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Abstract

In this paper, we focus on the research of non-interactive secure multi-party

computation (MPC). At first, we propose a fully homomorphic non-interactive

verifiable secret sharing (FHNVSS) scheme. In this scheme, shareholders can

generate any-degree polynomials of shared numbers without interaction, and

the dealer can verify whether shareholders are honest without interaction. We

implemented the FHNVSS scheme in Python with a detailed performance e-

valuation. For instance, when the request is a 10-degree polynomial of secret

value, generating a response takes about 0.0017263 s; verifying a response takes

about 0.1221394 s; recovering a result takes about 0.0003862 s. Besides, we

make a extension on the FHNVSS scheme to obtain a double non-interactive

secure multi-party computation, called BeeHive. In the BeeHive scheme, dis-

trustful players can jointly calculate a any-degree negotiated function, the input

of which are inputs of all players, without interaction, and each player can ver-

ify whether other players calculate honestly without interaction. To the best

of our knowledge, it is the first work to realize that players can jointly calcu-

late any-degree function, the input of which are inputs of all players, without

interaction.
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1. Introduction

Secure multi-party computation (MPC) [1] is a significant technology, where

distrustful players compute an agreed function of their inputs in a secure way.

Even if some malicious players cheat, MPC can guarantee the correctness of

output as well as the privacy of players’ inputs.5

There is a long-term problem that all existing information-theoretic secure

MPCs have large round and communication complexity [2, 17, 3, 7, 8, 9, 10, 11,

12, 13, 14, 15]. In these constructions, it is the case that multiplication gates

require communication to be processed (while addition/linear gates usually do

not). In CRYPTO 2016, Damg̊ard et al. [17] proposed that the number of10

rounds should be at least the (multiplicative) depth of the circuit, and the

communication complexity is O(ns) for a circuit of size s (n and s are the

number of participants and the number of multiplication gates respectively).

Specifically, the issue of round and communication complexity existed be-

cause all such protocols follow the same typical ”gate-by-gate” design pattern15

[17]: Players work through an arithmetic (boolean) circuit on secretly shared

inputs, such that after they execute a sub-protocol that processes a gate, the

output of gate is represented as a new secret sharing among these players. In

particular, a Multiplication Gate Protocol (MGP) basically takes random shares

of two values a, b from a field as input and random shares of ab as output.20

In this paper, we mainly focus on non-interactive secure MPC, where players

can jointly calculate a negotiated function, the input of which are inputs of all

players, without interaction.

1.1. Our Results

Our contributions are summarized as follows:25

• We present a fully homomorphic non-interactive verifiable secret sharing

(FHNVSS) scheme. In the scheme, shareholders can generate any-degree

polynomial of shared numbers without interaction, and the dealer can
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verify whether shareholders are honest without interaction. A security

analysis of FHNVSS schem is presented.30

• We present detailed performance evaluation of FHNVSS scheme by deploy-

ing it on a Ubuntu 16.04 environment laptop. Specifically, the proposed

FHNVSS was implemented in Python on a two core of a 2.60GHz Intel(R)

Core (TM) i7-6500U CPU with 8G RAM. We used high-speed Python

Pairing-Based Cryptography (PBC) library [30] to compute point multi-35

plication of elliptic curve and pairing, and utilized Python GNU Multiple

Precision (GMP) Arithmetic Library [31] to calculate big number com-

putation. According to the performance evaluation, the performance of

proposed FHNVSS is satisfactory. For instance, when the request is a 10-

degree polynomial of shared numbers, generating a response takes about40

0.0017263 s; verifying a response takes about 0.1221394 s; recovering a

result takes about 0.0003862 s.

• We propose a Double Non-interactive Secure Multi-party Computation,

called BeeHive. In this BeeHive scheme, distrustful players can jointly

calculate an any-degree negotiated function, the input of which are inputs45

of all players, without interaction, they can verify correctness of responses

sent by other players without interaction. A security analysis of BeeHive

is given.

1.2. Related Work

The round complexity and communication complexity of secure MPC have50

been two fundamental issues in cryptography. There are many studies about

these two aspects. In this subsection, we will present related work about our

study at first, then some comparisons between our previous paper [26] and this

paper will be presented.

Round complexity. The round complexity of an ordered gate-by-gate55

protocol must be at least proportional to the multiplicative depth of the circuit

[7]. The work of constant-round protocols for MPC was initially studied by
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Beaver et al. [18]. Subsequently, a long sequence of works constructed constant-

round MPCs (e.g., 2-round [19, 15, 27, 3], 3-round [20], 4-round [21, 7, 12],

5-round [22, 16, 8] and 6-round [22]). In particular, in Eurocrypt 2004, Katz60

and Ostrovsky [16] established the exact round complexity of secure two-party

computation with respect to blackbox proofs of security. In CRYPTO 2015,

Ostrovsky et al. [12] provided a 4-round secure two-party computation protocol

based on any enhanced trapdoor permutation, and Ishai et al. [15] obtained

several results on the existence of 2-round MPC protocols over secure point-to-65

point channels, without broadcast or any additional setup. In Ecrypt 2017, Garg

et al. [8] proposed several 5-rounds protocols by assuming quasi-polynomially-

hard injective one-way functions (or 7 rounds assuming standard polynomially-

hard collision-resistant hash functions). However, our scheme can solve any

request of any-degree polynomial of secret numbers in 1-round.70

Communication complexity. Initially, Rabin et al. [23] proposed that:

To securely compute a multiplication of two secretly shared elements from a

finite field based on one communication round, players have to exchange O(n2)

field elements since each of n players must perform Shamir’s secret sharing as

part of the protocol. After that, Cramer et al. [24] further proposed a twist on75

Rabin’s idea that enables one-round secure multiplication with just O(n) band-

width in certain settings, thus they reduced the communication complexity from

quadratic to linear. Recently, in CRYPTO 2016, Damg̊ard et al. [17] further

presented that: In the honest majority setting, as well as for dishonest major-

ity with preprocessing, any gate-by-gate protocol must communicate O(n) bits80

for every multiplication gate, where n is the number of players. While, servers

(shareholders) of our scheme can generate responses of any-degree polynomial

of secret numbers without any interaction.

