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Abstract
We present HPolyC, a construction which builds on Poly1305, XChaCha12,
and a single block cipher invocation per message to offer length-preserving
encryption with a fast constant-time implementation where crypto
instructions are absent. On an ARM Cortex-A7 processor, HPolyC decrypts
4096-byte messages at 14.5 cycles per byte, over four times faster than
AES-256-XTS. Assuming secure primitives, we prove an advantage bound
of ≈ 2−111q2(l + 156), where q is the number of queries and l is the sum of
message and tweak length in bits.

1 Introduction

Two aspects of disk encryption make it a challenge for cryptography. First,
performance is critical; every extra cycle is a worse user experience, and on a
mobile device a reduced battery life. Second, the ciphertext can be no larger
than the plaintext: a sector-sized read or write to the filesystem must mean a
sector-sized read or write to the underlying device, or performance will again
suffer greatly (as well as, in the case of writes to flash memory, the life of the
device). Nonce reuse is inevitable as there is nowhere to store a varying nonce,
and there is no space for a MAC; thus standard constructions like AES-GCM are
not an option and standard notions of semantic security are unachievable. The
best that can be done under the circumstances is a “tweakable
super-pseudorandom permutation”: an attacker with access to both encryption
and decryption functions who can choose tweak and plaintext/ciphertext freely
is unable to distinguish it from a family of independent random permutations.

1.1 History

Hasty Pudding Cipher [Sch98] was a variable-input-length primitive presented
to the AES contest. A key innovation was the idea of a “spice”, which was later
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formalized as a “tweak” in [LRW02]. Another tweakable large-block primitive
was Mercy [Cro01], cryptanalyzed in [Flu02].

[LR88] (see also [Mau93; Pat91]) shows how to construct a pseudorandom
permutation using a three-round Feistel network of pseudorandom functions;
proves that this is not a secure super-pseudorandom permutation (where the
adversary has access to decryption as well as encryption) and that four rounds
suffice for this aim. BEAR and LION [AB96] apply this result to an unbalanced
Feistel network to build a large-block cipher from a hash function and a stream
cipher (see also BEAST [Luc96a]).

[Luc96b] shows that a universal function (here called a “difference
concentrator”) suffices for the first round, which [NR99] extends to four-round
function to build a super-pseudorandom permutation.

More recently, proposals in this space have focused on the use of block ciphers.
VIL mode [BR99] is a CBC-MAC based two-pass variable-input-length
construction which is a PRP but not an SPRP. CMC mode [HR03] is a true SPRP
using two passes of the block cipher; EME mode [HR04] is similar but
parallelizable, while EME* mode [Hal05] extends EME mode to handle blocks
that are not a multiple of the block cipher size. PEP [CS06], TET [Hal07], and
HEH [Sar07] have a mixing layer either side of an ECB layer.

XCB [MF07] is a block-cipher based unbalanced three-round Feistel network
with an ε-almost-XOR-universal hash function for the first and third rounds
(“hash-XOR-hash”), which uses block cipher invocations on the narrow side of
the network to ensure that the network is an SPRP, rather than just a PRP; it also
introduces a tweak. HCTR [WFW05; CN08], HCH [CS08], and HMC [Nan08]
reduce this to a single block cipher invocation within the Feistel network. These
proposals require either two AES invocations, or an AES invocation and two
GF(2128) multiplications, per 128 bits of input.

1.2 Our contribution

On the ARM architecture, the ARMv8 Cryptography Extensions include
instructions that make AES and GF(2128) multiplications much more efficient.
However, smartphones designed for developing markets often use lower-end
processors which don’t support these extensions, and as a result there is no
existing SPRP construction which performs acceptably on them.

On such platforms stream ciphers such as ChaCha12 [Ber08a] significantly
outperform block ciphers in cycles per byte, especially with constant-time
implementations. Similarly, absent specific processor support, Poly1305
hash [Ber05b] will be much faster than a GF(2128) polynomial hash. Since these
are the operations that act on the bulk of the data in a disk-sector-sized block, a
hash-XOR-hash mode of operation relying on them should achieve much
improved performance on such platforms.
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To this end, we present HPolyC, which:

• is a tweakable, variable-input-length, super-pseudorandom permutation

• has a security bound quadratic in the number of queries and linear in
message length

• is highly key agile

• is highly parallelizable

• needs only three passes over the bulk of the data, or two if the XOR is
combined with the second hash.

