
Supersingular Isogeny Diffie–Hellman
Authenticated Key Exchange

Atsushi FUJIOKA1, Katsuyuki TAKASHIMA2,
Shintaro TERADA3, and Kazuki YONEYAMA3

1 Kanagawa University
2 Mitsubishi Electric
3 Ibaraki University

Abstract. We propose two authenticated key exchange protocols from super-
singular isogenies. Our protocols are the first post-quantum one-round Diffie–
Hellman type authenticated key exchange ones in the following points: one is
secure under the quantum random oracle model and the other resists against max-
imum exposure where a non-trivial combination of secret keys is revealed. The
security of the former and the latter is proven under an isogeny version of the de-
cisional and gap Diffie–Hellman assumption, respectively. We also propose a new
approach for invalidating the Galbraith-Vercauteren attack for the gap problem.

Keywords: one-round authenticated key exchange, supersingular isogeny decisional
Diffie–Hellman assumption, supersingular isogeny gap Diffie–Hellman assumption, CK
model, CK+ model, quantum adversary, random oracle model.

1 Introduction

All conventional cryptosystems from discrete logarithm and/or factorization intractabil-
ity assumptions would be totally broken by the emergence of quantum computers, i.e.,
by Shor’s algorithm [30]. In the post-quantum era, it is important to confirm whether
classical cryptographic techniques are still secure against quantum adversaries. Re-
cently, strong security notions and constructions against quantum computers have been
intensively studied (e.g.,[5, 35, 34, 12, 1]). Moreover, National Institute of Standards
and Technology has initiated a process to standardize quantum-resistant public-key
cryptographic algorithms [27], so, to study quantum-resistant cryptosystems is a hot
research area.

Key establishing over insecure channels is one of important cryptographic tech-
niques. Recent researches on this have lead to authenticated key exchange (AKE). We
then propose two quantum-resistant AKE schemes from a (relatively) new mathemati-
cal foundation, i.e., supersingular isogenies.

Supersingular Isogeny Diffie–Hellman (SIDH). Computing a sequence of isogenies
of elliptic curves is a new cryptographic basic operation in some applications. For ex-
ample, a cryptographic hash function from expander graphs, proposed in [8], consists

of computing an isogeny sequence, which is based on the hardness of constructing an
isogeny between two (randomly chosen) isogenous curves. Diffie–Hellman (DH) type
key exchange protocols based on isogenies are given by Rostovtsev and Stolbunov [29]
and De Feo et al. [13], which were considered as candidates for post-quantum public-
key primitives.

Childs et al. [9] considered the isogeny computation problem for ordinary elliptic
curves, and obtained a subexponential-time quantum algorithm. In contrast, the algo-
rithm cannot be applied to the supersingular case (because of non-commutativity of
endomorphism rings). Therefore, both applications above, i.e., hash function and key
exchange, need to employ supersingular elliptic curves (and the graph consisting of
them). In particular, supersingular isogeny Diffie–Hellman (SIDH) protocol proposed
by De Feo et al. [13] has short public keys compared to other post-quantum candidates,
and has been intensively studied for serving as a drop-in replacement to existing Internet
protocols [11, 2, 10].

Very recently, Petit [28] proposed a mathematical attack for the security of SIDH,
but also showed that the security is not affected by the attack if we use appropriate
public parameters as is given in Sect. 3.

Authenticated Key Exchange. In an AKE protocol, two parties have own static public
keys, exchange ephemeral public keys, and compute a session key based on the public
keys and the related secret keys. AKE protocols achieve that honest parties can establish
a session key, and any malicious party cannot guess the session key. The latter condition
is formulated in an indistinguishability game.

Regarding to this security game, several models have been invented. The first formal
security model was given by Bellare and Rogaway [3], and it is called the BR model.
As the BR model handles an AKE protocol in a symmetric key setting, a new model in
a public key setting followed the BR model. The model was proposed by Blake-Wilson,
Johnson, and Menezes [4].

However, these models do not capture leakage of the session state. Then, the Canetti–
Krawczyk (CK) model was proposed [7]. After the proposal, several security require-
ments have been indicated such as key compromise impersonation (KCI), weak perfect
forward secrecy (wPFS), and maximal exposure attacks (MEX) (refer to [24] for KCI,
wPFS, and MEX). Recently, the CK model has been integrated with KCI, wPFS, and
MEX to the CK+ model [16].

Recently, several SIDH AKE protocols have been proposed [18, 26, 25].
Galbraith proposed a one-round4 protocol (SIDH TS2) in [18] based on the Unified

Model DH protocol by Jeong, Katz, and Lee [21]. The protocol is CK-secure under a
decisional problem in classical random oracle model (ROM).

Longa shows a two-round SIDH AKE protocol (AKE-SIDH-SIKE) which is CK+-
secure from a KEM scheme [26]. However, it is based on a generic construction known
already.

LeGrow, Jao, and Azarderakhsh defined a security model in which the adversary is
allowed to make quantum queries, and proposed a quantum CK secure (qCK secure)

4 Galbraith claims that the protocol is one-round however the description shows that it is two-
round as the responder generates the response after receiving the first message [18].

2

protocol [25]. The protocol, we call it LJA, is secure in the quantum random oracle
model (QROM) however it is two-round.

It is worth to note here that all the existing SIDH AKE protocols shown above only
achieve two-pass protocols except the SIDH TS2 protocol. In a one-round protocol, two
parties can simultaneously exchange their ephemeral keys, while in a two-pass one, a
party has to wait for the ephemeral key from the other party. Moreover, a one-round
AKE protocol has several advantages of efficiency, e.g., each party can pre-compute
ephemeral keys in advance.

Supersingular Isogeny Gap DH Problem. Traditional DH AKE protocols have been
constructed from several forms of DH assumptions, i.e., computational, decisional and
gap DH assumptions, for attaining various trade-offs between security and efficiency.
Recently, Galbraith and Vercauteren (GV) proposed an attack on the supersingular
isogeny computational DH (SI-CDH) problem with access to decision degree oracle
[20], which determines whether two supersingular curves are isogenous of some spe-
cific degree or not. While the attack can be extended to some form of SI version of gap
DH (SI-GDH) problem, still, there exist possible approaches to formulate a secure form
of SI-GDH problem (and assumption) for which the above attack is ineffective. There-
fore, it is important to find and establish such secure SI-GDH assumptions to rescue (a
wide range of) SIDH-based AKE schemes on the gap assumptions.

Contributions. We propose two one-round authenticated key exchange protocols from
supersingular isogenies: one is a protocol secure in the CK model with a quantum ad-
versary under a supersingular isogeny version of the DDH assumption, and the other
is a protocol secure in the CK+ model with a classical adversary under a supersingular
isogeny version of the gap DH assumption.

We call the latter assumption degree-insensitive (di-)SI-GDH assumption in which
an adversary has access to a degree-insensitive SI-DDH oracle, and then cannot em-
ploy the GV-type attack for which degree distinction is crucial. We expect that the new
assumption is of independent interest. Then, both protocols have several advantages
of efficiency and wide applicability in practical situations as they retain a simple one-
round Diffie–Hellman structure, and are realized in exchanging a single elliptic curve
with an auxiliary smooth-order torsion basis, which can be efficiently compressed [2,
10]. We give a comparison table of the existing SIDH AKE protocols and our proposals
in Table 1.

Table 1. Comparison of SIDH AKE protocols.

assumption model action proof
SIDH TS2 [18] SI-CDH CK one-round 4 ROM

AKE-SIDH-SIKE [26] SI-DDH CK+ two-round ROM
LJA [25] SI-DDH qCK two-round QROM

SIDH UM SI-DDH CK one-round QROM
biclique SIDH di-SI-GDH CK+ one-round ROM

3

Notations. When A is a set, y ∈R A denotes that y is uniformly selected from A. When
A is a random variable, y ←R A denotes that y is randomly selected from A according
to its distribution. We denote the finite field of order q by Fq.

2 Security Models: CK-security and CK+-security

This section outlines the CK and CK+ security definitions for two-pass PKI-based au-
thenticated key exchange protocols. Note that, in our post-quantum CK and CK+ mod-
els, all parties are modeled by probabilistic polynomial-time (ppt) Turing machines
while the adversary is modeled by a polynomial time quantum machine. For further CK
and CK+ details and explanations, see [24, 15]. It is worth to note here that the pro-
posed protocols are one-round and thus, it is enough to describe the security model as
for two-pass AKE because a two-pass model includes a one-round one.

We denote a party’s identity Â, B̂, Ĉ, A party honestly generates its own keys,
static public and static secret ones, and the static public key is linked with the party’s
identity in some systems like PKI.5 The maximum numbers of parties and sessions are
polynomially bound in the security parameter.

We outline our models for a two-pass AKE protocol where parties, Â and B̂, ex-
change ephemeral public keys, X and Y , i.e., Â sends X to B̂ and B̂ sends Y to Â, and
thereafter derive a session key. The session key depends on the exchanged ephemeral
keys, identifiers of the parties, the static keys, and the protocol instance that is used.

Keys. The public key owned by each party and its secret key are called static public
key and static secret key, respectively. The one-time use session information exchanged
in the protocol is called ephemeral public key as the information is generated from a
temporary secret called ephemeral secret key.

Session. An invocation of a protocol is called a session. A session is activated via an
incoming message of the forms (Π , I, Â, B̂) or (Π , R, Â, B̂, Y), where Π is a protocol
identifier. If Â is activated with (Π , I, Â, B̂), then Â is the session initiator, otherwise it
is the session responder. We say that Â is the owner (resp. peer) of session sid if the
third (resp. fourth) coordinate of sid is Â. After activation, session initiator Â creates
ephemeral public key X and a new session identified with (Π , I, Â, B̂, X, ⊥), and sends
(Π , R, B̂, Â, X) to the session responder B̂, who then prepares ephemeral public key
Y and a new session identified with (Π , R, B̂, Â, X, Y), computes the session key and
sends (Π , I, Â, B̂, X, Y) to Â. Upon receiving (Π , I, Â, B̂, X, Y), Â updates the session
identifier (Π , I, Â, B̂, X, ⊥) with (Π , I, Â, B̂, X, Y) and computes a session key for that
session. We say that a session is completed if its owner computes a session key.

If Â is the initiator of a session, the session is identified via sid = (Π , I, Â, B̂, X, ⊥)
or sid = (Π , I, Â, B̂, X, Y). If B̂ is the responder of a session, the session is identified
via sid = (Π , R, B̂, Â, X, Y). The matching session of the session identified via (Π , I,
Â, B̂, X, Y) is a session with identifier (Π , R, B̂, Â, X, Y) and vice versa.

5 Static public keys must be known to both parties in advance. They can be obtained by ex-
changing them before starting the protocol or by receiving them from a certificate authority.
This situation is common for all PKI-based AKE protocols.

4

Adversary. Adversary M is modeled as a probabilistic Turing machine that con-
trols all communications including session activation. Activation is performed via a
Send(message) query. The message has one of the following forms: (Π , I, Â, B̂), (Π , R,
Â, B̂, X), or (Π , I, Â, B̂, X, Y). Each party submits its responses to adversaryM, who
decides the global delivery order.

