed by a parameter
λ are exponentially close, if there is a function ε(λ) = 2−Ω(λ) for which we have ∆(X,Y) ≤ ε(λ) for any λ.

In this paper, we suppose that the set of random tapes for a probabilistic algorithm is of the form
{0, 1}L(λ) for some value L(λ) depending on the security parameter λ. For any probabilistic algorithm A

4

with input x and random tape r, we may write A(x; r) instead of A(x) in order to emphasize the choice of
the random tape. We often abbreviate the term “probabilistic polynomial-time” to “PPT”. In this paper,
for simplifying the argument, we adopt a convention about non-uniform algorithms in a way that an advice
for a non-uniform algorithm depends solely on the security parameter λ. By using an appropriate padding
to the input, our convention here can be made consistent with the rigorous convention in computational
complexity theory where an advice for a non-uniform algorithm depends solely on the input length for the
algorithm. An advice z = zλ for an algorithm A may be either made implicit in notation or indicated by
using a notation such as A(zλ).

2.2 Pseudorandom Generators

In this paper, we define a pseudorandom generator (PRG) to be a deterministic polynomial-time algorithm,
with security parameter 1λ and a seed s ∈ {0, 1}ℓin(λ) as input, that outputs an element of {0, 1}ℓout(λ),
where ℓin(λ) and ℓout(λ) are polynomially bounded and polynomial-time computable functions satisfying
that λ ≤ ℓin(λ) < ℓout(λ) and ℓin(λ) is a strictly increasing function1. A distinguisher for a PRG R is an
algorithm D (either uniform or non-uniform) that is given 1λ and some r ∈ {0, 1}ℓout(λ) as input and outputs
D(1λ, r) ∈ {0, 1}. The advantage of a distinguisher D for a PRG R is defined by

AdvR,D(1
λ)

def
=
∣∣∣Pr[D(1λ,R(1λ, U [{0, 1}ℓin(λ)])) = 1]− Pr[D(1λ, U [{0, 1}ℓout(λ)]) = 1]

∣∣∣ .

Definition 1. Let R be a PRG. We say that R is secure against uniform (respectively, non-uniform)
distinguishers, if AdvR,D(1

λ) is negligible for any PPT uniform (respectively, non-uniform) distinguisher D.

The following lemma can be proved by a standard hybrid argument.

Lemma 1. Let R be a PRG with input length ℓin(λ) and output length ℓout(λ). Let ρ(λ) ≥ 1 and ν(λ) ≥ 0
be polynomially bounded and polynomial-time computable functions both of that are weakly increasing. We
define a PRG Rρ,ν with input length ρ(λ) · ℓin(λ) + ν(λ) and output length ρ(λ) · ℓout(λ) + ν(λ) by

Rρ,ν(1λ, s1, . . . , sρ(λ), r)
def
= (R(1λ, s1), . . . ,R(1λ, sρ(λ)), r)

where s1, . . . , sρ(λ) ∈ {0, 1}ℓin(λ) and r ∈ {0, 1}ν(λ). If R is secure against uniform (respectively, non-uniform)
distinguishers, then Rρ,ν is also secure against uniform (respectively, non-uniform) distinguishers.

The following lemma can also be proved by a standard argument (cf., Theorem 3.3.3 of [8]).

Lemma 2. Let R be a PRG with input length ℓin(λ) and output length ℓout(λ) = ℓin(λ) + 1. Let ρ(λ) be a
polynomially bounded and polynomial-time computable function satisfying ρ(λ) > ℓin(λ). We define a PRG
Rρ with input length ℓin(λ) and output length ρ(λ) by

Rρ(1λ, s)
def
= σ1σ2 · · ·σρ(λ) ∈ {0, 1}ρ(λ)

where we recursively define x0 = s and R(1λ, xi−1) = σixi (i.e., xi and σi are the last ℓin(λ) bits and the first
bit of R(1λ, xi−1) ∈ {0, 1}ℓin(λ)+1, respectively). If R is secure against uniform (respectively, non-uniform)
distinguishers, then Rρ is also secure against uniform (respectively, non-uniform) distinguishers.

1The constraint here for input lengths of PRGs is seemingly different from a standard convention where the input length is
equal to the security parameter λ. However, our style here can be made consistent with the standard convention by regarding
the value λ′ = ℓin(λ) as a new “security parameter” and then “interpolating” the discontinuously chosen security parameters
λ′ by considering some harmless scheme with missing security parameters between ℓin(λ) and ℓin(λ+ 1). This does not affect
the essence of our results, and we adopt the convention as in the main text in order to avoid such inessential intricacy.

5

2.3 Public Key Encryption

In this paper, a public key encryption (PKE) scheme means a triple (Gen,Enc,Dec) of PPT algorithms
satisfying the following syntax. The key generation algorithm Gen is an algorithm that, given a security
parameter 1λ as input, outputs a pair (pk, sk) of a public key pk (including the security parameter 1λ and
specifications of a plaintext spaceM and a ciphertext space C) and a secret key sk (supposed to implicitly
include pk). The encryption algorithm Enc is an algorithm that, given pk and a plaintext m ∈ M as input,
outputs a ciphertext c ← Encpk(m). The decryption algorithm Dec is an algorithm that, given sk and a
ciphertext c ∈ C as input, outputs either a plaintext m′ ← Decsk(c) or a decryption failure symbol ⊥ ̸∈ M.

