
Steady

A Simple End-to-End Secure Logging System

Tobias Pulls and Rasmus Dahlberg

Karlstad University, Dept. of Mathematics and Computer Science, Sweden
first.last@kau.se

Abstract. We present Steady: an end-to-end secure logging system en-
gineered to be simple in terms of design, implementation, and assump-
tions for real-world use. Steady gets its name from being based on a
steady (heart)beat of events from a forward-secure device sent over an
untrusted network through untrusted relays to a trusted collector. Prop-
erties include optional encryption and compression (with loss of confi-
dentiality but significant gain in goodput), detection of tampering, re-
lays that can function in unidirectional networks (e.g., as part of a data
diode), cost-effective use of cloud services for relays, and publicly verifi-
able proofs of event authenticity. The design is formalized and security
proven in the standard model. Our prototype implementation (≈ 2, 200
loc) shows reliable goodput of over 1M events/s (≈160 MiB/s) for a re-
alistic dataset with commodity hardware for a device on a GigE network
using 16 MiB of memory connected to a relay running at Amazon EC2.

Keywords: Secure Logging · Protocols · Applied Cryptography.

1 Introduction

Logs play a vital role during the operational phase of systems by providing a
communication channel that gives insights into how systems are operating, such
as informing about errors, warnings, or potential security events. Such informa-
tion have far reaching implications in today’s increasingly digitalised world, for
example in criminal cases due to so-called Data Retention laws mandating log-
ging for law-enforcement purposes1 or for general auditing of systems [11]. Due
to the increasing number of systems in operation, logs are often transported
over a network—potentially stored temporarily by one or more relays—to be
collected for centralised analysis that correlate logs, e.g., by using a security in-
formation and event management (SIEM) system. The centralised system serves
as the primary means of monitoring operations. Absence of logs from a system
expected to be operating is a case for concern and typically closely monitored.

Because logs are important they have to be secured and the literature con-
tains a number of contributions on secure logging, addressing a wide-range of as-
pects ranging from schemes for efficient integrity protection to complete systems

1 For example Directive 2006/24/EC http://europa.eu/!BM68tq, accessed 2018-08-08.

http://europa.eu/!BM68tq

2 T. Pulls and R. Dahlberg

that typically considers log confidentiality in addition to integrity protection.
Secure logging schemes that do not provide confidentiality typically have to be
combined at least with some form of transport security (e.g., TLS) to provide
comparable security properties to secure logging systems. Further, some secure
logging systems that encrypt logs still need other properties from transport se-
curity protocols for real-world use, such as replay protection or communication
partner authenticity.

In this paper, we present a secure logging system based on several obser-
vations made earlier. First, our system is named Steady because it relies on a
steady (heart)beat of new log events from the generating system for some of its
security properties. As mentioned before, monitoring uptime of critical systems
is already common. Second, Steady supports untrusted relays for intermediate
storage during log transport. This opens up for using public cloud services as
relays. Further, for real-world deployment Steady does not rely on any other
transport security protocol like TLS for its security properties. Finally, Steady
supports efficient publicly verifiable proofs of event authenticity to support use-
cases where third-parties need to verify the authenticity of logged events.

Our contributions are:

– The design of a simple secure logging system named Steady that supports
untrusted relays and that bases part of its security on the time between
blocks of events (Section 2). The system can be used with a data diode in
high security settings and is well suited for outsourcing to cloud providers.

– A formal definition of Steady with proofs of security in the standard model
for event secrecy, event integrity, delayed event deletion-detection, and un-
forgeable proofs of event authenticity (Sections 3-4). The security reduces to
standard properties of the primitives for hashing, signing, and encrypting.

– A prototype implementation in C and Go instantiated using primitives from
libsodium for a 128-bit security level together with a performance evaluation
focused on event generation for different relay locations (Section 5). Our
evaluation shows reliable goodput of over 1M events/s (≈160 MiB/s) for a
realistic dataset with commodity hardware for a device on a GigE network
using 16 MiB of memory connected to a relay running at Amazon EC2.

Besides the sections referenced above, related work is presented in Section 6
and Section 7 concludes this paper.

2 Overview of Steady

Figure 1 shows our setting with three different types of systems:

Device a forward-secure system that generates events as part of a log.
Relay an untrusted system that stores events temporarily. A relay has finite

storage, so events must be dropped due to space constraints.
Collector a trusted system that collects and verifies events. We assume that a

collector has sufficient space and processing power available.

Without loss of generality we consider a single relay but stress that Steady
supports multiple relays by cascading writes (as shown later).

Steady: A Simple End-to-End Secure Logging System 3

Device Relay Collector
events events

verify

Fig. 1: The setting of Steady with device, relay, and collector systems.