Without special cases or extra setup, HPolyC handles:

• messages that are not a multiple of 128 bits in length

• tweak lengths from 0 to 232 − 1 bits

• varying message and tweak lengths for the same keys.

The proof of security differs from other hash-XOR-hash modes in three ways.
First, Poly1305 hash is not XOR universal, but universal over Z/2128Z, so for
XOR of hash values we substitute addition and subtraction in this group.
Second, using the XSalsa20 construction [Ber11], we can directly build a stream
cipher which takes a 192-bit nonce to generate a 273-bit stream, simplifying the
second Feistel operation and associated proof, as well as subkey generation.
Finally, Poly1305 hash has a much weaker security bound than the GF(2128)
polynomial hash; the proof is shaped around ensuring we pay the smallest
multiple of this cost we can.

2 Specification

HPolyC divides the input into a right-hand block of n = 128 bits and a left-hand
block with the remainder of the input, and uses a stream cipher S and an
ε-almost-∆-universal function H to build an unbalanced Feistel network that
includes one invocation of a block cipher E.

We derive ciphertext C from plaintext P and tweak T as shown in Figure 2. ||
represents concatenation, and PR, PM , CM , CR are n bits long. encode is an
injective encoding function defined below. Byte/bit mapping is little endian, as
is all arithmetic. � represents addition mod 2n, and � subtraction. X ←⊕Y is
the bitwise XOR of X with the first |X| bits of Y . Partial application is implicit; if
we define f : A×B → C and a ∈ A then fa : B → C and if f−1

a exists then
f−1
a (fa(b)) = b.
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Figure 1: HPolyC

procedure HPolyCEncrypt(T, P )
PL||PR ← P
PM ← PR �HKH

(encode(T, PL))
CM ← EKE

(PM )
CL ← PL ←⊕SKS

(CM )
CR ← CM �HKH

(encode(T,CL))
C ← CL||CR

return C
end procedure
procedure HPolyCDecrypt(T,C)

CL||CR ← C
CM ← CR �HKH

(encode(T,CL))
PL ← CL ←⊕SKS

(CM )
PM ← E−1

KE
(CM )

PR ← PM �HKH
(encode(T, PL))

P ← PL||PR

return P
end procedure

Figure 2: Pseudocode for HPolyC

2.1 Hash

Poly1305 [Ber05b] is a MAC which combines the use of AES with an
ε-almost-∆-universal (εA∆U) polynomial hash function. RFC 7539 [NL15] takes
this εA∆U polynomial function and uses it without AES to build an AEAD
mode based on ChaCha20. Here we call this εA∆U function
H : KH × {0, 1}∗ → {0, 1}n where KH is the 2106-bit keyspace; it is this function,
rather than the Poly1305 MAC itself, that we use in HPolyC. Many Poly1305
libraries take parameters KH ||g,m and return g �HKH

(m); where subtraction is
needed we use bitwise inversion and the identity g � g′ = ¬((¬g)� g′).

The key for this function is required to have certain bits clear per the “Keys”
subsection of the specification [Ber05b]; the sample implementation [Ber05a]
and [NL15] call clearing these bits “clamping”, and following those
specifications we define Poly1305Clamp below, with ∧ representing bitwise
AND.

Poly1305Clamp(KH) = KH ∧ 128||06||126||06||126||06||126||04

2.2 Encoding function

We hash the tweak and the left side of the message, so we need an injective
encoding function. Poly1305 hash’s εA∆U guarantee holds for messages of
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differing lengths, so we only need to length-encode one of the two parameters.

[|T |]32 is a 32-bit little endian encoding of the length of the tweak in bits; we
require that 0 ≤ |T | < 232. v is the least integer ≥ 0 such that n divides
32 + |T |+ v, and we define:

encode : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

encode(T, L) = [|T |]32||T ||0v||L

2.3 Block cipher

The 128-bit block cipher E : KE × {0, 1}n → {0, 1}n is only invoked once no
matter the size of the input, so for disk sector-sized inputs its performance isn’t
critical; we have tested AES-256 [NIS01].