In this paper, we consider the correctness of PKE schemes with various amounts of decryption errors.

Definition 2. Let Π = (Gen,Enc,Dec) be a PKE scheme. Let α(λ) and β(λ) be functions of security
parameter λ. We say that Π is α(λ)-key β(λ)-correct, if for any security parameter λ, there is a set K† with
the following properties:

• We have Pr(pk,sk)←Gen(1λ)[(pk, sk) ∈ K†] ≤ 1− α(λ).

• If (pk, sk) ← Gen(1λ) and (pk, sk) ̸∈ K†, then we have Pr[Decsk(Encpk(m)) ̸= m] ≤ 1 − β(λ) for any
plaintext m.

For the term “α(λ)-key”, we also say “all-key” when α(λ) = 1, “almost all-key” when α(λ) = 1 − 2−Ω(λ),
and “overwhelming-key” when 1 − α(λ) is negligible. On the other hand, for the term “β(λ)-correct”,
we also say “perfectly-correct” when β(λ) = 1, “almost perfectly-correct” when β(λ) = 1 − 2−Ω(λ), and
“overwhelmingly-correct” when 1− β(λ) is negligible.

For example, all-key perfect-correctness in the sense above corresponds to the perfect correctness in a
usual sense, while overwhelming-key overwhelming-correctness in the sense above corresponds to the relaxed
version of the correctness (with negligible decryption error probability) in a usual sense.

On the other hand, we introduce the following terminology relevant to incorrectness of PKE schemes.

Definition 3. Let Π = (Gen,Enc,Dec) be a PKE scheme. Let λ be a security parameter and let (pk, sk)←
Gen(1λ). Let α(λ) be a function of λ. We say that the key pair (pk, sk) is somewhere α(λ)-erroneous, if we
have Pr[Decsk(Encpk(m)) ̸= m] ≥ α(λ) for some plaintext m.

This paper does not much concern the security of PKE schemes; we only consider IND-CPA security as
a simple and widely recognized notion. We recall the definition as follows.

Definition 4. Let Π = (Gen,Enc,Dec) be a PKE scheme. We consider the following IND-CPA game
between a challenger and an adversary A with common security parameter λ:

1. The challenger generates (pk, sk)← Gen(1λ) and sends pk to the adversary.

2. The adversary executes A(submit, 1λ, pk) to generate a tuple (m0,m1, st) of plaintexts m0,m1 ∈ M
and a record of the internal state st. Then the adversary sends m0 and m1 to the challenger.

3. The challenger chooses b∗ ∈ {0, 1} uniformly at random, generates c∗ ← Encpk(mb∗), and sends c∗ to
the adversary.

4. The adversary executes A(guess, 1λ, pk, st, c∗) to generate a bit b ∈ {0, 1}.

We say that the adversary wins the game if b = b∗. We define the advantage of the adversary by AdvΠA(1
λ)

def
=

|Pr[b = b∗]− 1/2| where the probability is determined according to the game above. We say that the PKE
scheme Π is IND-CPA, if AdvΠA(1

λ) is negligible for any PPT adversary A.

The following lemma can be proved by a standard hybrid argument (cf., Section 5.2.5.3 of [9]).

6

Lemma 3. Let Π = (Gen,Enc,Dec) be a PKE scheme with 1-bit plaintext spaceM = {0, 1} for any security
parameter λ. Let ρ(λ) be a polynomially bounded and polynomial-time computable function. We consider
the following PKE scheme Πρ = (Genρ,Encρ,Decρ):

• Genρ(1λ) outputs the same public/secret keys (pk, sk) as Gen(1λ) except that the plaintext space is
Mρ = {0, 1}ρ(λ) and the ciphertext space is Cρ = Cρ(λ).

• Encρpk(m1, . . . ,mρ(λ)) outputs (c1, . . . , cρ(λ)) where mi ∈ {0, 1} and ci ← Encpk(mi) for each i ∈
{1, . . . , ρ(λ)}.

• Decρsk(c1, . . . , cρ(λ)) outputs ⊥ if at least one of m′i ← Decsk(ci) is ⊥, otherwise outputs (m′1, . . . ,m
′
ρ(λ)).

If Π is IND-CPA, then so is Πρ. Moreover, if Π is all-key perfectly-correct, then so is Πρ as well.

3 Incorrect PKE Schemes with Pseudorandom Keys

In the following text, when Π is a PKE scheme and R is a PRG to generate the random tape for the key
generation algorithm, we denote by Π ◦Gen R the PKE scheme obtained from Π in a way that the key
generation algorithm uses the output of R (for uniformly random seed) as its random tape.

In this section, we prove the following theorem:

Theorem 1. Assume that

• there is a PRG that is secure against uniform (respectively, non-uniform) distinguishers; and

• there is an IND-CPA and all-key perfectly-correct PKE scheme with 1-bit plaintext space.

Then there are an IND-CPA PKE scheme Π and a PRG R that is secure against uniform (respectively,
non-uniform) distinguishers, satisfying that

• Π is almost all-key perfectly-correct; but

• all key pairs for Π ◦Gen R are somewhere 1-erroneous.

Namely, though the PKE scheme Π is almost perfectly correct and the PRG R is secure, the PKE scheme
will no longer be correct when the PRG is used in the key generation algorithm. We note that, in contrast
to the (in)correctness concerned in the theorem, the security of the PRG R ensures by a standard proof
strategy that the IND-CPA security of the PKE scheme Π is preserved when the pseudorandom output of
R is used in the key generation algorithm.