Comparisons with [26]. Recently, in Ref.[26], we proposed a secure

multi-party computation scheme, where shareholders can generate shares of85

two-degree polynomials of secret numbers without interaction. Temporarily,

the secure MPC scheme proposed in [26] is called Pre-Scheme, and it has the

following limitations:
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• Servers (shareholders) can only generate shares of two-degree polynomial

of secret numbers. In other words, servers cannot get any shares of k-90

degree (k > 2) polynomial of secret numbers.

• Pre-Scheme used the pairing (pairing is an expensive computation) to

verify the correctness of responses (these responses are shares of two-degree

polynomial of secret numbers) sent by servers.

• [26] did not include a complete security analysis of Pre-Scheme.95

Compared with the Pre-Scheme, improvements of BeeHive are as follows:

- Theoretically, distrustful players can jointly calculate any-degree negoti-

ated function, the input of which are inputs of all players, without inter-

action.

- Each player can verify other players compute honestly. In this verification100

process, BeeHive does not use pairing to verify responses of players, while

Pre-Scheme used.

- We will present a complete security analysis of BeeHive. Moreover, this

proof is also valid for the Pre-Scheme [26].

Organization. The remainder of the paper is organized as follows. An overview105

of BeeHive is shown in Sec.2. Sec.3 briefly presents preliminaries. We introduce

BeeHive without verifiability and the verifiability of BeeHive in Sec.4.1 and

Sec.4.2, respectively. Moreover, blockchain-based BeeHive is shown in Sec.??.

A detailed performance evaluation is shown in Sec.5. A security analysis is

presented in Sec.6. Finally, a short conclusion is presented in Sect.8.110

2. An Overview of fully homomorphic non-interactive verifiable se-

cret sharing and BeeHive

In a fully homomorphic non-interactive verifiable secret sharing (FHNVSS)

scheme, components include a dealer and a certain number of shareholders

(servers). A (t, n) FHNVSS scheme works as follows:115
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• Step 1: The dealer generates n core-shares and a verification key (VK). Af-

ter that, he opens VK, then anyone (including servers) can verify whether

VK is correctly computed by dealer. If VK is invalid, then the dealer has

to regenerate the core-shares and VK, else the participants join in the next

step.120

• Step 2: The dealer secretly sends these n core-shares to n servers re-

spectively. After receiving a core-share, a server can verify whether his

core-share is valid by using VK. If the server’s core-share is invalid, then

he can ignore it and ask dealer to resend a core-share to him.

• Step 3: The dealer encrypts secret numbers into encrypted numbers, then125

he sends the encrypted numbers to servers.

• Step 4: When the dealer needs to get a result that is a polynomial of

secret numbers, he will send a query to n servers.

• Step 5: According to the query sent by dealer, an active server will in-

dependently generate a response with his core-share (this process has no130

interaction with other servers), then the server will send his response to

dealer securely.

• Step 6: After receiving responses, the dealer can verify whether responses

are correctly computed by corresponding servers. These verifications do

not need interaction with other servers. If a response is invalid, then the135

dealer can ignore this response or ask the corresponding server to resend

a response to him. Finally, the dealer can recover the desired result if he

can collect at least t correct responses.

The FHNVSS scheme mainly has the following features:

• Full homomorphism. Servers can perform efficient homomorphic addi-140

tions and multiplications on encrypted numbers without decrypting them.

• Confidentiality. Secret numbers shared by dealer are always confidential

as long as less than t servers are malicious.
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• Verifiability. Verification key, core-shares and responses are verifiable.

– Verification key. When the verification key (VK) is opened, anyone145

can verify its validity.

– Core-shares. When a server receives a core-share, he can verify

whether this core-share is correctly computed by the dealer. More-

over, in this method, the malicious dealer and incorrect core-shares

can be checked out.150

– Responses. When the dealer gets a response sent by a server, the

dealer would verify whether this response is correctly computed by

the server. In this way, malicious servers and incorrect responses can

be checked out.

By making an extension on the (n, n) FHNVSS scheme, we obtain a (n, n)155

BeeHive scheme, where n players can jointly calculate a negotiated function, the

input of which are numbers shared by all players. Each player independently

works as a dealer of (n, n) FHNVSS scheme to share his input among the n

players, and he also works as a server of (n, n) FHNVSS scheme to jointly

compute the negotiated function. The work process of a (n, n) BeeHive scheme160

is as follows:

• Step 1: Each player executes a (n, n) FHNVSS scheme independently.

He generates n core-shares and a verification key (VK). In these n core-

shares, one belongs to this player, and other n−1 will be sent to other n−1

players respectively in the next step. Each player opens his VK. Anyone165

(including other players) can verify whether the VK is correctly computed

by its generator. If a VK is invalid, its generator has to regenerate his

VK. Once all VKs are valid, all players join in the next step.

• Step 2: Each player secretly sends his n − 1 core-shares (except his own

core-share) to other n−1 servers respectively. After receiving a core-share,170

each player can verify whether this core-share is correctly computed by the

sender via sender’s VK. If a core-share is invalid, the receiver can ignore
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it and request corresponding sender to re-send it. Once all core-shares are

valid, all players join in the next step.