2.1 Threat Model

Our ultimate goal is end-to-end security from device to collector while consider-
ing all relays and the network as active adversaries during logging. The collector
is assumed to be trusted. Further, we consider the device forward secure: it is
initially trusted from setup up until a point in time t when an adversary com-
promises the device. We only aim to secure events generated a delta δ time prior
to compromise: this is because we base some security properties of Steady on
heartbeats of new blocks from the device. For example, if t = 120 seconds since
setup and δ = 10 seconds, then events generated before t−δ = 110 seconds after
setup are fully protected. We stress that δ is user-configurable and a practical
trade-off (discussed later in Section 4) that enables us to make Steady simple.

2.2 Properties and Requirements

Informally, events should not be possible to tamper with and optionally also con-
fidential (encrypted). It should be possible to buffer events at the device and op-
tionally compress them, despite leaking information2. Compression and encryp-
tion are optional because in some settings encryption may not be needed—e.g.,
if traffic is wrapped in some other secure transport protocol—and compression
typically gives a significant throughput improvement. Regardless of encryption
or compression, it should be possible to produce an independent proof of each
event that be used to convince a third party of the authenticity of the event.

Beyond being untrusted, relays should be able to have fixed storage for sake
of operational concerns (e.g., to fit all relayed data in memory) and to be able to
optimally use Cloud Service Providers like Amazon EC2. After setup we want
no direct communication between device and collector: this ensures that a relay
can be part of a unidirectional network for high-security (air-gapped) settings.

2.3 Setup and Policy Creation

Figure 2 shows the setup of Steady. It starts with the collector generating a
public key (pub) that is sent to the device together with a timeout value and
the minimum storage space for its relay. The timeout specified the maximum
amount of time between events from the device, described further later. The
device commits to the parameters by creating a signed policy with a key-pair
that has been verified to belong to the device out of band. A policy is valid

2 Compression breaks semantic security and depending on setting completely neglects
any encryption [7], as shown, e.g, in the CRIME and BREACH attacks.

4 T. Pulls and R. Dahlberg

for the lifetime of logging. The policy is propagated to the untrusted relay. The
relay verifies that the storage parameter in the policy is acceptable and that the
signature is valid. Finally, the collector polls the relay for the policy and verifies
it. Each entity has its respective state (defined later), where notably the private
and signing keys are only known to the respective entities that generated them.

Device

Collector

Relay
p
a
ra

m
s

create policy

send policy verify policy

rece
ive

poli
cy

verify policy

Fig. 2: The setup of Steady resulting in a signed policy of parameters.

2.4 Device Logging and Creating Blocks

The device generates a block of events periodically, at least when the timeout
triggers. Blocks are given an incremental index by the device together with other
metadata such as a timestamp, a signature, and the root of a Merkle tree over
all events [10]. A more precise definition is given later. Events are kept in a
queue as shown in Figure 3 before being included in a block. Several events in
the same block makes compression more efficient and amortises costs related to
cryptographic operations during block generation and network transport.

Bi . . . Bn
write block(s)

cr
ea

te
blo

ck

Events
dequeue enqueue

drop

Fig. 3: The device’s event and block generation flow.

Note that if a device has to drop events, e.g., due to memory constraints,
then they should be dropped from the queue and not from potentially buffered
blocks not yet written to the relay. While it is possible for the device to recreate
blocks not yet written to the relay, it is relatively costly to do so. Any metadata
to report to the collector about dropped events can be sent as part of an event.

Steady: A Simple End-to-End Secure Logging System 5

2.5 Writing to and Reading From a Relay

When a device writes one or more blocks to the relay, the relay first sorts the
blocks based on index, and then processes one block at the time as shown in
Figure 4. The relay verifies the signature on the block and only accepts if the
block has been signed with the same key as the policy. Then it ensures that the
block is the next (in terms of index) block based on the previous block and if
so makes space for the block before accepting (storing) it. To keep at most the
minimum storage space in the policy, the relay stores a (FIFO) queue of blocks.

signed next space accept

tail-dropreject

true true true

falsefalse

false

block

Fig. 4: The relay’s event write flow.

A read from the relay is done based on a supplied block index by traversing
the queue and sending each block with an equal or greater index. Because a relay
is defined as a FIFO queue with read and write operations, multiple relays can
be used where writes cascade and the collector reads from the last relay.

2.6 Collector Verification

The collector periodically polls for new blocks from the relay based on the latest
read block index in its state. Because each block is signed we know that events
within it cannot be tampered with, so verification focuses on ensuring we get the
expected blocks. Figure 5 shows the three possible correct cases when reading
from a relay (with read index y): (a) no new blocks, (b) a sequence of new blocks
directly following the last read block (x+1 = y), or (c) a disconnected sequence.

bx

last read

old

(a) Empty

bx

last read

by . . . bn

sequential

(b) Connected sequence

bx

last read

. . . bz . . . bn

gap

(c) Disconnected sequence

Fig. 5: The three possible correct cases when reading blocks.

