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Abstract. In this paper, we extend the work on purely mathematical Trojan horses initially presented
by Young and Yung. This kind of mechanism affects the statistical properties of an infected random
number generator (RNG) by making it very sensitive to input entropy. Thereby, when inputs have the
correct distribution the Trojan has no effect, but when the distribution becomes biased the Trojan
worsens it. Besides its obvious malicious usage, this mechanism can also be applied to devise lightweight
health tests for RNGs. Currently, RNG designs are required to implement an early detection mechanism
for entropy failure, and this class of Trojan horses is perfect for this job.

1 Introduction

In [15] the authors propose an interesting mechanism that blurs the line between what constitutes a Trojan
horse and what does not. To detect their mechanism, a program needs to somehow differentiate between
a naturally unstable random number generator (RNG) and artificially unstable one (obtained by means of
certain mathematical transformations). To our knowledge, [15] is the only previous work that discuses this
topic.

More precisely, in [15] a digital filter is described. Usually, digital filters are applied to RNGs to correct
biases3, but this filter has an opposite purpose. When applied to a stream of unbiased bits the filter is benign.
On the other hand, if applied to a stream of biased bits the filter amplifies their bias. Thereby, making the
RNG worse.

In this paper we extend the filter from [15]4, provide a new class of filters and discuss some new possible
applications. The main application we propose for these filters is RNG testing (e.g., boosting health tests
implemented in a RNG). Recent standards [11,13] require a RNG to detect failures and one such method
for early detection can be to apply an amplifier and then do some lightweight testing5. Based on the results
obtained in our paper, we provide concrete examples of how to detect such failures in Section 5.1.

Due to recent events [4, 6, 7, 12] RNGs have been under a lot of scrutiny. Thus, wondering what kind
of mechanisms can be implemented by a malicious third party in order to weaken or destabilize a system
becomes natural. Amplifying filters provide a novel example of how one can achieve this. Based on the failure
detection mechanisms proposed in Section 5.1, we show, for example, how a manufacturer can manipulate
the architecture to become malicious.

Structure of the paper. Notations and definitions are presented in Section 2. The core of the paper consists
of Sections 3 and 4 and contains two classes of filters. Experimental result and applications are given in
Section 5. We conclude in Section 6.
3 They are called randomness extractors [8].
4 The filter presented in [15] corresponds to the greedy amplifier with parameter n = 3 described in Section 3.
5 for example the tests described in [10]



2 Preliminaries

Throughout the paper, we consider binary strings of length n composed of independent and identically
distributed (i.i.d.) bits generated by a RNG. By 0n and 1n we understand the all zero and the all one strings.
Also, for figures we use the standard representation of the x-axis and y-axis.

Let 0 ≤ ε ≤ 1
2 be a real number and b a random bit. Then, without loss of generality, we denote the

probability of b = 0 by P0 = 1
2 − ε and of b = 1 by P1 = 1

2 + ε. We will refer to ε as bias. The complement
rule states that P1 = 1− P0. Let P (a) be the probability of a random string being a. Then for any A ⊆ Zn

2
we denote by P (A) =

∑
a∈A P (a).

Let u be a binary string and A ⊆ Zn
2 . Then w(u) denotes the hamming weight of u and w(A) the set

{w(a) | a ∈ A}. Note that since we are working with i.i.d. bits, for any u, v ∈ Zn
2 such that w(u) = w(v), the

equality P (u) = P (v) holds. Thus, from a probabilistic point of view, it does not matter which element of the
set {u ∈ A | w(u) = k} we choose to work with.

The element min(A) (max(A)) is the smallest (biggest) integer of the set A, while minw(A) (maxw(A)) is
an element from A that has the smallest (biggest) hamming weight. We say that a pair of sets (S0, S1) is an
equal partition of the set S if the following hold: S = S1 ∪ S2, S1 ∩ S2 = ∅ and |S1| = |S2|.

To ease description, we use the notation Cn
k to denote binomial coefficients. Pascal’s identity states that

Cn
k = Cn−1

k + Cn−1
k−1 , where 1 ≤ k ≤ n. Note that |{u ∈ Zn

2 | w(u) = k}| = Cn
k .

In this paper, we consider a digital filter to be a mapping from Zn
2 to Z2. If we continuously apply a filter

to data generated by a RNG6, then three types of filters arise:

– bias amplifier - the output data has a bigger bias than the input data;
– neutral filter - the output data has the the same bias as the input data;
– bias corrector7 - the output data has a smaller bias than the input data.

Let (S0, S1) be an equal partition of a set S. Let D be a digital filter such that it maps S0 and S1 to 0
and 1, respectively (see Table 1). Also, let εD be the output bias of D. We say that a bias amplifier is
maximal if εD is maximal over all the equal partitions of Zn

2 . To compare bias amplifiers we measure the
distance between P (S1) and P (S0).

