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Abstract. A large number of parameterized complexity assumptions have been intro-
duced in the bilinear pairing setting to design novel cryptosystems and an important
question is whether such “q-type” assumptions can be replaced by some static one. Re-
cently Ghadafi and Groth captured several such parameterized assumptions in the pairing
setting in a family called bilinear target assumption (BTA). We apply the DéjàQ tech-
niques for all q-type assumptions in the BTA family. In this process, first we formalize
the notion of extended adaptive parameter-hiding property and use it in the Chase-
Meiklejohn’s DéjàQ framework to reduce those q-type assumptions from subgroup hid-
ing assumption in the asymmetric composite-order pairing. In addition, we extend the
BTA family further into BTA1 and BTA2 and study the relation between different BTA
variants. We also discuss the inapplicability of DéjàQ techniques on the q-type assump-
tions that belong to BTA1 or BTA2 family. We then provide one further application of
Gerbush et al’s dual-form signature techniques to remove the dependence on a q-type as-
sumption for which existing DéjàQ techniques are not applicable. This results in a variant
of Abe et al’s structure-preserving signature with security based on a static assumption
in composite order setting.

Keywords: Bilinear target assumption, q-type assumption, DejaQ technique, Dual form signature
technique.

1 Introduction

Rapid development of pairing-based cryptography has witnessed an enormous number of complexity
assumptions. The thurst for new complexity assumptions become somewhat unavoidable due to the
role that they play in the security reduction of many novel construction of cryptographic protocols. For
example, Boneh and Boyen [BB04] introduced strong Diffie-Hellman (SDH) assumption to propose a
signature scheme in the standard model and Abe et al. [AGHO11] introduced a tailor-made assumption
(later called as q-AGHO assumption) to prove the security of their structure preserving signature
scheme.

Parameterized Assumptions. This type of non-static q-type assumptions have been extensively
used in the security argument of pairing-based protocols. For example, the q-SDH assumption and its
variants q-hidden SDH (HSDH), q-asymmetric hidden SDH (ADHSDH), (q, `)-Poly-SDH, q-2 variable
SDH (2SDH) are used in various signature schemes [BB04,Fuc09,Boy07,Oka06a]. The parameter q is
typically related to the number of oracle queries given to the adversary in the security game. However,
parameterized assumptions do have some implication on concrete security and may require larger size
for the underlying groups. Also it is observed that the parameterized assumption becomes stronger as
these parameters grows. In particular Cheon [Che06] proved that for q-SDH assumption, the secret
information (say x) can be recovered using O(

√
p/q) group operations, where p is the underlying group

order. Jao and Yoshida [JY09] proved that q-SDH assumption is equivalent to Boneh-Boyen signature



and also showed that this relation allows one to recover the secret key in time O(p2/5+ε), using O(p1/5+ε)
signature queries. Hence, it’s relevant to investigate whether for a particular cryptosystem one can
remove the dependency on parameterized assumption. Two prominent approaches in this direction are
DéjàQ [CM14,CMM16] and dual-form signature techniques [GLOW12].

BTA. Boneh, Boyen and Goh [BBG05] introduced the Uber assumption family which captures many
complexity assumptions under it. Boyen [Boy08] informally suggested to extend the Uber assumption
family to those assumptions with (a) flexible challenge terms, (b) rational polynomial exponents in both
problem instance and challenge terms, (c) composite-order group of known or unknown factorization.
Recently, Ghadafi and Groth [GG17] focused on the first two points above in the context of non-
interactive computational assumptions. In the bilinear pairing setting, they formulated the bilinear
target assumption (BTA) family. In the BTA family, the exponent of both problem instance and
challenge terms are represented using rational polynomials and all the polynomial coefficients are given
explicitly as Zp elements, where p is the group order. The challenge terms are determined by the
adversary’s input, whose exponents are represented as coefficients of a rational polynomial. However
there are many tailor-made assumptions that are not captured by this BTA family. Some examples are
(q, `)-Poly-SDH [Boy07], q-AGHO [AGHO11], q-simultaneous flexible pairing (SFP) [AFG+10] etc.

In this work we focus on q-type assumptions that belong to BTA family for which no reduction
is known from subgroup hiding (SGH) assumption. Examples of such assumptions are generalized
q-co-SDH [FHS14] and Boneh-Boyen computational Diffie-Hellman (BB-CDH) assumption [BCC+09].