• Step 3: Each player encrypts his input into encrypted numbers, then he175

broadcasts these encrypted numbers.

• Step 4: Players negotiate a function, which will be jointly calculated by

players. Inputs of the negotiated function are inputs of all players.

• Step 5: According to the negotiated function, each player can generate a

response with his core-shares and encrypted numbers shared by players,180

then he broadcasts his response.

• Step 6: After receiving a response, each player can verify whether this

response is correctly computed via this sender’s VK. This verification pro-

cess does not need interaction. If a player receives an invalid response,

then he can ignore it or request the corresponding player to re-send it.185

• Once a player collects n valid responses, he will recover the correct result

of negotiated function.

3. Preliminaries

In this section, we hope to present basic cryptography techniques of BeeHive

and the adversary model.190

3.1. Shamir’s (t, n) Secret Sharing

Alice wants to secretly share a secret value s with n participants, and arbi-

trary t of the n participants can recover s, but less than t participants cannot get

anything. In order do this, Alice needs to generate n shares of s, then secretly

sends the n shares to the n participants respectively. After that, if someone can195

collect at least t correct shares, then he can recover the secret value s. This

problem can be resolved by Shamir’s (t, n) secret sharing (SSS) [28]. In this

subsection, we will present the working process of the SSS.
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Firstly, Alice randomly samples a polynomial f(x) of degree t-1 from Fp[x]

(p is a big prime number) as the following polynomial:200

f(x) = at−1x
t−1 + at−2x

t−2 + · · ·+ a1x+ s,

where s is the secret value as well as a1, · · · , at−1 ∈ Fp, at−1 6= 0.

Secondly, let P1, P2,...,Pn be the n participants and IDi (i = 1, 2, ..., n)

denote Pi’s address. Alice generates Pi’s share as follow:

Sharei = f(IDi),

where i=1, 2, ...,n. Then, Alice secretly sends Share1, Share2, ...,Sharen to

the n participants, respectively.205

Finally, if someone collects t correct shares, then he can use the lagrange

interpolation to reconstruct the polynomial f(x). Without loss of generality, let

the t shares be Share1, Share2, ...,Sharet. He can reconstruct the polynomial

f(x) as follow:

f(x) =

t∑
i=1

Sharei

t∏
j=1,j 6=i

x− IDj

IDi − IDj
.

Consequently, he can get s = f(0).210

Addition homomorphism of SSS. SSS naturally has the additional ho-

momorphism. It means that the sum of shares is the share of the sum of corre-

sponding secrets. Moreover, the threshold number is always immutable during

this process since the degree of the sum of shared polynomials is equal to the de-

gree of shared polynomials. Therefore, if a dealer can collect threshold number215

of sum shares, he can reconstruct the corresponding polynomial and then get the

sum of secrets. Consequently, SSS naturally has the additional homomorphism.

Multiplication homomorphism of SSS. Similarly, SSS naturally also

has the multiplicative homomorphism. It denotes that the product of shares is

the share of the product of corresponding secrets. However, the multiplicative220

homomorphism has a big limitation that is, with the degree growth of product

of secrets, the degree result polynomial will become larger and larger. Under

this process, it will eventually arrive at a threshold larger than n so that the
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final result cannot be reconstructed. Finally, the multiplicative homomorphism

of SSS is restricted.225

3.2. Pairing

In BeeHive, the pairing computation is only used in the verification process

of verification key. After that, pairing will not be used anymore. Namely, it

however will not be used in the verification processes of core-shares and respons-

es.230

Let G and GT be the cyclic groups of a large prime order q. G is the

generator of G. A cryptography pairing [29] e (bilinear map): G× G → GT is

a map that has a property of bilinearity. The bilinearity means that

e(aG, bG) = e(G,G)ab,

where a, b ∈ Zq.

Remark 1. In the proposed scheme, pairing is only used in verifying VK.235

3.3. Adversary Model

In this subsection, we present the adversary models of FHNVSS and BeeHive.

For a (t, n) FHNVSS scheme, which includes a dealer and n shareholders,

we have the following assumptions:

• The dealer could generate the verification key (VK) and core-shares dis-240

honestly, but he does not reveal any secret data to servers.

• A server could generate a response dishonestly, but the number of dishon-

est players is less than t.

For a (n, n) BeeHive scheme, which includes n players, we have the following

assumptions:245

• A player could generate the verification key (VK) and core-shares dishon-

estly, but he does not reveal any secret data to other players.

• A player could generate responses dishonestly, but he does not reveal his

input to other players.
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4. Construction of Fully Homomorphic Non-interactive Verifiable Se-250

cret Sharing Scheme

In this section, we will present a fully homomorphic non-interactive veri-

fiable secret sharing (FHNVSS) scheme. To clearly present the work process

of FHNVSS, we will present the FHNVSS scheme without verifiability at first.

Then we will give out the verifiability of FHNVSS. Finally, basic applications255

of FHNVSS combined with blockchain will be illustrated.

4.1. FHNVSS without verifiability

In this subsection, we will present the FHNVSS without verifiability, where

data-senders (dealer and servers) are all honest. Namely, all data-recepients

(servers and dealer) do not need to verify data received. While, in the next260

section, we will specifically show the verification processes of FHNVSS, where

the dealer and servers could be dishonest, and a (t, n) FHNVSS will be taken

as an example to present the scheme without verifiability. It contains a dealer

and n servers. Let Sri denote the i-th server and IDi be the ID of Sri.