3.1 Proof of the Theorem

From now, we prove Theorem 1. First, by applying Lemma 2 to the PRG R0 in the hypothesis of the
theorem, we may assume without loss of generality that the input length ℓ0,in(λ) and the output length
ℓ0,out(λ) of R0 satisfy ℓ0,out(λ) ≥ ℓ0,in(λ)+λ. On the other hand, by applying Lemma 3 to the PKE scheme
in the hypothesis of the theorem, we may assume without loss of generality that there is an IND-CPA and
all-key perfectly-correct PKE scheme Π0 = (Gen0,Enc0,Dec0) with plaintext space {0, 1}ℓ0,in(λ). Let L(λ)
be the length of the random tape for Gen0, which is polynomially bounded as Gen0 is PPT. By adding (if
necessary) some extra random bits which are actually not used, we may also assume without loss of generality
that L(λ) is a weakly increasing and polynomial-time computable function.

Now we define a PKE scheme Π = (Gen,Enc,Dec) in the following manner.

• The random tape for Gen is of length ℓ0,out(λ) + L(λ). Given security parameter 1λ and random
tape (r1, r2) ∈ {0, 1}ℓ0,out(λ) × {0, 1}L(λ), Gen generates (pk0, sk0)← Gen0(1

λ; r2) except that an extra
symbol ⊥ is added to the ciphertext space, and then output pk← (pk0, r1) and sk← sk0.

7

• Given pk = (pk0, r1) and a plaintext m ∈ {0, 1}ℓ0,in(λ), Enc first computes r′ ←R0(1
λ,m), and outputs

⊥ if r′ = r1. On the other hand, if r′ ̸= r1, then Enc outputs the output of (Enc0)pk0(m).

• Given a ciphertext c, Dec outputs ⊥ if c = ⊥; otherwise outputs (Dec0)sk0(c).

Let K† be the set of the key pairs (pk, sk) for the PKE scheme Π satisfying that the component r1 of pk
is equal to R0(1

λ, s) for some s ∈ {0, 1}ℓ0,in(λ). Then by the construction of Π, if the key pair is not in
the set K†, then the output distribution of Enc is equal to that of Enc0 with the same plaintext and the
corresponding public key. Moreover, the ratio of the elements in {0, 1}ℓ0,out(λ) of the form R0(1

λ, s) for
some s ∈ {0, 1}ℓ0,in(λ) among the whole set is at most 2ℓ0,in(λ)/2ℓ0,out(λ) ≤ 2−λ since ℓ0,out(λ) ≥ ℓ0,in(λ) + λ,
therefore we have Pr[(pk, sk) ∈ K†] ≤ 2−λ. This argument and the IND-CPA security of Π0 imply that Π
is also IND-CPA. Moreover, the all-key perfect-correctness of Π0 implies that Π is (1 − 2−λ)-key 1-correct,
hence almost all-key perfectly-correct.

Now we define a PRG R as follows: the input length is ℓin(λ) = ℓ0,in(λ)+L(λ), and the output length is
ℓout(λ) = ℓ0,out(λ)+L(λ) (note that these functions satisfy the constraint for the length functions for PRGs).
Given an input (s1, s2) ∈ {0, 1}ℓ0,in(λ)+{0, 1}L(λ), the output of R is (R0(1

λ, s1), s2). Then Lemma 1 implies
that R is secure against uniform (respectively, non-uniform) distinguishers as well as R0. Moreover, when a
random tape of the form (R0(1

λ, s1), s2) is used in the key generation algorithm for Π, the construction of Π
implies that the encryption algorithm Enc with plaintext m = s1 always outputs the ciphertext ⊥, therefore
this key pair is somewhere 1-erroneous. As any key pair for Π ◦Gen R is of such a form, it follows that all
key pairs for Π ◦Gen R are somewhere 1-erroneous. This completes the proof of Theorem 1.

3.2 Discussion

Theorem 1 shows that, when implementing a probabilistic key generation algorithm for a PKE scheme Π by
using a PRG R, it is in general not ensured that the resulting scheme Π◦GenR is correct even if the original
scheme Π is almost all-key perfectly-correct (which is usually of practically acceptable level of correctness)
and the PRG R is cryptographically secure. On the other hand, it is obvious that the scheme Π ◦Gen R
will be correct (more precisely, all-key β(λ)-correct) if Π is all-key β(λ)-correct. This suggests a significant
difference between all-key correctness and not all-key correctness, and also practical importance (from the
viewpoint of implementation using PRGs) of avoiding erroneous key pairs in designing PKE schemes.

A main reason of the unexpected loss of correctness shown by Theorem 1 is that, it is in general not
efficiently checkable whether or not a given key pair for a PKE scheme is erroneous. Namely, if the subset K†
of possibly erroneous keys appeared in Definition 2 were efficiently recognizable (i.e., with efficient algorithm
for membership test), the use of a secure PRG in the key generation algorithm would preserve the correctness
with only negligible increase of probability for a key pair to be a member of K†. This suggests the importance
of designing PKE schemes in a way that erroneous keys (if any) can be efficiently detected. (We note that,
this does not claim that the detection process for erroneous keys should be included in the actual key
generation algorithm. Just the existence of such an efficient detection process is sufficient for ensuring the
correctness when implementing the key generation algorithm by using a secure PRG.)