DéjàQ. Our main approach is to use the DéjàQ framework. The seminal work of Chase and Meikle-
john [CM14] showed that certain parameterized assumptions are implied by SGH assumption in the
asymmetric composite-order pairing. In particular, they gave a reduction from SGH to certain q-type
assumptions such as decisional q-type assumptions which are one sided (for example, exponent q-SDH
assumption) and computational q-type assumptions which are two sided (q-Diffie-Hellman inversion
assumption). Also they gave a reduction for q-SDH from SGH assumption, which is having flexible
challenge term. However they were not able to give a reduction for those q-type assumptions where
challenge terms belong to the target group GT (for example, q-DDHE assumption). This is solved by
Chase et al’s [CMM16] extended framework. Their technique treats the generators of different groups
using separate ways in the asymmetric composite-order pairing. In particular separate generators are
used to answer separate types of queries and because of the access to additional randomness, these
generators are indistinguishable by the bounded adversary. In 2015, Wee [Wee15] came up with similar
approach at protocol level instead of assumption level, but in the symmetric composite-order pairing
setting.

Dual-form signatures. Our second approach for removing dependence on parameterized assumption
is to utilize Gerbush et al’s [GLOW12] dual-form signature techniques. For example, we consider the
Abe et al’s structure-preserving signature scheme [AGHO11] which is used as a building block in other
cryptosystems [Gha14, Gha15]. The security of Abe et al’s structure-preserving signature is proved
under q-AGHO assumption. We observe that (in §4.3) we cannot apply the existing DéjàQ technique
for this q-AGHO assumption, in order to reduce it from SGH assumption. Hence we construct a dual-
form of Abe et al’s structure-preserving signature scheme and prove its security under SGH assumption
(in §5.1). We do not alter the original Abe et al’s construction for the dual-form variant. The dual-form
signature technique changes the scheme construction slightly from the original, as it introduces some
additional randomness in the construction to argue security based on static assumption. For example,
we construct the dual-form of Boyen-Waters [BW07] group signature scheme under static assumption
instead of q-HSDH assumption (in §5.2).

1.1 Our Contribution

1. We extend the BTA family further (in §3.2) to capture the assumptions (q, `)-Poly-SDH, q-AGHO,
q-SFP and q-HSDH, which are not covered under BTA family [GG17]. Also we investigate the
relation among these new variants in §3.3.

2. We formalize the extended adaptive parameter-hiding property (in §4.1). Then we use it in the
Chase-Meiklejohn’s DéjàQ framework to give a reduction from subgroup hiding assumption to all

2



the q-type assumptions that belong to BTA family (in §4.2). As a consequence, we can prove the
security of Fuchsbauer et al’s set commitment scheme [FHS14] under subgroup hiding assumption,
instead of generalized q-co-SDH and q-co-DL assumptions used in the original proof.

3. We construct the dual-form variant of Abe et al’s structure-preserving signature scheme in §5.1
(resp. Boyen-Waters group signature scheme in §5.2) whose security is proved under subgroup
hiding assumption instead of q-AGHO assumption (resp. q-HSDH assumption).

2 Preliminaries

2.1 Notation

Let X denote the vector representation of m monomials (X1, . . . , Xm). The multivariate polynomial
of degree d ≥ 0 with m variables is denoted as q(X) =

∑
ak1,...,kmX

k1
1 · · ·Xkm

m , where the summation
is taken over all ki ∈ [0, d] such that

∑m
i=1 ki ≤ d. The polynomial q(X) is represented using the

coefficients (ak1,...,km)ki∈[0,d]∑
i ki≤d

. We denote q(x) to be the polynomial q(X) which is evaluated at X = x,

for x ∈ Zmp . We also denote x
$← G to be the element x which is chosen uniformly at random from the

group G. Similarly, for any randomized algorithm A, y
$← A(x) denotes the algorithm A which takes

the value x from the appropriate domain and outputs y uniformly at random. For any function f , f.D
denotes the domain of f . For any n ∈ N, we denote [1, n] is a collection of all the natural numbers lies
between 1 to n.

2.2 Definitions

We first begin by recalling the definition of a bilinear group generator from [CM14].