2.4 Stream cipher

The ChaCha12 stream cipher [Ber08a] defines a PRF which takes a 64-bit (or
96-bit [NL15]) nonce and an integer stream offset and returns a 512-bit output,
and concatenates successive outputs to define a function from key and nonce to
stream in a seekable way. Since CM is larger than the ChaCha12 nonce size, we
use the XSalsa20 construction [Ber11] initially proposed for Salsa20 [Ber08b;
Ber06] to construct XChaCha12 which extends the nonce to 192 bits (as
libsodium [Den17] does with ChaCha20), and pad with a 1 followed by zeroes.
For a given key and nonce, XChaCha12 produces lS = 273 bits of output; we
therefore require that the HPolyC plaintext length be within the bounds
n ≤ |P | ≤ lS + n.

S :KS × {0, 1}n → {0, 1}lS

SKS
(CM ) =XChaCha12KS

(CM ||1||063)

2.5 Key derivation

HPolyC takes a 256-bit key KS , and derives keys KH and KE using XChaCha12:

KH ||KE || . . . = XChaCha12KS
(1||0191)

KH = Poly1305Clamp(KH)

where |KH | = 128 and |KE | = 256. Note that the nonce used here is distinct
from all nonces used for SKS

.
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3 Design

Any secure PRP must have a pass that reads all of the plaintext, followed by a
pass that modifies it all. A secure SPRP must have the same property in the
reverse direction; a three-pass structure therefore seems natural. εA∆U
functions are the fastest options for reading the plaintext in a cryptographically
useful way, and stream ciphers are the fastest options for modifying it. εA∆Us
are typically much faster than stream ciphers, and so the hash-XOR-hash
structure emerges as the best option for performance. This structure also has the
advantage that it naturally handles blocks in non-round sizes; many large-block
modes need extra wrinkles akin to ciphertext stealing to handle the case where
the large-block size is not a multiple of the block size of the underlying
primitive.

[LR88] observes that a three-round Feistel network cannot by itself be a secure
SPRP; a simple attack with two plaintexts and one ciphertext distinguishes it. A
single block cipher call in the narrow part of the unbalanced network suffices to
frustrate this attack; the larger the block, the smaller the relative cost of this call.
Compared to HCTR [WFW05] or HCH [CS08], we sacrifice symmetry of
encryption with decryption in return for the ability to run the block cipher and
stream cipher in parallel when decrypting. For disk encryption, decryption
performance matters most: reads are more frequent than writes, and reads
generally affect user-perceived latency, while operating systems can usually
perform writes asynchronously in the background.

It’s unusual for a construction to require three distinct building blocks. More
commonly, a hash-XOR-hash mode will use a block cipher both on the narrow
side of the block, and to build the stream cipher in the XOR phase (eg using CTR
mode [LWR00]). Using XChaCha12 in place of a block cipher affords a
significant increase in performance; however it cannot easily be substituted in
the narrow side of the cipher. [Sar09; Sar11; CMS13; Cha+17] use only an εAXU
function and a stream cipher, and build a hash-XOR-hash SPRP with a
construction that uses a four-round Feistel network over the non-bulk side of the
data broken into two halves. However if we were to build this using XChaCha12,
such a construction would require four extra invocations of ChaCha per block,
which would be a much greater cost than one block cipher invocation.

The advantage bound we are able to prove is limited mainly by the 106-bit
keyspace of the Poly1305 hash. [Ber05b] specifies that 22 bits of the 128-bit key
must be zero, to facilitate fast implementation. Many modern implementations
do not make use of this, and would work equally well with keys that were not
zeroed in this way, which could improve the advantage bound by almost a factor
of 2−22. However the current advantage bound is tight enough for our purposes.