6 T. Pulls and R. Dahlberg

Based on the above three cases we sketch a verification algorithm verify that
verifies that we read the expected blocks from the relay:

Empty Valid if the time since the last block is less then the timeout.
Connected sequence Valid if the timestamp of the most recent returned block

is timely given the current time at the collector and the timeout.
Disconnected sequence Same as the connected sequence case with the addi-

tional requirement that the size of all returned blocks is consistent with the
minimum storage space in the policy.

The complete formally defined algorithm is available in Appendix A.

2.7 Proof Generation and Verification for Event Authenticity

As mentioned in Section 2.4, each block is signed by the device and contains the
root of a Merkle tree over all events in the block. A proof of event authenticity is
simply a Merkle audit path to an event in question and metadata from the block
to verify the signed root from the device. Verifying the proof involves verifying
the signature and comparing the computed Merkle root from the audit path to
the one signed by the device.

3 Formal Model of Steady

We formally model Steady, starting with core definitions and the logging scheme
in Section 3.1 followed by properties in Section 3.2.

3.1 Core Definitions and the Logging Scheme

We define a policy (Definition 1), block (Definition 2), and proof (Definition 3).

Definition 1 (Policy). Given a public key pub, a signing key-pair (sk, vk), a
timeout t, a minimum space s, the current time τ , and a policy identifier k, a
policy P is defined as:

{k, vk, pub, t, s, τ, σ}

where σ is a signature using sk over all other values.

Nothing prevents the relay from storing more blocks than the minimum
space s. The policy identifier k should be unique per device. The timeout t
is the maximum period of time (inclusive) between blocks being created by the
device. The current time τ is included as relevant metadata and a reference for
when the first block should be expected the latest (relative to t).

Definition 2 (Block). Given a policy identifier k, a signing key sk, a list of
events e with the Merkle tree root r, an optionally compressed and then encrypted
payload p← e‖IV, a block index i, two boolean flags indicating encryption fe and

Steady: A Simple End-to-End Secure Logging System 7

compression fc, the size of the previous block `p, an initialization vector IV, and
the current time τ , a block B is defined as:{

i, `c, `p,Hk(p), φ← Hk
(
i‖`c‖`p‖Hk(p)‖fe‖fc

)
, ι← Hk(r‖IV), τ, σ, p

}
where σ ← Sig(sk, φ‖ι‖τ) and `c is the resulting size of the current block. We
refer to φ as the block header hash and ι the root hash.

Note that Hk is a keyed hash function, where the key puts the hashes of different
blocks belonging to different policies into different domains. We need the previous
block size `p in the verification algorithm, see Appendix A. Based on a chosen
or guessed e, an adversary can reconstruct the Merkle tree root r′ and check if
it matches r ∈ B. Since this would violate event secrecy (defined later), a block
includes H(r‖IV) instead of r itself. IV is part of the encrypted payload. Note
that the signature does not directly cover p, and that the block sans the payload
is constant size. This enables a block to be efficiently streamed, such that the
verifier can verify the signature using only the block header and then know how
large the remainder of the block should be (using `c). The hash of the payload
(H(p)) in the header authenticates it once read. Finally, the structure ensures
compact proofs of event authenticity that does not leak block metadata3.

Definition 3 (Proof of event authenticity). Given a block B and an event
e ∈ B, a proof Π is defined as: {

IV, φ, τ, σ,
#»

h e
}

where σ ∈ B and
#»

h e is a Merkle audit path to e that enables the computation of
ι using IV, which in turn is signed by σ together with τ and φ.

Having defined a policy, block, and proof we can now define a Steady logging
scheme (Definition 4):

Definition 4 (Steady scheme). Given a security parameter λ, a time-skew
security parameter δ, an encryption key-pair (priv, pub), a signing key-pair (sk, vk),
and a policy P , we define a collector state Sc as {δ, priv, P, i, τ }, a device state Sd

as {pub, sk, P, i, τ, `p}, and a relay state Sr as {P,B}. Here i is the (expected)
next block index, τ the time of the most recent block, `p the size of the previ-
ous block, and B a sequence of blocks; initially i is set to 0, `p to 0, B to an
empty sequence, and τ to the creation time of P . A Steady scheme S is com-
posed of seven algorithms {setup, block, read,write, verify, proofGen, proofVer} that
are polynomial in space and time:

– Sc, Sd, Sr ← setup(λ, δ, t, τ, s): given two security parameters λ and δ, a time-
out t ∈ N, the current time τ , and a space s ∈ N, setup runs (priv, pub)
←$KGen(1λ) and (sk, vk)←$KGen(1λ). Next, a policy P is generated from
k←$ 1λ, pub, (sk, vk), t, τ , and s. The output is the initial states Sc, Sd, Sr.

3 The block metadata i, `c, and `p are hashed together with the hash of the payload
that is likely high entropy, unlike the metadata.

