Adiantum: length-preserving encryption for entry-level processors

Paul Crowley and Eric Biggers

Google LLC

October 12, 2018

Abstract

We present HBSH, a simple construction for tweakable length-preserving encryption which directly supports the fastest options for hashing and stream encryption for processors without AES or other crypto instructions, with a provable quadratic advantage bound. Our composition Adiantum uses NH, Poly1305, XChaCha12, and a single AES invocation. On an ARM Cortex-A7 processor, Adiantum decrypts 4096-byte messages at 11 cycles per byte, five times faster than AES-256-XTS, with a constant-time implementation. We also define HPolyC which is simpler and has excellent key agility at 14 cycles per byte.

This paper: https://ia.cr/2018/720
Source: https://github.com/google/adiantum
Email: \{paulcrowley,ebiggers\}@google.com

1 Introduction

Two aspects of disk encryption make it a challenge for cryptography. First, performance is critical; every extra cycle is a worse user experience, and on a mobile device a reduced battery life. Second, the ciphertext can be no larger than the plaintext: a sector-sized read or write to the filesystem must mean a sector-sized read or write to the underlying device, or performance will again suffer greatly (as well as, in the case of writes to flash memory, the life of the device). Nonce reuse is inevitable as there is nowhere to store a varying nonce, and there is no space for a MAC; thus standard constructions like AES-GCM are not an option and standard notions of semantic security are unachievable. The best that can be done under the circumstances is a "tweakable super-pseudorandom permutation": an attacker with access to both encryption and decryption functions who can choose tweak and plaintext/ciphertext freely is unable to distinguish it from a family of independent random permutations.

1.1 History

Hasty Pudding Cipher [Sch98] was a variable-input-length primitive presented to the AES contest. A key innovation was the idea of a "spice", which was later formalized as a "tweak" in [LRW02]. Another tweakable large-block primitive was Mercy [Cro01], cryptanalyzed in [Flu02].
[LR88] (see also [Mau93; Pat91]) shows how to construct a pseudorandom permutation using a three-round Feistel network of pseudorandom functions; proves that this is not a secure super-pseudorandom permutation (where the adversary has access to decryption as well as encryption) and that four rounds suffice for this aim. BEAR and LION [AB96] apply this result to an unbalanced Feistel network to build a large-block cipher from a hash function and a stream cipher (see also BEAST [Luc96a]).
[Luc96b] shows that a universal function (here called a "difference concentrator") suffices for the first round, which [NR99] extends to four-round function to build a super-pseudorandom permutation.

More recently, proposals in this space have focused on the use of block ciphers. VIL mode [BR99] is a CBC-MAC based two-pass variable-input-length construction which is a PRP but not an SPRP. CMC mode [HR03] is a true SPRP using two passes of the block cipher; EME mode [HR04] is similar but parallelizable, while EME* mode [Hal05] extends EME mode to handle blocks that are not a multiple of the block cipher size. PEP [CS06], TET [Hal07], and HEH [Sar07] have a mixing layer either side of an ECB layer.

XCB [MF07] is a block-cipher based unbalanced three-round Feistel network with an ϵ-almost-XOR-universal hash function for the first and third rounds ("hash-XOR-hash"), which uses block cipher invocations on the narrow side of the network to ensure that the network is an SPRP, rather than just a PRP; it also introduces a tweak. HCTR [WFW05; CN08], HCH [CS08], and HMC [Nan08] reduce this to a single block cipher invocation within the Feistel network. These proposals require either two AES invocations, or an AES invocation and two $\mathrm{GF}\left(2^{128}\right)$ multiplications, per 128 bits of input.

1.2 Our contribution

On the ARM architecture, the ARMv8 Cryptography Extensions include instructions that make AES and $\operatorname{GF}\left(2^{128}\right)$ multiplications much more efficient. However, smartphones designed for developing markets often use lower-end processors which don't support these extensions, and as a result there is no existing SPRP construction which performs acceptably on them.

On such platforms stream ciphers such as ChaCha12 [Ber08a] significantly outperform block ciphers in cycles per byte, especially with constant-time implementations. Similarly, absent specific processor support, hash functions
such as NH [Kro00] and Poly1305 hash [Ber05] will be much faster than a $\operatorname{GF}\left(2^{128}\right)$ polynomial hash. Since these are the operations that act on the bulk of the data in a disk-sector-sized block, a hash-XOR-hash mode of operation relying on them should achieve much improved performance on such platforms.

To this end, we present the HBSH (hash, block cipher, stream cipher, hash) construction, which generalizes over constructions such as HCTR and HCH by taking an ϵ-almost- Δ-universal hash function and a nonce-accepting stream cipher as components. Based on this construction, our main proposal is Adiantum, which uses a combination of NH and Poly1305 for the hashing, XChaCha12 for the stream cipher, and AES for the single blockcipher application. Adiantum:

- is a tweakable, variable-input-length, super-pseudorandom permutation
- has a security bound quadratic in the number of queries and linear in message length
- is highly parallelizable
- needs only three passes over the bulk of the data, or two if the XOR is combined with the second hash.

Without special cases or extra setup, Adiantum handles:

- any message and tweak lengths within the allowed range,
- varying message and tweak lengths for the same keys.

We also describe a simpler proposal, HPolyC, which sacrifices a little speed on large blocks for simplicity and greater key agility, leaving out the NH hash layer.

The proof of security differs from other hash-XOR-hash modes in three ways. First, Poly 1305 hash is not XOR universal, but universal over $\mathbb{Z} / 2^{128} \mathbb{Z}$, so for XOR of hash values we substitute addition and subtraction in the appropriate group. Second, using the XSalsa20 construction [Ber11], we can directly build a stream cipher which takes a 192-bit nonce to generate a stream, simplifying the second Feistel operation and associated proof, as well as subkey generation. Finally, Poly1305 hash has a much weaker security bound than the GF $\left(2^{128}\right)$ polynomial hash; the proof is shaped around ensuring we pay the smallest multiple of this cost we can.

1.3 Implementation and test vectors

Implementations in Python, C, and ARMv7 assembly, as well as thousands of test vectors and the IATEX source for this paper, are available from our source code repository at https://github.com/google/adiantum.

Figure 1: HBSH
procedure HBSHEncrypt (T, P)

$$
P_{L} \| P_{R} \leftarrow P
$$

$P_{M} \leftarrow P_{R} \boxplus H_{K_{H}}\left(T, P_{L}\right)$
$C_{M} \leftarrow E_{K_{E}}\left(P_{M}\right)$
$C_{L} \leftarrow P_{L} \leftarrow \oplus S_{K_{S}}\left(C_{M}\right)$
$C_{R} \leftarrow C_{M} \boxminus H_{K_{H}}\left(T, C_{L}\right)$
$C \leftarrow C_{L} \| C_{R}$
return C
end procedure
procedure $\operatorname{HBSHDECRypt}(T, C)$
$C_{L} \| C_{R} \leftarrow C$
$C_{M} \leftarrow C_{R} \boxplus H_{K_{H}}\left(T, C_{L}\right)$
$P_{L} \leftarrow C_{L} \leftarrow S_{K_{S}}\left(C_{M}\right)$
$P_{M} \leftarrow E_{K_{E}}^{-1}\left(C_{M}\right)$
$P_{R} \leftarrow P_{M} \boxminus H_{K_{H}}\left(T, P_{L}\right)$
$P \leftarrow P_{L} \| P_{R}$
return P
end procedure
Figure 2: Pseudocode for HBSH

2 Specification

The HBSH construction is shown in Figure 2. It uses a stream cipher S, an ϵ-almost- Δ-universal function H, and an n-bit block cipher E. From plaintext P of at least n bits and a tweak T, it generates a ciphertext C of the same length as P. HBSH divides the plaintext into a right-hand block of n bits and a left-hand block with the remainder of the input, and applies an unbalanced Feistel network. $P_{R}, P_{M}, C_{M}, C_{R}$ are n bits long.

2.1 Notation

Partial application is implicit; if we define $f: A \times B \rightarrow C$ and $a \in A$ then $f_{a}: B \rightarrow C$, and if f_{a}^{-1} exists then $f_{a}^{-1}\left(f_{a}(b)\right)=b$. \| represents concatenation, and λ the empty string. $|X|$ represents the length of $X \in\{0,1\}^{*}$ in bits. $Y[a ; l]$ refers to the subsequence of Y of length l starting at $a . X \leftarrow Y$ is $X \oplus Y[0 ;|X|]$. $\operatorname{pad}_{l}(X)=X \| 0^{v}$ where v is the least integer ≥ 0 such that l divides $|X|+v$. \boxplus represents addition in a group which depends on the hash function, and \boxminus subtraction.

