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Abstract

This work proposes the first fine-grained configurable cell array specif-
ically tailored for cryptographic implementations. The proposed architec-
ture can be added to future FPGAs as an application-specific configurable
building block, or to an ASIC as an embedded FPGA (eFPGA). The goal
is to map cryptographic ciphers on combinatorial cells that are more effi-
cient than general purpose lookup tables in terms of silicon area, config-
uration memory and combinatorial delay. As a first step in this research
direction, we focus on block ciphers and we derive the most suitable cell
structure for mapping state-of-the-art algorithms. We develop the related
automated design flow, exploiting the synthesis capabilities of Synopsys
Design Compiler and the routing capabilities of Xilinx ISE. Our solution
is the first cryptography-oriented fine-grained architecture that can be
configured using common hardware description languages. We evaluate
the performance of our solution by mapping a number of well-known block
ciphers onto our new cells. The obtained results show that our proposed
architecture drastically outperforms commercial FPGAs in terms of sili-
con area and configuration memory resources, while obtaining a similar
throughput.

1 Introduction

The capability of changing, at least to some extent, or updating the function-
ality of an electronic system after its deployment has always been desirable. In
a typical system composed of hardware and software, such capability is usually
guaranteed by software routines. Software, however, despite being extremely
flexible, is much slower than its hardware counterpart (sometimes too slow to
meet the requirements of the target application). FPGAs have been proposed as
a solution to achieve a performance comparable to a dedicated hardware imple-
mentation while maintaining the possibility of being updated and reconfigured
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in the field.
The first FPGAs consisted of only lookup tables (LUTs) which were pro-

grammed by means of a configuration file, generated according to the function
to be implemented. Their use, at that time, was mainly for prototyping and
testing designs before ASIC fabrication. Soon, however, FPGAs also started
to be used as general purpose hardware platforms, since they were extremely
suitable for addressing the need of low-volume markets, reducing non-recurring
engineering costs and allowing the user to access the latest technological nodes
at a fraction of the ASIC cost. With the growth of the use of FPGAs as general
purpose platforms came the need of having less generic reconfigurable hardware
blocks, still capable to implement any design, but including specialized blocks
for implementing recurring and relevant functions. As a result, FPGAs started
on the one hand to include fast carry chains for arithmetic operations, Digital
Signal Processing (DSP) blocks for signal processing and even more complex
blocks, such as whole processors. On the other hand, the basic configurable
cells evolved to become more and more efficient. This trend of improving the
basic cells while extending the capacity of the specialized cells is certainly going
to continue in future.

Cryptography is one of the main applications that are often deployed on
FPGAs. Cryptographic primitives, such as block ciphers, public-key algorithms,
and hash functions have been successfully implemented as stand-alone designs or
as part of a complete system-on-chip. Further, dedicated circuits implementing
physical(ly) unclonable functions (PUFs) or bitstream decryption blocks have
been added to FPGAs by the vendors. Finally, with the advent of side-channel
attacks, FPGAs are an attractive platform for implementing protected designs
as well as for benchmarking the resistance against power analysis attacks.

However, surprisingly, despite such a massive use of reconfigurable hard-
ware for cryptography, to date, the possibility of designing a cryptography-
friendly, fine-grained reconfigurable cell has rarely been considered and cer-
tainly not explored yet in the right depth. In this paper, envisioning that the
next application-specific block included on FPGAs will be devoted to cryptogra-
phy, we design a new reconfigurable cell, conceived specifically for implementing
cryptographic algorithms in an efficient way. As a first step in this direction [1],
we consider block ciphers, covering all the possible constructions (SPN, ARX,
Feistel and stream-cipher-like ciphers), and side-channel protecting threshold
implementations of block ciphers [2]. We expect that authenticated encryp-
tion algorithms, hash functions and public-key algorithms based on binary field
arithmetic can be easily mapped onto our new architecture as well, since they
leverage atomic operations that are similar to the ones we consider for the con-
struction of our configurable cell. We do not optimize our cell for public-key
algorithms based on prime fields, since these can already be efficiently imple-
mented using the DSP blocks in FPGAs [3,4].

Our new cell, which we call cFA, is a configurable full-adder-based cell with
six inputs, two outputs, and four configuration bits for programming the func-
tionality. Our cell can be configured to implement up to eight basic arithmetic
logic functions. cFA cells are combined with flipflops into cFA slices that have
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a structure that is similar to Xilinx slices, allowing us to use the routing capa-
bilities of Xilinx tools.