4 Incorrect PKE Schemes with Pseudorandom Encryption

In the following text, when Π is a PKE scheme and R is a PRG to generate the random tape for the
encryption algorithm, we denote by Π◦EncR the PKE scheme obtained from Π in a way that the encryption
algorithm uses the output of R (for uniformly random seed) as its random tape.

In this section, we prove the following theorem:

Theorem 2. Assume that

• there is a PRG that is secure against uniform distinguishers but is not secure against non-uniform
distinguishers; and

8

• there is an IND-CPA and all-key perfectly-correct PKE scheme with 1-bit plaintext space.

Then for any constant ε > 0, there are an IND-CPA PKE scheme Π and a PRG R that is secure against
uniform distinguishers, satisfying that

• Π is all-key almost perfectly-correct and all-key (1− ε)-correct; but

• all key pairs for Π ◦Enc R are somewhere η(λ)-erroneous for a common non-negligible function η(λ).

Namely, though the PKE scheme Π is almost perfectly correct and the PRG R is secure (against uniform
distinguishers), the PKE scheme will no longer be correct when the PRG is used in the encryption algorithm.
We note that, in contrast to the (in)correctness concerned in the theorem, the security of the PRG R against
uniform distinguishers ensures by a standard proof strategy that the IND-CPA security of the PKE scheme
Π is preserved when the pseudorandom output of R is used in the encryption algorithm.

4.1 Proof of the Theorem

From now, we prove Theorem 2. Let R0 denote the PRG as in the hypothesis of the theorem with input
length ℓ0,in(λ) and output length ℓ0,out(λ). This R0 is secure against uniform distinguishers but is not
secure against non-uniform distinguishers. In particular, there is a PPT non-uniform distinguisher D for
R0, with some advice depending solely on the security parameter λ, that has non-negligible advantage
AdvR0,D(1

λ). In more detail, there are an integer k ≥ 1 and an infinite set Λ of positive integers satisfying
that AdvR0,D(1

λ) > λ−k for every λ ∈ Λ. Now, as D is PPT, the computational complexity of D is bounded
by a positive polynomial Q(λ). Then, we may assume without loss of generality that, the advice aλ for D,
associated to security parameter λ, that yields the non-negligible advantage has length at most Q(λ); for
each λ ∈ Λ, we have aλ ∈

∪
0≤i≤Q(λ){0, 1}i and

AdvR0,D(aλ)(1λ) =
∣∣∣Pr[D(aλ)(1λ,R0(1

λ, U [{0, 1}ℓ0,in(λ)])) = 1]− Pr[D(aλ)(1λ, U [{0, 1}ℓ0,out(λ)]) = 1]
∣∣∣

> λ−k .
(1)

Moreover, we may also assume without loss of generality that the random tape for D is of length Q(λ).
On the other hand, by applying Lemma 3 to the PKE scheme in the hypothesis of the theorem, we

may assume without loss of generality that there is an IND-CPA and all-key perfectly-correct PKE scheme
Π0 = (Gen0,Enc0,Dec0) with plaintext space {0, 1}Q(λ). Let L(λ) be the length of the random tape for Enc0,
which is polynomially bounded as Enc0 is PPT. By adding (if necessary) some extra random bits which
are actually not used, we may also assume without loss of generality that L(λ) is a weakly increasing and
polynomial-time computable function.

Now we define a PKE scheme Π = (Gen,Enc,Dec) in the following manner. The output (pk, sk) of the
key generation algorithm is the same as Π0 except that the ciphertext space includes an extra symbol ⊥.
For the decryption algorithm, Decsk(c) outputs (Dec0)sk(c) if c ∈ C, while it outputs ⊥ if c = ⊥. On the
other hand, for the encryption algorithm, by using a parameter ρ(λ) specified in the argument below, the
random tape is given by

r⃗
def
= (r⃗0, r⃗1, r⃗D, rEnc, rAdv)

where r⃗0 = (r0,1, . . . , r0,ρ(λ)) and r⃗1 = (r1,1, . . . , r1,ρ(λ)) with each ri,j ∈ {0, 1}ℓ0,out(λ),

r⃗D = (rD,0,1, . . . , rD,0,ρ(λ), rD,1,1, . . . , rD,1,ρ(λ)) with each rD,i,j ∈ {0, 1}Q(λ) ,

rEnc ∈ {0, 1}L(λ), and rAdv ∈ {0, 1}⌊log2 Q(λ)⌋+λ+γ(λ) where

γ(λ)
def
= ρ(λ) ·max{ℓ0,out(λ′)− ℓ0,out(λ) | 1 ≤ λ′ ≤ λ} ≥ 0 .

(We note that this additional factor γ(λ) is introduced in order to let the input length function ℓin(λ) for
the PRG R constructed later satisfy the constraint that it should be a strictly increasing function.) Then
the encryption algorithm Encpk(m) for a given plaintext m ∈ {0, 1}Q(λ) is executed as follows:

9

1. The algorithm computes ν ← rAdv mod (Q(λ) + 1) where rAdv is identified with an integer via the
binary representation of integers. Let mν ∈ {0, 1}ν denote the first ν bits of m.

2. For i ∈ {0, 1}, the algorithm executes the algorithm D(mν)(1λ, ri,j ; rD,i,j) with advice mν and random
tape rD,i,j to obtain a bit bi,j for j = 1, . . . , ρ(λ), and counts the number µi of the indices j with
bi,j = 1.