2.2 Block cipher

The n-bit block cipher $E: \mathcal{K}_{E} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is only invoked once no matter the size of the input, so for disk-sector-sized inputs its performance isn't critical.

Adiantum and HPolyC use AES-256 [NIS01], so $n=128$.

2.3 Stream cipher

$S: \mathcal{K}_{S} \times\left(\lambda \cup\{0,1\}^{n}\right) \rightarrow\{0,1\}^{l_{S}}$ is a stream cipher which takes a key and a nonce and produces a long random stream. In normal use the nonce is an n-bit string, but for key derivation we use the empty string λ, which is distinct from all n-bit strings.

Adiantum and HPolyC use the XChaCha12 stream cipher. The ChaCha [Ber08a] stream ciphers takes a 64-bit nonce, and RFC7539 [NL15] proposes a ChaCha20 variant with a 96 -bit nonce, but we need a 128 -bit nonce. The XSalsa20 construction [Ber11] proposed for Salsa20 [Ber08b; Ber06] extends the nonce to 192 bits, and applies straightforwardly to ChaCha [Arc18; Vai17; Den17]. We then construct a function that takes a variable-length nonce of up to 191 bits by padding with a 1 followed by zeroes:
$S_{K_{S}}\left(C_{M}\right)=\mathrm{XChaCha12}{K_{S}}\left(\operatorname{pad}_{192}\left(C_{M} \| 1\right)\right)$. For a given key and nonce, XChaCha12 produces $l_{S}=2^{73}$ bits of output; we therefore require that the plaintext length be within the bounds $n \leq|P| \leq l_{S}+n$.

2.4 Hash

$H: \mathcal{K}_{H} \times\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ is an ϵ-almost- Δ-universal $(\epsilon \mathrm{A} \Delta \mathrm{U})$ function on pairs of bitstrings, yielding a group element represented as an n-bit string.
HPolyC and Adiantum differ only in their choice of hash function. HPolyC is based on Poly1305, while Adiantum uses both Poly1305 and NH; specifically little-endian $\mathrm{NH}^{T}[256,32,4]$ with a stride of 2 for fast vectorization. In both cases, the group used for \boxplus and \boxminus is $\mathbb{Z} / 2^{128} \mathbb{Z}$. The value of ϵ depends on bounds on the input lengths. We defer full details to Appendix A.

2.5 Key derivation

HBSH derives K_{H} and K_{E} from K_{S} using a zero-length nonce:
$K_{E}\left\|K_{H}\right\| \ldots=S_{K_{S}}(\lambda) .{ }^{1}$

3 Design

Any secure PRP must have a pass that reads all of the plaintext, followed by a pass that modifies it all. A secure SPRP must have the same property in the reverse direction; a three-pass structure therefore seems natural. $\epsilon \mathrm{A} \Delta \mathrm{U}$

[^0]functions are the fastest options for reading the plaintext in a cryptographically useful way, and stream ciphers are the fastest options for modifying it. $\epsilon \mathrm{A} \Delta \mathrm{Us}$ are typically much faster than stream ciphers, and so the hash-XOR-hash structure emerges as the best option for performance. This structure also has the advantage that it naturally handles blocks in non-round sizes; many large-block modes need extra wrinkles akin to ciphertext stealing to handle the case where the large-block size is not a multiple of the block size of the underlying primitive.
[LR88] observes that a three-round Feistel network cannot by itself be a secure SPRP; a simple attack with two plaintexts and one ciphertext distinguishes it. A single block cipher call in the narrow part of the unbalanced network suffices to frustrate this attack; the larger the block, the smaller the relative cost of this call. If the plaintext is exactly n bits long, the stream cipher is not used, and the construction becomes $C=E_{K_{E}}\left(P \boxplus H_{K_{H}}(T, \lambda)\right) \boxminus H_{K_{H}}(T, \lambda)$. Compared to HCTR [WFW05] or HCH [CS08], we sacrifice symmetry of encryption with decryption in return for the ability to run the block cipher and stream cipher in parallel when decrypting. For disk encryption, decryption performance matters most: reads are more frequent than writes, and reads generally affect user-perceived latency, while operating systems can usually perform writes asynchronously in the background.
It's unusual for a construction to require more than two distinct building blocks. More commonly, a hash-XOR-hash mode uses the block cipher to build a stream cipher (eg using CTR mode [LWR00]) as well as using it directly on the narrow side of the block. Using XChaCha12 in place of a block cipher affords a significant increase in performance; however it cannot easily be substituted in the narrow side of the cipher. [Sar09; Sar11; CMS13; Cha+17] use only an ϵ AXU function and a stream cipher, and build a hash-XOR-hash SPRP with a construction that uses a four-round Feistel network over the non-bulk side of the data broken into two halves. However if we were to build this using XChaCha12, such a construction would require four extra invocations of ChaCha per block, which would be a much greater cost than one block cipher invocation.

We do not consider an attack model in which derived keys are presented as input. Length-preserving encryption which is KDM-secure in the sense of [BRS03] is impossible, since it is trivial for the attacker to submit a query with a g-function that constructs a plaintext whose ciphertext is all zeroes. Whether there is a notion of KDM-security that can be applied in this domain is an open problem. Users must take care to protect the keys from being included in the input.

Since the $\epsilon \mathrm{A} \Delta \mathrm{U}$ is run twice over the bulk of the block, its speed is especially crucial for large blocks. One of the fastest such functions in software is NH, and it's also appealingly simple; however as discussed in subsection A. 4 it generally has to be combined with a second hashing stage, and for this purpose we use Poly1305. The 1 KiB block size used for NH means that we can use a simple, portable implementation of Poly1305 without a great cost in speed. We
considered using UHASH (as defined for UMAC [Kro06]) rather than our custom combination of NH and Poly1305; however, available UHASH implementations are not constant-time, and a constant-time implementation would be significantly slower.
For the 4 KiB blocks of disk encryption, the 1 KiB NH key size has only a small impact on key agility. Applications that need high key agility even on small blocks may instead use HPolyC, which uses Poly1305 directly. For this a vectorized Poly1305 implementation is important. The main cost of a new HPolyC key is a single XChaCha12 invocation to generate subkeys. ChaCha12 has no key schedule and makes no use of precomputation; XChaCha12 has a "nonce scheduling" step that must be called once to compute subkeys and once for each encryption or decryption. No extra work is required for differing message or tweak lengths for either Adiantum or HPolyC.

NH, Poly1305 and ChaCha12 are designed such that the most natural fast implementations are constant-time and free from data-dependent lookups. So long as the block cipher implementation also has these properties, Adiantum and HPolyC will inherit security against this class of side-channel attacks.

NH, Poly1305 and ChaCha12 are highly parallelizable. The stream cipher and second hash stages can also be run in combination for a total of two passes over the bulk of the data, unlike a mode such as HEH [Sar07] which requires at least three. We put the "special" block on the right so that in typical uses the bulk encryption has the best alignment for fast operations.
"Adiantum" is the genus of the maidenhair fern, which in the language of flowers (floriography) signifies sincerity and discretion. [Tou19]

4 Performance

In Table 1 we show performance on an ARM Cortex-A7 processor in the Snapdragon 400 chipset running at 1.19 GHz . This processor supports the NEON vector instruction set, but not the ARM cryptographic extensions; it is used in many smartphones and smartwatches, especially low-end devices, and is representative of the kind of platform we mean to target. Where the figures are within 2%, a single row is shown for both encryption and decryption.

We have prioritized performance on 4096-byte messages, but we also tested 512-byte messages. 512-byte disk sectors were the standard until the introduction of Advanced Format in 2010; modern large hard drives and flash drives now use 4096 -byte sectors. On Linux, 4096 bytes is the standard page size, the standard allocation unit size for filesystems, and the granularity of $f_{s c r y p t}$ file-based encryption, while dm-crypt full-disk encryption has recently been updated to support this size.