We also propose a tool chain that maps any design, written in a hardware
description language (HDL), to our novel fine-grained reconfigurable architec-
ture. Our approach is oriented towards a maximal re-use of existing synthesis
and place & route tools, such that we can benefit from the decades of experience
of large EDA companies. In particular, our tool flow builds on Synopsys Design
Compiler for synthesis and on Xilinx ISE for placement and routing.

We believe that cryptography is the next application that will be considered
by FPGA designers, observing what happened in processor designs, where, after
the basic instructions, designers added in sequence instructions for arithmetic
operations (which have been already added to FPGAs), instructions for signal
processing (which have been already added to FPGAs), and instructions for
cryptography (which are not added to FPGAs yet). Our solution can be added
as a small, crypto-friendly reconfigurable hardware block to be included as a
new type of cell, together with other reconfigurable cells, in the next generation
of FPGAs. Another application scenario uses our cFA cell in a small embed-
ded FPGA (eFPGA) to be added to an ASIC design or a microprocessor (the
interest in this direction is proven by the recent acquisition of Altera by Intel).
Finally, reconfigurability will guarantee so-called cryptographic agility, allowing
cryptographic algorithms to be upgraded or updated depending on newly de-
tected vulnerabilities or changing standards. This is a fundamental requirement
for current and future secure IoT devices and cyber-physical systems.

2 Related Work

The most closely related work in the direction of configurable cell architec-
tures supporting cryptography is presented by Elbirt and Paar in [5]. They
propose the Cryptographic (Optimized for Block Ciphers) Reconfigurable Ar-
chitecture (COBRA), which is a coarse-grained architecture, consisting of con-
figurable cells with 32-bit buses. The cells contain bit-wise XOR, AND and
OR gates, adders/subtracters, 4-to-4-bit and 8-to-8-bit LUTs, modulo multipli-
ers/squarers, shift/rotate blocks and GF(28) constant multipliers. The tool flow
consists of an assembler that operates via a Very Long Instruction Word (VLIW)
format. Therefore, mapping a cryptographic algorithm onto the COBRA archi-
tecture requires a COBRA-specific assembly-code program. The performance
of RC6, Rijndael and Serpent is evaluated on the COBRA architecture, imple-
mented in the ADK TSMC 0.35 micron library. The results show that COBRA
outperforms microprocessor architectures, but leads to an inferior performance
in terms of throughput and area compared to an FPGA architecture fabricated
in a comparable technology.

Also related is the work of Taylor and Goldstein [6], proposing PipeRench,
a coarse-grained reconfigurable architecture which consists of parallel stripes of
processing elements with pipelining registers in between. The architecture is
implemented in a 0.25 micron technology. The authors evaluate a number of
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block ciphers, namely Crypton, IDEA, RC6, Twofish and various AES candi-
dates. Speedups of a factor 2 to 12 are reported over conventional processors. A
comparison to FPGA architectures is not carried out. The PipeRench architec-
ture can be configured using a dedicated compiler that takes a specific dataflow
intermediate language (DIL) as an input [7].

In comparison to COBRA and PipeRench, our cFA-based architecture is
extremely fine-grained. It supports any hardware design described in an HDL,
significantly extending the design space and thus allowing to achieve better re-
sults in terms of area, throughput and latency. Furthermore, the design flow of
our cell leverages state-of-the-art design commodities (Synopsys Design Com-
piler for synthesis and Xilinx ISE for placement and routing), with the twofold
advantage of not requiring novel training for designers and of benefiting from
the decades of experience of EDA companies and, automatically, from future
improvements of the used underlying tools. To the best of our knowledge, our
proposal is the first reconfigurable architecture tailored to cryptography which
uses a fine-grained approach and the first one which exploits standard HDL
languages and EDA commodities for the design flow.

Our work also touches the research area of designing embedded application-
specific processors for cryptography. One example is the SPARX processor,
proposed by Bache et al., that efficiently implements threshold-protected ARX-
based ciphers [8]. The architecture we propose, allows to efficiently realize
threshold implementations of many more types of block cipher structures, thus
covering a much wider range of algorithms compared to the SPARX processor. A
flexible cryptographic engine for FPGAs has also been presented by Gulcan et al.
[9]. It is based on the block cipher Simon and is capable of performing pseudo-
random number generation, hashing and variable-key symmetric encryption.
Their architecture, however, offers capabilities for implementing only one cipher.
Our architecture instead allows to implement all the recently proposed block
ciphers, and it is quite likely that it will also be suitable for future block cipher
designs, since the trend followed in the last decades suggests that, also in the
future, cryptographic algorithms will be based on the operations and structures
well supported by our architecture.