8 T. Pulls and R. Dahlberg

– B,S′d ← block(Sd, e, τ, fe, fc): given a device state Sd, a list of events e,
the current time τ , an encryption flag fe, and a compression flag fc, block
generates the next block B based on Sd, τ , and the flags. The output is B
and a refreshed state S′d such that i′ = i+ 1, `′p = `c, and τ ′ = τ .

– β ← read(Sr, i): given a relay state {P,B} ← Sr and a block index i, read
outputs a sequence of blocks β ←{Bj | Bj ∈ B ∧ j ≥ i}.

– S′r ← write(Sr, β): given a relay state {P,B} ← Sr and a connected sequence
of blocks β, write outputs a refreshed state S′r with B′ ⊆ B ∪ β. B′ should
contain at least as many of the most recent blocks as implied by the minimum
space parameter in P .

– α, S′c ← verify(Sc,B, τ): given a collector state Sc, a sequence of blocks B, and
the current time τ , verify determines with respect to Sc and τ if every B ∈ B
is a valid block and that no block is missing. The output is an answer α ←
{false, true} together with a refreshed state S′c that matches i+ 1 and τ from
the most recent valid block.

– Π ← proofGen(B, e, Sc): given a block B, an event e ∈ B and collector state
Sc used to retrieve and verify B, proofGen outputs a membership proof Π.

– α ← proofVer(Π, e, vk): given a proof Π, an event e, and a verification key
vk, proofVer outputs an answer α←{false, true} that is true iff Π shows that
vk authenticates e, otherwise false.

3.2 Properties

For the following correctness and security definitions, we define a helper algo-
rithm {false, true} ← check(Sr, τ) that outputs true iff the state Sr is without
deletions that violate the policy P ∈ Sr given the (correct) current time τ .

Definition 5 (Correctness). Let S be an instance of the Steady logging scheme
{setup, block, read,write, verify, proofGen, proofVer}. For all λ, δ, s, t ∈ N, policy
creation time τ , and Sc, Sd, Sr ← setup(λ, δ, t, τ, s) that are followed by poly-
nomially many invocations of block, write, and verify to obtain a sequence of
blocks B and the intermediate states Sc, Sd, Sr, then S is correct iff:

Pr

[
∀e ∈ ∀B ← read(Sr, i ∈ Sc) : check(Sr, τ) ∧ ¬verify(Sc,B, τ)

∨¬proofVer
(
Π ← proofGen(B, e, Sc), e, vk ∈ Sc

)] ≤ negl(λ)

In the following security definitions, we consider an adversary that controls
an instance of the Steady scheme adaptively. Whereas access to Sr is unlimited
with write, the states Sc and Sd can only be influenced through oracle access:

– B ← oblock(e, fe, fc): given a list of events e, encryption flag fe, and com-
pression flag fc, oblock runs block with the provided input, the most recent
device state Sd (kept by the oracle), and the correct current time. Returns
the generated block B.

– α← overify(B): given a sequence of blocks B, overify runs verify with B, the
most recent collector state Sc, and the current time τ . Returns the answer α.

Steady: A Simple End-to-End Secure Logging System 9

– e, IV← odec(B): given a block B with an encrypted payload, odec decrypts
the payload in B and returns the list of events e and IV.

For event secrecy (Definition 6), an oracle B ← oblock∗b(e0, e1) is defined
that outputs the next block B from eb using oblock with fe = true, where b is a
secret challenge bit. In order to prevent size correlations, oblock∗b only accepts ei
of equally many events that match pair-wise in size and fc = false. The adversary
may not use odec to decrypt any block from oblock∗b (as in IND-CPA).

Definition 6 (Event secrecy). For all λ, δ ∈ N and PPT adversaries A, a
Steady scheme provides computational secrecy of an event’s content iff:

1

2
|Pr[ExpesA (λ, δ) = 1 | b = 0] + Pr[ExpesA (λ, δ) = 1 | b = 1]− 1| ≤ negl(λ)

ExpesA (λ, δ):

1 : t, τ, s, Sa ← A(λ, δ)

2 : Sc, Sd, Sr ← setup(λ, δ, t, τ, s), b←$ {0, 1}
3 : b′ ← Aoblock,oblock∗b,read,write,overify,odec(Sr, Sa)

4 : return b
?
= b′

For event integrity (Definition 7), we define an algorithm {false, true} ←
valid(P,B, e, e′) that uses verify as a subroutine. The output is true iff B is a
block for the policy P when e ∈ B and after replacing the event e ∈ B with e′.