Table 1. Conversion table.

Bit 0 Bit 1
S0 S1

Before stating our results, some restrictions are needed. If the input bits are unbiased (i.e. P0 = 1
2 ) or

have a maximum bias (i.e. P0 = 0 or P1 = 0) we require the filter to maintain the original bias. If one
replaces a bias corrector with a bias amplifier, the amplifier must behave as the corrector when the
RNG has bias 0 or 1

2 . The last requirement is that the filter amplifies the bias in the direction that it already
is. Without loss of generality, we assume that the bias is towards 1.

3 Greedy Bias Amplifiers

In this section we generalize and improve the bias amplifier described in [15]. We first present a neutral
filter and based on it we develop a maximal bias amplifier. We can easily transform one into the other
by changing the conversion table.

Lemma 1. Let S0 = {u ∈ Zn
2 | u = 0‖v, v ∈ Zn−1

2 } and S1 = {u ∈ Zn
2 | u = 1‖v, v ∈ Zn−1

2 }. Then
P (S0) = P0 and P (S1) = P1.
6 Note that except for n = 1 the bit rate of the RNG will drop.
7 We prefer to use this notion instead of randomness extractor, because it simplifies our framework.
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Proof. Since we are working with i.i.d. random bits the following holds

P (S0) =
∑

v∈Zn−1
2

P (0‖v) =
∑

v∈Zn−1
2

P0P (v) = P0
∑

v∈Zn−1
2

P (v) = P0.

Similarly, we obtain P (S1) = P1. ut

Using Lemma 1 we can devise a neutral filter N by mapping all the elements of S0 and S1 to 0 and
1, respectively. Starting from the equal partition (S0, S1) (Lemma 1), using a greedy algorithm (Algorithm 1),
we devise a new equal partition that serves as the core of a maximal bias amplifier.

Algorithm 1.
Input: An integer n
Output: An equal partition of Zn

2
1 Set S0 = {u ∈ Zn

2 | u = 0‖v, v ∈ Zn−1
2 } and S1 = {u ∈ Zn

2 | u = 1‖v, v ∈ Zn−1
2 }

2 Set α = maxw(S0) and β = minw(S1)
3 while w(α) < w(β) do
4 Set S0 = (S0 \ {α}) ∪ {β} and S1 = (S1 \ {β}) ∪ {α}
5 Update α = maxw(S0) and β = minw(S1)
6 end
7 return (S0, S1)

Lemma 2. Let k be a positive integer and let (S0, S1) be the output of Algorithm 1. Then the following
properties hold

1. If n = 2k + 1 then S0 = {u | 0 ≤ w(u) ≤ k} and S1 = {u | k + 1 ≤ w(u) ≤ n}. Also, P (S0) =∑k
i=0 C

n
i (P0)n−i(P1)i and P (S1) =

∑k
i=0 C

n
i (P0)i(P1)n−i.

2. If n = 2k then S0 = {u | 0 ≤ w(u) ≤ k − 1} ∪ T0 and S1 = {u | k + 1 ≤ w(u) ≤ n} ∪ T1, where (T0, T1)
is an equal partition of {u ∈ Zn

2 | w(u) = k}. Also, P (S0) =
∑k−1

i=0 C
n
i (P0)n−i(P1)i + Cn

k

2 (P0P1)k and
P (S1) =

∑k−1
i=0 C

n
i (P0)i(P1)n−i + Cn

k

2 (P0P1)k.
3. If ε = 0 then P (S0) = P (S1) = 1

2 and if ε = 1
2 then P (S0) = 0 and P (S1) = 1.

Proof. During the while loop Algorithm 1 swaps the elements whose weight is written in Column 2, Table 2
with the elements that have their weight written in Column 3, Table 2.

Table 2. Operations performed during the while loop.

Number of switches Weight of S0 elements Weight of S1 elements
Cn−1

0 n− 1 1
Cn−1

1 n− 2 2
. . .

Cn−1
i−1 n− i i

. . .

The while loop ends when w(α) ≥ w(β). According to Table 2, this is equivalent with n− i ≥ i. When
n = 2k+ 1 we obtain that the while loop stops when i ≤ k+ 1. When n = 2k the loop stops when i ≤ k. Thus,
we obtain the sets S0 and S1. The probabilities P (S0) and P (S1) are a direct consequence of the structure of
the sets and the fact that Cn

k = Cn
n−i. The last item is simply a matter of computation. ut

In Table 3 we present all the possible partitions of Z3
2. We mapped these partitions to 0 and 1 in such a

way that P1 >
1
2 . Note that bias amplification happens only for the partition presented in the first entry of
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the table8. This is not true in general. For example, when n = 5, we obtain another bias amplifier if we map
the set S′1 = (S1 \ {11100}) ∪ {11000}9 and S′0 = Z5

2 \ S′1 to 1 and 0. We will now prove that (S′0, S′1) is the
basis of an amplifier. Note that P (S′1) = 1

2 + 7
4ε− 4ε3 + 4ε5. Thus, we have

P (S′1)− P1 = ε

4
(
16ε4 − 16ε2 + 3

)
> 0,

which is equivalent with

16t2 − 16t+ 3 > 0, (1)

where t = ε2. Equation (1) has two solution t1 = 1
4 and t2 = 3

4 . Thus, the sign of the quadratic function is
negative only when 1

4 < t < 3
4 . By taking into account the complement rule and that 0 < ε < 1

2 , we obtain
an amplifier by converting (S′0, S′1) to (0, 1).