3 The New Configurable Cell Architecture

3.1 Comparison Basis

There are two ways for comparing in a fair way our new configurable cell ar-
chitecture with existing FPGAs. The most realistic approach would require the
same silicon technology used by commercial FPGAs for implementing an op-
timized custom design of our configurable cell and for comparing the obtained
results with the performance of commercial FPGAs. However, accessing ex-
actly the same technology is very difficult. The second approach consists in
re-implementing the configurable cells of recent FPGAs with an easily accessi-
ble library, and using the same technology for implementing our configurable
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Table 1: Post-synthesis area and combinatorial delay of the re-implemented config-
urable cells in recent Xilinx FPGAs, synthesized using the NanGate 45nm standard
cell library.

SLICEL SLICEM

Area (µm2)
443.2 1438.3

Combinatorial delay (ns)
LUT-in to slice-out 0.55 0.64
LUT-in to Cout 0.48 0.57
Cin to Cout 0.07 0.07
Cin to S 0.07 0.07

cell. We followed the second approach. As a reference, we selected the Xilinx
cells described in [10], which we implemented as depicted in Fig. 1. We synthe-
sized the architectures of Fig. 1 using Synopsys Design Compiler and the open
source NanGate 45nm standard cell library [11] to allow full reproducibility of
our results. Table 1 reports the pre-layout area and combinatorial delay of the
slices.

(a) LUT inside SLICEL (b) LUT inside SLICEM (c) simplified SLI-
CEL/SLICEM
structure

Figure 1: Architectures showing the way we re-implemented the LUTs and slices in
recent Xilinx FPGAs.

3.2 From Cryptography to a New Configurable Cell

Our main design goal is to improve the efficiency of cryptographic algorithms
while supporting cryptographic agility. Ideally, our configurable cell should be
smaller and faster than a LUT and should use less configuration bits. Further,
our cell should lead to an architecture that allows an efficient mapping of existing
and future cryptographic algorithms.
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We focus, at first instance, on block ciphers that have been proposed in the
past decades. An overview of existing (lightweight) block ciphers is given in [12].
Most of these block ciphers can be categorized into SPN-based ciphers (SPN
= substitution-permutation network), ARX-based ciphers (ARX = addition,
rotation and XOR), stream-cipher-like ciphers and Feistel-based ciphers. The
most frequently occurring operations in these ciphers are

1. bit permutation,

2. rotation,

3. addition modulo 2n (in ARX-based ciphers),

4. addition modulo 2, i.e. exclusive OR (XOR),

5. substitution box (S-box).

In hardware, the first two operations are implemented through routing, while
the last three operations require combinatorial logic.

Further, it is important to take into account side-channel attacks [13], in
which secret information is extracted through side-channels, such as the power
consumption, the electromagnetic radiation or the timing behavior of the chip.
Threshold implementations, as proposed by Nikova et al. in [2], provide a prov-
ably secure way to protect a circuit against Differential Power Analysis (DPA)
attacks of a specific order. In a threshold implementation, the linear parts
of a cipher are repeated according to the number of shares. The non-linear
parts (mostly realized as substitution boxes) are preferably expressed in terms
of quadratic functions with pipelining registers in between, in order to minimize
the number of required shares. A large number of examples are given by Bil-
gin et al. in [14]. Taking threshold implementations into account, we add the
following (sixth) item to the list of commonly used operations in block ciphers:

6. quadratic functions (for the construction of threshold implementations of
substitution boxes).

Analyzing the logic we need for the implementation of the listed operations,
we notice that operations 4-6 can be expressed in terms of quadratic functions.
As an example, we give the algebraic normal form (ANF) of the function f :
GF (2)4 → GF (2):

f(x, y, z, w) = a0 ⊕ a1x⊕ a2y ⊕ a3z ⊕ a4w
⊕ a12xy ⊕ a13xz ⊕ a14xw ⊕ a23yz ⊕ a24yw ⊕ a34zw, (1)

in which the inputs x, y, z and w as well as the coefficients ai and aij are
elements of GF (2), taking two possible values 0, 1. Both the additions (denoted
by ⊕) and the multiplications in the equation are in GF (2), i.e. the addition is
an XOR and the multiplication is a logical AND.