The secret information of a party is not accessible to adversaryM; however, leakage
of secret information is obtained via the following adversary queries.

– SessionKeyReveal(sid): M obtains the session key for the session with session
identifier sid, provided that the session is completed.

– SessionStateReveal(sid):M obtains the session state of the owner of session sid
if the session is not completed (the session key is not established yet). The session
state includes all ephemeral secret keys and intermediate computation results ex-
cept for immediately erased information but does not include the static secret key.

– Corrupt(Â): The query allowsM to obtain all information of party Â. If a party, Â, is
corrupted by a Corrupt(Â) query issued byM, then we call the party, Â, dishonest.
If not, we call the party honest.

Definition 2.1 (Freshness). Let sid∗ be the session identifier of a completed session,
owned by an honest party Â with an honest peer B̂. If the matching session exists, then
let sid∗ be the session identifier of the matching session of sid∗. Define sid∗ to be
fresh if none of the following conditions hold:

– M issues SessionKeyReveal(sid∗), or SessionKeyReveal(sid∗) if sid∗ exists.
– sid∗ exists andM makes either of the following queries
• SessionStateReveal(sid∗) or SessionStateReveal(sid∗),

– sid∗ does not exist andM makes the following query
• SessionStateReveal(sid∗).

Security Experiment. Initially, adversaryM is given a set of honest parties, for whom
M selects identifiers. Then the adversary makes any sequence of the queries described
above. During the experiment, M makes a special query Test(sid∗), where sid∗ is
the session identifier of a fresh session, and is given with equal probability either the
session key held by sid∗ or a random key; the query does not terminate the experiment.
The experiment continues until M makes a guess whether the key is random or not.
The adversary wins the game if the test session sid∗ is still fresh and if the guess byM
was correct. The advantage of quantum adversaryM in the AKE experiment with AKE
protocol Π is defined as

AdvAKE
Π (M) = Pr[M wins] − 1

2
.

Definition 2.2 (Post-quantum CK security). We say that an AKE protocol Π is post-
quantum secure in the CK model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible prob-
ability, they both compute the same session key.

5

2. For any polynomial-time quantum adversaryM, AdvAKE
Π (M) is negligible in secu-

rity parameter λ for the test session sid∗,
(a) if sid∗ does not exist, or
(b) if sid∗ exists, and the static secret key of the owner of sid∗ and the static secret

key of the owner of sid∗ are given toM.

Definition 2.3 (Post-quantum CK+ security). We say that an AKE protocolΠ is post-
quantum secure in the CK+ model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible prob-
ability, they both compute the same session key.

2. For any polynomial-time quantum adversaryM, AdvAKE
Π (M) is negligible in secu-

rity parameter λ for the test session sid∗,
(a) if sid∗ does not exist, and the static secret key of the owner of sid∗ is given to
M,

(b) if sid∗ does not exist, and the ephemeral secret key of the owner of sid∗ is
given toM,

(c) if sid∗ exists, and the static secret key of the owner of sid∗ and the static secret
key of the owner of sid∗ are given toM,

(d) if sid∗ exists, and the ephemeral secret key of the owner of sid∗ and the
ephemeral secret key of the owner of sid∗ are given toM,

(e) if sid∗ exists, and the static secret key of the owner of sid∗ and the ephemeral
secret key of the owner of sid∗ are given toM, or

(f) if sid∗ exists, and the ephemeral secret key of the owner of sid∗ and the static
secret key of the owner of sid∗ are given toM.

The static and ephemeral public keys of our schemes include supersingular curves
and points on them. We can test supersingularity of curves in polynomial time, e.g., [32].
We make an important remark: While Krawczyk mentions a strong adversary model
where a corrupted party can choose to register any public key of its choice at any point
during the protocol as a variant of the CK(+) model in [24], we do not allow the re-
registration of static public key (similar to the CK(+) model), and the initial public key
is honestly generated and has been used until the end of the protocol. It is because that
an active attack which Galbraith et al. [19] proposed for revealing static keys might be
considered as an effective attack when we adopt the above flexible key re-registration.

3 Supersingular Isogeny Diffie–Hellman (SIDH)

We describe the SIDH protocol, whose implementation is investigated in detail in [11]
and subsequently in [2, 23, 22, 6, 10]. The security is studied in [19, 28]. Refer to Ap-
pendix C for notations on elliptic curves.

3.1 Original (Concrete) Description of SIDH

For two small primes ℓA, ℓB (e.g., ℓA = 2, ℓB = 3), we choose a large prime p such
that p ± 1 = f · ℓeA

A ℓ
eB
B for a small f and ℓeA

A ≈ ℓeB
B = 2Θ(λ), where λ is a security

6

parameter. Then, we also choose a random supersingular elliptic curve E over Fp2 with
E(Fp2) ≃ (Z/(p ± 1)Z)2 ⊇ (Z/ℓeA

A Z)2 ⊕ (Z/ℓeB
B Z)2. We use isogenies, ϕA and ϕB, with

kernels of orders, ℓeA
A and ℓeB

B , respectively, and the following commutative diagram for
the SIDH key exchange between Alice and Bob.

E
ϕA−−−−−−→ EA = E/⟨RA⟩

ϕB

y yϕAB
EB = E/⟨RB⟩

ϕBA−−−−−−→ E/⟨RA,RB⟩

for ker ϕA = ⟨RA⟩ ⊂ E[ℓeA
A],

ker ϕB = ⟨RB⟩ ⊂ E[ℓeB
B],

ker ϕBA = ⟨ϕB(RA)⟩ ⊂ EB[ℓ
eA
A],

ker ϕAB = ⟨ϕA(RB)⟩ ⊂ EA[ℓ
eB
B].

Below we first choose generators PA,QA, PB,QB such that E[ℓeA
A] = ⟨PA,QA⟩, E[ℓeB

B] =
⟨PB,QB⟩ and then set the random curve E/Fp2 and the above generators as public pa-
rameters, i.e., we define the generator as pksidh = (g = (E; PA, QA, PB, QB), e =
(ℓA, ℓB, eA, eB)) ←R Gensidh(1λ). Secret-key spaces for Alice and Bob are given as
SKA := {(mA, nA) ∈

(
Z/ℓeA

A Z
)2 | not both divisible by ℓA} and SKB := {(mB, nB) ∈(

Z/ℓeB
B Z

)2 | not both divisible by ℓB}, respectively. DH-type key exchange is given
as below (Fig. 1). Here, since ⟨mA ϕB(PA) + nA ϕB(QA)⟩ = ⟨ϕB(RA)⟩ = ker ϕBA and

Alice
(mA, nA) ∈R SKA :

Alice′s secret key,

RA = mAPA + nAQA,

ϕA : E → EA = E/⟨RA⟩,
RBA = mA ϕB(PA) + nA ϕB(QA),

KAlice = j(EB/⟨RBA⟩).

EA , ϕA(PB), ϕA(QB)

−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−

EB , ϕB(PA), ϕB(QA)

Bob
(mB, nB) ∈R SKB :

Bob′s secret key,

RB = mBPB + nBQB,

ϕB : E → EB = E/⟨RB⟩,
RAB = mB ϕA(PB) + nB ϕA(QB),

KBob = j(EA/⟨RAB⟩).
Fig. 1. Outline of SIDH Protocol (Original Description).

⟨mB ϕA(PB) + nB ϕA(QB)⟩ = ⟨ϕA(RB)⟩ = ker ϕAB hold, we have the equality of the j-
invariants KAlice = j(EB/ ker ϕBA) = j(E/⟨RA,RB⟩) = j(EA/ ker ϕAB) = KBob, and
K = KAlice = KBob is a shared key. Alice’s output includes ϕA(PB) and ϕA(QB) as well
as EA, and the security is based on the hardness of isogeny problem with the auxiliary
inputs.

3.2 Crypto-friendly Description of SIDH

We prepare an alternative crypto-friendly description of SIDH for a simple presentation
of our proposed AKE.

We set

g := (E; PA, QA, PB, QB), a := (mA, nA), and b := (mB, nB).

7

Let the sets of supersingular curves and those with an auxiliary torsion basis be

SSECp := { supersingular elliptic curve E over Fp2

with E(Fp2) ≃ (Z/(p ± 1)Z)2 ⊇ (Z/ℓeA
A Z)2 ⊕ (Z/ℓeB

B Z)2},
SSECp,A := { (E; P′B, Q′B) | E ∈ SSECp, (P′B, Q′B) : basis of E[ℓeB

B]},
SSECp,B := { (E; P′A, Q′A) | E ∈ SSECp, (P′A, Q′A) : basis of E[ℓeA

A]}.

Thus, SIDH public keys of A and B are given elements of SSECp,A and SSECp,B, respec-
tively. Then, we define

g
a := (EA; ϕA(PB), ϕA(QB)) ∈ SSECp,A,

where RA = mAPA + nAQA, ϕA : E → EA = E/⟨RA⟩,
g
b := (EB; ϕB(PA), ϕB(QA)) ∈ SSECp,B,

where RB = mBPB + nBQB, ϕB : E → EB = E/⟨RB⟩,(
g
b
)a

:= j(EBA),
where RBA = mAϕB(PA) + nAϕB(QA), ϕBA : EB → EBA = EB/⟨RBA⟩,(
g
a)b := j(EAB),
where RAB = mBϕA(PB) + nBϕA(QB), ϕAB : EA → EAB = EA/⟨RAB⟩.

We describe SIDH using this notation below (Fig. 2). Public parameters are g =
(E; PA, QA, PB, QB) and e = (ℓA, ℓB, eA, eB). Here, shared secret is given as KAlice =(
gb

)a
= (ga)b = KBob, which shows correctness of the SIDH protocol.

Alice
a ∈R SKA : Alice′s secret key,

compute ga,

KAlice =
(
gb

)a
.

ga

−−−−−−−−−→
←−−−−−−−−−

gb

Bob
b ∈R SKB : Bob′s secret key,

compute gb,

KBob = (ga)b .

Fig. 2. Outline of SIDH Protocol (Crypto-friendly Description).

4 Post-Quantum Assumptions from SIDH

We define SI-CDH, SI-DDH, ds- and di-SI-GDH assumptions against quantum adver-
saries based on the notation in Sect. 3.2. The SI-DDH assumption is needed for indistin-
guishability security of SIDH shared keys. Moreover, all of the following assumptions
excluding ds-SI-GDH (see Prop. 4.1) are considered reasonable at present.

Definition 4.1 (SI-CDH Assumption). Let S be a quantum machine adversary. For
pksidh = (g = (E; PA, QA, PB, QB), e = (ℓA, ℓB, eA, eB)) ←R Gensidh(1λ) and a ∈R

SKA, b ∈R SKB, S receives (pksidh, ga, gb), and S outputs h ∈ Fp2 . If h = (ga)b (=
(
gb

)a
),

8

S wins. We define the advantage of S for the SI-CDH problem as AdvSI-CDH
g,e (S) =

Pr[S wins]. The SI-CDH assumption is: For any polynomial-time quantum machine
adversary S, the advantage of S for the SI-CDH problem is negligible in security pa-
rameter λ.