Definition 7 (Event integrity). For all λ, δ ∈ N and PPT adversaries A, a
Steady scheme provides integrity of an event’s content iff:

Pr
[
ExpeiA(λ, δ) = 1

]
≤ negl(λ)

ExpeiA(λ, δ):

1 : fe, fc, t, τ, s, Sa ← A(λ, δ)

2 : Sc, Sd, Sr ← setup(λ, δ, t, τ, s)

3 : B, e, e′ ← Aoblock,read,write,overify,odec(Sr, Sa)

4 : return e 6= e′ ∧ valid(P ∈ Sc, B, e, e
′)

For delayed event deletion detection (Definition 8), the adversary gets con-
trol over the setup parameters except for the current time τ . After polynomial
invocations to the listed oracles, the adversary outputs a state of the relay Sr, a
positive time duration ∆ that represents the expired time after setup, and the
duration x since τ when the latest (in terms of index) block was modified or
deleted in Sr. The adversary wins if she can modify or delete with more than
negligible probability one or more blocks from Sr without detection by verify
after the duration t+ δ, where t is the timeout and δ a security parameter. Note
that overify is not available to the adversary: we remove this capability to ensure
that the call to read using Sc reads all blocks in Sr for verify to verify4.

4 If the adversary can modify or remove a block already read from the relay by the
collector this would cause check to fail but this is not relevant for security.

10 T. Pulls and R. Dahlberg

Definition 8 (Delayed event deletion detection). For all λ, δ ∈ N and
PPT adversaries A, a Steady scheme provides delayed event deletion detection
iff:

Pr
[
ExpdeddA (λ, δ) = 1

]
≤ negl(λ)

ExpdeddA (λ, δ):

1 : fe, fc, t, s, Sa ← A(λ, δ)

2 : Sc, Sd, Sr ← setup(λ, δ, t, τ, s), where τ is the correct current time

3 : Sr,∆, x← Aoblock,read,write,odec(Sr, Sa)

4 : return ¬check(Sr, τ +∆) ∧ verify
(
Sc, read(Sr, i ∈ Sc), τ +∆

)
∧ x > t+ δ

For unforgeable proofs of event authenticity (Definition 9), the adversary has
to output an event e and a valid proof Π for e, where e has not been part of any
of the blocks B generated by the adversary as part of calls to oracle oblock.

Definition 9 (Unforgeable proofs of event authenticity). For all λ, δ ∈ N
and PPT adversaries A, a Steady scheme provides unforgeable proofs of event
authenticity iff:

Pr
[
ExpufpA (λ, δ) = 1

]
≤ negl(λ)

ExpufpA (λ, δ):

1 : fe, fc, t, τ, s, Sa ← A(λ, δ)

2 : Sc, Sd, Sr ← setup(λ, δ, t, τ, s)

3 : B, e,Π ← Aoblock,read,write,overify,odec(Sr, Sa)

4 : return e /∈ B ∧ proofVer(Π, e, vk ∈ P ∈ Sc)

4 Security of Steady

4.1 Assumptions

Lemma 1. In a Merkle tree, the security of an audit path reduces to the collision
resistance of the underlying hash function H.

Proof (sketch). This follows from the work of Merkle [10] and Blum et al. [1].

4.2 Properties and Proofs

Note that the full verify algorithm is in the Appendix A.

Theorem 1 (Correctness). Steady is correct as in Definition 5.

Steady: A Simple End-to-End Secure Logging System 11

Proof (sketch). For the first part of Definition 5, regarding verification, all pos-
sible (valid) blocks are per definition generated by calls to block, written to the
relay with write, and returned by read from a valid Sr given time τ . This im-
plies that blocks are timely, form a valid sequence, and the size is at least the
size in the policy, so verify accepts with probability 1 for all possible blocks. For
the second part of Definition 5, regarding proofs, this follows trivially from the
definitions of proofGen and proofVer.

Theorem 2 (Event secrecy). For an IND-CPA secure public-key encryption
scheme and a pre-image resistant hash function, Steady provides computational
secrecy of events as in Definition 6.

Proof (sketch). The events have been encrypted together with a uniformly ran-
dom IV using an IND-CPA secure public-key encryption scheme. This ensures
that the payload itself is not a distinguisher. Further, as part of the block B
from oblock∗, (i, `p, τ) are independent of the events in the block. The root hash
ι is done with a pre-image resistant hash function, where the root of the Merkle
tree is combined with a uniformly random IV before being hashed. The payload
hash, block header φ, and signature σ operate on the encrypted events. ut

Event secrecy, per definition, is only provided when encryption is enabled and
compression is disabled. Further, because of the use of public-key encryption,
Steady also provides forward secrecy upon compromise of a device and its state.

Corollary 1 (Forward event secrecy). For an IND-CPA secure public-key
encryption scheme and a pre-image resistant hash function, Steady provides com-
putational forward secrecy of events in blocks.

Theorem 3 (Event Integrity). Given an existentially unforgeable signature
scheme and a collision resistant hash function, Steady provides computational
integrity of events as defined in Definition 7.