Operation 3 in the list is the addition of two n-bit numbers, in which the
(n+ 1)-th bit of the sum is omitted. The straightforward way of implementing
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an addition, is through a ripple-carry adder, consisting of a sequence of full
adders. A full adder has three inputs (A, B and Cin) and computes a sum
output (S) and a carry output (Cout) as follows:

S = A⊕B ⊕ Cin,

Cout = AB + (A+B)Cin.
(2)

Here, the + operator denotes a logical OR.
We can reduce our search for an adequate configurable cell to the search of

a cell that efficiently implements Eqs. (1) and (2). However, the carry compu-
tation in Eq. (1) can be rewritten as a quadratic function in ANF as follows:

Cout = AB ⊕BCin ⊕ACin (3)

which clearly shows that all terms in Eq. (1) can be generated by the sum and
carry circuits in full adders, except for the constant term a0. Therefore, we
decide to use the full adder as a basis for our new configurable cell.

3.3 Optimization of the New Configurable Cell

3.3.1 First Version of the Cell:

The first version of our configurable full-adder-based cell (cFA) is depicted in
Fig. 2a. It consists of a sum circuit, computing the sum (S) of the first three
input bits (A, B and C), and a carry circuit, computing the carry-out (Cout) of
the other three input bits (D, E and F ). For each input bit, two configuration
bits (f0,X and f1,X , with X = A,B,C,D,E, F ) determine whether the bit is
fed through or absorbed, such that a 0 or a 1 is applied to the circuit. This
results in a cell with 12 configuration bits. The sum circuit can be configured
to 33 functions:

S = (f1,A + f0,AA)⊕ (f1,B + f0,BB)⊕ (f1,C + f0,CC). (4)

The carry-out circuit can as well be configured to 33 functions:

Cout = (f1,D + f0,DD)(f1,E + f0,EE)

⊕(f1,D + f0,DD)(f1,F + f0,FF )

⊕(f1,E + f0,EE)(f1,F + f0,FF ).

(5)

Post-synthesis results for the first version of the cFA cell are given in the second
column of Table 2.

3.3.2 Second Version of the Cell:

In the second version of the cell we further optimize the area, the combinatorial
delay and the number of configuration bits. Reducing the number of configura-
tion bits can be achieved by observing that, in the first version of the cell, several
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(a) First version of the cell (b) Second version of the cell

Figure 2: Details of the proposed full-adder-based configurable cells (cFAs).

Table 2: Post-synthesis area and combinatorial delay of the two versions of our con-
figurable cell (cFA), synthesized using the NanGate 45nm standard cell library.

version 1 version 2

Area (µm2)
S circuit 6.384 4.788
Cout circuit 5.054 3.990
total 11.438 8.778

Combinatorial delay (ns)
input to S 0.18 0.16
input to Cout 0.16 0.10

combinations of the configuration bits lead to the same function, because the
cell is symmetric in both the sum and the carry-out computation. Therefore,
it is not necessary to foresee both an AND and an OR gate for each input bit.
Providing one input with an AND gate and another one with an OR gate for
both the sum and the carry-out circuits leads to a reduction of the number of
configuration bits as well as a reduction in the logical delay and the area of the
cell. This way, the number of configuration bits are reduced from 12 to 4. This
results in the second version of our cFA, which is shown in Fig. 2b. The eight
functions that can be obtained, are given in Table 3.
Although the second version of the cFA has a slightly more limited function-
ality than the first, the post-synthesis results, given in Table 2, show a clear
advantage of the second version over the first in terms of area and combinato-
rial delay. Therefore, we choose the second cFA (depicted in Fig. 2b) in our
further experiments.
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Table 3: Functionality of the second version of the cFA cell, determined by the
configuration bits, in which X, XY , X + Y and X ⊕ Y denote an inversion, a logical
AND, a logical OR and an XOR, respectively.

f0,A f1,C S
0 0 0⊕B ⊕ C
0 1 0⊕B ⊕ 1 = B
1 0 A⊕B ⊕ C
1 1 A⊕B ⊕ 1 = A⊕B

f0,D f1,F Cout

0 0 0⊕ 0⊕ EF = EF
0 1 0⊕ 0⊕ E = E
1 0 DE ⊕DF ⊕ EF = DE + (D + E)F
1 1 DE ⊕D ⊕ E = D + E

Figure 3: Architecture of a cFA slice, combining four cFA cells and four flipflops.