Definition 1 A bilinear group generator G is a probabilistic polynomial time (PPT) algorithm which
takes the security parameter λ as input and outputs (N,G,H,GT , e, µ), where N is either prime or
composite, G, H and GT are the groups such that |G| = |H| = k1N and |GT | = k2N for k1, k2 ∈ N, all
the elements of G,H,GT are of order atmost N and e : G×H −→ GT is a bilinear map and it satisfies,
(i) Bilinearity: For all g, g′ ∈ G and h, h′ ∈ H, one has e(g ·g′, h ·h′) = e(g, h) ·e(g, h′) ·e(g′, h) ·e(g′, h′),
(ii) Non degeneracy: If a fixed g ∈ G satisfies e(g, h) = 1 for all h ∈ H, then g = 1 and similarly for
elements of H and (iii) Computability: The map e is efficiently computable. The additional information
µ is optional and defined as follows. Whenever the groups G and H are cyclic, then µ contains their
respective generators g and h. Whenever the groups G and H are decomposed into its cyclic subgroups
G1, . . . , Gn and H1, . . . , Hn respectively, then µ contains the description of these subgroups and/or their
generators.

The bilinear group generator G is said to be composite-order (resp. prime-order), if N is composite
(resp. prime). In this paper we use both prime-order and composite-order bilinear group generator
simultaneously. Hence for the ease of readability, we use the following notation to differentiate between
these two settings. In the prime-order setting, we denote G1 = G, G2 = H, GT = GT and we could
obtain only trivial subgroups, hence µ contains the generators g and h of the respective groups G1 and
G2. In the composite-order setting, we decompose the groups G ∼= G1⊕ . . .⊕Gn and H ∼= H1⊕ . . .⊕Hn
for N = p1 . . . pn with µ containing required subgroup information i.e., µ contains {gi, hi}ni=1, where
gi (resp. hi) is the generator of the subgroup Gi (resp. Hi).

Now we define the subgroup hiding assumption in the composite-order pairing and one can see that
it is equivalent to the definition given by [CM14].

Definition 2 For a composite-order bilinear group generator G which takes λ as input and outputs
(N,G,H, GT , e, µ). Now G is said to satisfy the subgroup hiding assumption in G for subgroup G1

with respect to µ, if for every PPT adversary A the following advantage is negligible in the security
parameters,

AdvSGHGA =
∣∣Pr[A(N,G, x, µ) = 1 : x ∈ G]− Pr[A(N,G, x, µ) = 1 : x ∈ G1]

∣∣
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where g1 ∈ µ. Similarly we can define the subgroup hiding assumption in H.

From the above definition it is clear that the choice of µ might make the subgroup hiding easy. In the
above definition, if µ contains h2 then one can easily decide whether the given element x is from the

subgroup G1 or from the group G, by checking e(x, h2)
?
= 1. Without loss of generality we assume

that µ does not contain such elements which are harmful against its hardness of the subgroup hiding
assumption.

In this paper we will be using many of the computational parameterized (q-type) assumptions. We
recall the definition of the assumptions in §A.

3 Bilinear Target Assumption and Its Extension

Boneh et al. [BBG05] introduced Uber assumption (we call it classical Uber) and argued its security
in the generic group model. However Boyen [Boy08, Section 6] suggested (informally) to capture the
Uber assumptions which have (a) challenge terms with adversary’s input and b) rational polynomial
representation in the exponent. In 2017, Ghadafi and Groth [GG17] formalized an assumption family
which captures the above features in both cyclic group setting and in the bilinear group setting of prime-
order. The first assumption type is said to be target assumption family. Whereas the second assumption
is known as bilinear target assumption (BTA) family and here we focus on this assumption.

In this section we recall the definition of BTA family [GG17]. We identify some of the concrete
computational assumptions that will not fall under this BTA family. Hence we extend the BTA defini-
tion to capture such computational assumptions. We also look at the possible relation among the BTA
family and its extension.

First we fix some notation which will be used in this section. Let us denote the generator of the
groups G1, G2 and GT by [1]1, [1]2 and [1]T respectively. Hence [a]1 denote the group element having
discrete logarithm of a with respect to its generator [1]1 in G1. Similarly we denote [a]2 (resp. [a]T )
for the group element in G2 (resp. GT ). The group operation [a]1 · [b]1 is denoted as [a + b]1 in G1.
For the other groups G2 and GT , we follow the similar notation. The pairing operation is denoted as
e([a]1, [b]2) = [ab]T .