Table 3. Trigraph conversion table.

Bit 0 Bit 1 P1 Corrector Amplifier

000 & 001 & 010 & 100 111 & 110 & 101 & 011 1
2 + 3

2ε− 2ε3 - 0 < ε < 1
2

000 & 001 & 010 & 011 111 & 110 & 101 & 100 1
2 + ε - -

000 & 001 & 101 & 011 111 & 110 & 010 & 100 1
2 + 1

2ε+ 2ε3 0 < ε < 1
2 -

000 & 110 & 101 & 011 111 & 001 & 010 & 100 1
2 + 4ε3 0 < ε < 1

2 -

000 & 001 & 010 & 111 100 & 110 & 101 & 011 1
2 + 1

2ε+ 2ε2 − 2ε3 0 < ε < 1
2 -

011 & 110 & 010 & 100 000 & 001 & 101 & 111 1
2 + 2ε2 0 < ε < 1

2 -

011 & 001 & 010 & 100 000 & 110 & 101 & 111 1
2 + 1

2ε+ 2ε2 − 2ε3 0 < ε < 1
2 -

Lemma 3. Let (S0, S1) be the output of Algorithm 1. If we map all the elements of S0 and S1 to 0 and 1,
respectively, then we obtain a maximal bias amplifier G.

Proof. According to Lemma 2 all the lowest and highest probability elements are in S0 and S1, respectively.
Thus, the statement is true. ut

Lemma 4. Let (Sn
0 , S

n
1 ) be the output of Algorithm 1 for n = 2k + 1. Then the following hold

1. P (Sn
0 ) = P (Sn+1

0 ) and P (Sn
1 ) = P (Sn+1

1 ).
2. P (Sn

0 )− P (Sn+2
0 ) = P (Sn+2

1 )− P (Sn
1 ) = 2εCn

k (P0P1)k+1.
3. P (Sn

0 ) > P (Sn+2
0 ) and P (Sn

1 ) < P (Sn+2
1 ).

4. P (Sn
1 )− P (Sn

0 ) < P (Sn+2
1 )− P (Sn+2

0 ).

Proof. We prove the first statement using induction. When k = 1 we have S1
0 = {0}, S1

1 = {1}, S2
0 = {00, 01}

and S2
1 = {10, 11}. Using Lemma 1, we obtain P (S1

0) = P0 = P (S2
0) and P (S1

1) = P1 = P (S2
1). Thus, proving

the statement for the case k = 1.
8 The authors of [15] call it a RNG biasing Trojan horse.
9 S1 is the set from Lemma 2.
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We now assume that the statement is true for k (i.e. P (Sn
0 ) = P (Sn+1

0 ) and P (Sn
1 ) = P (Sn+1

1 )) and we it
for k + 1. Applying Pascal’s identity twice to P (Sn+2

0 ) we obtain

P (Sn+2
0 ) =

k+1∑
i=0

Cn+2
i (P0)n+2−i(P1)i = (P0)n+2 + (n+ 2)(P0)n+1P1 (2)

+
k+1∑
i=2

(Cn
i + 2Cn

i−1 + Cn
i−2)(P0)n+2−i(P1)i.

We rewrite Equation (2) as a sum of S1, S2, S3 (described next):

S1 = (P0)n+2 + n(P0)n+1P1 +
k+1∑
i=2

Cn
i (P0)n+2−i(P1)i = (P0)2P (Sn

0 ) + Cn
k+1(P0)n+1−k(P1)k+1, (3)

S2 = 2(P0)n+1P1 + 2
k+1∑
i=2

Cn
i−1(P0)n+2−i(P1)i = 2

k∑
i=0

Cn
i (P0)n+1−i(P1)i+1 = 2P0P1P (Sn

0 ), (4)

S3 =
k+1∑
i=2

Cn
i−2(P0)n+2−i(P1)i =

k−1∑
i=0

Cn
i (P0)n−i(P1)i+2 = (P1)2P (Sn

0 )− Cn
k (P0)n−k(P1)k+2. (5)

Reassembling Equations (3) to (5) we obtain

P (Sn+2
0 ) = P (Sn

0 ) + Cn
k+1(P0)n+1−k(P1)k+1 − Cn

k (P0)n−k(P1)k+2 = P (Sn
0 )− 2εCn

k (P0P1)k+1. (6)

Applying Pascal’s identity twice to P (Sn+3
0 ) we obtain

P (Sn+3
0 ) =

k+1∑
i=0

Cn+3
i (P0)n+3−i(P1)i +

Cn+3
k+2
2 (P0P1)k+2 = (P0)n+3 + (n+ 3)(P0)n+2P1 (7)

+
k+1∑
i=2

(Cn+1
i + 2Cn+1

i−1 + Cn+1
i−2 )(P0)n+3−i(P1)i +

Cn+3
k+2
2 (P0P1)k+2.