Definition 4.2 (SI-DDH Assumption). Let S be a quantum machine adversary. For
pksidh = (g = (E; PA, QA, PB, QB), e = (ℓA, ℓB, eA, eB)) ←R Gensidh(1λ) and a, r ∈R

SKA, b, s ∈R SKB, S receives Xb for b ∈R {0, 1}, that is defined by

X0 = (pksidh, ga, gb,
(
g
a)b) and X1 = (pksidh, ga, gb,

(
g
r)s),

S outputs a guess bit b′. If b = b′, S wins. We define the advantage of S for the SI-DDH
problem as AdvSI-DDH

g,e (S) = Pr[S wins] − 1/2. The SI-DDH assumption is: For any
polynomial-time quantum machine adversary S, the advantage of S for the SI-DDH
problem is negligible in security parameter λ.

Definition 4.3 (ds- and di-SI-GDH Assumption). Let S be a quantum machine ad-
versary. For pksidh = (g = (E; PA, QA, PB, QB), e = (ℓA, ℓB, eA, eB)) ←R Gensidh(1λ)
and a ∈R SKA, b ∈R SKB, S receives (pksidh, g, ga, gb), and S access SI-DDH
oracle for any input X = (pksidh, (E′A; P′AB,Q

′
AB), (E′B; P′BA,Q

′
BA), h

′) where P′AB,Q
′
AB

(resp. P′BA,Q
′
BA) are points in E′A(Fp2) (resp. E′B(Fp2)) and h′ ∈ Fp2 , and then outputs

h ∈ Fp2 . If h = (ga)b (=
(
gb

)a
), S wins. According to the behavior of SI-DDH oracle, we

have two types of SI-GDH problem, i.e.,

– degree-sensitive SI-GDH (ds-SI-GDH) problem The ds-SI-DDH oracle answers
true if there exist supersingular elliptic curves (E′A, E

′
B, E

′
AB) and isogenies (ϕ′A, ϕ

′
B,

ϕ′AB, ϕ
′
BA) between them which form a commutative diagram as in Fig. 3 such that

• degree of ϕ′A is d′A = ℓ
eA
A and degree of ϕ′B is d′B = ℓ

eB
B and

• P′AB = ϕ
′
A(PB), Q′AB = ϕ

′
A(QB) and P′BA = ϕ

′
B(PA), Q′BA = ϕ

′
B(QA) where points

(PA,QA, PB,QB) are given in public key pksidh, and h′ = j(E′AB),
and false otherwise. We call this case degree-sensitive SI-GDH (ds-SI-GDH) prob-
lem.

– degree-insensitive SI-GDH (di-SI-GDH) problem The di-SI-DDH oracle answers
true if there exist supersingular elliptic curves (E′A, E

′
B, E

′
AB) and isogenies (ϕ′A, ϕ

′
B,

ϕ′AB, ϕ
′
BA) between them which form a commutative diagram as in Fig. 3 such that

• degree d′A of ϕ′A is a power of ℓA and degree d′B of ϕ′B is a power of ℓB and
• P′AB = ϕ

′
A(PB), Q′AB = ϕ

′
A(QB) and P′BA = ϕ

′
B(PA), Q′BA = ϕ

′
B(QA) where points

(PA,QA, PB,QB) are given in public key pksidh, and h′ = j(E′AB),
and false otherwise. We call this case degree-insensitive SI-GDH (di-SI-GDH)
problem.

We define the advantage of adversary S for the ds–SI-GDH and di-SI-GDH problems
as Advds-SI-GDH

g,e (S) = Pr[S wins] and Advdi-SI-GDH
g,e (S) = Pr[S wins], respectively. The

ds-SI-GDH (resp. di-SI-GDH) assumption is: For any polynomial-time quantum ma-
chine adversary S, the advantage of S for the ds-SI-GDH (resp. di-SI-GDH) problem
is negligible in security parameter λ.

9

𝐸𝐸 𝐸𝐸A′
𝜙𝜙A′

𝐸𝐸B′ 𝐸𝐸AB′
𝜙𝜙B′

𝜙𝜙BA′

𝜙𝜙AB′
𝑑𝑑A′ = deg 𝜙𝜙A′ = deg 𝜙𝜙BA′

𝑑𝑑B′ = deg 𝜙𝜙B′ = deg 𝜙𝜙AB′

Fig. 3. Commutative diagram for true instances of SI-DDH oracles, in which it holds that
ker(ϕ′BA) = ϕ

′
B(ker(ϕ′A)) and ker(ϕ′AB) = ϕ

′
A(ker(ϕ′B)).

Proposition 4.1 (adapted from [20]). The ds-SI-GDH assumption does not hold, i.e.,
there exists a ppt adversary against the ds-SI-GDH problem.

proof sketch. Very recently, Galbraith and Vercauteren proposed an attack on the SI-
CDH problem with access to the decision degree (DD) oracle [20], which determines
whether two supersingular curves are isogenous of some specific degree or not. As a
basic building block, first, we describe an attack on the SI-CDH problem using the
DD oracle. The input of the problem is (pksidh = (g = (E; PA, QA, PB, QB), e =
(ℓA, ℓB, eA, eB)), EA, PAB := ϕA(PB),QAB := ϕA(QB)), where ϕA : E → EA is an ℓeA

A -
isogeny. The goal of the adversary S is to reveal ϕA. For that, S calculates integer u
such that u · ℓA ≡ 1 (mod ℓB), and then one ℓA-isogeny ψ : EA → E′. S send

(p̃ksidh
= (g, ẽ = (ℓA, ℓB, eA − 1, eB), E′, u · ψ(PAB), u · ψ(QAB))

to the DD oracle. Here, we note that the exponent eA − 1 is used instead of eA for the
implicitly defined ℓA-power isogeny. That is, the oracle distinguishes the degree (or
length) of the isogeny, in other words, whether E′ is ℓeA−1

A -isogenous to E or ℓeA+1
A -

isogenous to E. See the left hand side of Fig. 4. Then, the adversary reveals all the
isogeny by repeating this ℓA-backtracking decision.

Next, we extend the above strategy to solve the ds-SI-GDH problem. Namely, an
ds-SI-GDH adversary obtains an input (pksidh = (g = (E; PA, QA, PB, QB), e =
(ℓA, ℓB, eA, eB)), EA, PAB := ϕA(PB),QAB := ϕA(QB), . . .), where ϕA : E → EA is an ℓeA

A -
isogeny. The goal of the adversary S is to reveal ϕA. For that, S calculates one ℓA-
isogeny ψ : EA → E′ as before. Moreover, S calculates degree ℓeB

B -isogenies E → E′B
and E′ → E′AB that makes commutative SIDH diagram (E, E′, E′B, E

′
AB). Then, S send

(p̃ksidh
= (g, ẽ = (ℓA, ℓB, eA − 1, eB), E′, E′B, E

′
AB, . . .)

to the ds-SI-DDH oracle and determine whether ψ is a backtracking step in ϕA or not.
See the right hand side of Fig. 4. From here on, repeating this procedure, S can reveal
ϕA. Also, S can compute EAB by using EB and ϕA, which solves the ds-SI-GDH problem.

⊓⊔

4.1 On Plausibility of di-SI-GDH Assumption

As described in the above proof, to distinguish the degree of isogeny (or distance be-
tween two elliptic curves in the ℓA-isogeny graph) is crucial for the GV attack. Since the
ability for the distinction is given by the ds-SI-DDH oracle, the GV attack adversaries
have no advantages in the di-SI-GDH problem. Therefore, in contrast to the ds-SI-GDH

10

𝐸𝐸 𝐸𝐸A
𝜙𝜙A 𝜓𝜓

?

𝐸𝐸𝐸
𝐸𝐸𝐸
𝐸𝐸𝐸

𝐸𝐸 𝐸𝐸A
𝜙𝜙A 𝜓𝜓

?

𝐸𝐸𝐸
𝐸𝐸𝐸
𝐸𝐸𝐸

𝐸𝐸B′ 𝐸𝐸AB′

Fig. 4. Diagrams for the GV attack. The right (resp. left) hand side shows the strategy for the
ds-SI-GDH problem (resp. the SI-CDH problem with access to the DD oracle). The attacker dis-
tinguishes which one of the eA + 1 red ℓA-isogenies is backtracking by using the ds-SI-DDH
(resp. the DD) oracle.

problem, we may assume that the di-SI-GDH problem cannot be solved by any efficient
adversaries, and can be used for the basis of the security of our biclique scheme.

Note that auxiliary points ϕ′A(PB), ϕ
′
A(QB), ϕ

′
B(PA), ϕ

′
B(QA) in true instance X for di-

SI-DDH oracle impose some restrictions on implicitly defined isogenies ϕ′A, ϕ
′
B (and

ϕ′AB, ϕ
′
BA) used in Fig. 3. However, since degrees d′A and d′B of ϕ′A and ϕ′B can be chosen

as any powers of ℓA and ℓB respectively, a wide range of tuples (E′A, E
′
B, E

′
AB) can be ac-

cepted for forming the commutative diagram in Fig. 3. Therefore, as an extreme possible
case, any tuple of supersingular elliptic curves (E′A, E

′
B, E

′
AB) might form the commuta-

tive diagram in Fig. 3, that is, any tuple of such curves would be true instances in the
hypothetical case ! We cannot exclude such possibility from our present knowledge of
the di-SI-GDH problem. A satisfiable analysis of the di-SI-GDH problem seems to need
more understanding of the Ramanujan graph of ℓ-isogenies of supersingular curves, and
then the study is a formidable but promising and interesting research direction.

On the other hand, we have some positive argument for the di-SI-GDH assump-
tion. I.e., by reducing the problem of finding two different isogeny paths for E, E′A, E

′
B

to the collision finding problem of Charles et al.’s (CLG) hash function [8], we show
that the degree-insensitivity does not cause simulation failure under the collision re-
sistance assumption of the CLG hash function. Roughly speaking, the hash function
has a supersingular elliptic curve E0 as public parameter, takes as input a bit sequence
ω := ω1ω2 . . . ωe called path data, and outputs (i.e., hash value) the final elliptic curve
Ee of the path on the 2-isogeny graph with initial vertex E0 whose selections of non-
backtracking next steps, i.e., E1, E2, . . . , Ee, are determined by bits ω1, ω2, . . . , ωe, re-
spectively.

Proposition 4.2. Suppose there exists a ppt adversaryA that finds two different isogeny
paths for E, E′A, E

′
B which commute in the SIDH diagram (Fig. 5). Then, there exists a

ppt adversary B that finds a collision in the CLG hash function.

proof sketch. First, B set E as public parameter of the hash function. Suppose B obtains
two different SIDH tuples (E, E′A, E

′
B, E

′
AB) and (E, E′A, E

′
B, E

′′
AB) with the same E, E′A, E

′
B

fromA (Fig. 5) where two pairs of isogenies (ϕ′A, ϕ
′′
A) and (ϕ′B, ϕ

′′
B) are possibly different

degrees. (The two SIDH tuples give rise to a simulation failure in the security proof for
the biclique scheme in Section 6.) Then, since E′AB � E′′AB, B can construct two different
paths ϕ′A , ϕ′′A : E → E′A or ϕ′B , ϕ′′B : E → E′B with same endpoints, which gives a
collision for the CLG hash function as indicated in Fig. 5. ⊓⊔

11

Therefore, if adversary A encounters such collision of isogeny paths in the secu-
rity proof of our biclique scheme from the di-SI-GDH assumption, then it can be re-
duced to a collision of the CLG isogeny hash. Note that recently Eisentraeger et al. [14]
showed some effective attack to the CLG hash function when using a special initial
elliptic curve E. But, the attack has no effects in our case since our biclique SIDH AKE
scheme and the di-SI-GDH problem necessarily use a random initial supersingular el-
liptic curve E.