3.1 Definition

Now we fix some notation to define the BTA assumption. As we know that the BTA is a computational
assumption and is defined in the cyclic group of order p prime. Hence any group element can be written
as its discrete logarithm value exponentiated with a fixed random generator of that group. Ghadafi
and Groth [GG17] represented those exponent values using some multivariate rational polynomials of
bounded degree. Let X be the indeterminates with m variables and a(X), b(X) denotes the multi-
variate polynomials of degree d ≥ 0 over Zp. For randomly chosen x from Zmp such that b(x) 6= 0, we

denote
[a(x)
b(x)

]
j

be the group element from Gj having exponent which is represented using the rational

polynomial a(X)
b(X)

evaluated at X = x, for j ∈ {1, 2, T}. Since the polynomials are represented using the

coefficients, we denote that [a(X)]i (resp. [b(X)]i) be the coefficient representation of the polynomial
a(X) (resp. b(X)) in the group Gi, for i, j ∈ {1, 2, T}.

Recall the BTA assumption [GG17] in which exponent of both problem instance and challenge term
are represented using rational polynomials and all the polynomial coefficients are given explicitly as Zp
elements. More formally we define as follows.

Assumption 1 BTA. Let Θ = (p,G1,G2,GT , e) be the output of a bilinear group generator G on the
input λ. For ι ∈ {1, 2, T}, G is said to satisfy bilinear target assumption [GG17] in Gι, if for every
PPT adversary A, the advantage of BTA is defined as,

Adv
BTAGι
A := Pr[A(Γ )→ ∆ : ∆ satisfies Equation 1] = negl(λ),
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where the problem instance Γ and the challenge term ∆ are defined as

Γ =

(
Θ,

{{[
a
(j)
i (x)

b
(j)
i (x)

]
j

,
a
(j)
i (X)

b
(j)
i (X)

}nj
i=1

}
j∈{1,2,T}

, pub

)
and ∆ =

([r(x)

s(x)

]
ι
, r(X), s(X), sol

)
.

The condition is defined as,

r(X)
∏nι

i=1
b
(ι)
i (X) /∈ Span

({
s(X)a

(ι)
i (X)

∏
l6=i

b
(ι)
l (X)

}nι
i=1

)
. (1)

The condition from Equation 1 is used to avoid the trivial attacks due to generic group operations. The
above defined BTA assumption is parameterized with (d,m, n1, n2, nT ), where d denotes the degree
of polynomials (from both problem instance and challenge terms1) and m denotes the number of
indeterminates in X and for j ∈ {1, 2, T}, nj denotes the total number of elements from Gj which are
present in the problem instance. Once the parameter is clear from the context, for simplicity we ignore
this parameter. In the above definition, pub contains all the coefficients of the polynomials presented in
the problem instance and sol contains some additional information in order to validate the challenge
term. The secret vector x that are used in the assumption should not be given explicitly as part of the
problem instance.

Example 1 We recall the q-co-SDH problem [FHS14] defined in Table 1: given the instance
({

[1]j,{
[xi]j

}q
i=1

}2
j=1

)
compute

(
r(X), s(X),

[ r(x)
s(x)

]
1

)
such that 0 ≤ deg r(X) < deg s(X) ≤ q. Note that

this assumption is same as q-bilinear simple fractional assumption (BSFrac) [GG17] defined in G1.
We represent the exponent values as a polynomial in X which is evaluated at X = x. Hardness of this
problem ensures that the challenge term satisfies Equation 1. Thus q-co-SDH assumption belongs to
BTA family with d = q, m = 1, n1 = n2 = q + 1, nT = 0. ut

Similarly it is easy to check that the assumptions such as q-Diffie-Hellman inversion (DHI), q-Diffie-
Hellman exponent (DHE) q-modified SDH (mSDH), q-modified double SDH (mDSDH) and BB-CDH
(see Table 1) are examples for BTA family, since all the polynomial coefficients of both problem instance
and challenge term are given explicitly.

3.2 BTA Extension

Recall that in the BTA definition all the polynomial coefficients in both problem instance and chal-
lenge term are given explicitly. However there are many assumptions in which not all the polynomial
coefficients from problem instance and challenge terms are given explicitly. Some examples of such
assumptions are q-HSDH, q-SFP, q-Triple Diffie-Hellman (TDH), q-simultaneous pairing (SP). See the
complete list of such assumptions in Table 1.