3.4 Merging cFA Cells into cFA Slices

In order to be able to re-use the routing capabilities of commercial FPGA de-
sign tools, we integrate cFA cells into a cFA slice in combination with flipflops
and multiplexers. The resulting slice is shown in Fig. 3. Each cFA cell has
an accompanying flipflop, that can be connected to either the S or the Cout

output of the cFA cell. The combination of the multiplexer with the flipflop is
implemented as a scan-flipflop (used as a regular internally used standard cell).
A cFA slice has four configuration bits for each cFA and one configuration bit
for each multiplexer, which results in 24 configuration bits per slice. The area
and combinatorial delays of the slice are given in Table 4.

4 The Tailored Tool Flow

The tool flow that we developed to automatically map HDL designs onto an
array of cFAs, is depicted in Fig. 4 and consists of three steps:
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Table 4: Post-synthesis area and combinatorial delay of the cFA slice, synthesized
using the NanGate 45nm standard cell library.

cFA slice

Area (µm2)
44.688

Combinatorial delay (ns)
cFA-in to mux-out 0.23
cFA-in to direct-out 0.10

1. modify the HDL description such that all S-boxes are a composition of
quadratic functions,

2. synthesize the resulting HDL design into a netlist that consists of standard
cells from a tailored library,

3. translate the netlist into a netlist consisting of cFA slices and generate
configuration data.

Figure 4: The proposed tool flow, tailored to the cFA architecture.

4.1 Step 1

Since the cFA cell is especially suitable for the implementation of quadratic func-
tions, the first step in the proposed tool flow translates all S-boxes into HDL
descriptions consisting of quadratic functions. This also holds for threshold
implementations, in which pipelining registers are needed in between quadratic
functions. Pipelining registers bound the propagation of glitches that could con-
tain exploitable side-channel information and, consequently, reduce the number
of required shares, as explained in [2]. In ARX-based designs, no pre-processing
is needed, since the non-linear operation, i.e. the addition modulo 2n, will au-
tomatically be translated into a ripple-carry adder (consisting of full adders) in
Step 2. For threshold implementations of the modulo 2n adder, we follow the
approach of Schneider et al. in [15]. Note that our goal is not to automatically
translate non-protected designs into threshold-protected designs; Step 1 only
concentrates on the S-box in the cipher. It is the task of the designer to provide
an HDL description of the hardware design.
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4.2 Step 2

In the synthesis step, we want to map the design onto an array of cFAs using
Synopsys Design Compiler. To do this, we start from the functions listed in
Table 3. Of these eight functions, six are directly implemented by standard
cells in the NanGate 45nm library. Only the A⊕B⊕C and DE+ (D+E)F =
DE ⊕DF ⊕ EF functions are not present in the NanGate 45 nm library. We
therefore add two gates with the given functionality to the library, and we
remove all gates that are not in Table 3, except for the full adder gate and the
D-flipflop with asynchronous set and reset. Since the eight functions in the table
as well as the full adder will eventually be mapped onto the cFA gates, they will
all have the same area and delay in the resulting configurable array. Therefore,
we modify the area and the delay of these gates in the library according to the
values given in Table 2 for the second version of the cFA.

4.3 Step 3

The outcome of Step 2 is a netlist containing the eight gates in Table 3, full
adder gates and D-flipflops with asynchronous set and reset. Since the four
functions in the top part of Table 3 are independent of the four functions in the
bottom part of the table, it is straightforward to merge any top-part function
with any bottom-part function into one cFA. However, inside a cFA slice (as
shown in Fig. 3), only one of the cFA outputs can be connected to a flipflop,
which is taken into account during the merge. The 24 configuration bits for each
cFA slice are combined into a configuration bitstream. This way, the output of
Step 3 is a configurable netlist, i.e. a netlist consisting of only cFA slices, and a
configuration bitstream.

4.4 From a netlist of cFA slices to a placed and routed
design

Since our cFA slice has an interface that is similar to the interface of a Xilinx
slice, the Xilinx tools for placement and routing can be re-used to transform our
netlist of cFA slices into a placed and routed design. Therefore, we can evaluate
the performance of our cFA architecture by mapping a hardware design to both
our cFA architecture and a Xilinx FPGA, comparing the resources and delay of
the slices only, excluding routing.