For comparison we evaluate against various block ciphers in XTS mode [IEE08]:

Algorithm	Cycles per byte (4096-byte sectors)	Cycles per byte (512-byte sectors)
NH	1.3	1.4
Poly1305	2.9	3.3
ChaCha8	5.1	5.2
ChaCha12	7.1	7.2
Adiantum-XChaCha8-AES (encryption)	8.9	16.4
Adiantum-XChaCha8-AES (decryption)	9.0	17.2
Adiantum-XChaCha12-AES (encryption)	$\mathbf{1 1 . 0}$	18.4
Adiantum-XChaCha12-AES (decryption)	11.0	19.1
ChaCha20	11.2	11.3
HPolyC-XChaCha8-AES (encryption)	11.9	19.0
HPolyC-XChaCha8-AES (decryption)	11.9	19.5
HPolyC-XChaCha12-AES (encryption)	13.9	20.7
HPolyC-XChaCha12-AES (decryption)	13.9	21.4
Adiantum-XChaCha20-AES (encryption)	15.1	22.9
Adiantum-XChaCha20-AES (decryption)	15.2	23.7
HPolyC-XChaCha20-AES (encryption)	18.0	25.4
HPolyC-XChaCha20-AES (decryption)	18.1	26.1
AES-128-XTS (encryption)	105.8	108.7
AES-128-XTS (decryption)	129.6	132.5

Table 1: Performance on ARM Cortex-A7
AES [NIS01], Speck [Bea+13; Bea+15; Bea+17], NOEKEON [Dae+00], and XTEA [NW97]. We also include the performance of ChaCha, NH, and Poly1305 by themselves for reference. We used the fastest constant-time implementation of each algorithm we were able to find or write for the platform; see Table 2. In every case except aes_ti.c, the performance-critical parts were written in assembly language using NEON instructions. Our tests complete processing of each message before starting the next, so latency of a single message in cycles is the product of message size and cpb.

Adiantum and HPolyC are the only algorithms in section 4 that are tweakable super-pseudorandom permutations over the entire sector. We expect any AES-based construction to that end to be significantly slower than AES-XTS.

We conclude that for 4096-byte sectors, Adiantum (aka
Adiantum-XChaCha12-AES) can perform significantly better than an aggressively designed block cipher (Speck128/256) in XTS mode. Efficient implementations of NH, Poly1305 and ChaCha are available for many platforms, as these algorithms are well-suited for implementation with either general-purpose scalar instructions or with general-purpose vector instructions such as NEON or AVX2.

For a greater margin of security at a slower speed, ChaCha20 can be used instead of ChaCha12; the same stream cipher must be used for key derivation as

Algorithm	Source	Notes
ChaCha	Linux v4.17	chacha20-neon-core.s, modified to support ChaCha8 and ChaCha12; also applied optimizations from cryptodev commit a1b22a5f45fe8841
Poly1305	OpenSSL 1.1.0h	poly1305-armv4.s, modified to allow key powers to be computed just once per key
AES	Linux v4.17	aes_ti.c, used once per message in HBSH
AES-XTS	Linux v4.17	aes-neonbs-core.s (bit-sliced)
Speck128/256-XTS	Linux v4.17	speck-neon-core.S
NOEKEON-XTS	ours	
XTEA-XTS	ours	

Table 2: Implementations
for the Feistel function. Similarly, one could substitute NOEKEON in place of AES-256 to make defense against timing attacks easier and improve performance. This may weaken security against a brute-force attack since NOEKEON has only a 128-bit key, though it's not obvious how to mount such an attack when the hashing and stream cipher keys are unknown. Note that this is a different axis of security than success probability; an attack that needs (say) 2^{40} work and always succeeds is a much bigger problem than than an attack that needs negligible work and succeeds with probability 2^{-40}.

5 Security reduction

HBSH is a tweakable, variable-input-length, secure pseudorandom permutation: an attacker succeeds if they distinguish it from a family of independent random permutations indexed by input length and tweak, given access to both encryption and decryption oracles.
K_{E} and K_{H} are derived from $K_{S}: K_{E}\left\|K_{H}\right\| \ldots=S_{K_{S}}(\lambda)$. HBSH is then the conjugation of an inner transform by an outer:

$$
\begin{aligned}
\mathrm{HBSH}:\{0,1\}^{*} & \times\{0,1\}^{l} \times\{0,1\}^{n} \rightarrow\{0,1\}^{l} \times\{0,1\}^{n} \\
\mathrm{HBSH}_{T} & =\phi_{K_{H}, T}^{-1} \circ \theta_{E_{K_{E}}, S_{K_{S}}} \circ \phi_{K_{H}, T} \\
\theta_{e, s}\left(P_{L}, P_{M}\right) & =\left(P_{L} \oplus s\left(e\left(P_{M}\right)\right), e\left(P_{M}\right)\right) \\
\phi_{K_{H}, T}(L, R) & =\left(L, R \boxplus H_{K_{H}}(T, L)\right) \\
\phi_{K_{H}, T}^{-1}(L, R) & =\left(L, R \boxminus H_{K_{H}}(T, L)\right)
\end{aligned}
$$

These are families of length-preserving functions parameterized by the length $\left|P_{L}\right|=|L|=\left|C_{L}\right|=l \in \mathbb{N}$; for notational convenience we leave this parameter
implicit.
We prove a security bound for HBSH in three stages:

- we consider distinguishers for the inner construction θ in an attack model which forbids "inner collisions" in queries
- we prove a bound on the probability of an attacker causing an inner collision
- we put this together to bound the success probability of a distinguisher against HBSH.
At each stage, we consider an attacker $\mathcal{A}^{\mathcal{E}, \mathcal{D}}$ who makes q queries to oracles for two length-preserving function families which take a tweak; the attacker is always free to vary the length of input and tweak.

$$
\begin{aligned}
\mathcal{E}, \mathcal{D}:\{0,1\}^{*} & \times\{0,1\}^{l} \times\{0,1\}^{n} \rightarrow\{0,1\}^{l} \times\{0,1\}^{n} \\
\left(C_{L}, C_{R}\right) & \leftarrow \mathcal{E}_{T}\left(P_{L}, P_{R}\right) \\
\left(P_{L}, P_{R}\right) & \leftarrow \mathcal{D}_{T}\left(C_{L}, C_{R}\right)
\end{aligned}
$$

5.1 Inner part

We consider an attacker trying to distinguish an idealized θ from a pair of families of random length-preserving functions, but we forbid the attacker from causing "inner collisions": having made either of the queries:

- $\left(C_{L}, C_{M}\right) \leftarrow \mathcal{E}_{T}\left(P_{L}, P_{M}\right)$
- $\left(P_{L}, P_{M}\right) \leftarrow \mathcal{D}_{T}\left(C_{L}, C_{M}\right)$
both of the queries below are subsequently disallowed:
- $\mathcal{E} .\left(\cdot, P_{M}\right)$
- $\mathcal{D} .\left(\cdot, C_{M}\right)$
where \cdot represents any value. However assuming $C_{M} \neq P_{M}$, this does not disallow subsequent queries of the form $\mathcal{D} .\left(\cdot, P_{M}\right)$ or $\mathcal{E} .\left(\cdot, C_{M}\right)$ and it's important to consider such queries at each step below. We write P_{M} / C_{M} for the second argument and result to match notation used for θ elsewhere. At this stage, we consider computationally unbounded attackers; we'll consider resource-bounded attackers in subsection 5.3.

In what follows we use a standard concrete security hybrid argument per [Bel+97; Sho04]: for a fixed class of attacker, distinguishing advantage obeys the triangle inequality and forms a pseudometric space. We consider a sequence of experiments, bound the distinguishing advantage between successive
experiments, and thereby prove an advantage bound for a distinguisher between the first and the last experiment which is the sum of the advantage bound between each successive experiment.
5.1-randinner: \mathcal{E} and \mathcal{D} are families of random functions. Since by our constraints above every query to each is distinct, every output of the appropriate length is equally likely. Wherever we specify that an experiment uses multiple random functions, those functions are independent unless stated otherwise.
5.1-notweak: Ignore the tweak: let $\overline{\mathcal{E}}, \overline{\mathcal{D}}$ be random length-preserving function families from $\{0,1\}^{l} \times\{0,1\}^{n} \rightarrow\{0,1\}^{l} \times\{0,1\}^{n}$ and let $\mathcal{E}_{T}=\overline{\mathcal{E}}$ and $\mathcal{D}_{T}=\overline{\mathcal{D}}$ for all T. Since by the above constraints, for each random function the second argument in every query is still always distinct, every output of the appropriate length is equally likely as before, and this is indistinguishable from 5.1-randinner.
5.1-doublerf: Use a Feistel network in which the stream cipher nonce includes both P_{M} and C_{M}.