Let α =
∑k

i=0 C
n+1
i (P0)n+1−i(P1)i. We rewrite Equation (7) as a sum of S4, S5, S6 (described next):

S4 = (P0)n+3 + (n+ 1)(P0)n+2P1 +
k+1∑
i=2

Cn+1
i (P0)n+3−i(P1)i = (P0)2α+ Cn+1

k+1 (P0)n+2−k(P1)k+1, (8)

S5 = 2(P0)n+2P1 + 2
k+1∑
i=2

Cn+1
i−1 (P0)n+3−i(P1)i = 2

k∑
i=0

Cn+1
i (P0)n+2−i(P1)i+1 = 2P0P1α, (9)

S6 =
k+1∑
i=2

Cn+1
i−2 (P0)n+3−i(P1)i =

k−1∑
i=0

Cn+1
i (P0)n+1−i(P1)i+2 = (P1)2α− Cn+1

k (P0)n+1−k(P1)k+2. (10)

Reassembling Equations (8) to (10) we obtain

P (Sn+3
0 ) = P (Sn+1

0 ) + Cn+1
k+1 (P0)n+2−k(P1)k+1 − Cn+1

k (P0)n+1−k(P1)k+2 −
Cn+1

k+1
2 (P0P1)k+1 (11)

+
Cn+3

k+2
2 (P0P1)k+2

= P (Sn+1
0 )− Cn

k (P0P1)k+1
{
n+ 1
k + 1

[
(P0)2 − 1

2

]
+ P0P1

[
−n+ 1
k + 2 + (n+ 1)(n+ 2)(n+ 3)

2(k + 1)(k + 2)(k + 2)

]}
= P (Sn+1

0 )− Cn
k (P0P1)k+1

{
2
[
(P0)2 − 1

2

]
+ 2P0P1

}
= P (Sn+1

0 )− 2εCn
k (P0P1)k+1.
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Applying the induction step to Equations (6) and (11) we obtain that P (Sn+2
0 ) = P (Sn+3

0 ). The following
equality is a consequence of the complement rule

P (Sn+2
1 ) = 1− P (Sn+2

0 ) = 1− P (Sn+3
0 ) = P (Sn+3

1 ).

This completes the proof the first statement. The remaining statements are a direct consequence of Equation (6)
and the complement rule. ut

Corollary 1. Let (Sn
0 , S

n
1 ) be the output of Algorithm 1 for n = 2k+1. Then P (Sn

0 )−P (Sn+2
0 ) > P (Sn+2

0 )−
P (Sn+4

0 ) and P (Sn+2
1 )− P (Sn

1 ) > P (Sn+4
1 )− P (Sn+2

1 ).

Proof. Using Lemma 4 we obtain that P (Sn
0 )−P (Sn+2

0 ) > P (Sn+2
0 )−P (Sn+4

0 ) is equivalent with 2εCn
k (P0P1)k+1 >

2εCn+2
k+1 (P0P1)k+2. Rewriting the inequality we obtain

1 > (2k + 2)(2k + 3)
(k + 1)(k + 2) P0P1.

The proof is concluded by observing that

(2k + 2)(2k + 3)
(k + 1)(k + 2) P0P1 < 4

(
1
4 − ε

2
)

= 1− 4ε2 ≤ 1.

ut

Figure 1(a) and Figure 1(b) are a graphical representation of Lemma 4 (n ≤ 17) and Corollary 1 (n ≤ 15),
respectively. The x-axis represents the original bias ε, while the y-axis represents P (Sn

1 ) (Figure 1(a)) and
P (Sn+2

1 )− P (Sn
1 ) (Figure 1(b)).
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Fig. 1. Greedy amplifier.
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Using the properties stated in Lemmas 2 and 4, we will next describe an equivalent and simplified version
of Algorithm 1. Note that devising a greedy bias amplifier only makes sense when n is odd.
Algorithm 2.
Input: An odd integer n
Output: An equal partition of Zn

2
1 Set S0 = S1 = ∅
2 for i = 0, . . . , 2n − 1 do
3 if w(i) ≤ k then
4 S0 = S0 ∪ {i}
5 end
6 else
7 S1 = S1 ∪ {i}
8 end
9 end

10 return (S0, S1)

4 Von Neumann Bias Amplifier

Von Neumann introduced in [14] a simple, yet effective method for correcting the bias of a RNG. Each time
the RNG generates two random bits b1 and b2, the filter outputs b1 if and only if b1 6= b2. It is easy to see
that P (b1b2 = 01) = P (b1b2 = 10) = P0P1. Thus, the bias of the output data is 0. We further generalize
Von Neumann’s method and explain how to replace it’s conversion table in order to obtain a maximal bias
amplifier. Through this section we will restrict n to be of the form 2k, where k is a positive integer.