4.1.1. Generation of Core-share, Request, Response and Result265

Assume the dealer wants to get V =
∑k

i=0 bis
i, where s is the key secret

value shared among servers. Therefore, the dealer needs to send request =

{bk, bk−1, ..., b1, b0} to every server. According to the request, a server can use

his data to generate a response of V for dealer. It must be pointed that servers

cannot get s or V in this process although they get the requst. Before presenting270

the real working process, we will provide some mathematical principles at first,

which can help to understand the process of generating responses.

• Let f(x) = wt−1x
t−1 +wt−2x

t−2 + ...+w1x+s be a random (t−1)-degree

polynomial over Fq.

• Let275

S(x) =

k∑
i=1

bif(x)i + b0.
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We know that S(0) =
∑k

i=0 bis
i since f(0) = s. However, the degree of

S(x) is kt− k.

• In order to reduce the degree of S(x) to t− 1 as well as keep its constant

term being
∑k

i=0 bis
i, we now present polynomials h2(x), h3(x), ..., hk(x).

They can be constructed as follows:280

– Randomly sample (t − 1)-degree polynomials c2(x), c3(x), ..., ck(x),

ci(0) = 0, i = 2, 3, ..., k.

– i from 2 to k, construct

hi(x) = f(x)i − ci(x)− si.

• Compute

H(x) = S(x)−
∑k

j=2 bjhj(x)

=
∑k

i=1 bif(x)i + b0 −
∑k

j=2 bjhj(x)

=
∑k

j=2 bj(cj(x) + sj) + b1f(x) + b0.

(1)

• H(x) is a polynomial of t − 1 since ck(x), ck−1(x),..., c2(x) and f(x) are285

of degree t− 1. Moreover, we have

H(0) =

k∑
i=1

bis
i + b0 = V.

Thereby, H(x) is the desired polynomial. H(x) can be reconstructed if someone

can obtain at least t correct shares of H(x), then he can obtain
∑k

i=0 bis
i by

computing H(x)|x=0.

Question: How does a server generate his share of the H(x)as his response?290

According to the above process of computing H(x), servers can work as

follows to help dealer to secretly obtain
∑k

i=1 bis
i + b0:

• Core-shares The dealer randomly samples f(x), c2(x), c3(x), ..., ck(x).

They are polynomials of degree t − 1 and f(0) = s, cj(0) = 0 (j =

2, 3, ..., k). Then, the dealer generates polynomials h2(x), h3(x), ..., hk(x)295
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as above process, and then generates core-share for each server. For in-

stance, Sri’s core-share is

core-sharei = {f(IDi)||h2(IDi)||h3(IDi)||...||hk(IDi)}

, i = 1, 2, ..., n. Then, the dealer secretly sends core-sharei to Sri.

• Request Assume that the dealer wants to get the result V =
∑k

i=0 bis
i.

Therefore, he will send a request to n servers to get feedback from them.300

Specifically, the request includes the following numbers:

{bk, bk−1, ..., b1, b0}

According to the request, an active server will know that the dealer wants

to get the result
∑k

i=1 biX
i + b0, where X is the secret value s. However,

servers do not know what X is.

• Responses If Sri wants to respond the request, he can use f(IDi),305

h2(IDi), h3(IDi),..., hk(IDi) to generate his response Respi (it is a share

of H(x)) as follow:

Respi =

k∑
j=1

bjf(IDi)
j + b0 −

k∑
j=2

bjhj(IDi).

Then, Sri sends Respi to the dealer secretly.

• Result If the dealer can collect t responses like Respi, then he can use the

lagrange interpolating to recover the t−1-degree polynomial H(x). Final-310

ly, the dealer can get the desired result
∑k

i=0 bis
i by computing H(x)|x=0.

Remark 2. We know that the degree of request
∑k

i=0 bis
i is k. However, the

value k is unlimited. Namely, the dealer can purposefully set the k according to

his requirements by providing enough core-shares to servers. Therefore, servers

of FHNVSS can process any-degree polynomials of secret numbers in theoretically315

as long as the dealer can provide enough core-shares to servers. For instance,

servers can generate responses of 50-degree polynomials of secret number if their

core-shares are similar to f(IDi), h2(IDi), ..., h50(IDi).
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4.1.2. FHNVSS with Sharing Encrypted Numbers

In this subsection, we will add a feature of sharing encrypted numbers on FH-320

NVSS. Specifically, the dealer has a set of secret numbers that are d1, d2, ..., dm.

After randomly sampling f(x) (f(x) is a (t-1)-degree polynomial and f(0) = s),

the dealer performs as follows:

• Encrypt d1, d2, ..., dm into a1, a2, ..., am as follows:

aj = dj − s, j = 1, 2, ...,m.

• Secretly sending core-sharei to Sri, i from 1 to n.325

• Open a1, a2, ..., am.

After that, the dealer will send a request about the encrypted numbers a1, a2, ..., am.

Then servers can generate corresponding responses according to the request.

Next, we will present how dealer and servers work with a1, a2, ..., am.

At first, assume that: i) the largest degree of addressable request is k, ii)330

the dealer has secretly sent {f(IDi)||h2(IDi)||h3(IDi)||...||hk(IDi)} to Sri, i =

1, 2, ..., n, and iii) he has also opened {a1, a2, ..., am}. Then, servers can help

the dealer to get any result like the following formula:

w∑
t=1

vt∏
j=1

µt,ddjt,d ,

where vt ≤ k and µt,d ∈ Fq, jt,d ∈ {1, 2, ...,m}. The dealer sends a string to

servers like the following one:335

w∑
t=1

vt∏
j=1

µt,d(X + ajt,d),

due to djt,d = s+ ajt,d .