𝐸𝐸 𝐸𝐸A′
𝜙𝜙A′

𝐸𝐸B′ 𝐸𝐸AB′
𝜙𝜙B′ 𝜙𝜙BA′

𝜙𝜙AB′ 𝜙𝜙AB′′

𝜙𝜙BA′′ 𝐸𝐸AB′′

gives two paths between
𝐸𝐸 and 𝐸𝐸A′ (or 𝐸𝐸B′), i.e.,
collision of CLG hash

𝜙𝜙A′ ≠ 𝜙𝜙A′′: 𝐸𝐸 → 𝐸𝐸A′𝜙𝜙A′′
𝜙𝜙B′′

or

𝜙𝜙B′ ≠ 𝜙𝜙B′′: 𝐸𝐸 → 𝐸𝐸B′

Fig. 5. Two commutative diagrams for the same E, E′A, E
′
B and the collision for isogeny hash from

them

5 Proposed SIDH UM Protocol

In this section, we propose the SIDH UM protocol, where it can be proved in the quan-
tum random oracle model under the SI-DDH assumption.

Before describing the protocol, we explain that each party needs to have two static
public keys. The public parameter, g, contains two parameters, (P1, Q1) and (P2,Q2).
A party has a key on (P1, Q1) and the other key on (P2,Q2). Then, (P1, Q1) is used to
generate the ephemeral public key of the initiator and (P2, Q2) is used to generate the
ephemeral public key of the responder. When the role is exchanged, each party uses the
other static key which is not used before.

This double construction in public parameter and static public keys gives resistance
to reflection attacks. To the best of our knowledge, the previous researches of key ex-
change on supersingular isogenies have lacked this consideration.

5.1 Useful Techniques for Quantum Random Oracle Model

For a hash function H : Dom → Rng, in the quantum random oracle model, the adver-
sary pose a superposition |ϕ⟩ = Σαx|x⟩ and the oracle returns Σαx|H(x)⟩. If Rng is large
for a quantum polynomial-time simulator, it is difficult to generate all random output
values of H to compute Σαx|H(x)⟩. Zhandry [35] introduced a technique to simulate it
with q-wise independent functions. Here, we roughly recall the Zhandry’s technique.
Please see [35] for the detail.

12

A problem on security proofs in the quantum random oracle model is how to gener-
ate random values for exponentially many positions in order to simulate outputs of the
hash function. Zhandry [35] showed a solution with the notion of k-wise independent
function.

A weight assignment on a set X is a function D : X → R such that Σx∈XD(x) = 1. A
distribution on X is a weight-assignment D such that D(x) ≥ 0 for all x ∈ X. Consider
the set of functions H : X → Y for sets X and Y, denoted by HX,Y. We define the
marginal weight assignment DW of D on HX,Y where the weight of a function HW :
W→Y is equal to the sum of the weights of all H ∈ HX,Y that agree with HW onW.

Definition 5.1 (k-wise equivalence). We call two weight assignments D1 and D2 on
HX,Y k-wise equivalent if for all W ⊆ X of size k, the marginal weight assignments
D1,W and D2,W (of D1 and D2) over HX,Y are identical.

Definition 5.2 (k-wise independent function). We call a function f k-wise indepen-
dent function if f is k-wise equivalent to a random function.

Lemma 5.1 (Theorem 3.1 in [35]). Let A be a quantum algorithm making q quantum
queries to an oracle H : X → Y. If we draw H from some weight assignment D, then
for every z, the quantity PrH←D[AH() = z] is a linear combination of the quantities
PrH←D[H(xi) = ri∀i ∈ 1, . . . , 2q] for all possible settings of the xi and ri.

Lemma 5.2 (Theorem 6.1 in [35]). If there exists 2qi-wise independent function, then
any quantum algorithm A making qi quantum queries to random oracles Oi can be
efficiently simulated by a quantum algorithm B, which has the same output distribution,
but makes no queries.

Hence, a quantum algorithm B can simulate quantum random oracles in a polynomial-
time. We use this simulation technique to simulate outputs of the hash function in the
security proof of the SIDH UM protocol.

On the other hand, the other problem on security proofs in the quantum random
oracle model is how to insert intended random values as the outputs of corresponding
oracle inputs. Zhandry [35] showed a solution with the notion of semi-constant distri-
butions SCω.

Definition 5.3 (Semi-constant distribution). Define SCω, the semi-constant distribu-
tion, as the distribution over HX,Y resulting from the following process:

– First, pick a random element y from Y.
– For each x ∈ X, do one of the following:
• With probability ω, set H(x) = y. We call x a distinguished input to H.
• Otherwise, set H(x) to be a random element in Y.

Lemma 5.3 (Corollary 4.3 in [35]). The distribution of outputs of a quantum algo-
rithm making h queries to an oracle drawn from SCω is at most a distance 3

8 h4ω2 away
from the case when the oracle is drawn from the uniform distribution.

13

A1 = g
a1 B1 = g

b1

A2 = g
a2 B2 = g

b2

X = gx
X−→ Y = gy
Y←−

Z1 = B2
a1 Z1 = A1

b2

Z2 = Yx Z2 = Xy

K = H(Π, Z1,Z2, Â, B̂, X,Y)

Fig. 6. Outline of SIDH UM Protocol.

A1 = g
a1 B1 = g

b1

A2 = g
a2 B2 = g

b2

X = gx
X−→ Y = gy
Y←−

Z1 = Ya1 Z1 = A1
y

Z2 = B2
x Z2 = Xb2

Z3 = B2
a1 Z3 = A1

b2

Z4 = Yx Z4 = Xy

K = H(Π, Z1,Z2,Z3,Z4, Â, B̂, X,Y)

Fig. 7. Outline of Biclique SIDH Protocol.

We suppose that the simulation succeeds with probability ϵ if the adversary uses
an inserted random value as the outputs of corresponding oracle inputs. If the proba-
bility that the adversary uses one of the points is ω, then the simulation succeeds with
probability ϵω − 3

8 h4ω2. By choosing ω to maximise the success probability, the simu-
lation succeeds with probability O(ϵ2/h4). We use this simulation technique to insert a
SI-DDH instance into the hash function in the security proof of the SIDH UM protocol.

5.2 Description of Proposed SIDH UM Protocol

We give our SIDH UM protocol using the notation in Sect. 3.2. Public parameters are
g = (E; P1, Q1, P2, Q2) and e = (ℓ1, ℓ2, e1, e2). We set Π = SIDHUM, that is, the
protocol ID is “SIDHUM.” Static and ephemeral keys are the same as our biclique SIDH
protocol. Let two secret-key spaces for initiators and responders be given as SK1 :=
{(m1, n1) ∈

(
Z/ℓe1

1 Z
)2 | not both divisible by ℓ1} and SK2 := {(m2, n2) ∈

(
Z/ℓe2

2 Z
)2 | not

both divisible by ℓ2}, respectively.
User Â has two static public keys, A1 = g

a1 and A2 = g
a2 , where a1 = (mA,1, nA,1) ∈R

SK1, a2 = (mA,2, nA,2) ∈R SK2, and a1 and a2 are Â’s static secret keys. User B̂, also,
has two static public keys, B1 = g

b1 and B2 = g
b2 , where b1 = (mB,1, nB,1) ∈R SK1,

b2 = (mB,2, nB,2) ∈R SK2, and b1 and b2 are B̂’s static secret keys. Here, ephemeral secret
keys for Â and B̂ are given as

x = (mX, nX) ∈R SK1, and y = (mY, nY) ∈R SK2,

respectively. Â sends a ephemeral public key X as X = gx to B̂, B̂ sends back a ephemeral
public key Y as Y = gy to Â.

Â computes Z1 = Ba12 , and Z2 = Yx, and then, obtains the session key K as K =
H(Π, Z1,Z2, Â, B̂, X,Y), where H is a hash function.

B̂ can computes the session key K as K = H(Π,Z1,Z2, Â, B̂, X,Y) from Z1 = Ab21 ,
and Z2 = Xy.

It is clear that the session keys of both parties are equal (Fig. 6).

5.3 Security

Theorem 5.1. Suppose that H is modeled as a quantum random oracle and that the
SI-DDH assumption hold for (g, e). Then the SIDH UM protocol is a post-quantum
CK-secure authenticated key exchange protocol in the quantum random oracle model.

14

In particular, for any AKE quantum adversary M against the SIDH UM proto-
col that runs in time at most t, involves at most n honest parties and activates at
most s sessions, and makes at most h queries to the quantum random oracle and q
SessionKeyReveal queries, there exists an SI-DDH quantum adversary S such that

AdvSI-DDH
g,e (S) ≥ ω

ns
AdvAKE

SIDHUM(M) − ω2
(
hq +

3
8

(h + q + 1)4
)
,

where ω = 4AdvAKE
SIDHUM(M)

ns(8hq+3(h+q+1)4) and S runs in time t plus time to perform O((n + s)λ
)

low-
degree isogeny operations.

An intuition of the security proof is given in Sect. 5.1. The SI-DDH assumption
used in Theorem 5.1 can be degree-sensitive. Hence, it implies security under the SI-
CDH assumption by using the reduction in Proposition 4.1. However, an additional
reduction cost is necessary. It is not trivial to directly prove security under the SI-CDH
assumption because of the no-cloning theorem. Specifically, in the reduction to the CK
security, the SI-CDH solver wants to extract the answer of the SI-CDH problem from
a random oracle query by the AKE adversary. However, the query is a quantum state,
and the solver cannot record a copy of the input. Thus, this proof strategy does not
work. Recently, Zhandry [36] introduced a technique to record quantum queries. How
to apply this technique to the proof is an open problem.

6 Proposed Biclique SIDH Protocol

In this section, we propose the biclique SIDH protocol, where it can be proved in the
random oracle model under the di-SI-GDH assumption.

As our SIDH UM protocol in Sect. 5, the public parameter, g, contains two parame-
ters, (P1, Q1) and (P2,Q2) in our biclique SIDH protocol. A party has a key on (P1, Q1)
and the other key on (P2,Q2).

6.1 Description of Proposed Biclique SIDH Protocol

We give our biclique SIDH protocol using the notation in Sect. 3.2. Public parameters
are g = (E; P1, Q1, P2, Q2) and e = (ℓ1, ℓ2, e1, e2). We set Π = BCSIDH, that is, the
protocol ID is “BCSIDH.” Let two secret-key spaces for initiators and responders be
given as SK1 := {(m1, n1) ∈

(
Z/ℓe1

1 Z
)2 | not both divisible by ℓ1} and SK2 := {(m2, n2) ∈(

Z/ℓe2
2 Z

)2 | not both divisible by ℓ2}, respectively.
User Â has two static public keys, A1 = g

a1 and A2 = g
a2 , where a1 = (mA,1, nA,1) ∈R

SK1, a2 = (mA,2, nA,2) ∈R SK2, and a1 and a2 are Â’s static secret keys. User B̂, also,
has two static public keys, B1 = g

b1 and B2 = g
b2 , where b1 = (mB,1, nB,1) ∈R S K1,

b2 = (mB,2, nB,2) ∈R S K2, and b1 and b2 are B̂’s static secret keys. Here, ephemeral
secret keys for Â and B̂ are given as

x = (mX, nX) ∈R SK1, and y = (mY, nY) ∈R SK2,

15

respectively. Â sends an ephemeral public key X as X = gx to B̂, B̂ sends back an
ephemeral public key Y as Y = gy to Â.