HPolyC does not consider an attack model in which derived keys are presented
as input. A trivial distinguisher would be to encrypt 0(k+1)n||KH and
0kn||1||02n−1 with the same tweak for some k; the resulting ciphertexts will
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share the same kn-bit prefix. Length-preserving encryption which is
KDM-secure in the sense of [BRS03] is impossible, since it is trivial for the
attacker to submit a query with a g-function that constructs a plaintext whose
ciphertext is all zeroes. Whether there is a notion of KDM-security that can be
applied in this domain is an open problem. Users must take care to protect the
keys from being included in the input.

For a new key, it is necessary to compute the keys for hash and the block cipher,
and schedule the block cipher key; if the hash is to be calculated in parallel, it
can also be useful to cache powers of the hash key. ChaCha12 has no key
schedule and makes no use of precomputation; XChaCha12 has a “nonce
scheduling” step that must be called once to compute subkeys and once for each
HPolyC encryption or decryption. No extra work needs to be done for differing
message or tweak lengths, unless new powers of the hash key are needed for
parallelism.

For storage encryption, tweaks will often be short and fixed-length. With a
tweak of 96 bits or fewer, only a single Z/(2130 − 5)Z multiplication (the core
operation of Poly1305) is needed before processing the message. We tolerate the
extra complexity of padding in our encode function so that plaintext/ciphertext
is aligned to the Poly1305 block size. If the tweak is long, the partial result of
hashing it can be used both for encoding and decoding; an earlier version of
HPolyC included a “disambiguation bit” in the input to the hash, but closer
analysis showed this to be unnecessary.

Poly1305 and ChaCha12 are both designed such that the most natural fast
implementations are constant-time and free from data-dependent lookups. So
long as the block cipher implementation also has these properties, HPolyC will
inherit security against this class of side-channel attacks.

Both Poly1305 and ChaCha12 are highly parallelizable. The stream cipher and
second hash stages can also be run in combination for a total of two passes over
the bulk of the data, unlike a mode such as HEH [Sar07] which requires at least
three. We put the “special” block on the right so that in typical uses the bulk
encryption has the best alignment for fast operations.

4 Performance

In Table 1 we show performance on an ARM Cortex-A7 processor in the
Snapdragon 2100 chipset running at 1.094 GHz. This processor supports the
NEON vector instruction set, but not the ARM cryptographic extensions; it is
used in many smartphones and smartwatches, especially low-end or older
devices, and is representative of the kind of platform we mean to target. Where
the figures are the same, a single row is shown for both encryption and
decryption.

We have prioritized performance on 4096-byte messages, but we also tested
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Algorithm Cycles per byte
(4096-byte sectors)

Cycles per byte
(512-byte sectors)

Poly1305 2.94 3.29
ChaCha8 5.43 5.55
ChaCha12 7.58 7.72
ChaCha20 11.9 12.0
HPolyC-XChaCha8-AES (encryption) 12.1 18.4
HPolyC-XChaCha8-AES (decryption) 12.3 19.8
HPolyC-XChaCha12-AES (encryption) 14.3 21.1
HPolyC-XChaCha12-AES (decryption) 14.5 22.5
Speck128/256-XTS 15.9 16.9
HPolyC-XChaCha20-AES (encryption) 18.8 26.5
HPolyC-XChaCha20-AES (decryption) 18.9 28.0
NOEKEON-XTS 27.0 27.8
XTEA-XTS 28.7 29.7
AES-128-XTS (encryption) 36.3 38.9
AES-128-XTS (decryption) 43.1 45.6
AES-256-XTS (encryption) 49.4 52.9
AES-256-XTS (decryption) 59.0 62.5

Table 1: Performance on ARM Cortex-A7

512-byte messages. 512-byte disk sectors were the standard until the
introduction of Advanced Format in 2010; modern large hard drives and flash
drives now use 4096-byte sectors. On Linux, 4096 bytes is the standard page
size, the standard allocation unit size for filesystems, and the granularity of
fscrypt file-based encryption, while dm-crypt full-disk encryption has recently
been updated to support this size.

For comparison we evaluate against various block ciphers in XTS mode [IEE08]:
AES [NIS01], Speck [Bea+13; Bea+15; Bea+17], NOEKEON [Dae+00], and
XTEA [NW97]. We also include the performance of ChaCha and Poly1305 by
themselves for reference. We used the fastest constant-time implementation of
each algorithm we were able to find or write for the platform; see Table 2. In
every case except aes_ti.c, the performance-critical parts were written in
assembly language using NEON instructions.