- $F_{S}:\{0,1\}^{2 n} \rightarrow\{0,1\}^{l_{S}}$ is a random function
- $F_{E}, F_{D}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ are random functions
- $\mathcal{E}_{T}\left(P_{L}, P_{M}\right)=\left(P_{L} \oplus F_{S}\left(P_{M} \| F_{E}\left(P_{M}\right)\right), F_{E}\left(P_{M}\right)\right)$
- $\mathcal{D}_{T}\left(C_{L}, C_{M}\right)=\left(C_{L} \oplus F_{S}\left(F_{D}\left(C_{M}\right) \| C_{M}\right), F_{D}\left(C_{M}\right)\right)$

Again, the constraints above ensure that for each random function, every query is distinct, every output of the appropriate length is equally likely as before, and this is indistinguishable from 5.1-notweak and 5.1-randinner.
5.1-rpswitch: Substitute a random permutation for the pair of random functions.

- $F_{S}:\{0,1\}^{2 n} \rightarrow\{0,1\}^{l_{S}}$ is a random function as before
- $\pi:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a random permutation
- $\mathcal{E}_{T}\left(P_{L}, P_{M}\right)=\left(P_{L} \leftrightarrow F_{S}\left(P_{M} \| \pi\left(P_{M}\right)\right), \pi\left(P_{M}\right)\right)$
- $\mathcal{D}_{T}\left(C_{L}, C_{M}\right)=\left(C_{L} \leftrightarrow F_{S}\left(\pi^{-1}\left(C_{M}\right) \| C_{M}\right), \pi^{-1}\left(C_{M}\right)\right)$ ie $\mathcal{D}_{T}=\mathcal{E}_{T}^{-1}$

The constraints above rule out "pointless" queries on π, so per section C of [HR03] the advantage in distinguishing this from 5.1-doublerf is at most $2^{-n}\binom{q}{2}$.
5.1-halfrf: Replace the two-argument F_{S} with a single-argument version which uses only C_{M}.

- $F_{S}:\{0,1\}^{n} \rightarrow\{0,1\}^{l_{s}}$ is a random function
- $\pi:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a random permutation as before
- $\mathcal{E}_{T}\left(P_{L}, P_{M}\right)=\left(P_{L} \leftarrow F_{S}\left(\pi\left(P_{M}\right)\right), \pi\left(P_{M}\right)\right)$ ie $\mathcal{E}_{T}=\theta_{\pi, F_{S}}$
- $\mathcal{D}_{T}\left(C_{L}, C_{M}\right)=\left(C_{L} \leftrightarrow F_{S}\left(C_{M}\right), \pi^{-1}\left(C_{M}\right)\right)$ ie $\mathcal{D}_{T}=\theta_{\pi, F_{S}}^{-1}$

Since π is a permutation, for any pair of queries $C_{M}=C_{M}^{\prime}$ if and only if $P_{M}=P_{M}^{\prime}$. This is therefore indistinguishable from 5.1-rpswitch. This is a small upside to HBSH's asymmetry: if a symmetrical construction such as $F_{S}\left(P_{M} \oplus \pi\left(P_{M}\right)\right)$ were used here instead, it would be distinguishable with advantage $2^{-n}\binom{q}{2}$.

Summing these distances, with these constraints the advantage distinguishing between 5.1 -randinner and 5.1 -halfrf is at most $2^{-n}\binom{q}{2}$.

5.2 Collision finding

We now bound the probability that the attacker will cause an "inner collision"-a query to the inner part which doesn't meet the constraints described in subsection 5.1.

We assume H is ϵ-almost- Δ-universal: for any $g \in\{0,1\}^{n}$ and any two distinct messages $(T, M) \neq\left(T^{\prime}, M^{\prime}\right), \operatorname{Pr}_{K_{H} \leftrightarrow \mathcal{K}_{H}}\left[H_{K_{H}}(T, M) \boxminus H_{K_{H}}\left(T^{\prime}, M^{\prime}\right)=g\right] \leq \epsilon$. Adiantum and HPolyC differ only in the choice of H function, and we defer the description of these functions and their $\epsilon \mathrm{A} \Delta \mathrm{U}$ property to Appendix A , noting here that for both, the value of ϵ will depend on the maximum length of the message and tweak we allow the attacker to query for.

From here on, we forbid only "pointless queries": after either of the queries $\left(C_{L}, C_{R}\right) \leftarrow \mathcal{E}_{T}\left(P_{L}, P_{R}\right)$ or $\left(P_{L}, P_{R}\right) \leftarrow \mathcal{D}_{T}\left(C_{L}, C_{R}\right)$, both the subsequent queries $\mathcal{E}_{T}\left(P_{L}, P_{R}\right)$ and $\mathcal{D}_{T}\left(C_{L}, C_{R}\right)$ would be forbidden. Again, we consider a computationally unbounded attacker.

A hash key $K_{H} \leftarrow \mathcal{K}_{H}$ is chosen at random, and for each query we define

- $P_{M}=P_{R} \boxplus H_{K_{H}}\left(T, P_{L}\right)$
- $C_{M}=C_{R} \boxplus H_{K_{H}}\left(T, C_{L}\right)$

For query $1 \leq i \leq q$, we'll use superscripts to refer to the variables for that query, eg P_{M}^{i}, C_{M}^{i}. The attacker wins if there exists $i<j \leq q$ such that either

- j is a plaintext query (a query to \mathcal{E}) and $P_{M}^{i}=P_{M}^{j}$ or
- j is a ciphertext query (a query to \mathcal{D}) and $C_{M}^{i}=C_{M}^{j}$.

We do not consider a query such that $C_{M}^{i}=P_{M}^{j}$ (or vice versa) a win.
Here we are considering not distinguishing probability but success probability; we show a bound on success probability for the first experiment, and for each subsequent experiment we bound the increase in success probability over the previous experiment.
5.2-keyend: Choose responses fairly at random of the appropriate length; once all q queries are complete, choose the hash key and see if the attacker succeeded.

If query j is a plaintext query, the attacker knows the query and result for all $i<j$, and can choose plaintext values to maximize the probability of success. If $T^{i}, P_{L}^{i}=T^{j}, P_{L}^{j}$ then the hashes will be the same, and since pointless queries are forbidden we have that $P_{R}^{i} \neq P_{R}^{j}$ and therefore that $P_{M}^{i} \neq P_{M}^{j}$. Otherwise by the $\epsilon \mathrm{A} \Delta \mathrm{U}$ property, $\operatorname{Pr}\left[P_{M}^{i}=P_{M}^{j}\right] \leq \epsilon$. The same success bound holds for a ciphertext query. The overall probability of success is at most the sum of the probability of success for each pair: $\epsilon\binom{q}{2}$.
Note that we don't assume that probabilities are independent here; for any events A, B we have that $\operatorname{Pr}[A \vee B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$, with equality if A, B are disjoint.
5.2-keystart: As with 5.2-keyend, but choose the hash key at the start of the experiment. This does not change the probability of success.
5.2-earlystop: As with 5.2-keystart, but end the experiment as soon as the attacker succeeds. This doesn't change the success probability.
5.2-randomfuncs: Use random function families for \mathcal{E}, \mathcal{D}. Since we forbid pointless queries, all responses of the appropriate length are equally likely as before, and this doesn't change the success probability.
5.2-randinner: Use random function families for $\mathcal{E}^{\prime}, \mathcal{D}^{\prime}$, and define

- $\mathcal{E}_{T}=\phi_{K_{H}, T}^{-1} \circ \mathcal{E}_{T}^{\prime} \circ \phi_{K_{H}, T}$
- $\mathcal{D}_{T}=\phi_{K_{H}, T}^{-1} \circ \mathcal{D}_{T}^{\prime} \circ \phi_{K_{H}, T}$

Since a random function composed with a bijective function is a random function, this doesn't change the success probability, which remains at most $\epsilon\binom{q}{2}$.
5.2-halfrf: The middle part of the sandwich is now a pair of random functions, as per the first experiment in subsection 5.1,5.1-randinner. Substitute this with the last experiment, 5.1 -halfrf:

- $F_{S}:\{0,1\}^{n} \rightarrow\{0,1\}^{l_{s}}$ is a random function
- $\pi:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a random permutation
- $\mathcal{E}_{T}=\phi_{K_{H}, T}^{-1} \circ \theta_{\pi, F_{S}} \circ \phi_{K_{H}, T}$
- $\mathcal{D}_{T}=\phi_{K_{H}, T}^{-1} \circ \theta_{\pi, F_{S}}^{-1} \circ \phi_{K_{H}, T}=\mathcal{E}_{T}^{-1}$

Given any attacker against 5.2-halfrf, we construct a distinguisher between 5.1-randinner and 5.1-halfrf as follows: we choose a random K_{H}, and use our oracle for the inner part as θ. We report 1 if the attacker succeeds in generating an inner collision. We stop the experiment early if the attacker succeeds, and any query in which the attacker does not succeed is one that obeys the query bounds of subsection 5.1. Therefore, the difference in success probability between 5.2-randinner and 5.2-halfrf for these two outer experiments can be no more than the advantage bound of $2^{-n}\binom{q}{2}$ established in subsection 5.1 for
distinguishing between 5.1-randinner and 5.1-halfrf. The success probability for this final experiment is therefore at most $\left(\epsilon+2^{-n}\right)\binom{q}{2}$.