Â computes the non-trivial combinations of the ephemeral and static public keys as
Z1 = Ya1 , Z2 = Bx2, Z3 = Ba12 , and Z4 = Yx, and then, obtains the session key K as
K = H(Π, Z1,Z2,Z3,Z4, Â, B̂, X,Y), where H is a hash function.

B̂ can computes the session key K as K = H(Π, Z1,Z2,Z3,Z4, Â, B̂, X,Y) from Z1 =

Ay1, Z2 = Xb2 , Z3 = Ab21 , and Z4 = Xy.
It is clear that the session keys of both parties are equal (Fig. 7).
Charles et al. [8] proposed a hash function secure against quantum adversaries from

the isogeny computation intractability. Hence, we can use the isogeny-based hash func-
tion in the real implementation for H, however, H is modeled as a random oracle in the
security proof below.

6.2 Security

Theorem 6.1. Suppose that H is modeled as a random oracle and that the di-SI-GDH
assumption hold for (g, e). Then the biclique SIDH protocol is a post-quantum CK+-
secure authenticated key exchange protocol in the random oracle model.

In particular, for any AKE quantum adversaryM against the biclique SIDH proto-
col that runs in time at most t, involves at most n honest parties and activate at most s
sessions, and makes at most h queries to the random oracle, there exists a di-SI-GDH
quantum adversary S such that

Advdi-SI-GDH
g,e (S) ≥ min

{ 1
sn
,

1
n2 ,

1
s2

}
· AdvAKE

BCSIDH(M),

where S runs in time t plus time to perform O((n + s)λ
)

low-degree isogeny operations
and make O(h + s) queries to di-SI-DDH oracle.

It is worth to note here that the above proof seems to work in the strong adversary
model where a corrupted party can register any public key of its choice.

We consider how to extend our security proof in the random oracle model to that
in the quantum random oracle model as in the SIDH UM protocol. For completing the
simulation, we need to extend the di-SI-GDH assumption (Definition 4.3). Namely, in
random oracle simulation, S first checks compatibility of input elements using di-SI-
DDH oracle. Hence, in the quantum ROM situation, since inputs are given in quantum
superposition form, we should extend the di-SI-DDH oracle to take as input the super-
positions. If the di-SI-GDH quantum adversary allows the extended di-SI-DDH oracle
access, then our security proof can be converted to quantum ROM secure one.

References

1. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: The
hardness of quantum rewinding. In: FOCS 2014. pp. 474–483 (2014)

2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression for
isogeny-based cryptosystems. In: AsiaPKC 2016. pp. 1–10 (2016)

16

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: CRYPTO ’93. pp.
232–249 (1993)

4. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their security
analysis. In: IMA CC 1997. pp. 30–45 (1997)

5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random
oracles in a quantum world. In: ASIACRYPT 2011. pp. 41–69 (2011)

6. Bos, J.W., Friedberger, S.: Fast arithmetic modulo 2x py ± 1. In: ARITH 2017. pp. 148–155
(2017)

7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building
secure channels. In: EUROCRYPT 2001. pp. 453–474 (2001)

8. Charles, D., Lauter, K., Goren, E.: Cryptographic hash functions from expander graphs.
J. Crypt. 22(1), 93–113 (2009)

9. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum subex-
ponential time. J. Math. Crypt. 8(1), 1–29 (2014)

10. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient compression
of SIDH public keys. In: EUROCRYPT 2017, I. pp. 679–706 (2017)

11. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny Diffie-
Hellman. In: CRYPTO 2016, Part I. pp. 572–601 (2016)

12. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The Fiat-Shamir transformation in a quantum
world. In: ASIACRYPT 2013, Part II. pp. 62–81 (2013)

13. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. J. Math. Crypt. 8(3), 209–247 (2014)

14. Eisenträger, K., Hallgren, S., Lauter, K.E., Morrison, T., Petit, C.: Supersingular isogeny
graphs and endomorphism rings: Reductions and solutions. In: EUROCRYPT 2018, Part III.
pp. 329–368 (2018)

15. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum authenti-
cated key exchange from one-way secure key encapsulation mechanism. In: ASIACCS 2013.
pp. 83–94 (2013)

16. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated key ex-
change from factoring, codes, and lattices. Des. Codes Cryptography 76(3), 469–504 (2015),
a preliminary version appeared in PKC 2012 (2012)

17. Galbraith, S.: Mathematics of Public Key Cryptography. Cambridge Univ. Press (2012)
18. Galbraith, S.D.: Authenticated key exchange for SIDH. IACR Cryptology ePrint Archive

2018, 266 (2018), http://eprint.iacr.org/2018/266
19. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular isogeny cryp-

tosystems. In: ASIACRYPT 2016, Part I. pp. 63–91 (2016)
20. Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular elliptic curve iso-

genies. IACR Cryptology ePrint Archive 2017, 774 (2017), http://eprint.iacr.org/
2017/774

21. Jeong, I., Katz, J., Lee, D.: One-round protocols for two-party authenticated key exchange.
In: ANCS 2004. pp. 220–232 (2004)

22. Koziel, B., Azarderakhsh, R., Kermani, M.M., Jao, D.: Post-quantum cryptography on FPGA
based on isogenies on elliptic curves. IEEE Trans. on Circuits and Systems 64-I(1), 86–99
(2017)

23. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Kermani, M.M.: NEON-SIDH: efficient
implementation of supersingular isogeny Diffie-Hellman key exchange protocol on ARM.
In: CANS 2016. pp. 88–103 (2016)

24. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In: CRYPTO
2005. pp. 546–566 (2005)

17

25. LeGrow, J., Jao, D., Azarderakhsh, R.: Modeling quantum-safe authenticated key establish-
ment, and an isogeny-based protocol. IACR Cryptology ePrint Archive 2018, 282 (2018),
http://eprint.iacr.org/2018/282

26. Longa, P.: A note on post-quantum authenticated key exchange from supersingular isogenies.
IACR Cryptology ePrint Archive 2018, 267 (2018), http://eprint.iacr.org/2018/
267

27. National Institute of Standards and Technology: Post-Quantum crypto standardization: Call
for Proposals Announcement (December 2016), http://csrc.nist.gov/groups/ST/
post-quantum-crypto/cfp-announce-dec2016.html

28. Petit, C.: Faster algorithms for isogeny problems using torsion point images. IACR Cryptol-
ogy ePrint Archive 2017, 571 (2017), to appear in ASIACRYPT 2017

29. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR Cryptol-
ogy ePrint Archive 2006, 145 (2006), http://eprint.iacr.org/2006/145

30. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

31. Silverman, J.: The Arithmetic of Elliptic Curves, GTM, vol. 106. Springer Verlag, 2nd edn.
(2009)

32. Sutherland, A.: Identifying supersingular elliptic curves. LMS J. Comp. and Math. 15, 317–
325 (2012)

33. Vélu, J.: Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Séries A. 273, 238–241
(1971)

34. Zhandry, M.: How to construct quantum random functions. In: FOCS 2012. pp. 679–687
(2012)

35. Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In:
CRYPTO 2012. pp. 758–775 (2012)

36. Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability.
In: Cryptology ePrint Archive: Report 2018/276 (2018)

A Proof Sketch of Theorem 5.1

Since H is modeled as a quantum random oracle, adversaryM has only three ways to
distinguish a session key of the test session from a random string.

– Guessing attack:M correctly guesses the session key.
– Key replication attack:M creates a session that is not matching to the test session,

but has the same session key as the test session.
– Forging attack:M computes Z1 and Z2 used in the test session identified with (Π ,
I, Â, B̂, X, Y), and queries H with a superposition including (Π ,Z1, Z2, Â, B̂, X, Y).

Since H is a quantum random oracle, the probability of guessing the output of H is
O(1/2λ). Since non-matching sessions have different communicating parties or ephemeral
public keys, key replication is equivalent to finding H-collision; therefore the probabil-
ity of succeeding key replication is O(s2/2λ).

Let M be the event that M wins the security experiment with SIDHUM, H be the
event that M succeeds forging attack, and H the complementary event of H. Thus we
have Pr[M | H] = 1

2 , and therefore AdvAKE
SIDHUM(M) = Pr[M] − 1

2 ≤ Pr[M ∩ H].
By the definition of freshness in the CK-model, there are two cases thatM chooses

a test session.

18

– E1:M chooses a test session without a matching session.
– E2:M chooses a test session with a matching session, and reveals the static secret

keys of both the owner of the test session and the owner of its matching session.

In each case, we will show how to construct an SI-DDH solver S. Solver S is given an
SI-DDH instance (pksidh,U = gu,V = gv,W). Let R be an event thatM chooses a test
session whose owner and peer are the same party, and let R be its complement.

Whether a certain event took place or not is decided at the end of the experiment.
In other words for each event analysis bellow it is assumed that the event conditions are
satisfied upon the adversary termination.

Before analyzing the events, we note that the session state of a session in the SIDH
UM protocol is equivalent to the ephemeral secret key in the session as no other infor-
mation (except the static secret key) is necessary to compute the shared secrets and the
session key.

E1 ∩ R. S prepares n honest parties, selects two honest parties Â and B̂ to whom S
assigns the static public keys A1 = U and B2 = V , and random static public and secret
key pairs for A2 and B1. The remaining n − 2 parties are assigned random static public
and secret key pairs. S selects i ∈R {1, . . . , s}, and chooses i-th session sid∗ among
sessions, activated byM, owned by Â and having intended peer B̂.

WhenM activates sessions between honest peers, S follows the protocol descrip-
tion. Since S knows static secret keys of at least one peer, it can respond all queries
faithfully. The only exception is the session owned by Â with the intended peer B̂ be-
cause S does not know static secret keys of Â and B̂. Then, S sets W as Z1 in such
sessions.

Also, S chooses random x∗ and ζ ∈ {0, 1}λ as the ephemeral secret key and the
session key of sid∗, respectively. ζ is inserted as the output of H in the test session
sid∗ (i.e., the session key).
S has difficulty in responding hash queries because he/she needs to return superpo-

sitions corresponding to random values for exponentially many positions (The domain
of H is {0, 1}∗ × Fp2 × Fp2 × {0, 1}∗ × {0, 1}∗ × SSECp,1 × SSECp,2). We solve this prob-
lem by using Lemma 5.2. Specifically, since the number of queries to H made by M
is h for direct queries, q for SessionKeyReveal queries, and 1 for the Test query, for
a total of h + q + 1 queries, a (h + q + 1)-wise independent function is sufficient to
simulate superposition of outputs. There is the other difficulty to correctly answer the
SI-DDH problem because M uses ζ with exponentially small probability if the posi-
tion of ζ is only the corresponding input. We can also solve this problem by using
Lemma 5.3. Specifically, the simulator inserts ζ for inputs (pid, Z1, Z2, uid, uid′, epk,
epk′) ∈ X ⊂ {0, 1}∗ × Fp2 × Fp2 × {0, 1}∗ × {0, 1}∗ × SSECp,1 × SSECp,2. The probability
that a randomly chosen input is contained in X is ω. IfM chooses (pid = Π , Z1 = W,
Z2 = Y∗x, uid = Â, uid′ = B̂, epk, epk′) ∈ X as the test session, then S can use the
distinguishing capacity ofM to distinguish the SI-DDH challenge.