HPolyC is the only algorithm in Table 1 which is a tweakable
super-pseudorandom permutation over the entire sector. We expect any
AES-based construction to that end to be significantly slower than AES-XTS.
HPolyC has a larger per-message overhead than XTS; both require one extra
block cipher invocation per message, but HPolyC must also perform one extra
ChaCha permutation for the XChaCha construction and one extra Poly1305
block for the tweak.

We conclude that for 4096-byte sectors, HPolyC-XChaCha12-AES can perform as
well as an aggressively designed block cipher (Speck128/256) in XTS mode.
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Algorithm Source Notes
ChaCha Linux v4.17 chacha20-neon-core.S, modified to

support ChaCha8 and ChaCha12
Poly1305 OpenSSL 1.1.0h poly1305-armv4.S, modified to allow

key powers to be computed just once per
key

AES Linux v4.17 aes_ti.c, used once per message in
HPolyC

AES-XTS Linux v4.17 aes-neonbs-core.S (bit-sliced)
Speck128/256-XTS Linux v4.17 speck-neon-core.S
NOEKEON-XTS ours
XTEA-XTS ours

Table 2: Implementations

Efficient implementations of Poly1305 and ChaCha are available for many
platforms, as these algorithms are well-suited for implementation with either
general-purpose scalar instructions or with general-purpose vector instructions
such as NEON or AVX2. For a greater margin of security at a slower speed,
ChaCha20 can be used instead of ChaCha12; the same stream cipher must be
used for key derivation as for the Feistel function.

5 Security reduction

HPolyC is a tweakable, variable-input-length, secure pseudorandom
permutation: an attacker succeeds if they distinguish it from a family of
independent random permutations indexed by input length and tweak, given
access to both encryption and decryption oracles.

Given keys KS , KH , KE , HPolyC is the conjugation of an inner transform by an
outer:

HPolyC : {0, 1}∗ × {0, 1}l × {0, 1}n → {0, 1}l × {0, 1}n

HPolyCT = φ−1
KH ,T ◦ θEKE

,SKS
◦ φKH ,T

θe,s(PL, PM ) = (PL ←⊕s(e(PM )), e(PM ))

φKH ,T (L,R) = (L,R�HKH
(encode(T, L))

φ−1
KH ,T (L,R) = (L,R�HKH

(encode(T, L))

These are families of length-preserving functions parameterized by the length
|PL| = |L| = |CL| = l ∈ N; for notational convenience we leave this parameter
implicit.

We prove a security bound for HPolyC in three stages:
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• we consider distinguishers for the inner construction θ in an attack model
which forbids “inner collisions” in queries

• we prove a bound on the probability of an attacker causing an inner
collision

• we put this together to bound the success probability of a distinguisher
against HPolyC.

At each stage, we consider an attacker AE,D who makes q queries to oracles for
two length-preserving function families which take a tweak; the attacker is
always free to vary the length of input and tweak.

E ,D : {0, 1}∗ × {0, 1}l × {0, 1}n → {0, 1}l × {0, 1}n

(CL, CR)← ET (PL, PR)

(PL, PR)← DT (CL, CR)

5.1 Inner part

We consider an attacker trying to distinguish an idealized θ from a pair of
families of random length-preserving functions, but we forbid the attacker from
causing “inner collisions”: having made either of the queries:

• (CL, CM )← ET (PL, PM )

• (PL, PM )← DT (CL, CM )

both of the queries below are subsequently disallowed:

• E·(· , PM )

• D·(· , CM )

where · represents any value. However assuming CM 6= PM , this does not
disallow subsequent queries of the form D·(· , PM ) or E·(· , CM ) and it’s
important to consider such queries at each step below. We write PM/CM for the
second argument and result to match notation used for θ elsewhere. At this
stage, we consider computationally unbounded attackers; we’ll consider
resource-bounded attackers in subsection 5.3.