5.3 Composition

Finally we put these pieces together to bound the advantage of distinguishing HBSH from a family of random permutations. As before, the attacker can make encryption and decryption queries but "pointless" queries are forbidden; in addition, the attacker is constrained by a time bound t. We start with this experiment:
5.3-permutation: For all lengths and all T, \mathcal{E}_{T} is a random permutation, and $\mathcal{D}_{T}=\mathcal{E}_{T}^{-1}$. The security of a variable-length tweakable SPRP is defined by the advantage bound in distinguishing it from this experiment.
5.3-randomfuncs: \mathcal{E} and \mathcal{D} are families of random functions. Since pointless queries are forbidden, the advantage in distinguishing this from 5.3-permutation is at most $2^{-|P|}\binom{q}{2} \leq 2^{-n}\binom{q}{2}$ per section C of [HR03].
5.3-randinner: \mathcal{E}^{\prime} and \mathcal{D}^{\prime} are families of random functions. Choose a hash key $K_{H} \leftarrow \mathcal{K}_{H}$, and conjugate the random functions by Feistel calls to the hash function:

- $\mathcal{E}_{T}=\phi_{K_{H}, T}^{-1} \circ \mathcal{E}_{T}^{\prime} \circ \phi_{K_{H}, T}$
- $\mathcal{D}_{T}=\phi_{K_{H}, T}^{-1} \circ \mathcal{D}_{T}^{\prime} \circ \phi_{K_{H}, T}$
as per the step from 5.2-randomfuncs to 5.2-randinner. Since a random function composed with a bijective function is a random function, this is indistinguishable from 5.3-randomfuncs.
5.3-halfrf: Substitute 5.1-halfrf for 5.1-randinner.
- $K_{H} \leftarrow \mathcal{K}_{H}$
- $F_{S}:\{0,1\}^{n} \rightarrow\{0,1\}^{l s}$ is a random function
- $\pi:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a random permutation
- $\mathcal{E}_{T}=\phi_{K_{H}, T}^{-1} \circ \theta_{\pi, F_{S}} \circ \phi_{K_{H}, T}$
- $\mathcal{D}_{T}=\mathcal{E}_{T}^{-1}$

By subsection 5.2 the attacker's probability of causing an inner collision is at most $\left(\epsilon+2^{-n}\right)\binom{q}{2}$. If they do not cause a collision, their queries to θ meet the constraints set out in subsection 5.1, which bounds the distinguishing advantage in this case to $2^{-n}\binom{q}{2}$. The advantage in distinguishing from 5.3-randinner is at most the sum of the collision probability and the no-collision advantage, which is $\left(\epsilon+2\left(2^{-n}\right)\right)\binom{q}{2}$.
5.3-block: Choose a random $K_{E} \leftarrow{ }_{s} \mathcal{K}_{E}$ and substitute a block cipher $E_{K_{E}}$ for π.

- $K_{H} \leftarrow \mathcal{K}_{H}, K_{E} \leftarrow \mathcal{K}_{E}$
- $F_{S}:\{0,1\}^{n} \rightarrow\{0,1\}^{l s}$ is a random function
- $\mathcal{E}_{T}=\phi_{K_{H}, T}^{-1} \circ \theta_{E_{K_{E}}, F_{S}} \circ \phi_{K_{H}, T}$
- $\mathcal{D}_{T}=\mathcal{E}_{T}^{-1}$

By the standard argument for such a substitution, the advantage for this substitution is at most $\operatorname{Adv}_{E_{K_{E}}}^{ \pm \text {prp }}\left(q, t^{\prime}\right)$ where t is a time bound on the attacker and $t^{\prime}=t+\mathcal{O}\left(\sum_{i}\left(\left|P^{i}\right|+\left|T^{i}\right|\right)\right)$.
5.3-xrf: Use the random function F_{S} to derive the keys K_{E}, K_{H} :

- $F_{S}:\left(\lambda \cup\{0,1\}^{n}\right) \rightarrow\{0,1\}^{l_{s}}$ is a random function
- $K_{E}\left\|K_{H}\right\| \ldots=F_{S}(\lambda)$
- $\mathcal{E}_{T}=\phi_{K_{H}, T}^{-1} \circ \theta_{E_{K_{E}}, F_{S}} \circ \phi_{K_{H}, T}$
- $\mathcal{D}_{T}=\mathcal{E}_{T}^{-1}$

This is indistinguishable from 5.3-block.
5.3-xchacha: Choose a random $K_{S} \leftarrow{ }_{\delta} \mathcal{K}_{S}$ and substitute a stream cipher $S_{K_{S}}$ for the random function F_{S}

- $K_{S} \leftarrow{ }_{\delta} \mathcal{K}_{S}$
- $K_{E}\left\|K_{H}\right\| \ldots=S_{K_{S}}(\lambda)$
- $\mathcal{E}_{T}=\phi_{K_{H}, T}^{-1} \circ \theta_{E_{K_{E}}, S_{K_{S}}} \circ \phi_{K_{H}, T}$
- $\mathcal{D}_{T}=\mathcal{E}_{T}^{-1}$

This is HBSH. Taking into account the $\left|K_{E}\right|+\left|K_{H}\right|$-bit query to $S_{K_{S}}$ to derive K_{E}, K_{H}, by the standard argument the advantage for this substitution is at most $\operatorname{Adv}_{S_{K_{S}}}^{\text {prf }}\left(\left|K_{E}\right|+\left|K_{H}\right|+\sum_{i}\left(\left|P^{i}\right|-n\right), t^{\prime}\right)$ where the first argument measures not queries but bits of output.
Summing these, the advantage in distinguishing HBSH from a family of random permutations is at most

$$
\begin{aligned}
& \left(\epsilon+3\left(2^{-n}\right)\right)\binom{q}{2} \\
+ & \operatorname{Adv}_{E_{K_{E}}}^{ \pm \operatorname{prp}}\left(q, t^{\prime}\right) \\
+ & \operatorname{Adv}_{S_{K_{S}}}^{\operatorname{prf}}\left(\left|K_{E}\right|+\left|K_{H}\right|+\sum_{i}\left(\left|P^{i}\right|-n\right), t^{\prime}\right)
\end{aligned}
$$