Proof (sketch). An existentially unforgeable signature scheme prohibits forgery
of different messages. This means that every signed block B will include an
authentic Merkle tree root that cannot be replaced by the adversary, and each
event e ∈ B will thus be fixed by an audit path in the block’s Merkle tree. The
security of an audit path reduces to the collision resistance of the underlying
hash function (Lemma 1). ut

Theorem 4 (Unforgeable Proofs of Event Authenticity). Given an ex-
istentially unforgeable signature scheme and a collision resistant hash function,
Steady’s proofs of event authenticity are unforgeable as defined in Definition 9.

Proof (sketch). Proof verification consists of verifying an audit path in a Merkle
tree and that the root of the Merkle tree is signed. The security of an audit path
reduces to the collision resistance of the underlying hash function (Lemma 1)
and the signature is existentially unforgeable. ut

12 T. Pulls and R. Dahlberg

Theorem 5 (Delayed event deletion detection). Given an existentially
unforgeable signature scheme and a collision resistant hash function, Steady pro-
vides delayed event deletion detection as defined in Definition 8.

Proof (sketch). Within blocks, events cannot be deleted because each event is
fixed by an audit path in a Merkle tree (Lemma 1) where the root is signed with
an existentially unforgeable signature. Therefore we need to show that blocks
cannot be deleted without detection.

With a correct collector state Sc generated through setup or oracle calls to
overify, read returns a sequence of blocks B. The authenticity and integrity of
blocks are protected by an existentially unforgeable signature. The verification
algorithm verify sorts B with valid signatures into a (not necessarily connected)
sequence (B0 . . . Bn) based on block index i, and removes any duplicates or old
blocks (index < requested index to read). There are then three possible cases:

Case 1 len
(
(B0 . . . Bn)

)
= 0: read returned no new blocks.

Case 2 len
(
(B0 . . . Bn)

)
> 0 ∧ Bi0 = Sic: read provided one or more new blocks

and the first block is the block directly after the previous read.
Case 3 len

(
(B0 . . . Bn)

)
> 0 ∧ Bi0 6= Sic: read provided one or more new blocks

and the first block is not the block directly after the previous read.

Note that for ExpdeddA (λ, δ) to return true then x > t+δ, meaning that at least
t + δ time must have expired since the latest block was deleted or modified by
the adversary. Further, the policy specifies that (i) a block should be produced
at least after t time since the latest block, and (ii) the relay should store at
least s space of the most recent blocks. If a block has been deleted from Sr such
that check returns false, then the policy has been violated at time τ + ∆ (per
definition). Therefore either of the two, or both, parts of the policy have been
violated. Returning to the three possible cases in the paragraph above:

Case 1 The timely check will detect any deleted block because (i) t + δ time
has expired, (ii) the time in the collector’s state is based on an existentially
unforgeable signature in the last verified block, and (iii) the provided current
time τ +∆ is the same as for check.

Case 2 In addition to a timely check—but in this case based on the time in the
latest new block instead of state—verify also checks that all blocks form a
connected sequence from the block in state to the latest block. All blocks
are signed with an existentially unforgeable signature.

Case 3 In addition to a timely check of the latest new block, verify checks that
all new blocks form a connected sequence, and that the size of the new blocks

together with the size of the prior block (B
`p
0) is greater than the space s in

the policy, detecting any deleted blocks.
ut

Theorem 5 covers block deletion as defined in Definition 8 when reading
blocks from the relay that the adversary completely controls. Further, per defi-
nition write checks for a monotonically increasing block index, therefore replay
attacks are irrelevant after setup (Corollary 2).

Steady: A Simple End-to-End Secure Logging System 13

Corollary 2 (Relay replay attacks). Given an existentially unforgeable sig-
nature scheme, writes and reads in Steady are secure from replay attacks.

4.3 Relay Flushing and Device Forward Security

Note that the delayed event deletion detection, as defined in Definition 8, is
limited in several ways. First, deletion detection is delayed by the timeout t and
time-skew δ parameters. Benign delays due to, e.g., network effects or clock drift
between device and collector, risks causing false positives with a time-based
deletion detection mechanism. We therefore introduce a security parameter δ
that specifies the acceptable delay for the collector, trading delayed deletion
detection for reduced false positives.

Further, because the relay only is required to keep finite storage, this opens
up another venue for an adversary to “flush” a relay (Corollary 3). We stress
that this is fundamental restriction in the setting.

Corollary 3 (Relay flushing). An adversary with the capability to trigger the
device to create new blocks can flush blocks from the relay that have yet to be
read by the collector. Accordingly, a relay’s minimum storage capacity and the
collector’s reading frequency must be treated as security parameters.

In the setting of finite storage relays, forward event integrity and forward
(delayed) event deletion detection are less relevant: if the collector does not
read (fast enough) an adversary can flush the relay, and if a device blocks or
discards new events when storage is full (or not read) then this is either a severe
denial-of-service vector or just a precondition for an adversary to trigger before
launching an attack she does not want detected (the same outcome as being able
to compromise and delete events).