In what follows we use a standard concrete security hybrid argument
per [Bel+97; Sho04]: for a fixed class of attacker, distinguishing advantage obeys
the triangle inequality and forms a pseudometric space. We consider a sequence
of experiments, bound the distingushing advantage between successive
experiments, and thereby prove an advantage bound for a distinguisher
between the first and the last experiment which is the sum of the advantage
bound between each successive experiment.
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5.1-randinner: E and D are families of random functions. Since by our
constraints above every query to each is distinct, every output of the appropriate
length is equally likely. Wherever we specify that an experiment uses multiple
random functions, those functions are independent unless stated otherwise.

5.1-notweak: Ignore the tweak: let E ,D be random length-preserving function
families from {0, 1}l × {0, 1}n → {0, 1}l × {0, 1}n and let ET = E and DT = D for
all T . Since by the above constraints, for each random function the second
argument in every query is still always distinct, every output of the appropriate
length is equally likely as before, and this is indistinguishable from
5.1-randinner.

5.1-doublerf: Use a Feistel network in which the stream cipher nonce includes
both PM and CM .

• FS : {0, 1}2n → {0, 1}lS is a random function

• FE , FD : {0, 1}n → {0, 1}n are random functions

• ET (PL, PM ) = (PL ←⊕FS(PM ||FE(PM )), FE(PM ))

• DT (CL, CM ) = (CL ←⊕FS(FD(CM )||CM ), FD(CM ))

Again, the constraints above ensure that for each random function, every query
is distinct, every output of the appropriate length is equally likely as before, and
this is indistinguishable from 5.1-notweak and 5.1-randinner.

5.1-rpswitch: Substitute a random permutation for the pair of random
functions.

• FS : {0, 1}2n → {0, 1}lS is a random function as before

• π : {0, 1}n → {0, 1}n is a random permutation

• ET (PL, PM ) = (PL ←⊕FS(PM ||π(PM )), π(PM ))

• DT (CL, CM ) = (CL ←⊕FS(π
−1(CM )||CM ), π−1(CM )) ie DT = E−1

T

The constraints above rule out “pointless” queries on π, so per section C
of [HR03] the advantage in distinguishing this from 5.1-doublerf is at most
2−n

(
q
2

)
.

5.1-halfrf: Replace the two-argument FS with a single-argument version which
uses only CM .

• FS : {0, 1}n → {0, 1}lS is a random function

• π : {0, 1}n → {0, 1}n is a random permutation as before

• ET (PL, PM ) = (PL ←⊕FS(π(PM )), π(PM )) ie ET = θπ,FS

• DT (CL, CM ) = (CL ←⊕FS(CM ), π−1(CM )) ie DT = θ−1
π,FS

Since π is a permutation, for any pair of queries CM = C ′
M if and only if

PM = P ′
M . This is therefore indistinguishable from 5.1-rpswitch. This is a small
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upside to HPolyC’s asymmetry: if a symmetrical construction such as
FS(PM ⊕ π(PM )) were used here instead, it would be distinguishable with
advantage 2−n

(
q
2

)
.

Summing these distances, with these constraints the advantage distinguishing
between 5.1-randinner and 5.1-halfrf is at most 2−n

(
q
2

)
.

5.2 Collision finding

Theorem 3.3 of [Ber05b] shows that H is ε-almost-∆-universal: for any
g ∈ {0, 1}n and any two distinct message m, m′ such that |m|, |m′| ≤ kn, there
are at most 8k keys KH ∈ KH such that HKH

(m)�HKH
(m′) = g. Since

|KH | = 2106, for a random KH
$←− KH we have for any (g,m) 6= (g′,m′) that

Pr[HKH
(m)� g = HKH

(m′)� g′ ] ≤ 2−103k. We use this to bound the
probability that the attacker will cause an “inner collision”—a query to the
inner part which doesn’t meet the constraints described in subsection 5.1.

From here on, we forbid only “pointless queries”: after either of the queries
(CL, CR)← ET (PL, PR) or (PL, PR)← DT (CL, CR), both the subsequent queries
ET (PL, PR) and DT (CL, CR) would be forbidden. Again, we consider a
computationally unbounded attacker.