5 Experimental setup and results

In this section, we validate the performance of our new configurable cell and the
suitability of the related design flow by mapping several block ciphers on our
architecture. In Sect. 5.1, we introduce the ciphers and architectures that are
mapped onto the proposed cFA array using the tailored tool flow. In Sect. 5.2
we present and discuss the obtained results.
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Table 5: Properties of the evaluated block ciphers.

cipher structure size remarks
key block

AES-128 SPN 128 128 NIST standard
PRESENT-80 SPN 80 64 ISO/IEC standard
SPECK-128/128 ARX 128 128 proposed by the NSA
NOEKEON SPN 128 128 direct-key mode
KTANTAN-64 stream 80 64 direct-key mode

Table 6: Operations in the evaluated block ciphers, in which (N)LFSR denotes a
(non-)linear feedback shift register.

cipher operations
non-linear linear

AES-128 S-box: inversion in GF (28) LFSR, XOR
PRESENT-80 4-bit S-box algebraic degree 3 upcounter, XOR
SPECK-128/128 addition modulo 264 upcounter, XOR
NOEKEON 4-bit S-box algebraic degree 3 LFSR, XOR
KTANTAN-64 NLFSR LFSR, XOR

5.1 Evaluated Ciphers and Architectures

We select several representative block ciphers from [12] and consider architec-
tures for encryption only. The ciphers are selected with the goal of maximizing
the coverage of different block cipher structures, operations and types of key
schedules. Tables 5 and 6 summarize our selection. AES [16], PRESENT [17]
and NOEKEON [18] are SPN-based, with 8-bit and 4-bit S-boxes. SPECK [19]
is ARX-based and KTANTAN [20] is based on a stream-cipher-like structure.
KTANTAN is the direct-key version of KATAN, and for NOEKEON we also
opted for the direct-key mode. We did not include a Feistel cipher, because the
Feistel structure is implemented through routing, while the operations in Feistel
ciphers are similar to those in other ciphers.
The ciphers in direct-key mode, NOEKEON and KTANTAN, are implemented
as shown in Fig. 5. The state register in NOEKEON is 128 bits wide and a
final linear function is in place to compute the ciphertext. The 128-bit key is
applied to the non-linear state update function and to the final linear function.
In KTANTAN, the 64-bit state register is updated as a non-linear feedback
shift register (NLFSR). There is no final linear function, i.e. the ciphertext is
taken directly from the output of the non-linear state update function. Both
ciphers use an 8-bit linear feedback shift register (LFSR), that is initialized with
a specific non-zero value at the start of the encryption, to generate a round
constant for the state update function. The plaintext is loaded into the state
register through a multiplexer at the start of the encryption.

The architecture of the other three ciphers is given in Fig. 6. These ciphers
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use a key schedule that computes a round key for each non-linear state update.
The key schedule itself is also a non-linear function. In PRESENT, the state
register and the key register are 64 and 80 bits wide, respectively. In AES
and SPECK, both the state register and the key register are 128 bits wide.
A multiplexer is used to load the plaintext and the key into the state register
and the key register, respectively, at the start of the encryption. Either an
8-bit upcounter, generating a round number for the PRESENT and SPECK
key schedule, or an 8-bit LFSR, generating a round constant for the AES key
schedule, are included for the state update function. For the AES S-box, we use
Canright’s representation, described in [21].

Figure 5: Architecture of NOEKEON and KTANTAN.

Figure 6: Architecture of AES, PRESENT and SPECK.

Further, we design threshold implementations with 3 input shares and 3
output shares. They are based on similar architectures, with a shared state
update function and a shared key schedule. For the shared AES S-box, we
follow the approach described in [22]. For the other ciphers, the non-linear
functions are decomposed into quadratic functions with pipelining registers in
between. For the addition modulo 264 in SPECK, we use a pipelined structure
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of shared full adders, as proposed in [15]. All the designs are described in VHDL
and synthesized using the tool flow described in Sect. 4. These experiments use
only parallel round-based architectures (as shown in Figs. 5 and 6), but our tool
flow supports any design implemented in an HDL.

5.2 Results

We compare the mapping of the considered block ciphers onto our new config-
urable array with the mapping onto a state-of-the-art commercial FPGA. We
use the ISE Design Suite 14.7 of Xilinx to synthesize the block cipher designs for
a Virtex 7 FPGA. Since our design flow allows to use the routing capabilities of
Xilinx tools, it is possible to directly compare the results of our cell architecture
with the results obtained for Virtex 7.