Corollary 4 (Collector reads and device forward security). If the collec-
tor continuously reads from the relay, then the timeout and time-skew parameters
give an upper bound for the time the adversary has in undetectably modifying or
deleting events that have yet been read by the collector.

5 Performance Evaluation

We first instanciated our scheme to reach a 128-bit security level with BLAKE2b-
256, AES256-GCM, X25519, and Ed25519 using an NaCl box-like scheme for
encryption5. The device is implemented6 in C (c11) in 987 loc (as reported by
cloc) using libsodium7 for crypto primitives and LZ48 for compression. The
relay and a minimal collector are implemented9 in Go in 1239 loc.

5 NaCl box (https://nacl.cr.yp.to/box.html) uses Salsa20 and Poly1305, we use
AES256-GCM instead for the hardware speedup on selected platforms.

6 https://github.com/pylls/steady-c, Apache 2.0 license.
7 https://libsodium.org/, accessed 2018-08-05.
8 https://lz4.github.io/lz4/, accessed 2018-08-05.
9 https://github.com/pylls/steady, Apache 2.0 license.

https://nacl.cr.yp.to/box.html
https://github.com/pylls/steady-c
https://libsodium.org/
https://lz4.github.io/lz4/
https://github.com/pylls/steady

14 T. Pulls and R. Dahlberg

For our performance evaluation focused on event goodput we used 1 GiB of
syslog events (6,472,046 events, mean size 164.9±39.7 bytes) of the Dartmouth
campus CRAWDAD dataset [8]. The device was run on an i7-4790@3.6GHz CPU
with 16 GiB DDR3@1600MHz memory and a 1 Gib/s Internet connection. It
was limited to using one (logical) core for block creation. We hosted the relay
at two locations: on a laptop connected throguh a 1 Gib/s LAN (mean 0.4±0.2
ms latency) and at an Amazon EC2 instance type m5.large in Frankfurt with a
up to 10 Gib/s connection (mean 29.8±0.2 ms latency). The relay is never CPU
bound due to little computation needed to verify blocks (see Figure 4).

Figure 6 shows the results of our performance evaluation. Compression en-
ables a device with only 16 MiB of memory to sustain over 1M events/s (over
160MiB/s) regardless of relay location or use of encryption. Without compres-
sion the increased latency to the relay has a significant impact on goodput,
likely because the connection between the device and relay is saturated. Device
memory beyond 16 MiB has little or no impact on goodput.

8 16 32 64 128 256 512 1,024

device memory (MiB)
0.00

0.25

0.50

0.75

1.00

1.25

ev
en

ts
 (M

/s
)

comp+enc
enc

comp
plain

(a) Gigabit LAN.

8 16 32 64 128 256 512 1,024

device memory (MiB)
0.00

0.25

0.50

0.75

1.00

1.25
ev

en
ts

 (M
/s

)

comp+enc
enc

comp
plain

(b) Amazon EC2 m5.large in Frankfurt.

Fig. 6: Events per second as a function of device memory for two relay locations.

6 Related Work

Reasoning about event membership in logs and consistency of logs can use (evolv-
ing) Merkle trees [10], as done by Crosby and Wallach [3]. Publicly verifiable
schemes (as defined by Holt [5])—that enables membership verification of an
event in a log with only public information—typically use signatures on events.
Schneier and Kelsey proposed a forward-secure logging system that protects
the integrity and confidentiality of events on a per-event basis using MACs
and encryption [11]. Grouping events is an important part of providing pro-
tection against truncation attacks (deletion detection), e.g., as done by Ma and
Tsudik [9]. Forward-secure sequential aggregate signatures—introduced in the
context of secure logging by Ma and Tsudik [9] and built upon by a number
of works, e.g., [14,15]—aggregates signatures over sequential messages into one
compact signature instead of individual signatures per message to save storage

Steady: A Simple End-to-End Secure Logging System 15

space and bandwidth. Hartung et al. proposed a provably-secure logging scheme
that is also fault-tolerant: the scheme can tolerate a number of manipulated log
entries (determined a priori) without invalidating the signature [4]. Steady uses
one signature per block over the root of a Merkle tree: more efficient in terms of
bandwidth and operations than one signature per message, but more fragile.

Notably, the secure logging system PillarBox by Bowers et al. [2] is both com-
plementary and related to Steady in several ways. Both PillarBox and Steady
buffers events before transmitting them. The verification algorithm used by Pil-
larBox uses a “gap-checker” to look for missing events, similar to Steady’s ap-
proach to looking for blocks (Figure 5). As complementary, PillarBox focuses on
device compromise, providing integrity of all events buffered prior to compromise
and optionally also provides “stealth”: hiding the existence of events generated
prior to compromise in the buffer. They report event generation in the order of
100,000 events/s (on older hardware). Unlike PillarBox, Steady supports relays,
has optional compression, and publicly verifiable proofs of even authenticity.