3. For a parameter θ(λ) specified in the argument below, if |µ0 − µ1| ≤ θ(λ) then the algorithm outputs
(Enc0)pk(m; rEnc); otherwise the algorithm outputs ⊥.

We will use the parameters ρ(λ) and θ(λ) both of that are polynomially bounded and polynomial-time
computable; we suppose these properties in the current argument. Then the algorithm Enc is PPT. In order
to choose ρ(λ) and θ(λ), we refer to the following special case of Hoeffding’s Inequality [11]:

Lemma 4. Let X1, . . . , Xn be independent random variables, each taking the value 1 with probability p and
the value 0 with probability 1− p for a common p. Then for any t > 0, we have

Pr

[∣∣∣∣X1 + · · ·+Xn

n
− p

∣∣∣∣ ≥ t

]
≤ 2 exp

(
−2nt2

)
.

When the random tape r⃗ for Enc is uniformly random, for any givenmν , the output bits ofD(mν)(1λ, ri,j) =
D(mν)(1λ, ri,j ; rD,i,j) with i ∈ {0, 1} and j ∈ {1, . . . , ρ(λ)} are independent of each other and follow the same
probability distribution; let p denote the probability for taking the value 1 in this distribution. Now if
|µ0−µ1| > θ(λ), then either |µ0−ρ(λ) · p| > θ(λ)/2 or |µ1−ρ(λ) · p| > θ(λ)/2 must hold. Moreover, Lemma

4 (with n = ρ(λ) and t =
θ(λ)

2ρ(λ)
) implies

Pr

[
|µi − ρ(λ) · p| > θ(λ)

2

]
≤ 2 exp

(
−2ρ(λ) ·

(
θ(λ)

2ρ(λ)

)2
)

= 2 exp

(
− θ(λ)2

2ρ(λ)

)
.

Hence, for any plaintext m, we have

Pr[Encpk(m) = ⊥] ≤ 4 exp

(
− θ(λ)2

2ρ(λ)

)
. (2)

On the other hand, we define a PRG R as follows: the seed for R is

s⃗PRG
def
= (s⃗, r⃗1, r⃗D, rEnc, rAdv)

where s⃗ = (s1, . . . , sρ(λ)) with each sj ∈ {0, 1}ℓ0,in(λ), and the remaining components r⃗1, r⃗D, rEnc, and rAdv

are the same as in the random tape for Enc. Its input length ℓin(λ) is given by

ℓin(λ) = ρ(λ) · (ℓ0,in(λ) + ℓ0,out(λ) + 2Q(λ)) + L(λ) + ⌊log2 Q(λ)⌋+ λ+ γ(λ) .

By the definition of γ(λ), assuming (as shown below) that ρ(λ) is weakly increasing, ρ(λ) · ℓ0,out(λ)+ γ(λ) is
weakly increasing as well. This implies that R satisfies the constraint for the input and output lengths for
PRGs. Now, given a seed s⃗PRG, the algorithm R replaces each component sj of s⃗ with the output r0,j of
R0(1

λ, sj) and keeps the remaining part of s⃗PRG unchanged. Then by Lemma 1, R is a PRG secure against
uniform distinguishers as well as R0.

In order to analyze the behavior of Enc when the random tape is generated by R, we use the following
lemma:

Lemma 5. Let M,N be two positive integers. Put δ = M/N − ⌊M/N⌋, hence 0 ≤ δ < 1. Moreover, we set
UM = U [{0, . . . ,M − 1}] and UN = U [{0, . . . , N − 1}]. Then we have

∆(UM mod N,UN) =
δ(1− δ)

M/N
≤ N

4M
.

10

Proof. The latter part follows from the fact that δ(1 − δ) attains the maximum value 1/4 at δ = 1/2. For
the former part, we note that

Pr[UM mod N = a] =

⌊M/N⌋+ 1

M
>

1

N
for 0 ≤ a ≤M − ⌊M/N⌋N − 1 ,

⌊M/N⌋
M

≤ 1

N
for M − ⌊M/N⌋N ≤ a ≤ N − 1 .

This implies that

∆(UM mod N,UN) = (M − ⌊M/N⌋N) ·
(
⌊M/N⌋+ 1

M
− 1

N

)
= Nδ ·

(
M/N − δ + 1

M
− 1

N

)
= Nδ · −δ + 1

M
=

δ(1− δ)

M/N
.

Hence the assertion holds.

We consider the case that the security parameter λ is in the set Λ, the plaintext is m(λ)
def
= aλ0

Q(λ)−|aλ|

(i.e., the correct advice aλ is a prefix of m(λ)), and the random tape for Enc is generated by R with uniformly
random seed s⃗PRG. By Lemma 5, the statistical distance of the probability distribution of the value ν in the
algorithm Enc from the uniform distribution over {0, . . . , Q(λ)} is bounded by

Q(λ) + 1

4 · 2⌊log2 Q(λ)⌋+λ+γ(λ)
≤ 2Q(λ)

4 · 2log2 Q(λ)−1+λ
=

1

2λ
.