After receiving the above request, Sri can transmit the string into a poly-

nomial of x as follow:

W (x) =

w∑
t=1

vt∏
j=1

µt,d(x+ ajt,d) =

k∑
j=0

bjx
j .
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At this moment, the polynomial W (x) can be seen as the request mentioned

in Sec. 4.1.1. Therefore, servers can use W (x) to generate responses, and the340

subsequent work is the same as the corresponding work mentioned in Sec. 4.1.1.

Remark 3. Servers and dealer may transmit the string of request into a ad-

dressable polynomial. After that, the processes of generating responses and

verifying responses are the same as the original FHNVSS. Servers cannot get

d1, d2, ..., dm from a1, a2, ..., am as long as the key secret value s is secretly pro-345

tected by servers. We will analyze the security of FHNVSS in Sec. 6.

4.2. Verifiability of FHNVSS

In Sec. 4.1, we described the FHNVSS without verification, and we assumed

that data-senders (dealer and servers) are honest. However, in practical ap-

plications, data-senders might incorrectly compute data which would lead to350

the corresponding data-recepients generates wrong results. Therefore, data-

recepients (servers or dealer) should verify whether received data (core-shares

or responses) are correctly computed by corresponding data-senders. In this

way, malicious data-senders and incorrect data can be checked out. Therefore,

in this section, we will present how data-recepients verify received data.355

Specifically, compared with the FHNVSS without verifiability mentioned

in Sec.4.1, the full FHNVSS scheme adds four parts: (i) the dealer generates

and opens the verification key; (ii) anyone can verify the correctness of the

verification key; (iii) the server can verify the correctness of his core-share; (iv)

the dealer can verify the correctness of responses sent by servers.360

Without loss of generality, we take the (2, 3) FHNVSS as an example (The

(t, n) FHNVSS can be similarly constructed since it is similar to (2, 3) FHN-

VSS.). The FHNVSS contains a dealer and three servers as well as a server

can respond at most k-degree request included in the query. Let Sr1, Sr2, Sr3

denote the three servers. Furthermore, the dealer can recover the desired result365

if at least two servers generate responses to the dealer honestly. Moreover, IDi

is the ID of Sri, i = 1, 2, 3. Furthermore, in the underlying contents, let g
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denote a generator of a cyclic group. We will use ga to compute a commitment

to hide a. In the next text, we will present how to verify verification key (VK),

core-shares and responses.370

4.2.1. Verify Verification Key

Before the dealer sends the core-shares to servers, he would generates a

verification key (VK) that will be used in the future verifications. The VK is

constructed as follows:

• The dealer randomly samples f(x), c2(x), ..., ck(x) from Fp[x]. f(x), c2(x), ..., ck(x)375

are polynomials of degree t− 1 as follows:

f(x) = bf2x
2 + bf1x+ s,

c2(x) = bc22 x
2 + bc21 x,

c3(x) = bc32 x
2 + bc31 x,

....

ck(x) = bck2 x
2 + bck1 x,

(2)

Then, the dealer computes hr(x) (r = 2, 3, ..., k) as follow:

hr(x) = f(x)r − cr(x)− sr =
∑2r

j=1 b
hr
j xj . (3)

• Let CMX denote the commitment of X. X may be a constant or polyno-

mial. Specifically,

– CMa = ga when a is a constant.380

– CM{h(x)} = {gbi |h(x) = brx
r+br−1x

r−1+...+b1x+b0, i = 0, 1, 2, ..., r}

when h(x) is a polynomial of x. For instance, if h(x) = b3x
3 + b2x

2 +

b1x+ b0, then

CM{h(x)} = {gb3 ||gb2 ||gb1 ||gb0}.

Let Hash(·) be a hash function. The dealer computes the following com-

mitments:385
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– CM{f(x)}.

– CM{cj(x)}, CM{hj(x)} and CMsj , j = 2, 3, ..., k.

– CMf(r)j , where r = Hash(CM{f(x)}) and j = 2, 3, ..., k.

• The verification key (VK) is as follow:

Verification key

CM{f(x)}

CM{c2(x)} CM{c3(x)} ... CM{ck(x)}

CM{h2(x)} CM{h3(x)} ... CM{hk(x)}

CMs2 CMs3 ... CMsk

CMf(r)2 CMf(r)3 ... CMf(r)k

Anyone (include servers) can verify the correctness of verification key (VK).390

The correctness of VK means that commitments of f(x), c2(x), h2(x), c3(x), h3(x), ..., ck(x), hk(x)

satisfy the following requirements:

• f(x), c2(x), c3(x), ..., ck(x) are polynomials of degree t− 1.

• cj(0) = 0, j = 2, 3, ..., k.

• hj(x) = f(x)j − cj(x)− sj , j = 2, 3, ..., k.395

Specifically, a verifier can verify VK as follows:

• j from 2 to k, if the following equation holds, then the commitment of sj

is valid.

e(CMs, CMsj−1) = e(CMsj , g).

If above equation does not holds for any j, the verifier would stop his

verifications of VK and concludes that the dealer did not generate the VK400

honestly.

• Compute r′ = Hash(CM{f(x)}).

• Compute gf(r′) by using the following equation:

gf(r′) = (CMbf2
)r
′2

(CMbf1
)r
′
CMs.
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• j from 2 to k, if the following equation holds, the commitment of f(r)j is

correct.405

e(gf(r′), CMf(r)j−1) = e(CMf(r)j , g).

If above equation does not holds for any j, the verifier would stop his

verifications of VK and concludes that the dealer did not generate the VK

honestly.