References

[AB96] Ross Anderson and Eli Biham. "Two practical and provably secure block ciphers: BEAR and LION". In: Fast Software Encryption: Third International Workshop, Cambridge, UK, February 21-23 1996 Proceedings. Ed. by Dieter Gollmann. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 113-120. isbs: 978-3-540-49652-6. doi: 10.1007/3-540-60865-6_48. URL:
https://www.cl.cam.ac.uk/~rja14/Papers/bear-lion.pdf.
[Arc18] Scott Arciszewski. XChaCha: eXtended-nonce ChaCha and AEAD-XChaCha20-Poly1305. Internet-Draft draft-arciszewski-xchacha-02. IETF Secretariat, Oct. 2018. url:
http://www.ietf.org/internet-drafts/draft-arciszewski-xchacha-02.txt.
[Bea+13] Ray Beaulieu et al. The SIMON and SPECK Families of Lightweight Block Ciphers. Tech. rep. 2013. url: https://ia.cr/2013/404.
[Bea+15] Ray Beaulieu et al. SIMON and SPECK: Block Ciphers for the Internet of Things. Tech. rep. 2015. url: https://ia.cr/2015/585.
[Bea+17] Ray Beaulieu et al. Notes on the design and analysis of SIMON and SPECK. Tech. rep. 2017. url: https://ia.cr/2017/560.
[Bel+97] Mihir Bellare et al. "A Concrete Security Treatment of Symmetric Encryption". In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science. FOCS '97. Washington, DC, USA: IEEE Computer Society, 1997, pp. 394-. IsBN: 0-8186-8197-7. Doi: 10.1109/SFCS.1997.646128. URL: https://cseweb.ucsd.edu/~mihir/papers/sym-enc.html.
[Ber05] Daniel J. Bernstein. "The Poly1305-AES message-authentication code". In: Fast Software Encryption: 12th International Workshop, FSE 2005, Paris, France, February 21-23, 2005, revised selected papers. Ed. by Henri Gilbert and Helena Handschuh. Vol. 3557. Lecture Notes in Computer Science. Springer, 2005, pp. 32-49. isbn: 3-540-26541-4. URL: https://cr.yp.to/papers.html\#poly1305.
[Ber06] Daniel J. Bernstein. Salsa20/8 and Salsa20/12. 2006. url: https://cr.yp.to/snuffle/812.pdf (visited on 05/21/2018).
[Ber08a] Daniel J. Bernstein. "ChaCha, a variant of Salsa20". In: State of the Art of Stream Ciphers Workshop, SASC 2008, Lausanne, Switzerland. Jan. 2008. URL: https://cr.yp.to/papers.html\#chacha.
[Ber08b] Daniel J. Bernstein. "The Salsa20 Family of Stream Ciphers". In: New Stream Cipher Designs: The eSTREAM Finalists. Ed. by Matthew Robshaw and Olivier Billet. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 84-97. isbn: 978-3-540-68351-3. Dor: 10.1007/978-3-540-68351-3_8. URL:
https://cr.yp.to/papers.html\#salsafamily.
[Ber11] Daniel J. Bernstein. "Extending the Salsa20 nonce". In: Workshop Record of Symmetric Key Encryption Workshop 2011. 2011. urd: https://cr.yp.to/papers.html\#xsalsa.
[Bla+99] J. Black et al. "UMAC: Fast and Secure Message Authentication". In: Advances in Cryptology - CRYPTO' 99. Ed. by Michael Wiener. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 216-233. isbn: 978-3-540-48405-9. DOI: 10.1007 /3-540-48405-1_14. URL: https://fastcrypto.org/umac/umac_proc.pdf.
[BR99] Mihir Bellare and Phillip Rogaway. "On the Construction of Variable-Input-Length Ciphers". In: Fast Software Encryption: 6th International Workshop, Rome, Italy, March 24-26, 1999 Proceedings. Ed. by Lars Knudsen. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 231-244. IsBN: 978-3-540-48519-3. Doi: 10.1007/3-540-48519-8_17. URL: https://cseweb.ucsd.edu/~mihir/papers/lpe.pdf.
[BRS03] John Black, Phillip Rogaway, and Thomas Shrimpton. "Encryption-Scheme Security in the Presence of Key-Dependent Messages". In: Selected Areas in Cryptography. Ed. by Kaisa Nyberg and Howard Heys. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 62-75. IsBN: 978-3-540-36492-4. Doi:
10.1007/3-540-36492-7_6. URL:
https://cise.ufl.edu/~teshrim/kdm.pdf.
[Cha+17] Debrup Chakraborty et al. FAST: Disk Encryption and Beyond. Tech. rep. 2017. url: https://ia.cr/2017/849.
[CMS13] Debrup Chakraborty, Cuauhtemoc Mancillas-López, and Palash Sarkar. "STES: A Stream Cipher Based Low Cost Scheme for Securing Stored Data". In: IEEE Transactions on Computers 64 (2013), pp. 2691-2707. DoI: 10.1109/TC.2014.2366739.
[CN08] Debrup Chakraborty and Mridul Nandi. "An Improved Security Bound for HCTR". In: Fast Software Encryption. Ed. by Kaisa Nyberg. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 289-302. isbn: 978-3-540-71039-4. DOI: 10.1007/978-3-540-71039-4_18. URL: https://www.iacr.org/cryptodb/archive/2008/FSE/paper/ 15611.pdf.
[Cro01] Paul Crowley. "Mercy: A Fast Large Block Cipher for Disk Sector Encryption". In: Fast Software Encryption: 7th International Workshop, New York, NY, USA, April 10-12, 2000 Proceedings. Ed. by Gerhard Goos et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 49-63. IsBN: 978-3-540-44706-1. doi: 10.1007/3-540-44706-7_4. URL: http://www.ciphergoth.org/crypto/mercy/.
[CS06] Debrup Chakraborty and Palash Sarkar. "A New Mode of Encryption Providing a Tweakable Strong Pseudo-random Permutation". In: Fast Software Encryption: 13th International Workshop, Graz, Austria, March 15-17, 2006, Revised Selected Papers. Ed. by Matthew Robshaw. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2006, pp. 293-309. isbn: 978-3-540-36598-3. Doi: 10.1007/11799313_19. URL: https://ia.cr/2006/275.
[CS08] D. Chakraborty and P. Sarkar. "HCH: A New Tweakable Enciphering Scheme Using the Hash-Counter-Hash Approach". In: IEEE Transactions on Information Theory 54.4 (Apr. 2008), pp. 1683-1699. issn: 0018-9448. DoI: $10.1109 /$ TIT. 2008.917623. URL: https://ia.cr/2007/028.
[Dae+00] Joan Daemen et al. Nessie Proposal: the block cipher Noekeon. Tech. rep. 2000. url: http://gro.noekeon. org/.
[Den17] Frank Denis. XChaCha20. libsodium. 2017. url: https:
//download.libsodium.org/doc/advanced/xchacha20.html (visited on 12/25/2017).
[Flu02] Scott R. Fluhrer. "Cryptanalysis of the Mercy Block Cipher". In: Proc. Fast Software Encryption 2001, LNCS 2355. Springer-Verlag, 2002, pp. 28-36. URL: https://citeseer.ist.psu.edu/viewdoc/
[Hal05] Shai Halevi. "EME*: Extending EME to Handle Arbitrary-Length Messages with Associated Data". In: Progress in Cryptology INDOCRYPT 2004: 5th International Conference on Cryptology in India, Chennai, India, December 20-22, 2004. Proceedings. Ed. by Anne Canteaut and Kapaleeswaran Viswanathan. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 315-327. isbn: 978-3-540-30556-9. DOI: 10.1007 /978-3-540-30556-9_25. URL: https://ia.cr/2004/125.
[Hal07] Shai Halevi. "Invertible Universal Hashing and the TET Encryption Mode". In: Advances in Cryptology - CRYPTO 2007: 27th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007. Proceedings. Ed. by Alfred Menezes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 412-429. isbn:
978-3-540-74143-5. DOI: 10.1007 /978-3-540-74143-5_23. URL: https://ia.cr/2007/014.
[HR03] Shai Halevi and Phillip Rogaway. "A Tweakable Enciphering Mode". In: Advances in Cryptology - CRYPTO 2003: 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003. Proceedings. Ed. by Dan Boneh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 482-499. Isbn: 978-3-540-45146-4. DOi: 10.1007/978-3-540-45146-4_28. URL: https://ia.cr/2003/148.
[HR04] Shai Halevi and Phillip Rogaway. "A Parallelizable Enciphering Mode". In: Topics in Cryptology - CT-RSA 2004: The Cryptographers' Track at the RSA Conference 2004, San Francisco, CA, USA, February 23-27, 2004, Proceedings. Ed. by Tatsuaki Okamoto. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 292-304. isbn: 978-3-540-24660-2. DOI: $10.1007 / 978-3-540-24660-2 _23$. URL: https://ia.cr/2003/147.
[IEE08] IEEE. ANSI/IEEE 1619-2007 - IEEE Standard for Cryptographic Protection of Data on Block-Oriented Storage Devices. Tech. rep. 2008.