Before defining the variants of BTA we observe that we could extend Ghadafi and Groth’s BTA
definition by including more number of challenge terms, in particular polynomial number of terms.
However one can see that this extension is equivalent to the original BTA assumption. As BTA implies
to this new variant is trivial and for the other direction simply run the BTA solver in polynomial many
times.

As in BTA, each element from problem instance and challenge terms are written as its discrete
logarithm with respect to some fixed generator of the cyclic group of prime-order. We follow this
notion throughout this paper. Thus expressing computational assumption in this format allows us to
classify these assumptions into appropriate BTA family and its extension such as BTA1 and BTA2
families defined as follows.

First we motivate the definition of BTA1 with a concrete assumption. Recall that, Abe et al.
[AGHO11] defined a variant of q-AGHO assumption defined in Table 1. In the following example we
show that it belongs to BTA1 family.

1 For BTA in GT , the challenge term polynomials degree are bounded by 2d, as given the d degree poly-
nomials in both source groups, one can use the pairing to compute the product of these polynomials
in GT .
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Example 2 We recall the q-AGHO′ problem defined in Table 1: given
(

[1]1, [1]2, [w]2, [x]2, [y]2,
{

[x−

aiw− riy]1, [ai]1, [ri]1, [a
−1
i ]2

}q
i=1

)
compute

(
[x− a∗w− r∗y]1, [a

∗]1, [r
∗]1, [(a

∗)−1]2
)
. As in Example 1,

the exponent values are represented using polynomials in W , X and Y which are evaluated at W = w,
X = x and Y = y. The exponent values such as ai, ri from the instance and a∗, r∗ from the challenge
terms are the coefficients of the polynomials. In this assumption, none of the polynomial coefficients
are given explicitly rather given in the exponent of the source group element. Here the parameters can
be computed with d = 1, m = 3, n1 = 3q + 1, n2 = q + 4, nc1 = 3, nc2 = 1 and nT = ncT = 0, where
ncj denotes the total number of challenge terms in Gj, for j ∈ {1, 2, T}. ut

From the above example, we define a new family of BTA variant called BTA1, in which not all the
polynomial coefficients in both problem instance and challenge terms are given explicitly, rather given
in the exponent of some source group element. In this paper we focus on the BTA1 family defined only
in the source groups, since all the parameterized assumptions described in Table 1 are defined in the
source groups.

Assumption 2 BTA1. Let Θ = (p,G1,G2,GT , e)
$← G(λ). For ι ∈ [1, 2], G is said to satisfy bilinear

target assumption-1 (BTA1) in Gι, if for every PPT adversary A, the advantage of BTA1 is defined

as, Adv
BTA1Gι
A := Pr[A(Γ ) → ∆ : ∆ satisfies either Equation 2 or 3] = negl(λ), where the problem

instance Γ is defined as(
Θ,

{{[
a
(j)
i (x)

b
(j)
i (x)

]
j

,
({[

a
(j)
i (X)

]
ja

}2

ja=1
or a

(j)
i (X)

)
,

({[
b
(j)
i (X)

]
jb

}2

jb=1
or b

(j)
i (X)

)}nj
i=1

}
j∈{1,2,T}

,pub

)

and the challenge terms ∆ is defined as({[
r
(ι)
t (x)

s
(ι)
t (x)

]
ι

,
({[

r
(ι)
t (X)

]
ιr

}2

ιr=1
or r

(ι)
t (X)

)
,
({[

s
(ι)
t (X)

]
ιs

}2

ιs=1
or s

(ι)
t (X)

)}ncι
t=1

, sol

)
.