• j from 2 to k, the verifier computes gcj(r′) by using the following equation:

gcj(r′) =

2∏
t=1

(CM
b
cj
t

)r
′t
,

where CM
b
cj
t

is included in the CM{cj(x)} = {gb
cj
1 ||gb

cj
2 }.410

• j from 2 to k, compute ghj(r′) by using the following equation:

ghj(r′) =

2j∏
t=1

(CM
b
hj
t

)r
′t
,

where CM
b
hj
t

is included in the CM{hj(x)} = {gb
hj
1 ||gb

hj
2 ||...||gb

hj
2j }.

• j from 2 to k, if the following equation holds, then the commitments of

cj(x) and hj(x) are correct.

ghj(r′) = CMf(r)j/(g
cj(r′)CMsj ).

If above equation does not holds for any j, the verifier would stop his415

verifications of VK and concludes that the dealer did not generate the VK

honestly.

Finally, if the VK passes all the above verifications, then it can be seen valid.

After that, the verifier can use the VK to verify core-shares and responses.

4.2.2. Verify Core-shares420

In this subsection, we will present how Sri verifies his core-share. Assume

that the VK has been verified and it is valid. In the FHNVSS scheme, the

core-share of Sri are as follows:

f(IDi), h2(IDi), h3(IDi), ..., hk(IDi).
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Because commitments of coefficients of f(x), c2(x), ...,ck(x), h2(x), ..., hk(x)

have been provided in VK as well as VK is valid, so Sri can verify his core-425

shares with these commitments and IDi. Moreover, the verification processes of

f(IDi), h2(IDi), h3(IDi), ..., hk(IDi) are similar to each other. Therefore, we

are going to take the verification process of f(IDi) as an example. Specifically,

if the following equation holds, then the f(IDi) is correct.

gf(IDi) = (CMbf2
)ID

2
i (CMbf1

)IDiCMs.

Anyone of f(IDi), h2(IDi), h3(IDi), ..., hk(IDi) can be verified as the same pro-430

cess above. For another instance, if the following equation holds, then h3(IDi)

can be seen correct.

gh3(IDi) =

6∏
j=1

(CM
b
h3
j

)ID
j
i .

4.2.3. Verify Responses

In FHNVSS, the dealer can verify whether a response is correctly comput-

ed by the corresponding server. In this subsection, we will take the case of435

request being
∑k

i=1 bis
i + b0 as an example to present the process of verifying

response. Specifically, the dealer verifies the response Respi generated by Sri

(i = 1, 2, ..., n) as follows:

According to Sec. 4.1.1, we know

Respi =
∑k

t=2 bt(ct(IDi) + st) + b1f(IDi) + b0.

Consequently, the dealer can verify the Respi as follows:440

• Compute CMf(IDi) as follows:

CMf(IDi) =

2∏
j=0

(CMbfj
)ID

j
i .

• Compute CMct(IDi) (t = 2, 3, ..., k) as follows:

CMct(IDi) =

2∏
j=1

(CMb
ct
j

)ID
j
i .
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• If the following equation holds, then the response Respi is correct.

gRespi =

k∏
t=2

[CMct(IDi)CMst ]
bt [CMf(IDi)]

b1CMb0 .

5. Performance Evaluation of FHNVSS

In this section, we will present a performance evaluation of FHNVSS by de-445

ploying it on a Ubuntu 16.04 environment laptop. Specifically, the FHNVSS was

implemented in Python on a two core of a 2.60GHz Intel(R) Core (TM) i7-6500U

CPU with 8G RAM. We used high-speed Python Pairing-Based Cryptography

(PBC) library [30] to compute point multiplication of elliptic curve and pairing,

and utilized Python GNU Multiple Precision (GMP) Arithmetic Library [31] to450

calculate big number computation.

In the our experiments, FHNVSS was divided into seven functions: Gen VK,

Ver VK, Gen core-share, Ver core-share, Gen response, Ver response and Rec result.

These functions are used as follows:

• Gen VK: Dealer uses Gen VK to generate verification key (VK).455

• Ver VK: Servers can use Ver VK to verify the validation of VK.

• Gen core-share: Dealer uses Gen core-share to generate core-shares for

servers.

• Ver core-share: Servers can use Ver core-share and VK to verify core-

shares sent by dealer.460

• Gen response: Servers can use Gen response to generate responses accord-

ing to the request sent by dealer.

• Ver response: Dealer can use Ver response and VK to verify the validation

of responses sent by servers.

• Rec result: Dealer can use Rec result to recover desired result with the465

threshold number of correct responses.
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In practical applications, these functions belong to different participants

(dealer and servers). The affiliation of these functions is shown in Table 1.

Table 1: Functions of Participant

Participant Functions of Participant

Dealer
Gen VK, Gen core-share, Ver VK

Ver response, Rec result

Server Ver VK, Ver core-share, Gen response

Essentially, we performed two types of tests as follows:

• Test 1: We deployed (3,7) FHNVSS (a total 7 servers, and the desired470

result can be recovered with at least 3 valid responses) on our laptop. Let

k be the largest degree of addressable request, we set k from 4 to 10. We

tested the performance of Gen core-share, Gen VK, Ver core-share and

Ver VK. The results of Test 1 are shown in Table 2.

• Test 2: We also deployed (3,7) FHNVSS on our laptop. Let the largest475

degree of addressable request be constant 10. We set the degree of request

from 2 to 10. We tested the performance of Rec result, Gen response and

Ver response. The results of Test 2 are shown in Table 3.