We report on the area based on the number of SLICEL and SLICEM, and
on the critical path based on the logical depth in terms of LUTs and fast adders.
The estimates of both the area and the combinatorial delay of the Xilinx cells
(re-implemented by us according to Fig. 1) are given in Table 1, based on the
NanGate 45nm standard cell library. For the configurable array consisting of
our cFA slices, we use the tool flow described in Sect. 4. The two experiments
are run with the same VHDL code. Table 7 shows the results for the evaluated
ciphers. In the table, TI stands for threshold implementation and PRESENT-
80-D3 and PRESENT-80-D2 denote versions of PRESENT in which the S-box is
described as a function of degree 3 and decomposed into two quadratic functions,
respectively.

As mentioned, the reported results do not take routing into account. Since
our cell has 6 inputs and 2 outputs, just like Xilinx LUTs, and since we merge
our cells into slices with an interface comparable to the interface of Xilinx slices,
routing strategies similar to those in commercial Xilinx FPGAs can be applied
to our configurable cell array. Additionally, the main advantage of our cell is the
reduced area and number of configuration bits, with a comparable combinatorial
delay. These figures of merit can be inferred after synthesis.

When carrying out the direct comparison with Xilinx based only on config-
urable cells, without taking into account routing, our cFA-based architecture is
much more efficient in terms of silicon area, both for the logic and for the configu-
ration memory. When we look at the critical path, our architecture outperforms
Xilinx FPGAs for some designs, but gives worse results for others. Especially
for ARX-based ciphers, the dedicated fast carry chains in commercial FPGAs
result in a lower critical path. The obtained results are anyway encouraging.
In fact, since the resource occupation of our solution is significantly less than
the one of commercial FPGAs, we could consider to add dedicated carry chains
in our cFA slice as well to further increase the performance of our architecture,
while still maintaining an extremely limited area occupation.

Although our experiment evaluates five block ciphers and their threshold
implementations, we expect that other block ciphers will achieve similar results,
confirming the performance of our solution. This expectation is justified by
the fact that other block ciphers use structures and operations similar to the
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ones examined. The same expectation holds for authenticated encryption algo-
rithms, hash functions and public-key algorithms based on binary field arith-
metic. Public-key algorithms based on prime fields can probably not be mapped
onto our cFA architecture in an efficient way, but they already benefit from the
DSP slices available in commercial FPGAs.

As a final note, we want to stress on the fairness of the comparison between
our cell and the reference Xilinx one. In particular, we know that our re-
implementation of the Xilinx configurable cells features a higher area and larger
combinatorial delay than the real-life results. However, also our newly proposed
cFA cell would be much smaller and faster if it would have been implemented in a
commercial technology using an optimized custom design instead of a collection
of standard cells. Furthermore, our results do not include routing yet. We
expect that routing would introduce a larger overhead in our solution than
in a Xilinx FPGA. In fact, for each of the evaluated ciphers, the number of
cFA cells is larger than the number of SLICEL/SLICEM cells. Nevertheless, we
believe that, given the drastic area reduction in both cell logic and configuration
memory, the additional routing overhead would still lead to favorable results for
our cFA architecture.

6 Conclusions

We proposed a new configurable cell that is particularly suitable for the imple-
mentation of block ciphers. The cell is a full adder with configurable inputs
(cFA). A cFA-tailored tool flow was developed in order to map a HDL descrip-
tion on the configurable array. The cFA and the tool flow have been successfully
validated using block ciphers with different structures and operations as well as
threshold implementations of the ciphers. The results show that our solution
outperforms the LUT-based configurable cells of commercial FPGAs in terms
of area and SRAM configuration resources, while offering comparable critical
paths. We believe that the positive results of our solution will also be con-
firmed in other block ciphers, since they make use of the same basic operations
that our cFA cell was optimized for. The same holds for authenticated encryp-
tion algorithms, hash functions and public-key algorithms based on binary field
arithmetic. This makes our cell an appealing solution for being integrated in
future FPGAs as an application-specific configurable cell array or as an embed-
ded FPGA (eFPGA) in ASICs. Our solution efficiently enables cryptographic
agility, a fundamental property for secure IoT devices and cyber-physical sys-
tems.
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