A hash key KH
$←− KH is chosen at random, and for each query we define

• PM = PR �HKH
(encode(T, PL))

• CM = CR �HKH
(encode(T,CL))

For query 1 ≤ i ≤ q, we’ll use superscripts to refer to the variables for that
query, eg P i

M , Ci
M . The attacker wins if there exists i < j ≤ q such that either

• j is a plaintext query (a query to E) and P i
M = P j

M or

• j is a ciphertext query (a query to D) and Ci
M = Cj

M .

We do not consider a query such that Ci
M = P j

M (or vice versa) a win.

Let k be the maximum number of blocks processed by the hash, ie the least
integer such that | encode(T i, P i

L)| = | encode(T i, Ci
L)| ≤ kn for all i.

Here we are considering not distingushing probability but success probability;
we show a bound on success probability for the first experiment, and for each
subsequent experiment we bound the increase in success probability over the
previous experiment.

5.2-keyend: Choose responses fairly at random of the appropriate length; once
all q queries are complete, choose the hash key and see if the attacker succeeded.

If query j is a plaintext query, the attacker knows the query and result for all
i < j, and can choose plaintext values to maximize the probability of success. If
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T i, P i
L = T j , P j

L then the hashes will be the same, and since pointless queries are
forbidden we have that P i

R 6= P j
R and therefore that P i

M 6= P j
M . Otherwise by the

εA∆U property, Pr
[
P i
M = P j

M

]
≤ 2−103k. The same success bound holds for a

ciphertext query. The overall probability of success is at most the sum of the
probability of success for each pair: 2−103k

(
q
2

)
.

Note that we don’t assume that probabilities are independent here; for any
events A, B we have that Pr [A ∨B ] ≤ Pr[A] + Pr [B ], with equality if A, B are
disjoint. Here distjointness means that the attacker can choose queries such that
no key causes more than one pair to succeed, making full use of the assumption
on each query that previous queries have failed.

5.2-keystart: As with 5.2-keyend, but choose the key at the start of the
experiment. This does not change the probability of success.

5.2-earlystop: As with 5.2-keystart, but end the experiment as soon as the
attacker succeeds. This doesn’t change the success probability.

5.2-randomfuncs: Use random function families for E , D. Since we forbid
pointless queries, all responses of the appropriate length are equally likely as
before, and this doesn’t change the success probability.

5.2-randinner: Use random function families for E ′, D′, and define

• ET = φ−1
KH ,T ◦ E ′T ◦ φKH ,T

• DT = φ−1
KH ,T ◦ D′

T ◦ φKH ,T

Since a random function composed with a bijective function is a random
function, this doesn’t change the success probability, which remains at most
2−103k

(
q
2

)
.

5.2-halfrf: The middle part of the sandwich is now a pair of random functions,
as per the first experiment in subsection 5.1, 5.1-randinner. Substitute this with
the last experiment, 5.1-halfrf:

• FS : {0, 1}n → {0, 1}lS is a random function

• π : {0, 1}n → {0, 1}n is a random permutation

• ET = φ−1
KH ,T ◦ θπ,FS

◦ φKH ,T

• DT = E−1
T = φ−1

KH ,T ◦ θ
−1
π,FS
◦ φKH ,T

Given any attacker for this experiment, we construct a distinguisher between
5.1-randinner and 5.1-halfrf as follows: we choose a random KH , and use our
oracle for the inner part as θ. We report 1 if the attacker succeeds in generating
an inner collision. We stop the experiment early if the attacker succeeds, and
any query in which the attacker does not succeed is one that obeys the query
bounds of subsection 5.1. Therefore, the difference in success probability
between 5.2-randinner and 5.2-halfrf for these two outer experiments can be no
more than the advantage bound of 2−n

(
q
2

)
established in subsection 5.1 for
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distinguishing between 5.1-randinner and 5.1-halfrf. The success probability for
this final experiment is therefore at most (2−103k + 2−n)

(
q
2

)
.

5.3 Composition

Finally we put these pieces together to bound the advantage of distinguishing
HPolyC from a family of random permutations. As before, the attacker can
make encryption and decryption queries but “pointless” queries are forbidden;
in addition, the attacker is constrained by a time bound t. We start with this
experiment:

5.3-permutation: For all lengths and all T , ET is a random permutation, and
DT = E−1

T . The security of a variable-length tweakable SPRP is defined by the
advantage bound in distinguishing it from this experiment.