6. Security Analysis of FHNVSS

In this section, we will take the (t, n) FHNVSS as an example to discuss the480

confidentiality of the proposed FHNVSS, and the highest degree of polynomial

that the dealer can query is k. Because the FHNVSS is a threshold cryptography

scheme, its confidentiality means that t − 1 malicious servers cannot jointly

recover the key secret value s, unless the number of servers reaches t. According

to Sec. 4.1, the secretly shared polynomials are:485

f(x), h2(x), h3(x), ..., hk(x).
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Table 2: Performance of algorithms of FHNVSS with the change of the largest

degree of addressable request (second)

k Gen core-share Ver core-share Gen VK Ver VK

4 0.000329733 0.003045559 0.127948046 0.148387432

5 0.000474215 0.004627943 0.155535466 0.237745762

6 0.000656843 0.005952125 0.201929808 0.368674755

7 0.000918154 0.007400751 0.259971857 0.536798954

8 0.001402143 0.010572672 0.317357063 0.766717434

9 0.001489878 0.012337208 0.375114679 1.056947708

10 0.002088308 0.014226913 0.435570243 1.331381321

11 0.002505302 0.017073154 0.493043661 1.681715012

12 0.003757325 0.021838427 0.572894812 2.194091082

We deployed (3,7) FHNVSS to show the performance of Gen core-share, Gen VK, Ver core-share

and Ver VK. k denotes the largest degree of addressable request. The finite field is based on a

256-bit big prime number.

Moreover, each honest server secretly keeps his core-share. For instance, the

server Sri (i = 1, 2, ..., n) secretly keeps his core-share:

f(IDi), h2(IDi), h3(IDi), ..., hk(IDi).

Besides, we know cj(x) = f(x)j − hj(x)− sj (j = 2, 3, ..., k) due to hj(x) =

f(x)j − cj(x)− sj as mentioned in Sec. 4.1. Therefore, secretly shared polyno-

mials are equivalent to:490

f(x), c2(x), c3(x), ..., ck(x).

The t−1 malicious servers do not know anything about f(x), c2(x), c3(x), ..., ck(x)

except that f(x), c2(x), c3(x), ..., ck(x) are polynomials of degree t−1 and cj(0) =

0, j=2,3,...,k. In other words, they only know f(x), c2(x), c3(x), ..., ck(x) have

the following expressions, but they do not know the coefficients of the following
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Table 3: Performance of algorithms of FHNVSS with the change of degree of

request (second)

Degree of request Rec result Gen response Ver response

2 0.000478268 0.001681805 0.007747173

3 0.000378373 0.001621246 0.016930582

4 0.000452042 0.001915455 0.023883823

5 0.000365019 0.001704931 0.032199383

6 0.000339508 0.001774073 0.049633026

7 0.000391245 0.001723289 0.065804005

8 0.000404119 0.001615524 0.081865788

9 0.000323057 0.001732349 0.096564293

10 0.000386238 0.001726389 0.122139454

We deployed (3,7) FHNVSS with the largest degree of addressable request being 10 to show the

performance of Rec result, Gen response and Ver response. Moreover, the finite field is based on

a 256-bit big prime number.

equations.495

f(x) = bft−1x
t−1 + bft−2x

t−2 + ...+ bf1x+ s,

c2(x) = bc2t−1x
t−1 + bc2t−2x

t−2 + ...+ bc21 x,

c3(x) = bc3t−1x
t−1 + bc3t−2x

t−2 + ...+ bc31 x,

...... .. ................................................

ck(x) = bckt−1x
t−1 + bckt−2x

t−2 + ...+ bck1 x.

Essentially, we want to discuss why the t − 1 malicious servers cannot re-

cover s by using their core-shares although they work together. Without loss of

generality, we assume that Sr1, Sr2, ..., Srt−1 are the t− 1 malicious servers as

well as other servers are honest. According to Sec. 4.1, we know that core-share

kept by Sri (i = 1, 2, ..., t−1) is f(IDi), h2(IDi), h3(IDi), ..., hk(IDi) as shown500

in Table 4.

In order to solve coefficients of f(x), c2(x), c3(x), ..., ck(x), the t−1 malicious
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Table 4: Core-shares of servers

Server Sr1 Sr2 ... Srt−1

Core-shares

f(ID1) f(ID2) ... f(IDt−1)

h2(ID1) h2(ID2) ... h2(IDt−1)

h3(ID1) h3(ID2) ... h3(IDt−1)

... ... ... ...

hk(ID1) hk(ID2) ... hk(IDt−1)

servers can construct linear equations by using their core-shares as follows:



b
f
t−1

(ID1)t−1 + ... + b
f
1 ID1 + s = f(ID1)

b
f
t−1

(ID2)t−1 + ... + b
f
1 ID2 + s = f(ID2)

............................. ...........

b
f
t−1

(IDt−1)t−1 + ... + b
f
1 IDt−1 + s = f(IDt−1)

(4)



b
c2
t−1

(ID1)t−1 + ... + b
c2
1 ID1 + s2 = f(ID1)2 − h2(ID1)

b
c2
t−1

(ID2)t−1 + ... + b
c2
1 ID2 + s2 = f(ID2)2 − h2(ID2)

............................. ...........

b
c2
t−1

(IDt−1)t−1 + ... + b
c2
1 IDt−1 + s2 = f(IDt−1)2 − h2(IDt−1)

(5)



b
c3
t−1

(ID1)t−1 + ... + b
c3
1 ID1 + s3 = f(ID1)3 − h3(ID1)

b
c3
t−1

(ID2)t−1 + ... + b
c3
1 ID2 + s3 = f(ID2)3 − h3(ID2)

............................. ...........

b
c3
t−1

(IDt−1)t−1 + ... + b
c3
1 IDt−1 + s3 = f(IDt−1)3 − h3(IDt−1)

(6)

...........................................



b
ck
t−1

(ID1)t−1 + ... + b
ck
1 ID1 + sk = f(ID1)k − hk(ID1)

b
ck
t−1

(ID2)t−1 + ... + b
ck
1 ID2 + sk = f(ID2)k − hk(ID2)

............................. ...........

b
ck
t−1

(IDt−1)t−1 + ... + b
ck
1 IDt−1 + sk = f(IDt−1)k − hk(IDt−1)

(7)

For Eq.4, there are t − 1 equations and t variables. The t variables are505

bft−1, b
f
t−2, ..., b

f
1 , s. Moreover, according to the theory of linear algebra, we know

that s is a free variable. Namely, s can be any number. Consequently, s cannot

be determined by Eq.4.