Hence we have mν = m(λ)ν = aλ with probability at least (Q(λ) + 1)−1 − 2−λ. Conditioned on this case
mν = aλ, the output bits of D(mν)(1λ,R0(1

λ, sj); rD,0,j) with j ∈ {1, . . . , ρ(λ)} and D(mν)(1λ, r1,j ; rD,1,j)
with j ∈ {1, . . . , ρ(λ)} are independent of each other. Moreover, the output bits D(mν)(1λ,R0(1

λ, sj); rD,0,j),
j ∈ {1, . . . , ρ(λ)}, follow the same probability distribution; let p0 be the common probability of taking the
value 1. Similarly, the output bits D(mν)(1λ, r1,j ; rD,1,j), j ∈ {1, . . . , ρ(λ)}, follow the same probability
distribution; let p1 be the common probability of taking the value 1. Now Eq.(1) implies that |p0−p1| > λ−k.
According to this inequality, we set

θ(λ)
def
=

λ−k

2
ρ(λ) .

Due to the choice of the threshold θ(λ), if |µ0 − µ1| ≤ θ(λ), then either |µ0 − ρ(λ) · p0| > θ(λ)/2 or

|µ1 − ρ(λ) · p1| > θ(λ)/2 must hold. Moreover, Lemma 4 (with n = ρ(λ) and t =
θ(λ)

2ρ(λ)
) implies

Pr

[
|µi − ρ(λ) · pi| >

θ(λ)

2

]
≤ 2 exp

(
− θ(λ)2

2ρ(λ)

)
.

Hence, in the case where the random tape for Enc is generated by R, we have

Pr[Encpk(m(λ)) = ⊥] ≥ max{0, (Q(λ) + 1)−1 − 2−λ} ·
(
1− 4 exp

(
− θ(λ)2

2ρ(λ)

))
. (3)

When we set
ρ(λ)

def
= 8λ2k (⌈log(1/ε)⌉+ 2λ) ,

both ρ(λ) and θ(λ) = ρ(λ)λ−k/2 = 4λk (⌈log(1/ε)⌉+ 2λ) are polynomially bounded and polynomial-time
computable. We have

4 exp

(
− θ(λ)2

2ρ(λ)

)
= 4 exp (− (⌈log(1/ε)⌉+ 2λ)) ≤ 4elog ε−2λ = 4ε · e−2λ .

11

Since 4e−2λ ≤ 4e−2 < 1, this implies that the right-hand side of Eq.(2) is at most ε and is exponentially
small. Hence, when the encryption algorithm uses an ideally random tape, the PKE scheme Π is all-key
almost perfectly-correct and all-key (1−ε)-correct. The same argument also implies (due to the construction
of Π) that the distributions of ciphertexts in Π and in Π0 for the same plaintext are exponentially close to
each other, therefore Π is IND-CPA as well as Π0. On the other hand, the right-hand side of Eq.(3) is at
least

max{0, (Q(λ) + 1)−1 − 2−λ} · (1− 4ε · e−2λ) = Ω(Q(λ)−1) .

Now the function η(λ) defined by

η(λ) =

{
max{0, (Q(λ) + 1)−1 − 2−λ} · (1− 4ε · e−2λ) if λ ∈ Λ ,

0 if λ ̸∈ Λ

is non-negligible (as Λ is an infinite set). When the encryption algorithm uses a random tape generated
by the PRG R, if λ ∈ Λ, then for any key pair, the decryption error occurs for the plaintext m(λ) with
probability at least η(λ) by the argument above; i.e., this key pair is somewhere η(λ)-erroneous. On the
other hand, if λ ̸∈ Λ, then any key pair is automatically somewhere η(λ)-erroneous as η(λ) = 0. Hence, for
the PKE scheme Π ◦Enc R, all key pairs are somewhere η(λ)-erroneous for the non-negligible function η(λ).
This completes the proof of Theorem 2.

4.2 Discussion

Theorem 2 shows that, when implementing a probabilistic encryption algorithm for a PKE scheme Π by using
a PRG R, it is in general not ensured that the resulting scheme Π◦EncR is correct even if the original scheme
Π is all-key almost perfectly-correct (which is usually of practically acceptable level of correctness) and the
PRG R is secure against uniform distinguishers. On the other hand, as mentioned in the introduction, the
correctness will be ensured when a PRG secure against non-uniform distinguishers is used instead; however,
reliance on such a non-uniform PRG may cause a less efficient choice of a security parameter for providing
an enough security level in practical implementations. In this section, we discuss a possible alternative
countermeasure to avoid such an unexpected loss of correctness when using a PRG (we note that, designing
PKE schemes with (overwhelming-key) perfect-correctness can trivially avoid such an issue and therefore is
practically important).

The strategy discussed here, which has also been mentioned in the introduction, is preparing two PRGs
with indistinguishability properties of different types and then combining these PRGs by taking the bitwise
XOR of the outputs. Similar techniques have been used by previous works in the area of cryptography in
different contexts; such a technique was called “dual-mode PRG” in [19]. Specializing to our present case,
let Π = (Gen,Enc,Dec) be a PKE scheme, where the random tape for the encryption algorithm is of length
L(λ). Let R1 and R2 be (polynomial-time) PRGs with input lengths ℓ1,in(λ) and ℓ2,in(λ), respectively, and
common output length L(λ), satisfying that ℓ1,in(λ) + ℓ2,in(λ) < L(λ). Then we define a PRG R with input
length ℓin(λ) = ℓ1,in(λ) + ℓ2,in(λ) and output length L(λ) by

R(1λ, s⃗) def
= R1(1

λ, s1)⊕R2(1
λ, s2) for s⃗ = (s1, s2) ∈ {0, 1}ℓ1,in(λ) × {0, 1}ℓ2,in(λ)

where ⊕ denotes the bitwise XOR.
In order to state the result, we introduce the following auxiliary notation. For any security parameter λ,

any key pair (pk, sk) ← Gen(1λ), any plaintext m, any r1 ∈ {0, 1}L(λ), and any random tape r′ for Dec, we
define a function Fλ,pk,sk,m,r1,r′ : {0, 1}L(λ) → {0, 1} by

Fλ,pk,sk,m,r1,r′(r2)
def
=

{
0 if Decsk(Encpk(m; r1 ⊕ r2); r

′) = m ,

1 if Decsk(Encpk(m; r1 ⊕ r2); r
′) ̸= m .