We use the game hopping technique in the security proof. Let AdvAKE
SIDHUM(M,Gamei)

be the advantage ofM in Gamei.

– Let Game0 be the standard attack game for the CK security. When M poses a
superposition to quantum random oracle H, the superposition of output values

19

corresponding to the input is returned to M. Then, AdvAKE
SIDHUM(M, Game0) =

AdvAKE
SIDHUM(M).

– Game1 is the same as Game0 except that the game halts ifM poses Test(sid) for
sid , sid∗. Since sid∗ is chosen from ns sessions, it holds that AdvAKE

SIDHUM(M,
Game1) ≥ 1

ns AdvAKE
SIDHUM(M,Game0).

– Let ω ∈ (0, 1) be chosen later, and X be a subset of {0, 1}∗ × Fp2 × Fp2 × {0, 1}∗ ×
{0, 1}∗ × SSECp,1 × SSECp,2 where (pid, Z1, Z2, uid, uid′, epk, epk′) ∈ {0, 1}∗ ×
Fp2 × Fp2 × {0, 1}∗ × {0, 1}∗ × SSECp,1 × SSECp,2 is put in X with independent
probability ω. Game2 is the same as Game1 except that the game halts if (Π ,
Uv, Y∗x, Â, B̂, X∗, Y∗) < X for the test session sid∗ = (Π , I, Â, B̂, X∗, Y∗), M
poses SessionKeyReveal(Π , I, uid, uid′, X′, Y ′) such that (Π , Z1, Z2, uid, uid′,
X′, Y ′) ∈ X, orM poses H(Π , Z1, Z2, uid, uid′, X′, Y ′) such that (Π , Z1, Z2, uid,
uid′, X′, Y ′) ∈ X. We note that Y∗ is decided byM because sid∗ has no matching
session, andM cannot poses SessionKeyReveal(Π , I, Â, B̂, X∗, Y∗) by the fresh-
ness condition. AdvAKE

SIDHUM(M, Game2) ≥ ω(1−ωhq) ·AdvAKE
SIDHUM(M,Game1) ≥

ωAdvAKE
SIDHUM(M,Game1) − ω2hq holds.

– Game3 is the same as Game2 except that ζ is set as H(pid, Z1, Z2, uid, uid′,
epk, epk′) for all (pid, Z1, Z2, uid, uid′, epk, epk′) ∈ X, and choose H(pid, Z1,
Z2, uid, uid′, epk, epk′) randomly for all other inputs. Now, H is distributed ac-
cording to SCω. By Lemma 5.3, the output distribution of M in Game3 is at
most a distance 3

8 (h + q + 1)4ω2 from that in Game2. Hence, AdvAKE
SIDHUM(M,

Game3) ≥ AdvAKE
SIDHUM(M,Game2) − 3

8 (h + q + 1)4ω2 holds.

Finally, we estimate AdvAKE
SIDHUM(M,Game3) by AdvSI-DDH

g,e (S) with the reduction to
SI-DDH problem. For simplicity, we assume that S has quantum access to two random
oracles H1 : {0, 1}∗ × Fp2 × Fp2 × {0, 1}∗ × {0, 1}∗ × SSECp,1 × SSECp,2 → {0, 1}λ and
H2 : {0, 1}∗ × Fp2 × Fp2 × {0, 1}∗ × {0, 1}∗ × SSECp,1 × SSECp,2 → {0, 1} where H2
outputs 1 with probability ω. Let X be the set of (pid, Z1, Z2, uid, uid′, epk, epk′) such
that H2(pid, Z1, Z2, uid, uid′, epk, epk′) = 1. We can see that the above conditions are
equivalent to Game3. By Lemma 5.2, S can perfectly simulate H1 and H2 by using a
(h + q + 1)-wise independent function without oracle accesses. S prepares Rlist with
entries of the form (pid, uid, uid′, epk, epk′, SK) ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ × SSECp,1 ×
SSECp,2 × {0, 1}λ and Hlist with entries of the form (pid, Z1, Z2, uid, uid′, epk, epk′,
SK) ∈ {0, 1}∗ × Fp2 × Fp2 × {0, 1}∗ × {0, 1}∗ × SSECp,1 × SSECp,2 × {0, 1}λ, where pid is a
string which gives a protocol identifier, and uid is a string which gives a user identifier,
and Smaintains two lists for consistent responses to H and SessionKeyReveal queries.
On input (pksidh,U,V,W), S works as follows:

– Choose x∗ ∈R SK1 and ζ ∈R {0, 1}λ, and set A1 = U, B2 = V , and X∗ = gx
∗

in sid∗.
The remaining n − 2 parties are assigned random static public and secret key pairs.
Set sid∗ = (Π , I, Â, B̂, X∗, ∗).

– Send(Π,I, Â, B̂): Solver S selects uniformly random ephemeral secret key x, com-
putes ephemeral public key X honestly, records (Π , I, Â, B̂, X) in List Rlist, and
returns it.

– Send(Π,R, Â, B̂, X): S selects uniformly random ephemeral secret key y, computes
ephemeral public key Y honestly, records (Π , R, Â, B̂, X, Y) in List Rlist as com-
pleted, and returns it.

20

– Send(Π,I, Â, B̂, X,Y): If session (Π , I, Â, B̂, X) is not recorded in List Rlist, S
records session (Π , I, Â, B̂, X, Y) in List Rlist as not completed. Otherwise, S
records the session in List Rlist as completed.

– H(·): S simulates a random oracle such that

H(Π,Z1,Z2, Â, B̂, X,Y) =

ζ if H2(Π, Z1,Z2, Â, B̂, X,Y) = 1
H1(Π, Z1,Z2, Â, B̂, X,Y) otherwise

– SessionKeyReveal(·): WhenM poses (Π ,I, uid, uid′, X, Y) such that H2(Π, Z1,Z2,
uid, uid′, X,Y) = 1, then outputs a random bit and aborts. Otherwise, return SK =
H1(pid, Z1, Z2, uid, uid′, X, Y).

– SessionStateReveal(sid): S responds to the query faithfully.
– Corrupt(Ĉ): If Ĉ is queried before, S returns error. Otherwise, S responds to the

query faithfully. Note that Corrupt(Â) nor Corrupt(B̂) is never posed by the fresh-
ness condition.

– Test(sid): If sid , sid∗, then S aborts with failure. Otherwise, S responds ζ to
the query.

– If adversaryM outputs guess γ, S outputs γ.

S may abort in the simulation of SessionKeyReveal and Test. Also, S may fail ifM
poses H(Π,Z1,Z2, uid, uid′, X,Y) such that (Π,Z1,Z2, uid, uid′, X,Y) ∈ X. However, in
Game3, these events do not occur because of the game hopping. In the case of W =

(gu)v, the simulation of Test query is the same as the real session key. In the case of
W = (gr)s with random secret keys r and s, the simulation of Test query is the same as
the random session key. Thus, AdvAKE

SIDHUM(M, Game3) is

AdvAKE
SIDHUM(M,Game3) = AdvSI-DDH

g,e (S).

Therefore, AdvAKE
SIDHUM(M) is

AdvAKE
SIDHUM(M) ≤ ns

ω
AdvSI-DDH

g,e (S) + nsω
(
hq +

3
8

(h + q + 1)4
)
.

The right side is minimized when ω = 4AdvAKE
SIDHUM(M)

ns(8hq+3(h+q+1)4) .

E1∩R. S prepares n honest parties, selects an honest party Â and assigns its static public
keys as A1 = U and A2 = V . The proof is almost the same as in E1 ∩ R. The party Â is
simulated as B̂ in E1 ∩ R.

E2. S prepares n honest parties, selects two honest parties Â and B̂, and assigns random
static public and secret key pairs for all parties (i.e., S knows a1 and b2). S selects
i ∈R {1, . . . , s}, and chooses i-th session sid∗ among sessions, activated byM, owned
by Â and having intended peer B̂.

WhenM activates sessions between honest peers, S follows the protocol descrip-
tion. Since S knows static secret keys of at least one peer, it can respond all queries
faithfully. In sid∗, S assigns ephemeral public keys X∗ = U and Y∗ = V of Â and B̂,

21

respectively. Then, S sets W as Z2 in sid∗. Also, S chooses random ζ ∈ {0, 1}λ as the
session key of sid∗. ζ is inserted as the output of H in the test session sid∗ (i.e., the
session key).

We use the game hopping technique in the security proof. Let AdvAKE
SIDHUM(M,Gamei)

be the advantage ofM in Gamei.

– Let Game0 be the standard attack game for the CK security. When M poses a
superposition to quantum random oracle H, the superposition of output values
corresponding to the input is returned to M. Then, AdvAKE

SIDHUM(M, Game0) =
AdvAKE

SIDHUM(M).
– Game1 is the same as Game0 except that the game halts ifM poses Test(sid) for
sid , sid∗. Since sid∗ is chosen from ns sessions, AdvAKE

SIDHUM(M, Game1) ≥
1
ns AdvAKE

SIDHUM(M,Game0) holds.
– Game2 is the same as Game1 except that ζ is set as H(pid, Z∗1 = Ba12 , W, Â, B̂, U,

V), and choose H(pid, Z1, Z2, Â, B̂, X, Y) randomly for all other inputs. Now, H is
distributed according to SCω where ω is the probability of randomly selecting (pid,
Z∗1 , W, Â, B̂, U, V) from the domain, which is negligibly small. By Lemma 5.3, the
output distribution ofM in Game2 is at most a distance 3

8 (h + q + 1)4ω2 from that
in Game1. Hence, AdvAKE

SIDHUM(M, Game2) ≥ AdvAKE
SIDHUM(M,Game1) − 3

8 (h + q +
1)4ω2 = AdvAKE

SIDHUM(M,Game1) − negl holds.