For Eq.5, there are t − 1 equations and t variables. The t variables are

bc2t−1, b
c2
t−2, ..., b

c2
1 , s. Moreover, according to the theory of linear algebra, we can510

also know that s is a free variable. Consequently, s cannot be determined by

Eq.4 and Eq.5.
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Similarly, for Eq.6 and Eq.7, s is a free variable still. Consequently, s cannot

be determined by Eq.4, Eq.5, Eq.6..., Eq.7.

Finally, s is always un-determined, therefore, the t − 1 malicious servers515

cannot recover the key secret value s although they jointly work together.

7. BeeHive

In this section, we will make an extension on (n, n) (n > 2) FHNVSS to

obtain a double non-interactive multi-party computation scheme, called Bee-

Hive. In a BeeHive scheme, players jointly compute a negotiated function, the520

input of which are inputs of all players, but each player does not reveal his own

input. Because the MPC scheme BeeHive is based on the FHNVSS, properties

of non-interactive and verifiable are similar to FHNVSS. That is to say, play-

ers can jointly compute with inputs of all players without interaction; players

can verify VK, core-shares and responses without interaction. The verification525

process of BeeHive can be simply obtained from FHNVSS. The construction of

BeeHive will be presented first, then we will discuss the security of BeeHive.

7.1. Construction of BeeHive

A BeeHive scheme includes n (n > 2) players. Each player works as a dealer

of (n, n) FHNVSS to confidentially share his data with other players; he also530

works as a server of FHNVSS to jointly compute a specified function, the input

of which are data shared by all players. In the following content, we will take a

(n, n) BeeHive with n players as an example to present the work process of the

scheme. Let these n players be P1, P2, ..., Pn.

• Step 1: i from 1 to n, Pi executes a (n, n) FUNVSS scheme among the535

n players. He generates a verification key (V Ki) and three core-shares

(CSi,1, CSi,2, ..., CSi,n). He opens the V Ki and securely sends CSi,j (j =

1, 2, ..., n, j 6= i) to Pj , and he securely keeps the CSi,i. The V Ki can

be verified by other players. If V Ki is invalid, Pi has to re-generate this

V Ki. CSi,j can be verified by Pj . If CSi,j is invalid, Pj can request Pi540
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to re-send a CSi,j until a valid core-share is received. Once each player

opens a valid verification key and sends valid core-shares to other players,

they join in the next step.

• Step 2: i from 1 to n, Pi use his secret numbers (ni,1, ni,2, ..., ni,mi
) to

generates his encrypted numbers (encni,1, encni,2, ..., encni,mi) and sends545

them to other players. These numbers are as Pi’s input of the function

negotiated by players in the next step.

• Step 3: These n players negotiate a function, which will be jointly calcu-

lated by them. The input this function are encrypted numbers shared by

them. The function is a sum of n polynomials as follow:550

n∑
t=1

ft(ni,1, ni,2, ..., ni,mi
),

where ft is a polynomial.

• Step 4: According to the negotiated function, i from 1 to n, Pi generates a

response respi with his core-shares (CS1,i, CS2,i, ..., CSn,i) and encrypted

numbers shared by all players. Then he broadcasts his response to other

players.555

• Step 5: After receiving a response, a player verifies it with V K1, V K2, ..., V Kn.

If the response is invalid, the player can request the corresponding player

re-send a response until a valid response is received.

• Step 6: If a player collects n valid responses, he can use Lagrangian inter-

polation to recover the correct result of negotiated function.560

7.2. Security analysis of BeeHive

In this subsection, we will discuss security of (n, n) BeeHive.

• i from 1 to n, Pi’s inputs are always confidential as long as he does not

reveal CSi,i. Pi’s inputs are shared among P1, P2, ..., Pn via a (n, n) FH-

NVSS. A player can recover Pi’s inputs iff he can get all core-shares of Pi565
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(CSi,1, CSi,2, ..., CSi,n). However, this player cannot get (CSi,1, CSi,2,

..., CSi,n) as long as Pi does not reveal his CSi,i. Consequently, Pi’s data

are always confidential as long as he does not reveal his own CSi,i.

• A player cannot obtain other players’ input from the result of specified

function. The number of players is at least three and the input of function570

negotiated by players includes inputs of all players. Therefore, a result of

negotiated function is a combination of inputs of more than three players.

Each player does not reveal his input to others. Because a player only

has his own input, the result of negotiated function includes at least two

undetermined inputs for this player. Consequently, a player cannot obtain575

other players’ inputs from the result of negotiated function.

8. Conclusions

In this paper, a novel double non-interactive multi-party computation (Bee-

Hive) is proposed. Specifically, it realized that shareholders can help dealer

to calculate any-degree polynomial of secret numbers in a non-interactive way,580

and the dealer can verify the correctness of responses sent by shareholders in

the same way. Moreover, a detailed performance evaluation is presented. Fi-

nally, we presented a security proof of BeeHive, which proved that shareholders

cannot get any information if the number of malicious shareholders is less than

the threshold number.585
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