Lemma 5. Let V = {u ∈ Zn
2 | w(u) = k} and let (V0, V1) be an equal partition of V . Then P (V0) = P (V1) =

Cn
k

2 (P0P1)k.

Proof. Since (V0, V1) is an equal partition of V , we obtain that |V0| = |V1| = |V |
2 = Cn

k

2 . Note that P (u) =
(P0P1)k, for any u ∈ V . Combining these two facts we obtain the statement of the lemma. ut

Using Lemma 5 we can devise a corrector filter10 Vc by mapping all the elements of V0 and V1 to 0
and 1, respectively. In Algorithm 3 we provide an example of how to generate a pair (V0, V1).

Algorithm 3.
Input: An integer n
Output: An equal partition of V

1 Set V0 = V1 = ∅ and V = {u ∈ Zn
2 | w(u) = k}

2 Set α = max(V ) and β = min(V )
3 for i = 1, . . . , Cn

k /2 do
4 Set V0 = V0 ∪ {β} and V1 = V1 ∪ {α}
5 Update V = V \ {α, β}
6 Set α = max(V ) and β = min(V )
7 end
8 return (V0, V1)

We further show that the probabilities V0 and V1 get smaller if we increase n. This translates in a lower
bit rate if we apply Vc. Note that increasing n does not change the bias of the output data, thus making Vc

11

useless in practice if used only for correcting biases.
10 with the bias of the output data 0
11 for n ≥ 4
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Lemma 6. Let (V n
0 , V

n
1 ) be the output of Algorithm 3 for n = 2k. Then P (V n

0 ) > P (V n+2
0 ).

Proof. We remark that P (V n
0 ) > P (V n+2

0 ) is equivalent with

1 > (2k + 1)(2k + 2)
(k + 1)(k + 1) P0P1.

The proof is now similar to Corollary 1 and thus is omitted. ut

Figure 2 is a graphical representation of Lemma 6 (n ≤ 18). The x-axis represents the original bias ε,
while the y-axis represents P (V n

0 ).
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Fig. 2. Probability of V n
0 and V n

1 .

Note that when P0 = 0 or P1 = 0 we obtain P (V0) = P (V1) = 0. When constructing a bias amplifier
Va we must have the same behavior. Thus, the strings we use to construct Va need to contain at least a 0 and
an 1. When n = 2 the only strings that contain 0 and 1 are 01 and 10, but these are the basis for the Von
Neumann bias corrector. Hence, when n = 2 there are no bias amplifiers. This leads to the restriction
n ≥ 4. We again use a greedy approach (Algorithm 4) and devise a core for Va.

Algorithm 4.
Input: An integer n
Output: Two sets V0 and V1

1 Set V0 = V1 = ∅ and W = Zn
2 \ {0n, 1n}

2 Set α = minw(W ) and β = maxw(W )
3 for i = 1, . . . , Cn

k /2 do
4 Set V0 = V0 ∪ {α} and V1 = V1 ∪ {β}
5 Update W = W \ {α, β}
6 Set α = minw(W ) and β = maxw(W )
7 end
8 return (V0, V1)

Lemma 7. Let x be an integer such that
∑x

i=1 C
n
i < Cn

k /2 <
∑x+1

i=1 C
n
i . Define y = Cn

k /2 −
∑x

i C
n
i ,

W0 ⊂ {u ∈ Zn
2 | w(u) = x + 1}, W1 ⊂ {u ∈ Zn

2 | w(u) = n − x − 1}, such that |W0| = |W1| = y. Also, let
(V0, V1) be the output of Algorithm 4. Then the following properties hold
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1. V0 = {u | 1 ≤ w(u) ≤ x} ∪W0 and V1 = {u | n− x ≤ w(u) ≤ n− 1} ∪W1.
2. P (V0) =

∑x
i=1 C

n
i (P0)n−i(P1)i + y(P0)n−x−1(P1)x+1 and P (V1) =

∑x
i=1 C

n
i (P0)i(P1)n−i

+y(P0)x+1(P1)n−x−1.
3. If ε = 0 then P (S0) = P (S1) = 1

2 and if ε = 1
2 then P0 = 0 and P1 = 1.