Finally, we estimate AdvAKE
SIDHUM(M, Game2) by the reduction to AdvSI-DDH

g,e (S). For
simplicity, we assume that S has quantum access to two random oracles H1 : {0, 1}∗ ×
Fp2 × Fp2 × {0, 1}∗ × {0, 1}∗ × SSECp,1 × SSECp,2 → {0, 1}λ and H2 : {0, 1}∗ × Fp2 ×
Fp2 × {0, 1}∗ × {0, 1}∗ × SSECp,1 × SSECp,2 → {0, 1} where H2 outputs 1 with probability
ω. By Lemma 5.2, S can perfectly simulate H1 and H2 by using a (h + q + 1)-wise
independent function without oracle accesses. S prepares Rlist with entries of the form
(pid, uid, uid′, epk, epk′, SK) ∈ {0, 1}∗×{0, 1}∗×{0, 1}∗×SSECp,1×SSECp,2×{0, 1}λ and
Hlist with entries of the form (pid, Z1, Z2, uid, uid′, epk, epk′, SK) ∈ {0, 1}∗×Fp2 ×Fp2 ×
{0, 1}∗×{0, 1}∗×SSECp,1×SSECp,2×{0, 1}λ, where pid is a string which gives a protocol
identifier, and uid is a string which gives an user identifier, and Smaintains two lists for
consistent responses to H and SessionKeyReveal queries. On input (pksidh,U,V,W), S
works as follows:

– Choose a1 ∈R S K1, b2 ∈R S K2 and ζ ∈R {0, 1}λ, and set A1 = g
a1 and B2 = g

b2 ,
X∗ = U and Y∗ = V in sid∗. n parties are assigned random static public and secret
key pairs. Set sid∗ = (Π , I, Â, B̂, X∗, Y∗).

– Send(Π,I, Â, B̂): Solver S selects uniformly random ephemeral secret key x, com-
putes ephemeral public key X honestly, records (Π , I, Â, B̂, X) in List Rlist, and
returns it.

– Send(Π,R, Â, B̂, X): S selects uniformly random ephemeral secret key y, computes
ephemeral public key Y honestly, records (Π , R, Â, B̂, X, Y) in List Rlist as com-
pleted, and returns it.

– Send(Π,I, Â, B̂, X,Y): If session (Π , I, Â, B̂, X) is not recorded in List Rlist, S
records session (Π , I, Â, B̂, X, Y) in List Rlist as not completed. Otherwise, S
records the session in List Rlist as completed.

22

– H(·): S simulates a random oracle such that

H(Π,Z1,Z2, Â, B̂, X,Y) =

ζ if H2(Π, Z1,Z2, Â, B̂, X,Y) = 1
H1(Π,Z1,Z2, Â, B̂, X,Y) otherwise

– SessionKeyReveal(·): WhenM poses (Π , I, Â, B̂, X, Y) such that H2(Π, Z1,Z2, Â,
B̂, X,Y) = 1, then outputs a random bit and aborts. Otherwise, return SK = H1(Π, Z1,
Z2, Â, B̂, X,Y).

– SessionStateReveal(sid): S responds to the query faithfully.
– Corrupt(Ĉ): If Ĉ is queried before, S returns error. Otherwise, S responds to the

query faithfully. Note that a1 and b2 are given toM.
– Test(sid): If sid , sid∗, then S aborts with failure. Otherwise, S responds ζ to

the query.
– If adversaryM outputs guess γ, S outputs γ.

S may abort in the simulation of SessionKeyReveal and Test. However, in Game2,
these events do not occur because of the game hopping. In the case of W = (gu)v, the
simulation of Test query is the same as the real session key. In the case of W = (gr)s

with random secret keys r and s, the simulation of Test query is the same as the random
session key. Thus, AdvAKE

SIDHUM(M, Game2) is

AdvAKE
SIDHUM(M,Game2) = AdvSI-DDH

g,e (S).

Therefore, AdvAKE
SIDHUM(M) is

AdvAKE
SIDHUM(M) ≤ ns · AdvSI-DDH

g,e (S) + negl.

⊓⊔

B Proof Sketch of Theorem 6.1

Since H is modeled as a random oracle, adversaryM has only three ways to distinguish
a session key of the test session from a random string.

– Guessing attack:M correctly guesses the session key.
– Key replication attack:M creates a session that is not matching to the test session,

but has the same session key as the test session.
– Forging attack: M computes Z1, Z2, Z3, and Z4 used in the test session identified

with (Π , I, Â, B̂, X, Y), and queries H with (Π , Z1, Z2, Z3, Z4, Â, B̂, X, Y).

Since H is a random oracle, the probability of guessing the output of H is O(1/2λ).
Since non-matching sessions have different communicating parties or ephemeral public
keys, key replication is equivalent to finding H-collision; therefore the probability of
succeeding key replication is O(s2/2λ). However to detect collision the adversary has
to query with both inputs the random oracle, in particular query with Z1, Z2, Z3, and Z4
used in the test session as describe in Forging attack above.

23

Let M be the event that M wins the security experiment with BCSIDH, H be the
event that M succeeds forging attack, and H the complementary event of H. Thus we
have Pr[M | H] = 1

2 , and therefore

AdvAKE
BCSIDH(M) = Pr[M] − 1

2
≤ Pr[M ∩ H]. (1)

By the definition of freshness in the CK+-model, there are six cases thatM chooses
a test session.

– E1:M chooses a test session without a matching session, and does not reveal the
ephemeral secret key of the owner of the test session.

– E2:M chooses a test session without a matching session, and does not reveal the
static secret key of the owner of the test session.

– E3: M chooses a test session with a matching session, and does not reveal the
ephemeral secret key of both the owner of the test session and the owner of its
matching session.

– E4:M chooses a test session with a matching session, and does not reveal the static
secret keys of both the owner of the test session and the owner of its matching
session.

– E5: M chooses a test session with a matching session, and does not reveal the
ephemeral secret key of the owner of the test session and the static secret key of the
peer of its matching session.

– E6:M chooses a test session with a matching session, and does not reveal the static
secret key of the owner of the test session and the ephemeral secret key of the peer
of its matching session.

In each case, we will show how to construct a di-SI-GDH solver S. Solver S is given an
SI-CDH instance (pksidh,U,V). Let R be an event thatM chooses a test session whose
owner and peer are the same party, and let R be its complement.

Whether a certain event took place or not is decided at the end of the experiment.
In other words for each event analysis bellow it is assumed that the event conditions are
satisfied upon the adversary termination.

Before analyzing the events, we note that the session state of a session in the biclique
SIDH protocol is equivalent to the ephemeral secret key in the session as no other
information (except the static secret key) is necessary to compute the shared secrets and
the session key.

E1 ∩ R. S prepares n honest parties, selects one party B̂ to whom S assigns the static
public key B2 = V and a random static public and secret key pair for B1. The remaining
n − 1 parties are assigned random static public and secret key pairs. S selects i ∈R

{1, . . . , s}, and chooses i-th session sid∗ among sessions, activated byM and owned by
an honest party different from B̂.

WhenM activates sessions between honest peers, S follows the protocol descrip-
tion. Since S knows static secret keys of at least one peer, it can respond all queries
faithfully. The only exception is the session sid∗, for which S sets ephemeral public
key of sid∗ to U, and chooses a random ζ ∈ {0, 1}λ as the session key of sid∗.

24

The simulator has difficulty in responding queries related to B̂ because S does not
know one of the static secret keys of B̂. More precisely, for sessions owned by B̂ with
a peer Ĉ controlled by M, S cannot compute the shared secrets, Z1, Z2, Z3, and Z4,
but may have to answer SessionKeyReveal queries.M could also derive session keys
of these session by computing the shared secrets, Z1, Z2, Z3, and Z4, and query H. If
four values do not coincide, then S fails its simulation. To handle this situations, S
prepares Rlist with entries of the form (pid, uid, uid′, W, W ′, SK) ∈ {0, 1}∗ × {0, 1}∗ ×
{0, 1}∗ × SSECp,1 × SSECp,2 × {0, 1}λ and Hlist with entries of the form (pid, Z1, Z2, Z3,
Z4, uid, uid′, W, W ′, SK) ∈ {0, 1}∗ × Fp2 × Fp2 × Fp2 × Fp2 × {0, 1}∗ × {0, 1}∗ × SSECp,1 ×
SSECp,2 × {0, 1}λ, where pid is a string which gives a protocol identifier, and uid is a
string which gives a user identifier, and S maintains two lists for consistent responses
to H and SessionKeyReveal queries as follows. Below, Y is generated by S on behalf
of B̂.

– Send(Π,I, Â, B̂): Solver S selects uniformly random ephemeral secret key x, com-
putes ephemeral public key X = gx honestly, records (Π , I, Â, B̂, X) in List Rlist,
and returns it.

– Send(Π,R, Â, B̂, X): S selects uniformly random ephemeral secret key y, computes
ephemeral public key Y honestly, records (Π , R, Â, B̂, X, Y) in List Rlist as com-
pleted, and returns it.

– Send(Π,I, Â, B̂, X,Y): If session (Π , I, Â, B̂, X) is not recorded in List Rlist, S
records session (Π , I, Â, B̂, X, Y) in List Rlist as not completed. Otherwise, S
records the session in List Rlist as completed.

– H(·): S simulates a random oracle in the usual way except for queries of the form
(Π , Z1, Z2, Z3, Z4, B̂, Ĉ, Y , X) and (Π , Z1, Z2, Z3, Z4, Ĉ, B̂, X, Y). When (Π , Z1,
Z2, Z3, Z4, B̂, Ĉ, Y , X) is queried, S responds to these queries in the following way:
(when (Π , Z1, Z2, Z3, Z4, Ĉ, B̂, X, Y) is queried, S responds in a similar way)
• if (Π , Z1, Z2, Z3, Z4, B̂, Ĉ, Y , X, SK) ∈ Hlist for some SK, S returns SK toM.
• else if

– the validity conditions, SI-DDH(B1, X,Z1) = 1, SI-DDH(Y,C2,Z2) = 1,
SI-DDH(B1,C2,Z3) = 1, and SI-DDH(Y, X,Z4) = 1, hold,
then if there exists (Π , I, B̂, Ĉ, Y , X, SK) ∈ Rlist, S returns SK; otherwise, S
chooses SK ∈R {0, 1}λ, returns SK and stores (Π , I, B̂, Ĉ, Y , X, SK) in Rlist. S
also stores the new tuple (Π , Z1, Z2, Z3, Z4, B̂, Ĉ, Y , X, SK) in Hlist.

• else S choose SK ∈R {0, 1}λ, returns it toM and stores the new tuple (Π , Z1,
Z2, Z3, Z4, B̂, Ĉ, Y , X, SK) in Hlist.

– SessionKeyReveal(·):S simulates these queries in the usual way except for queries
of the form (Π , I, B̂, Ĉ, Y , X) and (Π , R, B̂, Ĉ, X, Y). When (Π , I, B̂, Ĉ, Y , X)
is queried, S does one of the following: (when (Π , R, B̂, Ĉ, X, Y) is queried, S
responds in a similar way)
• if there is no session with identifier (Π , I, B̂, Ĉ, Y , X), the query is aborted.
• else if (Π , I, B̂, Ĉ, Y , X, SK) ∈ Rlist for some SK, S returns SK toM.
• else if (Π , Z1, Z2, Z3, Z4, B̂, Ĉ, Y , X, SK) ∈ Hlist such that SI-DDH(B1, X,Z1) =

1, SI-DDH(Y,C2,Z2) = 1, SI-DDH(B1,C2,Z3) = 1, and SI-DDH(Y, X,Z4) = 1,
S returns SK and stores the new tuple (Π , I, B̂, Ĉ, Y , X, SK) in Rlist.

25

– SessionStateReveal(sid): If the corresponding ephemeral public key is U, then
solver S aborts with failure. Otherwise, solver S responds to the query faithfully.