Then we have the following result.

12

Theorem 3. Let the PKE scheme Π and the PRG R be as above.

1. If Π is IND-CPA and R1 is secure against uniform distinguishers, then Π ◦Enc R is also IND-CPA.

2. Suppose that Π is α(λ)-key β(λ)-correct. Let η(λ) be a function. Suppose moreover that R2 satisfies∣∣∣Pr [Fλ,pk,sk,m,r1,r′(R2(1
λ, U [{0, 1}ℓ2,in(λ)])) = 1

]
− Pr

[
Fλ,pk,sk,m,r1,r′(U [{0, 1}L(λ)]) = 1

]∣∣∣ ≤ η(λ)

for any function Fλ,pk,sk,m,r1,r′ defined above. Then Π ◦Enc R is α(λ)-key (β(λ)− η(λ))-correct.

Proof. For the first assertion, let A be any PPT adversary for the IND-CPA game for Π◦EncR. We consider
the following distinguisher D for the PRG R1: Given 1λ and r1 ∈ {0, 1}L(λ), the distinguisher emulates
the IND-CPA game for Π where the adversary is the A and the encryption algorithm of the challenger uses
r1 ⊕R2(1

λ, s2) with uniformly random seed s2 as its random tape, and outputs 1 if the adversary wins the
emulated game and otherwise outputs 0. Note that D is PPT. Now, when r1 = R1(1

λ, s1) with uniformly
random seed s1, the emulated game is identical to the IND-CPA game for Π ◦Enc R, therefore we have

AdvΠ◦EncR
A (1λ) =

∣∣∣Pr[D(1λ,R1(1
λ, U [{0, 1}ℓ1,in(λ)])) = 1]− 1/2

∣∣∣ .

On the other hand, when r1 is uniformly random, r1 ⊕ R2(1
λ, s2) is also uniformly random, therefore the

emulated game is identical to the IND-CPA game for Π. Hence we have

AdvΠA(1
λ) =

∣∣∣Pr[D(1λ, U [{0, 1}L(λ)]) = 1]− 1/2
∣∣∣ .

As D is PPT and R1 is secure against uniform distinguishers, Pr[D(1λ,R1(1
λ, U [{0, 1}ℓ1,in(λ)])) = 1] and

Pr[D(1λ, U [{0, 1}L(λ)]) = 1] have negligible difference, therefore AdvΠ◦EncR
A (1λ) and AdvΠA(1

λ) also have neg-

ligible difference. As Π is IND-CPA and A is PPT, it follows that AdvΠA(1
λ) is negligible, so is AdvΠ◦EncR

A (1λ).
Hence Π ◦Enc R is also IND-CPA.

For the second assertion, let (pk, sk) ← Gen(1λ) be not in the set K† in Definition 2, and let m be any
plaintext. Then, by the construction of the function Fλ,pk,sk,m,r1,r′ , we have

errPRG
def
= Pr

s⃗↢U [{0,1}ℓin(λ)]

[
Decsk(Encpk(m;R(1λ, s⃗))) ̸= m

]
=

∑
s1∈{0,1}ℓ1,in(λ)

2−ℓ1,in(λ) Pr
r′

[
Fλ,pk,sk,m,R1(1λ,s1),r′(R2(1

λ, U [{0, 1}ℓ2,in(λ)])) = 1
]

.

By the hypothesis, we have

errPRG ≤ 2−ℓ1,in(λ)
∑

s1∈{0,1}ℓ1,in(λ)

(
Pr
r′

[
Fλ,pk,sk,m,R1(1λ,s1),r′(U [{0, 1}L(λ)]) = 1

]
+ η(λ)

)
= η(λ) + 2−ℓ1,in(λ)

∑
s1∈{0,1}ℓ1,in(λ)

Pr
r′

[
Fλ,pk,sk,m,R1(1λ,s1),r′(U [{0, 1}L(λ)]) = 1

]
.

Moreover, as R1(1
λ, s1)⊕ r2 is uniformly random if r2 ∈ {0, 1}L(λ) is uniformly random, it follows from the

construction of the function Fλ,pk,sk,m,r1,r′ that, for any s1,

Pr
r′

[
Fλ,pk,sk,m,R1(1λ,s1),r′(U [{0, 1}L(λ)]) = 1

]
= Pr

r↢U [{0,1}L(λ)]
[Decsk(Encpk(m; r)) ̸= m] .

The right-hand side is at most 1− β(λ) by the hypothesis for the correctness of Π. Therefore, we have

errPRG ≤ η(λ) + 2−ℓ1,in(λ)
∑

s1∈{0,1}ℓ1,in(λ)

(1− β(λ)) = 1− (β(λ)− η(λ)) .