URL: https://standards.ieee.org/findstds/standard/16192007.html.
[Kro00] Theodore Dennis Krovetz. "Software-optimized Universal Hashing and Message Authentication". PhD thesis. 2000. IsbN: 0-599-94329-7. URL: https://fastcrypto.org/umac/.
[Kro06] T. Krovetz. UMAC: Message Authentication Code using Universal Hashing. RFC 4418. RFC Editor, Mar. 2006. url: https://www.rfc-editor.org/rfc/rfc4418.txt.
[LR88] Michael Luby and Charles Rackoff. "How to Construct Pseudorandom Permutations from Pseudorandom Functions". In: SIAM J. Comput. 17.2 (Apr. 1988), pp. 373-386. issn: 0097-5397. Dor: 10.1137/0217022. URL:
https://github.com/emintham/Papers/blob/master/Luby\% 2CRackoff-\%20How 20 to $\% 20$ Construct $\% 20$ Pseudorandom $\%$ 20Permutations\%20from\%20Pseudorandom\%20Functions.pdf.
[LRW02] Moses Liskov, Ronald L. Rivest, and David Wagner. "Tweakable Block Ciphers". In: Advances in Cryptology-CRYPTO 2002: 22nd Annual International Cryptology Conference Santa Barbara, California, USA, August 18-22, 2002 Proceedings. Ed. by Moti Yung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 31-46. isbn: 978-3-540-45708-4. DOI: $10.1007 / 3-540-45708-9 _3$. URL: https://people.csail.mit.edu/rivest/pubs/LRW02.pdf.
[Luc96a] Stefan Lucks. "BEAST: A fast block cipher for arbitrary blocksizes". In: Communications and Multimedia Security II: Proceedings of the IFIP TC6/TC11 International Conference on Communications and Multimedia Security at Essen, Germany, 23rd-24th September 1996. Ed. by Patrick Horster. Boston, MA: Springer US, 1996, pp. 144-153. IsbN: 978-0-387-35083-7. Doi: 10.1007/978-0-387-35083-7_13. URL: https://pdfs.semanticscholar.org/18fd/ ac6eddb22687450c22e1135dc2d9c38c40d1.pdf.
[Luc96b] Stefan Lucks. "Faster Luby-Rackoff ciphers". In: Fast Software Encryption. Ed. by Dieter Gollmann. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 189-203. IsBN: 978-3-540-49652-6. Doi: 10.1007/3-540-60865-6_53. URL: https://citeseerx.ist.psu. edu/viewdoc/summary?doi=10.1.1.35.7485.
[LWR00] Helger Lipmaa, David Wagner, and Phillip Rogaway. Comments to NIST concerning AES modes of operation: CTR-mode encryption. 2000. URL: https://citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.79.1353.
[Mau93] Ueli M. Maurer. "A Simplified and Generalized Treatment of Luby-Rackoff Pseudorandom Permutation Generators". In: Proceedings of the 11th Annual International Conference on Theory and Application of Cryptographic Techniques. EUROCRYPT'92. Balatonfüred, Hungary: Springer-Verlag, 1993, pp. 239-255. ISBN: 3-540-56413-6. URL: https://citeseerx.ist.psu.edu/viewdoc/ summary?doi=10.1.1.53.6117.
[MF07] David A. McGrew and Scott R. Fluhrer. "The Security of the Extended Codebook (XCB) Mode of Operation". In: Selected Areas in Cryptography: 14th International Workshop, SAC 2007, Ottawa, Canada, August 16-17, 2007, Revised Selected Papers. Ed. by Carlisle Adams, Ali Miri, and Michael Wiener. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 311-327. isbs: 978-3-540-77360-3. doi: 10.1007/978-3-540-77360-3_20. URL: https://ia.cr/2007/298.
[Nan08] Mridul Nandi. Improving upon HCTR and matching attacks for Hash-Counter-Hash approach. Tech. rep. 2008. url: https://ia.cr/2008/090.
[NIS01] NIST. Advanced Encryption Standard (AES). National Institute of Standards and Technology. FIPS Publication 197, Nov. 2001. url:
https://csrc.nist.gov/csrc/media/publications/fips/197/ final/documents/fips-197.pdf.
[NL15] Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC 7539. RFC Editor, May 2015. url:
https://www.rfc-editor.org/rfc/rfc7539.txt.
[NR99] Moni Naor and Omer Reingold. "On the Construction of Pseudorandom Permutations: Luby-Rackoff Revisited". In: Journal of Cryptology 12.1 (Jan. 1999), pp. 29-66. issn: 1432-1378. Doi: 10.1007/PL00003817. URL: https://omereingold.files.wordpress.com/2014/10/lr.pdf.
[NW97] Roger M. Needham and David J. Wheeler. Tea extensions. Tech. rep. 1997. URL: http://www.cix.co.uk/~klockstone/xtea.pdf.
[Pat91] Jacques Patarin. "Pseudorandom permutations based on the D.E.S. scheme". In: EUROCODE '90. Ed. by Gérard Cohen and Pascale Charpin. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 193-204. Isbn: 978-3-540-47546-0. doi: 10.1007/3-540-54303-1_131.
[Sar07] Palash Sarkar. "Improving Upon the TET Mode of Operation". In: Information Security and Cryptology-ICISC 2007: 10th International Conference, Seoul, Korea, November 29-30, 2007. Proceedings. Ed. by Kil-Hyun Nam and Gwangsoo Rhee. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 180-192. Isbs: 978-3-540-76788-6. Doi: 10.1007/978-3-540-76788-6_15. URL: https://ia.cr/2007/317.
[Sar09] Palash Sarkar. Tweakable Enciphering Schemes From Stream Ciphers With IV. Tech. rep. 2009. url: https://ia.cr/2009/321.
[Sar11] Palash Sarkar. "Tweakable enciphering schemes using only the encryption function of a block cipher". In: Information Processing Letters 111.19 (2011), pp. 945-955. issn: 0020-0190. doi:
10.1016/j.ipl.2011.06.014. URL: https://ia.cr/2009/216.
[Sch98] Rich Schroeppel. Hasty Pudding Cipher Specification. 1998. urd: http://richard.schroeppel.name/hpc/hpc-spec (visited on 05/21/2018).
[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Tech. rep. 2004. url: https://ia.cr/2004/332.
[Tou19] Charlotte de la Tour. Le langage des fleurs. Garnier Frères, 1819.
[Vai17] Loup Vaillant. monocypher.c. 2017. url:
https://github.com/LoupVaillant/Monocypher/blob/
c8e4340a579fcf3a785539bec36399ec04319126/src/
monocypher. c (visited on $12 / 25 / 2017$).
[WFW05] Peng Wang, Dengguo Feng, and Wenling Wu. "HCTR: A Variable-Input-Length Enciphering Mode". In: Information Security and Cryptology: First SKLOIS Conference, CISC 2005, Beijing, China, December 15-17, 2005. Proceedings. Ed. by Dengguo Feng, Dongdai Lin, and Moti Yung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 175-188. IsBN: 978-3-540-32424-9. doi: 10.1007/11599548_15. URL: https://citeseerx.ist.psu.edu/ viewdoc/summary?doi=10.1.1.470.5288.

A $\epsilon \mathbf{A} \Delta \mathbf{U}$ functions for HBSH

Adiantum and HPolyC are identical except for the choice of $\epsilon \mathrm{A} \Delta \mathrm{U}$ hash function $H_{K_{H}}(T, M)$. In each case the value of ϵ depends on bounds on $|T|$ and $|M|$. If queries to HBSH are bounded to a maximum tweak and plaintext/ciphertext length of $|T| \leq l_{T},|P|,|C| \leq l_{P}$ then the bounds on queries to H will be $|T| \leq l_{T},|M| \leq l_{M}=l_{P}-n$.

A. 1 Notation

int : $\{0,1\}^{*} \rightarrow \mathbb{Z}$ is the standard little-endian map (ie $\operatorname{int}(\lambda)=0$, $\operatorname{int}(0 \| X)=2 \operatorname{int}(X), \operatorname{int}(1 \| X)=1+2 \operatorname{int}(X))$, and $X=\operatorname{fromint}_{l}(y)$ is the unique l-bit sequence such that $\operatorname{int}(X) \equiv y\left(\bmod 2^{l}\right)$.

For both Adiantum and HPolyC, the output group for which the $\epsilon \mathrm{A} \Delta \mathrm{U}$ property applies is $\mathbb{Z} / 2^{128} \mathbb{Z}$, so we define

$$
\begin{aligned}
& x \boxplus y=\operatorname{fromint}_{128}(\operatorname{int}(x)+\operatorname{int}(y)) \\
& x \boxminus y=\operatorname{fromint}_{128}(\operatorname{int}(x)-\operatorname{int}(y))
\end{aligned}
$$

A. 2 Poly1305

[Ber05] uses polynomials over the finite field $\mathbb{Z} /\left(2^{130}-5\right) \mathbb{Z}$ to define a function we call Poly $1305:\{0,1\}^{128} \times\{0,1\}^{*} \rightarrow\{0,1\}^{128}$, and proves in Theorem 3.3 that it is $\epsilon \mathrm{A} \Delta \mathrm{U}$: for any $g \in\{0,1\}^{128}$ and any distinct messages M, M^{\prime} where $|M|,\left|M^{\prime}\right| \leq l, \operatorname{Pr}_{K_{H} \leftrightarrow\{0,1\} 128}\left[H_{K_{H}}\left(M^{\prime}\right) \boxminus H_{K_{H}}(M)=g\right] \leq 2^{-103}\lceil l / 128\rceil$. In that paper this function is used to build a MAC based on AES, while in RFC

7539 [NL15] it's used to build an AEAD mode based on ChaCha20. Note that 22 bits of the 128 -bit key are zeroed before use, so every key is equivalent to 2^{22} keys and the effective keyspace is 2^{106}.
Many Poly1305 libraries take parameters $K_{H} \| g, M$ and return $g \boxplus \operatorname{Poly} 1305_{K_{H}}(M)$; where subtraction is needed we suggest using bitwise inversion and the identity $g \boxminus g^{\prime}=\neg\left((\neg g) \boxplus g^{\prime}\right)$.