The condition is stated as follows. There exists t ∈ [1, ncι ] with atleast one of the following condition

should satisfy, either
[
r
(ι)
t (X)

]
ι

or
[
s
(ι)
t (X)

]
ι

or[
r
(j)
t (X)

s
(j)
t (X)

]
ι

/∈ Span

({[
a
(ι)
i (X)

b
(ι)
i (X)

]
ι

}nι
i=1

,
{[
a
(ι1)
i1

(X)
]
ι
,
[
b
(ι2)
i2

(X)
]
ι

}
ι1,ι2∈{1,2}

i1,i2∈[1,n1]∪[1,n2]

)
(2)

and for ς = 3− ι, either
[
r
(ς)
t (X)

]
ς

or

[
s
(ς)
t (X)

]
ς
/∈ Span

({[
a
(ς)
i (X)

b
(ς)
i (X)

]
ς

}nς
i=1

,
{[
a
(ι1)
i1

(X)
]
ς
,
[
b
(ι2)
i2

(X)
]
ς

}
ι1,ι2∈{1,2}

i1,i2∈[1,n1]∪[1,n2]

)
. (3)

This BTA1 family is parameterized with (d,m, n1, n2, nT , nc1 , nc2 , ncT ), where ncj denotes the total
number of challenge terms from Gj , for j ∈ {1, 2, T} and the remaining parameters are defined as
in BTA family. The condition from Equations 2 and 3 are used to avoid the trivial attacks due to
generic group operation. As some of the challenge terms are given as in the exponent instead of Zp
element, this will have more flexible to mount some trivial attacks due to generic group operations.
As a concrete example, we explain this attack for the variants of q-SDH assumption described in the
following remark.

Remark 1 Consider the following, given
({

[1]j , [x]j
}2
j=1

,
{[

1
x+ai

]
1
, [ai]1, [ai]2

}q
i=1

)
whether can we

compute the challenge terms (
[

1
x+a

]
1
, [a]1) or not. As in Examples 1, we represent the exponent values

as polynomials in X which are evaluated at X = x. Since the polynomial coefficients of the challenge

6



term is given in the exponent of first source group element, anyone can break this assumption by
computing

[
1

x+a

]
1

= [x]1[ai]1 and [a]1 =
[

1
x+ai

]
1
/[x]1 for some i ∈ [1, q]. This attack is captured in

Equation 2 by checking [s
(1)
1 (X)]1 = [a]1 is in the space spanned by the elements

[
1

x+ai

]
1

and [x]1 from
the problem instance.

Now we consider the q-2SDHS problem [Oka06a], given
({

[1]j , [x]j , [y]j
}2
j=1

,
{[

y+bi
x+ai

]
j
, [ai]j, bi

}q
i=1

)
whether can we compute

([
y+d
x+c

]
1
, [c]1, [c]2, d

)
, for d 6= bi. One can break this problem by computing[

y+d
x+c

]
1

= [y]1[d]1, [c]1 = [1− x]1 and [c]2 = [1− x]2, for d
$← Zp with d 6= bi, for all i ∈ [1, q].

From the definition of BTA1, it is easy to see that assumptions such as q-HSDH, q-ADHSDH, q-SFP
and q-AGHO (defined in Table 1) belong to BTA1 family, since not all the polynomial coefficients in
both problem instance and challenge terms are given explicitly.

Now consider the BB-HSDH assumption [BCC+09] in which all the polynomial coefficients of the
problem instance are given explicitly, whereas all the polynomial coefficients of the challenge terms are
given in the exponent of both source groups. Thus BB-HSDH assumption will not fall under BTA1
family. This motivate us to define the other variant of BTA family, called BTA2. In this family, all
the polynomial coefficients of the problem instance are given explicitly, whereas not all the polynomial
coefficients of the challenge terms are given explicitly. There are many assumptions such as q-TDH,
q-SP, (q, `, `′)-Pluri-SDH and (q, `)-Poly-SDH (defined in Table 1) fall in this family.

Assumption 3 BTA2: Let Θ = (p,G1,G2,GT , e)
$← G(λ). For ι ∈ [1, 2], G is said to satisfy bilinear

target assumption-2 (BTA2) in Gι, if for every PPT adversary A, the advantage of BTA2 is defined

as, Adv
BTA2Gι
A := Pr[A(Γ ) → ∆ : ∆ satisfies either Equation 2 or 3] = negl(λ), where the problem

instance Γ is defined as(
Θ,

{{[
a
(j)
i (x)

b
(j)
i (x)

]
j

, a
(j)
i (X), b

(j)
i (X)

}nj
i=1

}
j∈{1,2,T}

, pub

)
and challenge terms ∆ is defined as({[

r
(ι)
t (x)

s
(ι)
t (x)

]
ι

,
({[

r
(ι)
t (X)

]
ιr

}2

ιr=1
or r

(ι)
t (X)

)
,
({[

s
(ι)
t (X)

]
ιs

}2

ιs=1
or s

(ι)
t (X)

)}ncι
t=1

, sol

)
.