There are a number of logging systems that use trusted hardware—such as
TPM, Intel SGX, and GlobalPlatform TEE—as a basis for system security, also
on intermediate systems like our relays [6,12,13]. Steady is software-based.

7 Conclusions

We presented Steady, a simple secure logging system that supports intermediate
storage on untrusted relays. Steady is formalised and security proven in the
standard model based on vanilla cryptographic primitives and assumptions. The
goal of our work was to construct a practical logging system, that does not require
other security protocols (e.g., TLS for transport) and that would be reasonably
easy to implement and audit. Our performance evaluation which uses a ≈2,200
loc implementation shows significant goodput on resource-constrained devices
when the relay is hosted at a popular commercial cloud provider, especially if
compression is used. While compression may leak information despite the use of
encryption it can be arguably a worthwhile trade-off in many settings.

Acknowledgments. We would like to thank Christian Gotare, Anders Lidén,
Mattias Nordlund, and Roel Peeters for valuable feedback. This research as part
of the HITS research profile was funded by the Swedish Knowledge Foundation.

References

1. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. Algorithmica 12(2/3), 225–244 (1994)

2. Bowers, K.D., Hart, C., Juels, A., Triandopoulos, N.: PillarBox: Combating next-
generation malware with fast forward-secure logging. In: RAID (2014)

3. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper-evident logging.
In: Monrose, F. (ed.) 18th USENIX Security Symposium, Montreal, Canada, Au-
gust 10-14, 2009, Proceedings. pp. 317–334. USENIX Association (2009)

16 T. Pulls and R. Dahlberg

4. Hartung, G., Kaidel, B., Koch, A., Koch, J., Hartmann, D.: Practical and robust
secure logging from fault-tolerant sequential aggregate signatures. In: ProvSec 2017

5. Holt, J.E.: Logcrypt: forward security and public verification for secure audit logs.
In: The proceedings of AusGrid and AISW 2006

6. Karande, V., Bauman, E., Lin, Z., Khan, L.: SGX-Log: Securing system logs with
SGX. In: AsiaCCS 2017

7. Kelsey, J.: Compression and information leakage of plaintext. In: FSE 2002

8. Kotz, D., Henderson, T., Abyzov, I., Yeo, J.: CRAWDAD dataset dart-
mouth/campus (v. 2009-09-09). Downloaded from https://crawdad.org/
dartmouth/campus/20090909 (Sep 2009)

9. Ma, D., Tsudik, G.: A new approach to secure logging. TOS 5(1), 2:1–2:21 (2009)

10. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
CRYPTO 1987

11. Schneier, B., Kelsey, J.: Cryptographic Support for Secure Logs on Untrusted Ma-
chines. In: USENIX Security Symposium. pp. 53–62. USENIX (1998)

12. Shepherd, C., Akram, R.N., Markantonakis, K.: EmLog: Tamper-resistant system
logging for constrained devices with TEEs. In: WISTP 2017

13. Sinha, A., Jia, L., England, P., Lorch, J.R.: Continuous tamper-proof logging using
TPM 2.0. In: TRUST 2014

14. Yavuz, A.A., Ning, P.: BAF: an efficient publicly verifiable secure audit logging
scheme for distributed systems. In: ACSAC 2009

15. Yavuz, A.A., Ning, P., Reiter, M.K.: Efficient, compromise resilient and append-
only cryptographic schemes for secure audit logging. In: FC 2012

A Appendix: Collector Verification Algorithm

The below complete algorithm uses the notation introduced in Section 3.

https://crawdad.org/dartmouth/campus/20090909
https://crawdad.org/dartmouth/campus/20090909

Steady: A Simple End-to-End Secure Logging System 17

verify(Sc,B, τ)

1 : (B0 . . . Bn)← sort(B)// B
i
0 ≥ S

i
c , signatures valid, duplicate blocks removed

2 : α← validate
(
(B0 . . . Bn) , τ, Sτc , t ∈ P, s ∈ P, Sic

)
3 : if α ∧ len

(
(B0 . . . Bn)

)
> 0 then Sic ← Bin + 1, Stc ← Bτn

4 : return α, Sc

validate
(
(B0 . . . Bn) , τ, T, t, s,N

)
1 : if len

(
(B0 . . . Bn)

)
= 0 then

2 : return timely(τ, T, t, δ)

1 : return τ − T ≤ t+ δ

3 : elseif Bi0 = N then

4 : return timely(τ,Bτn, t, δ) ∧ seq
(
(B0 . . . Bn)

)
1 : i← Bi0

2 : for B in(B1 . . . Bn) do

3 : if Bi 6= i+ 1 then return false

4 : i← i+ 1

5 : return true

5 : return timely(τ, Bτn, t, δ) ∧ seq
(
(B0 . . . Bn)

)
∧ size

(
(B0 . . . Bn)

)
+B

`p
0 > s

	Steady