– Corrupt(Â): If Â is queried before, solver S returns error. Otherwise, solver S re-
sponds to the query faithfully.

– Test(sid): If sid is not the t-th session of Â, then solver S aborts with failure.
Otherwise, solver S responds to the query faithfully.

– If adversaryM outputs guess γ, solver S aborts with failure.

Provided that E1 ∩ R occurs and M selects sid∗ as the test session with peer B̂, the
simulation does not fail. In this case, the session identifier of sid∗ is (Π , I, Â, B̂, U,
Y), where Y is the incoming ephemeral public key of sid∗. If M wins the security
game, it must have queried H with inputs Z1 = SI-CDH(A1,Y), Z2 = SI-CDH(U, B2),
Z3 = SI-CDH(A1, B2), Z4 = SI-CDH(U,Y). To solve the SI-CDH instance, S checks
if there is an H query made by M of the form (Π , Z1, Z2, Z3, Z4, Â, B̂, U, Y), such
that SI-DDH(A1,Y,Z1) = 1, SI-DDH(U, B2,Z2) = 1, SI-DDH(A1, B2,Z3) = 1, and
SI-DDH(U,Y,Z4) = 1. If such an H query exists, S outputs Z2 as the SI-CDH answer
where Z2 = SI-CDH(U, B2) = SI-CDH(U,V). With probability at least 1

sn , the test
session is sid∗ with peer B̂. Thus the advantage of S is

Advdi-SI-GDH
g,e (S) ≥ 1

sn
Pr[M ∩ H ∩ E1 ∩ R]. (2)

Notice that in the above simulation S cannot respond to StaticKeyReveal(B̂) query.
However, given that event E1 occurs, S correctly guesses the test session and the test
session is fresh at the end of the experiment, then M have not queried for the static
secret keys of the test session B̂.

Such static key reveal query would contradict the freshness of the test session and
thus the simulation terminated without errors.

E1 ∩ R. S prepares n honest parties, selects an honest party Â and assigns its static
public keys as A1 = U and A2 = V . The remaining n − 1 parties are assigned random
static and secret key pairs. S simulates the environment ofM by following the protocol
description. The party Â is simulated as B̂ in E1 ∩ R.

IfM selected a session whose owner and peer are the same party Â as the test ses-
sion, and E1 ∩R occurs, this simulation does not fail. Let (Π , I, Â, Â, X, Y) be the ses-
sion identifier of the test session. WhenM is successful, S checks if there is an H query
made byM of the form (Π , Z1, Z2, Z3, Z4, Â, Â, X, Y), such that SI-DDH(A1,Y,Z1) = 1,
SI-DDH(X, A2,Z2) = 1, SI-DDH(A1, A2,Z3) = 1, and SI-DDH(X,Y,Z4) = 1. If such an
H query exists, S outputs Z3 as the SI-CDH answer where Z2 = SI-CDH(A1, A2) =
SI-CDH(U,V). With probability at least 1

n , M will select a test session whose owner
and peer is the same party Â. Thus, the advantage of S is

Advdi-SI-GDH
g,e (S) ≥ 1

n
Pr[M ∩ H ∩ E1 ∩ R]. (3)

S cannot respond to StaticKeyReveal(Â) query during the simulation. As before
if event E1 occurs, S correctly guesses the test session and the test session is fresh at

26

the end of the experiment, thenM have not queried for the static secret keys of Â, and
therefore the simulation does not terminate with error.

E2 ∩ R. S prepares n honest parties, selects two distinct honest parties Â and B̂, and
assigns Â’s and B̂’s static public keys as A1 = U and B2 = V , respectively. S assigns
random static public and secret key pairs for A2, B1, and the remaining n− 2 parties are
assigned random static and secret key pairs. S follows the protocol description when
M activates session between honest peers, and simulateM’s queries related to Â or B̂
as explained in E1.

IfM selected a session whose participants are Â, B̂ as the test session, and E2 ∩ R
occurs, this simulation does not fail. Let (Π , I, Â, B̂, X, Y) be the session identifier of
the test session. Note that S generated X and so knows x. When M is successful, S
checks if there is an H query made byM of the form (Π , Z1, Z2, Z3, Z4, Â, B̂, X, Y),
such that SI-DDH(A1,Y,Z1) = 1, SI-DDH(X, B2,Z2) = 1, SI-DDH(A1, B2,Z3) = 1, and
SI-DDH(X,Y,Z4) = 1. If such an H query exists, S outputs Z3 as the SI-CDH answer
where Z3 = SI-CDH(A1, B2) = SI-CDH(U,V). With probability at least 1

n2 , M will
select a test session with owner Â and peer B̂, respectively. Thus, the advantage of S is

Advdi-SI-GDH
g,e (S) ≥ 1

n2 Pr[M ∩ H ∩ E2 ∩ R]. (4)

S can respond to neither StaticKeyReveal(Â) nor StaticKeyReveal(B̂) queries dur-
ing the simulation. As before if event E2 occurs, S correctly guesses the test session
and the test session is fresh at the end of the experiment, thenM have queried for the
static secret key of neither Â nor B̂, and therefore the simulation does not terminate with
error.

E2 ∩ R. This case is essentially the same as E1 ∩ R. In this case, we can construct an
di-SI-GDH solver S with advantage

Advdi-SI-GDH
g,e (S) ≥ 1

n
Pr[M ∩ H ∩ E2 ∩ R]. (5)

E3.S prepares n honest parties, and assigns random static public and secret key pairs for
these parties. S selects i, j ∈R {1, . . . , s}, and chooses i-th session sid∗ and j-th session
sid∗ among sessions activated byM and owned by honest parties. When activated, S
sets the ephemeral public key of sid∗ to be U and of sid∗ to be V . Since S knows the
static secret keys of all honest parties, it can respond all queries, faithfully, except those
that related to sid∗ and sid∗.

Provided thatM selects sid∗ as the test session, sid∗ as its matching session, and
E3 occurs, the simulation does not fail. Let (Π , I, Â, B̂, U, V) and (Π , R, B̂, Â, U, V) be
the session identifiers of sid∗ and sid∗, respectively. WhenM wins the security game,
S checks if there is an H query made byM of the form (Π , Z1, Z2, Z3, Z4, Â, B̂, U, V),
such that SI-DDH(A1,V,Z1) = 1, SI-DDH(U, B2,Z2) = 1, SI-DDH(A1, B2,Z3) = 1, and
SI-DDH(U,V,Z4) = 1. If such an H query exists, S outputs Z4 as the SI-CDH answer.
With probability at least 1

s2 ,M selects sid∗ as the test session and sid∗ as its matching

27

session. Thus the advantage of S is

Advdi-SI-GDH
g,e (S) ≥ 1

s2 Pr[M ∩ H ∩ E3]. (6)

S cannot respond to SessionStateReveal queries against the test session and its
matching during the simulation. However, under event E3 adversary does not issue such
queries, and hence the simulation does not fail.

E4, E5, and E6. The analysis of E4, E5, and E6 is similar to E2, E1, and E1, respectively.
We omit the details and provide only the conclusion. In each case, we can construct an
di-SI-GDH solver S as follows.

Advdi-SI-GDH
g,e (S) ≥ 1

n2 Pr[M ∩ H ∩ E4 ∩ R], (7)

Advdi-SI-GDH
g,e (S) ≥ 1

sn Pr[M ∩ H ∩ Ei ∩ R], (8)

Advdi-SI-GDH
g,e (S) ≥ 1

n Pr[M ∩ H ∩ E j ∩ R], (9)

for i = 5, 6, and j = 4, 5, 6.

Analysis. Combining (1), . . ., (9), we have

Advdi-SI-GDH
g,e (S) ≥ min

{ 1
sn
,

1
n2 ,

1
s2

}
· AdvAKE

BCSIDH(M).

During the simulation, the solvers S and S perform O((n + s)λ
)

low-degree isogeny
operations for assigning static and ephemeral keys, and make O(h + s) times SI-DDH
oracle queries for simulating SessionKeyReveal and the random oracle H queries. This
completes the proof of Theorem 6.1. ⊓⊔

C Basic Facts on Elliptic Curves and Isogenies

We summarize basic facts and notations about elliptic curves and isogenies. For de-
tails, refer to [31, 17]. Let p be a prime greater than 3 and Fp be the finite field with p
elements. Let Fp be its algebraic closure. An elliptic curve E over Fp is given by the
Weierstrass normal form

E : Y2 = X3 + αX + β (10)

for α and β ∈ Fp where the discriminant of the right hand side of Eq. (10) is non-
zero. We denote the point at infinity on E by OE . Elliptic curves are endowed with a
unique algebraic group structure, with OE as neutral element. The j-invariant of E is
j(E) := j(α, β) := 1728 4α3

4α3+27β2 . Conversely, for j , 0, 1728 ∈ Fp, set α = α(j) =
3 j

1728− j , β = β(j) = 2 j
1728− j . Then, the obtained E in Eq. (10) has j-invariant j. Two

elliptic curves over Fp are isomorphic if and only if they have the same j-invariant. For
a positive integer n, the set of n-torsion points of E is E[n] = {P ∈ E(Fp) | nP = OE}.

28

Given two elliptic curves E and Ẽ over Fp, a homomorphism ϕ : E → Ẽ is a mor-
phism of algebraic curves that sends OE to OẼ . A non-zero homomorphism is called an
isogeny, and a separable isogeny with the cardinality ℓ of the kernel is called ℓ-isogeny.
We consider only separable isogenies in this paper, i.e., any isogeny is separable here.
An elliptic curve E over Fp is called supersingular if there are no points of order p,
i.e., E[p] = {OE}. The j-invariants of supersingular elliptic curves lie in Fp2 [31]. A
non-supersingular elliptic curve is called ordinary.

We compute the ℓ-isogeny by using Vélu’s formulas for a small prime ℓ = 2, 3,
Vélu gave in [33] the explicit formulas of the isogeny ψ : E → Ẽ and the equation of
Ẽ when E is given by Eq. (10) and K := kerψ is explicitly given. Then there exists a
unique isogeny ψ : E → Ẽ s.t.K := kerψ, and we denote Ẽ by E/K . For an elliptic
curve E and a cyclic group K(⊂ E) of order ℓ, Vélu’s formula [33] gives an isogenous
curve E/K and the associated isogeny E ∋ (x, y) 7→ (x̃, ỹ) ∈ E/K . For computing
it, for E : Y2 = X3 + αX + β and point Q = (xQ, yQ) , OE ∈ K , we define gx

Q =

3x2
Q + α, g

y
Q = −2yQ, and tQ = 2gx

Q if Q ∈ E[2], tQ = gx
Q if Q < E[2], uQ = (gy

Q)2.
For S := (K − {OE})/ ± 1, let t =

∑
Q∈S tQ,w =

∑
Q∈S (uQ + xQtQ), α̃ = α − 5t, β̃ =

β − 7w, then, Ẽ = E/K : Y2 = X3 + α̃X + β̃, x̃ = x +
∑

Q∈S

(
tQ

x−xQ
+

uQ

(x−xQ)2

)
, ỹ =

y −∑
Q∈S

(
2uQy

(x−xQ)3 +
tQ(y−yQ)−gx

Qgy
Q

(x−xQ)2

)
gives the curve and isogeny.

29