Proof. The proof is a direct consequence of Algorithm 4 and thus is omitted. ut

Figure 3 is a graphical representation of Lemma 7 (n ≤ 18). The x-axis represents the original bias ε,
while the y-axis in Figure 3(a) and Figure 3(b) represents P (V n

0 ) and P (V n
1 ), respectively.
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Fig. 3. Von Neumann amplifier.

Lemma 8. Let (V0, V1) be the output of Algorithm 4. If we map all the elements of V0 and V1 to 0 and 1,
respectively, then we obtain a maximal bias amplifier Va.

Proof. According to Lemma 7 all the lowest and highest probability elements are in V0 and V1, respectively.
Thus, the statement is true. ut

Unfortunately, due to the nature of x and y, the best we could do is to heuristically provide a graphical
representation of Conjecture 1 (Figure 4). We could not theoretically prove it in general.

Conjecture 1. Let n be even, (Sn−1
0 , Sn−1

1 ) be the output of Algorithm 1 for n − 1 and (V n
0 , V

n
1 ) be the

output of Algorithm 4 for n. Denote by Mn = [P (V n
1 )− P (V n

0 )]/[P (V n
1 ) + P (V n

0 )]. Then Mn < Mn+2 and
P (Sn−1

1 )− P (Sn−1
0 ) < Mn.

Note that in the case of greedy amplifiers the metric [P (Sn−1
1 )− P (Sn−1

0 )]/[P (Sn−1
1 ) + P (Sn−1

0 )] is equal
to P (Sn−1

1 )− P (Sn−1
0 ). Thus, Conjecture 1 states that the Von Neumann amplifier for a given n is better at

amplifying ε than its greedy counterpart. We chose to state the conjecture such that it is true for all n ≥ 4,
but, from Figure 4, we can observe that as n grows the Von Neumann amplifier becomes better at amplifying
ε12. Note that in Figure 4 the x-axis represents the original bias ε, while the y-axis represents the values
P (Sn−1

1 )− P (Sn−1
0 ) (interrupted line) and Mn (continuous line).

12 e.g the Von Neumann amplifier for n = 8 is better than the greedy amplifiers for n = 3, . . . , 17
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Fig. 4. Comparing greedy amplifiers (interrupted line) with Von Neumann amplifiers (continuous line).

5 Applications

5.1 The Good

RNG standards [11, 13] require manufactures to implement some early detection mechanism for entropy
failure. Health tests represent one such method for detecting major failures. There are two categories of
health tests: startup tests and continuous tests. The former are one time tests conducted before the RNG
starts producing outputs, while the latter are tests performed in the background during normal operation.

We propose a generic architecture for implementing health tests (Figure 5). We first store data D (obtained
from the noise source) in a buffer, then we apply a bias amplifier to it and obtain data Da. Next, we apply
some lightweight tests on Da. If the tests are passed, the RNG outputs D, otherwise D is discarded. Note
that the bias amplifier can be implemented as a lookup table, thus obtaining no processing overhead at
the expense of O(2n) memory.

Noise source

Buffer

Bias amplifier

Buffer

Lightweight tests

Output Pass Discard
yes no

Fig. 5. Generic architecture for implementing health tests.
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In our instantiations we used the health tests implemented in Intel’s processors [10]. Intel’s health tests
Hi use a sliding window and count how many times each of the six different bit patterns (Column 1, Table 4)
appear in a 256 bit sample. An example of allowable margins for the six patterns can be found in Column 2,
Table 4. The thresholds mentioned in Tables 4 and 6 were computed using 106 256 bit samples generated
using the default RNG from the GMP library [3].

We first propose a continuous test using the greedy amplifiers described in Section 3. Depending on the
available memory we can use one of the greedy amplifiers and then apply Hi. Note that n should be odd due
to Lemma 4. If the health test are implemented in a processor it is much easier to use n = 4, 8, 16. From the
health bounds presented in Table 4, we can observe that the differences between data without amplification
and data with amplification are not significant. Thus, one can easily update an existing good RNG13 by
adding an extra buffer and an amplification module, while leaving the health bounds intact. Note that due to
the unpredictable number of output bits produced by a Von Neumann amplifier, greedy amplifiers are better
suited for continuous testing.

Table 4. Health bounds for greedy amplifiers (amp.).

Bit pattern Allowable number of occurrences per sample
without amp. n = 3 amp. n = 5 amp. n = 7 amp.