The condition for this assumption remains same as in BTA1, as the polynomial coefficients of problem
instance are given explicitly, anyone can exponentiate these coefficients in any of the groups.

As similar to BTA1, BTA2 family is parameterized with (d,m, n1, n2, nT , nc1 , nc2 , ncT ) and con-
dition from Equations 2 and 3 avoids the trivial attacks due to generic group operations. In order
to understand the importance of Equations 2 and 3, we consider the following assumption. Given({

[1]j , [x]j
}2
j=1

,
{[

1
x+ai

]
1
, ai
}q
i=1

)
whether can we compute the challenge terms (

[
1

x+a

]
1
, [a]1, [a]2) or

not. As similar to Remark 1, one can break this assumption using generic group operation.
Also we observe that there are assumptions in which challenge terms do not output all the poly-

nomial coefficients even in the exponent of a group element. As a concrete example we describe the
(q, `)-Poly-SDH assumption and we show that it belongs to BTA2 family.

Example 3 Recall that (q, `)-Poly-SDH problem defined in Table 1: given the instance
(
[1]1, [1]2,{

[xi]1, [xi]2
}`
i=1

,
{

[ 1
xi+cij

]1, cij
}`,q
i,j=1

)
compute

({
[ γi
xi+ci

]1, ci
}`
i=1

)
such that

∑`
i=1 γi = 1. As similar

to previous examples, the exponent values which are having terms like xi are represented as polynomials
in {Xi}`i=1 which are evaluated at Xi = xi and all the remaining exponent values are the coefficients of
the polynomials. In this assumption, none of the numerator’s polynomial coefficients of the challenge
terms (i.e., γi) are given explicitly. However the condition

∑`
i=1 γi = 1 is included as part of sol,

which ensure the well-formedness of the challenge terms by
∏`
i=1 e

([
γi

xi+ci

]
1
, [xi]2[ci]2

) ?
= e([1]1, [1]2).

The hardness of this assumption [Boy07] makes sure that it also satisfy the Equations 2 and 3. Thus
(q, `)-Poly-SDH assumption belongs to BTA2 family. ut
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3.3 Relation among BTA variants

In this section we discuss the relation among newly defined variants of BTA assumptions. Since BTA
is a family of assumptions, Ghadafi and Groth used the following notion to prove the reduction. For
any assumption P there exists a assumption Q such that Q implies P. Using this reduction, we prove
that the assumptions in BTA2 family could be a possible candidate Uber assumption as compared to
the assumptions in BTA and BTA1 families. We emphasize that while describing BTA and its variants
we use both assumption and family interchangeably.

Lemma 1 We prove that (i) for any (d,m, n1, n2, nT )-BTA assumption, there exists (d,m, n1, n2, nT ,
nc1 , nc2 , ncT )-BTA2 assumption such that BTA2 implies BTA, (ii) for any (d,m, n1, n2, nT , nc1 , nc2 ,
ncT )-BTA1 assumption, there exists (d,m, n1, n2, nT , nc1 , nc2 , ncT )-BTA2 assumption such that BTA2
implies BTA1.

Proof of this lemma can be found in §B.
Now we observe that it is difficult to give the following reductions. In particular, reductions from

BTA to BTA1 (resp. BTA1 to BTA) and from BTA to BTA2 (resp. BTA1 to BTA2) are difficult to
prove, as it require to compute discrete logarithm for the challenge terms (resp. problem instance) in
the appropriate groups.

4 BTA in DéjàQ Framework

In this section we prove that subgroup hiding implies all the q-type assumptions that belong to bilin-
ear target assumption (BTA) family. Recall that Chase-Meiklejohn’s [CM14] DéjàQ framework ensure
the reduction from SGH to q-SDH and q-generalized Diffie-Hellman exponent (q-GDHE) assumptions.
However they did not consider the assumptions such as q-co-SDH, q-mDSDH and BB-CDH. We no-
tice that q-co-SDH assumption was used to prove the security of Fuchsbauer et al’s set commitment
scheme [FHS14]. With our knowledge no literature proved that q-co-SDH assumption is implied by
SGH assumption. As we have seen that all these q-type assumptions belonging to BTA family. See
the Table 1 for some concrete assumptions. Hence it is worth pursuing that for the parameterized
assumptions that belong to BTA family, can we give a reduction from SGH assumption using DéjàQ
techniques.