A. 3 HPolyC hashing

HPolyC was the HBSH construction that the first revision of this paper presented, which used Poly1305 together with an injective encoding function. It is simple, fast, and key agile. We require that $|T|<2^{32}$ and define

$$
H_{K_{H}}(T, M)=\operatorname{Poly} 1305_{K_{H}}\left(\operatorname{pad}_{128}\left(\operatorname{int}_{32}(|T|)| | T\right)| | M\right)
$$

Thus if for all queries $|T| \leq l_{T}$ and $|M| \leq l_{M}$ then:

$$
\epsilon=2^{-103}\left(\left\lceil\left(32+l_{T}\right) / 128\right\rceil+\left\lceil l_{M} / 128\right\rceil\right)
$$

A. 4 NH

We define a word size $w=32$, a stride $s=2$, a number of rounds $r=4$ and an input size $u=8192$ such that $2 s w$ divides u.
NH [Bla+99; Kro00; Kro06] is then defined over message lengths divisible by $2 s w=128$ and takes a $u+2 s w(r-1)=8576$-bit key, processing the message in u-bit chunks to produce an output of size $2 r w\lceil|M| / u\rceil$; we call this ratio $2 r w / u=32$ the "compression ratio".

```
procedure \(\mathrm{NH}(K, M)\)
    \(h \leftarrow \lambda\)
    while \(M \neq \lambda\) do
        \(l \leftarrow \min (|M|, u)\)
        for \(i \leftarrow 0,2 s w, \ldots, 2 s w(r-1)\) do
            \(p \leftarrow 0\)
            for \(j \leftarrow 0,2 s w, \ldots, l-2 s w\) do
                for \(k \leftarrow 0, w, \ldots, w(s-1)\) do
                    \(a_{0} \leftarrow \operatorname{int}(K[i+j+k ; w])\)
                \(a_{1} \leftarrow \operatorname{int}(K[i+j+k+s w ; w])\)
                    \(b_{0} \leftarrow \operatorname{int}(M[j+k ; w])\)
                    \(b_{1} \leftarrow \operatorname{int}(M[j+k+s w ; w])\)
                    \(p \leftarrow p+\left(\left(a_{0}+b_{0}\right) \bmod 2^{w}\right)\left(\left(a_{1}+b_{1}\right) \bmod 2^{w}\right)\)
            end for
        end for
        \(h \leftarrow h\left|\mid \operatorname{fromint}_{2 w}(p)\right.\)
```

$$
\begin{aligned}
& \qquad \text { end for } \\
& M \leftarrow M[l ;|M|-l] \\
& \text { end while } \\
& \text { return } h \\
& \text { end procedure }
\end{aligned}
$$

This is the largest w where common vector instruction sets (NEON on ARM; SSE2 and AVX2 on x86) natively support the needed $\{0,1\}^{w} \times\{0,1\}^{w} \rightarrow\{0,1\}^{2 w}$ multiply operation. The stride $s=2$ improves vectorization on ARM32 NEON; larger strides were slower or no faster on every platform we tested on. We choose $r=4$ since we want $\epsilon=2^{-r w} \leq 2^{-103}$ to match HPolyC, and a large u for a high compression ratio which reduces the work for the next hashing stage.

NH's speed comes with several inconvenient properties:

- [Kro00] shows that this function is ϵ-almost- Δ-universal, but this holds only over equal-length inputs
- $\epsilon=2^{-r w}$, but the smallest nonempty output is $2 r w$ bits, twice as large as necessary for this ϵ value
- The output size varies with the input size.

A second hashing stage is used to handle these issues.

A. 5 Adiantum hashing

For Adiantum we use NH followed by Poly1305 to hash the message. To avoid encoding and padding issues, we hash the message length and tweak with a separate Poly 1305 key. In all this takes a $128+128+8576=8832$-bit key.

$$
\begin{aligned}
& \text { procedure } \mathrm{H}\left(K_{H}, T, M\right) \\
& \quad K_{T} \leftarrow K_{H}[0 ; 128] \\
& K_{M} \leftarrow K_{H}[128 ; 128] \\
& K_{N} \leftarrow K_{H}[256 ; 8576] \\
& H_{T} \leftarrow \operatorname{Poly} 1305_{K_{T}}\left(\operatorname{fromint}_{128}(|M|) \| T\right) \\
& H_{M} \leftarrow \operatorname{Poly} 1305_{K_{M}}\left(\operatorname{NH}_{K_{N}}\left(\operatorname{pad}_{128}(M)\right)\right) \\
& \text { return } H_{T} \boxplus H_{M} \\
& \text { end procedure }
\end{aligned}
$$

For distinct pairs $(T, M) \neq\left(T^{\prime}, M^{\prime}\right)$, we have that if $|M| \neq\left|M^{\prime}\right|$ or $T \neq T^{\prime}$, then the $128+|T|$-bit input to Poly1305 with key K_{T} will differ. Otherwise $|M|=\left|M^{\prime}\right|$ but $M \neq M^{\prime}$; per [Kro00] the probability NH will compress these to the same value is at most 2^{-128}. If they do not collide, the $256\lceil|M| / 8192\rceil$-bit input to Poly 1305 with key K_{M} will differ. Since the sum of two $\epsilon \mathrm{A} \Delta \mathrm{U}$ functions with independent keys is also $\epsilon \mathrm{A} \Delta \mathrm{U}$, if for all queries $|T| \leq l_{T}$ and $|M| \leq l_{M}$ then this composition is $\epsilon \mathrm{A} \Delta \mathrm{U}$, with:

$$
\begin{aligned}
\epsilon & =2^{-128}+2^{-103}\left\lceil\max \left(128+l_{T}, 256\left\lceil l_{M} / 8192\right\rceil\right) / 128\right\rceil \\
& =2^{-128}+2^{-103} \max \left(1+\left\lceil l_{T} / 128\right\rceil, 2\left\lceil l_{M} / 8192\right\rceil\right)
\end{aligned}
$$

If we limit our Adiantum attacker to at most q queries each of which uses a tweak of length at at most l_{T} and a plaintext/ciphertext of length at most l_{P}, then per the result of subsection 5.3 their distinguishing advantage is therefore at most:

$$
\begin{aligned}
& \left(2^{-126}+2^{-103} \max \left(1+\left\lceil l_{T} / 128\right\rceil, 2\left\lceil\left(l_{P}-128\right) / 8192\right\rceil\right)\right)\binom{q}{2} \\
+ & \operatorname{Adv}_{E_{K_{E}}}^{ \pm \operatorname{prp}}\left(q, t^{\prime}\right) \\
+ & \operatorname{Adv}_{S_{K_{S}}}^{\mathrm{prf}}\left(8832+q\left(l_{P}-128\right), t^{\prime}\right)
\end{aligned}
$$

Assuming that the block and stream ciphers are strong, this is dominated by the term for internal collisions: $2^{-103} \max \left(1+\left\lceil l_{T} / 128\right\rceil, 2\left\lceil\left(l_{P}-128\right) / 8192\right\rceil\right)\binom{q}{2}$. How many messages can be safely encrypted with the mode will therefore vary with message and tweak length. For example, if Adiantum is used to encrypt 4 KiB sectors with 32 byte tweaks, then Poly $1305_{K_{M}}$ processes 8 blocks, and the above is approximately $2^{-101} q^{2}$. With these message and tweak lengths we would recommend encrypting no more than 2^{55} bytes with a single key. Generating the ciphertext to mount such an attack could be very time-consuming, and this is work that can only be done on the device that has the key; extrapolating from performance figures in section 4:

Bytes of ciphertext	Advantage	Time on device (single-threaded)
512 GiB	2^{-47}	80 minutes
2^{55}	2^{-15}	11 years
2^{59}	0.8%	175 years

Version: ff0a3df5ddd3f3ea3d73ab007dad2c953d28fb0a

[^0]: ${ }^{1}$ In the original version of this paper, HPolyC used $K_{H}\left\|K_{E}\right\| \ldots=S_{K_{S}}(\lambda)$.