1 90 < m < 165 88 < m < 165 89 < m < 167 90 < m < 165
01 45 < m < 83 45 < m < 82 46 < m < 83 45 < m < 83
010 8 < m < 59 9 < m < 62 10 < m < 58 7 < m < 60
0110 1 < m < 38 2 < m < 34 2 < m < 35 2 < m < 34
101 10 < m < 59 10 < m < 61 10 < m < 60 9 < m < 63
1001 1 < m < 35 2 < m < 36 0 < m < 35 1 < m < 35

To test our proposed configuration and obtain some metrics (Table 5) we conducted a series of experiments.
More precisely, we generated 105000 256 bit samples using the Bernoulli distribution instantiated with
the Mersenne Twister engine (mt19937) found in the C++ random library [1]. Then, we applied the bias
amplifying filters from Table 4 and counted how many samples are marked pass. In the case of raw data, a
sample is marked pass14 if it passes the Hi test from Column 1, Table 4. In the case of bias amplification, if
a 256 bit buffer ba from Da passes Hi, all the input buffers that where used to produce ba are marked pass.
Note that to implement our filters we used lookup tables and thus we had no performance overhead.

From Table 5 we can easily see that when the bias is increased, the number of samples that are marked
pass is lower than Hi in the case of greedy amplifiers. Also, note that the rejection rate is higher as n
increases. Thus, enabling us to have an early detection mechanism for RNG failure.

If the design of the RNG has a Von Neumann module, then Von Neumann amplifiers can be used to devise
a startup test. Before entering normal operation, the Von Neumann module can be instantiated using the
conversion table of the corresponding amplifier. For example, when n = 4 one would use V0 = {0001, 0010, 0100}
and V1 = {0111, 1011, 1101}15 instead of V0 = {0011, 0101, 0110} and V1 = {1001, 1010, 1100}16. The resulting
data can then be tested using Hi and if the test pass the RNG will discard the data and enter normal
operation. Note that the first buffer from Figure 5 is not necessary in this case. Note that Von Neumann
amplifiers require n > 2, thus the speed of the RNG will drop. This can be acceptable if the data speed
needed for raw data permits it, the RNG generates data much faster than the connecting cables are able to
transmit or the raw data is further used by a pseudo-random number generator (PRNG).

13 that already has Hi implemented
14 The terminology used by Intel is that the sample is ”healthy”.
15 the sets used to define the maximal Von Neumann amplifier
16 the sets used to define the Von Neumann corrector
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Table 5. Greedy amplifiers (amp.) metrics.

ε
Number of samples marked pass

without amp. n = 3 amp. n = 5 amp. n = 7 amp.
0.00 104999 104997 105000 105000
0.01 104999 104991 104990 105000
0.02 104996 104979 104945 104965
0.03 104988 104925 104685 104384
0.04 104949 104631 103545 101661
0.05 104856 103620 99370 91413
0.06 104598 100668 88845 69832
0.07 104002 93840 69810 41286
0.08 102763 81660 46110 17724
0.09 100411 64332 23460 5404
0.10 96381 44262 9005 1043
0.11 89967 26142 2625 105
0.12 80849 12882 570 0
0.13 69164 5253 65 0
0.14 55856 1704 0 0
0.15 41777 420 0 0
0.16 29039 87 0 0
0.17 18410 21 0 0
0.18 10470 6 0 0
0.19 5331 0 0 0
0.20 2393 0 0 0
0.21 992 0 0 0
0.22 335 0 0 0
0.23 102 0 0 0
0.24 32 0 0 0
0.25 11 0 0 0
0.26 2 0 0 0

Table 6. Health bounds for Von Neumann correctors (corr.) and amplifiers (amp.).

Bit pattern Allowable number of occurrences per sample
n = 2 corr. n = 4 corr. n = 4 amp. n = 6 corr. n = 6 amp.

1 91 < m < 166 88 < m < 166 91 < m < 167 89 < m < 167 90 < m < 168
01 45 < m < 84 43 < m < 83 44 < m < 83 44 < m < 85 45 < m < 82
010 9 < m < 59 9 < m < 59 10 < m < 60 7 < m < 58 9 < m < 60
0110 2 < m < 37 1 < m < 33 1 < m < 36 2 < m < 35 2 < m < 33
101 8 < m < 61 10 < m < 58 11 < m < 61 10 < m < 57 8 < m < 60
1001 2 < m < 35 0 < m < 34 2 < m < 35 1 < m < 34 1 < m < 34

We also conducted a series of experiments to test the performance of the proposed startup test. This time,
we generated data until we obtained 1000 256-bit samples, applied the bias correcting/amplifying filters from
Table 6 and counted how many of these samples pass the Hi test from Column 1, Table 4. Another metric
that we computed is the number of input bits required to generate one output bit.

Note that in Table 7 we only wrote the n = 2 corrector, since for n = 4, 6 the results are almost identical.
From Table 7 we can easily observe that when the bias is increased the number of samples that pass Hi is
lower than the corrector in the case of Von Neumann amplifiers. As in the case of greedy amplifiers, we can
observe that the rejection rate is higher as n increases. The experimental data also shows that Von Neumann
amplifiers perform better than the greedy amplifiers when rejecting bad samples.
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Table 7. Von Neumann correctors (corr.) and amplifiers (amp.) metrics.