5.3-randomfuncs: E and D are families of random functions. Since pointless
queries are forbidden, the advantage in distinguishing this from
5.3-permutation is at most 2−|P |(q

2

)
≤ 2−n

(
q
2

)
per section C of [HR03].

5.3-randinner: E ′ and D′ are families of random functions. Choose a hash key
KH

$←− KH , and conjugate the random functions by Feistel calls to the hash
function:

• ET = φ−1
KH ,T ◦ E ′T ◦ φKH ,T

• DT = φ−1
KH ,T ◦ D′

T ◦ φKH ,T

as per the step from 5.2-randomfuncs to 5.2-randinner. Since a random function
composed with a bijective function is a random function, this is
indistinguishable from 5.3-randomfuncs.

5.3-halfrf: Substitute 5.1-halfrf for 5.1-randinner.

• KH
$←− KH

• FS : {0, 1}n → {0, 1}lS is a random function

• π : {0, 1}n → {0, 1}n is a random permutation

• ET = φ−1
KH ,T ◦ θπ,FS

◦ φKH ,T

• DT = E−1
T

By subsection 5.2 the attacker’s probability of causing an inner collision is at
most (2−103k + 2−n)

(
q
2

)
. If they do not cause a collision, their queries to θ meet

the constraints set out in subsection 5.1, which bounds the distinguishing
advantage in this case to 2−n

(
q
2

)
. The advantage in distinguishing from

5.3-randinner is at most the sum of the collision probability and the no-collision
advantage, which is (2−103k + 2(2−n))

(
q
2

)
.

5.3-block: Choose a random KE
$←− KE and substitute a block cipher EKE

for π.
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• KH
$←− KH , KE

$←− KE

• FS : {0, 1}n → {0, 1}lS is a random function

• ET = φ−1
KH ,T ◦ θEKE

,FS
◦ φKH ,T

• DT = E−1
T

By the standard argument for such a substitution, the advantage for this
substitution is at most Adv±prp

EKE
(q, t′) where t is a time bound on the attacker and

t′ = t+O
(∑

i |P i|+ |T i|
)
.

5.3-xrf: Use an XChaCha12-like random function to define the stream cipher
and derive the keys KH , KE using the algorithm in subsection 2.5:

• FX : {0, 1}192 → {0, 1}lS is a random function

• KH ||KE || . . . = FX(1||0191)

• KH = Poly1305Clamp(KH)

• FS(CM ) = FX(CM ||1||063)

• ET = φ−1
KH ,T ◦ θEKE

,FS
◦ φKH ,T

• DT = E−1
T

This is indistinguishable from 5.3-block.

5.3-xchacha: Choose a random KS
$←− KS and substitute XChaCha12KS

for FX .

• KS
$←− KS

• KH ||KE || . . . = XChaCha12KS
(1||0191)

• KH = Poly1305Clamp(KH)

• FS(CM ) = XChaCha12KS
(CM ||1||063) = SKS

(CM )

• ET = φ−1
KH ,T ◦ θEKE

,SKS
◦ φKH ,T

• DT = E−1
T

This is HPolyC. Taking into account the 192-bit query to XChaCha12 to derive
KH , KE , by the standard argument the advantage for this substitution is at most
Advprf

XChaCha12KS
(192 +

∑
i |P i| − n, t′) (where the first argument measures not

queries but bits of output).

Summing these, the advantage in distinguishing HPolyC from a family of
random permutations is at most
2−103k

(
q
2

)
+3(2−n)

(
q
2

)
+Adv±prp

EKE
(q, t′) +Advprf

XChaCha12KS
(192+

∑
i |P i| − n, t′). If

the block and stream ciphers are secure, this will be dominated by the first term.
Since |PL|+ n = |P | but encode adds up to 159 bits, and padding for the last

15



block of PL another 127, kn ≤ maxi(T
i + P i + 158) and this first term is less

than 2−111q2 maxi(T
i + P i + 158).
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