Hence Π ◦Enc R is α(λ)-key (β(λ)− η(λ))-correct. This completes the proof of Theorem 3.

13

Owing to the theorem, instead of developing a PRG secure against non-uniform distinguishers, our
task has been reduced to develop both a PRG secure against uniform distinguishers (which is standard in
cryptography) and a “special-purpose” PRG that fools the explicit family of functions Fλ,pk,sk,m,r1,r′ defined
above. Since the complexity of those functions is bounded well and is almost the sum of the complexity of
the encryption and decryption algorithms of the given PKE scheme, it might be hopeful (especially when
the PKE scheme has an efficient structure) to develop such a special-purpose PRG by e.g., using techniques
in the area of derandomization such as [18, 21].

References

[1] M. Ajtai, C. Dwork: A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence. In: Pro-
ceedings of STOC 1997, ACM, pp.284–293, 1997.

[2] B. Auerbach, M. Bellare, E. Kiltz: Public-Key Encryption Resistant to Parameter Subversion and
Its Realization from Efficiently-Embeddable Groups. In: Proceedings of PKC 2018 (Part I), LNCS
vol.10769, pp.348–377, 2018.

[3] D. J. Bernstein, T. Lange: Non-Uniform Cracks in the Concrete: The Power of Free Precomputation.
In: Proceedings of ASIACRYPT 2013 (Part II), LNCS vol.8270, pp.321–340, 2013.

[4] N. Bitansky, V. Vaikuntanathan: A Note on Perfect Correctness by Derandomization. In: Proceedings
of EUROCRYPT 2017 (Part II), LNCS vol.10211, pp.592–606, 2017.

[5] A. De, L. Trevisan, M. Tulsiani: Time Space Tradeoffs for Attacks against One-Way Functions and
PRGs. In: Proceedings of CRYPTO 2010, LNCS vol.6223, pp.649–665, 2010.

[6] Y. Deng: Magic Adversaries Versus Individual Reduction: Science Wins Either Way. In: Proceedings
of EUROCRYPT 2017 (Part II), LNCS vol.10211, pp.351–377, 2017.

[7] C. Dwork, M. Naor, O. Reingold: Immunizing Encryption Schemes from Decryption Errors. In: Pro-
ceedings of EUROCRYPT 2004, LNCS vol.3027, pp.342–360, 2004.

[8] O. Goldreich: Foundations of Cryptography, Volume I. Cambridge University Press, 2001.

[9] O. Goldreich: Foundations of Cryptography, Volume II. Cambridge University Press, 2004.

[10] O. Goldreich, S. Goldwasser, S. Halevi: Eliminating Decryption Errors in the Ajtai–Dwork Cryptosys-
tem. In: Proceedings of CRYPTO 1997, LNCS vol.1294, pp.105–111, 1997.

[11] W. Hoeffding: Probability Inequalities for Sums of Bounded Random Variables. Journal of the American
Statistical Association, vol.58, no.301, pp.13–30, 1963.

[12] T. Holenstein, R. Renner: One-Way Secret-Key Agreement and Applications to Circuit Polarization and
Immunization of Public-Key Encryption. In: Proceedings of CRYPTO 2005, LNCS vol.3621, pp.478–
493, 2005.

[13] N. Howgrave-Graham, P. Q. Nguyen, D. Pointcheval, J. Proos, J. H. Silverman, A. Singer, W. Whyte:
The Impact of Decryption Failures on the Security of NTRU Encryption. In: Proceedings of CRYPTO
2003, LNCS vol.2729, pp.226–246, 2003.

[14] Z. Huang, J. Lai, W. Chen, M. H. Au, Z. Peng, J. Li: Hedged Nonce-Based Public-Key Encryption:
Adaptive Security Under Randomness Failures. In: Proceedings of PKC 2018 (Part I), LNCS vol.10769,
pp.253–279, 2018.

[15] J. Katz, Y. Lindell: Introduction to Modern Cryptography, Second Edition. Taylor & Francis Group,
2015.

14

[16] N. Koblitz, A. Menezes: Another Look at Non-Uniformity. Groups Complexity Cryptology, vol.5, no.2,
pp.117–139, 2013.

[17] H. Lin, S. Tessaro: Amplification of Chosen-Ciphertext Security. In: Proceedings of EUROCRYPT
2013, LNCS vol.7881, pp.503–519, 2013.

[18] N. Nisan, A. Wigderson: Hardness vs Randomness. Journal of Computer and System Sciences, vol.49,
no.2, pp.149–167, 1994.

[19] K. Nuida: How to Use Pseudorandom Generators in Unconditional Security Settings. In: Proceedings
of ProvSec 2014, LNCS vol.8782, pp.291–299, 2014.

[20] K. Pietrzak, M. Skorski: Non-Uniform Attacks Against Pseudoentropy. In: Proceedings of ICALP 2017,
LIPICS vol.80, Article no.39, 2017.

[21] R. Shaltiel, C. Umans: Simple Extractors for All Min-Entropies and a New Pseudo-Random Generator.
In: Proceedings of FOCS 2001, IEEE, pp.648–657, 2001.

[22] J. Zhang, Y. Yu: Two-Round PAKE from Approximate SPH and Instantiations from Lattices. In:
Proceedings of ASIACRYPT 2017 (Part III), LNCS vol.10626, pp.37–67, 2017.

15