ε
Number of samples that pass Hi

n = 2 corr. n = 4 amp. n = 6 amp.
0.00 1000 1000 1000
0.01 1000 1000 1000
0.02 1000 1000 995
0.03 1000 998 940
0.04 1000 981 721
0.05 1000 919 322
0.06 1000 806 79
0.07 1000 567 7
0.08 1000 310 0
0.09 1000 134 0
0.10 1000 53 0
0.11 1000 11 0
0.12 1000 2 0

In Table 8 we can see that more data is required to generate one bit as n grows. When the bias increases,
we can observe that compared to Von Neumann correctors the throughput of the corresponding amplifiers is
better. Thus, besides having an early detection mechanism, it also takes less time to detect if an RNG is
broken if we use a Von Neumann amplifier.

Table 8. Von Neumann correctors (corr.) and amplifiers (amp.) throughput.

ε
Number of input bits per number of output bits

n = 2 corr. n = 4 corr. n = 4 amp. n = 6 corr. n = 6 amp.
0.00 3.9958 10.6646 10.6751 19.1374 19.2776
0.01 3.9978 10.6690 10.6817 19.1873 19.2548
0.02 4.0044 10.6852 10.6885 19.2513 19.2017
0.03 4.0106 10.7272 10.6873 19.3623 19.0892
0.04 4.0202 10.7956 10.6900 19.5129 18.9534
0.05 4.0352 10.8755 10.6952 19.7228 18.7933
0.06 4.0531 10.9713 10.6980 20.0087 18.5889
0.07 4.0755 11.1025 10.6876 20.3259 18.3405
0.08 4.1013 11.2489 10.6709 20.7180 18.0855
0.09 4.1264 11.3916 10.6841 21.1418 17.8104
0.10 4.1594 11.5733 10.6823 21.6591 17.5187
0.11 4.1956 11.7824 10.6862 22.2298 17.2154
0.12 4.2362 12.0062 10.7001 22.8814 16.9006

5.2 The Bad

One can easily turn the benign architecture presented in Figure 5 into a malicious architecture (Figure 6). In
the new proposed configuration, health tests always output pass and instead of outputting D the system
outputs Da.

The malicious configuration can be justified as a bug and can be obtained from the original architecture
either by commenting some code lines (similarly to [6]) or by manipulating data buffers (similarly to [7]). Note
that code inspection or reverse engineering will reveal these so called bugs. A partial solution to detection
can be implementing the architecture in a tamper proof device and deleting the code if someone tinkers
with the device. Another partial solution is embedding the architecture as a submodule in a more complex
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architecture (similarly to [6]). This solution is plausible due to the sheer complexity of open-source software
and the small number of experts who review them [5].

Noise source

Buffer

Bias amplifier

Buffer

Lightweight tests

Output Pass Discard
yes

Fig. 6. Generic architecture for infecting RNGs.

Another problem is that the RNG will output Das instead of Ds and this translates to lower data rates.
A possible solution to this problem is to use Da as a seed for a PRNG and then output the data produced
by the PRNG. Thus, raw data is never exposed. A problem with this approach is that in most cases the
PRNG will also mask the bias. The only case that is compatible with this approach is when the bias is large.
Therefore one can simply use an intelligent brute force to find the seed. Hence, breaking the system.

A more suitable approach to the aforementioned problem is to use a pace regulator [9]. This method
uses an intermediary buffer to store data and supplies the data consumer with a constant stream of bits.
Unfortunately, if data requirements are high, then the regulator will require a lot of memory and in some
cases the intermediary buffer will be depleted. Thus, failing to provide data.

A solution specific to greedy amplifiers is to implement in all devices a neutral filter after D and
output the resulting data Dn. Thus, when a malicious version of the RNG is required, one can simply replace
the conversion table of the neutral filter with the conversion table of the corresponding bias amplifier.
For example, when n = 3 one would change S0 = {000, 001, 010, 100} and S1 = {111, 110, 101, 100}17 with
S0 = {000, 001, 010, 100} and S1 = {111, 110, 101, 011}18. It is easy to see that in this case both Dn and Da

have the same frequency.
Since we are modifying the statistical properties of the raw data, a simple method for detecting changes is

black box statistical testing (for example using [2]). Thus, if a user is getting suspicious he can detect the
”bugs”. Again, a partial solution is to implement the malicious architecture as a submodule inside a more
complex architecture either in tamper proof devices, either in complex software. Thus, eliminating the user’s
access to raw data.

6 Conclusions

In our paper we studied and extended bias amplifiers, compared their performance and provided some
possible applications for them. Even thou in its infancy, this area of research provides insight into what can
go wrong with a RNG.

17 the sets used to define the neutral filter
18 the sets used to define the maximal greedy amplifier
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Future Work. A possible future direction would be to extended our results to other randomness extractors.
Of particular interest, is finding a method to turn a block cipher or a hash function19 into an amplifier.
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