First we formalize the extended adaptive parameter-hiding property and use this property in Chase-
Meiklejohn’s DéjàQ techniques [CM14]. We also discuss in applicability of the existing DéjàQ techniques
for the concrete q-type assumptions that fall in either BTA1 or BTA2 family.

4.1 Extended Adaptive Parameter-Hiding Property

The parameter-hiding is a statistical property which ensures that the elements in one subgroup should
not reveal anything about related elements in other subgroups. Chinese Remainder Theorem (CRT)
ensures the same in the composite-order pairing setting. Lewko [Lew12] informally used parameter-
hiding property to convert Lewko-Waters IBE scheme from composite-order to prime-order pairing. In
2014, Chase and Meiklejohn [CM14] defined parameter-hiding property for any polynomial function in
the composite-order setting and used it to prove SGH implies decisional q-type assumption which are
one-sided2, such as exponent q-SDH assumption [ZSS04]. Also they defined extended parameter-hiding
property and used it to prove SGH implies the computational q-type assumptions which are two-
sided2, such as q-SDH assumption. Informally, this property says that the distributions {gf(x)

1 g
f(x)
2 }

and {gf(x)
1 g

f(x′)
2 } are identical, even if some auxiliary informations are given in the exponent of h1.

The other interesting definition by Chase and Meiklejohn is the adaptive parameter-hiding property.

2 We say that the BTA assumption defined in the asymmetric pairing is said to be one-sided, if the
secret vector x associated with the polynomial representation occurs in exactly one of the source
group. Otherwise we say that the assumption is two-sided.
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Informally, this property ensures that any unbounded adversary who makes only polynomial number of

queries can statistically indistinguish between the distributions {gf(x)
1 g

f(x)
2 } and {gf(x)

1 g
f ′(x)
2 }, for any

f, f ′ from the family of functions F . In particular, they have used this property for rational polynomial
function of the form 1

x+c
with c being chosen by the adversary.

Now we consider the computational q-type assumptions that belong to BTA family which are two-
sided in which all the polynomial coefficients of the challenge terms are chosen by the adversary. Hence
it is natural to use the adaptive parameter-hiding property along with some auxiliary information. We
note that this has been already pointed out by Chase and Meiklejohn [CM14, footnote 5] to prove
SGH implies q-SDH assumption. Similarly we can use the adaptive parameter-hiding property for the
computational q-type assumptions which are one-sided. Now we formally define this property for any
function as follows.

Definition 3 Let G be a bilinear group generator and functions f, f ′ are chosen at random from a
family of functions F . Let Aux denote the auxiliary information. Let O(·) be the oracle and it returns

g
f(·)
1 g

f(·)
2 if the input is in the domain f.D and 1 otherwise. Similarly, let O′(·) be the oracle and it

returns g
f(·)
1 g

f ′(·)
2 if the input is in the domain f.D ∩f ′.D and 1 otherwise. Then we say that G satisfies

extended adaptive parameter-hiding with respect to F and Aux, if for all Θ = (N,G,H,GT , e, µ)
$←

G(λ)3 with µ = {g1, g2} where g1 ∈ G1, g2 ∈ G2 and G ∼= G1⊕G2, the oracles O and O′ are statistically
indistinguishable, if they are given with auxiliary information Aux and queried polynomially many times.
In other words, for any unbounded adversary A that makes poly(λ) queries, there exists a negligible
function ν(·) such that∣∣Pr[f

$← F : AO(·)(Θ,Aux) = 1]− Pr[f, f ′
$← F : AO

′(·)(Θ,Aux) = 1]
∣∣ < ν(·).

We emphasize that the above definition is applicable for any function, in particular they can be applied
for rational polynomial functions in the following way. Thus we consider the functions f and f ′ which
take rational polynomial coefficients as input and evaluate on some random vectors x and x′ from ZmN ,

i.e., the function f is defined as f(r(X), s(X)) := r(x)
s(x)

and f ′ is defined as f ′(r(X), s(X)) := r(x′)
s(x′) ,

where r(X) and s(X) denote the coefficient representation of the polynomials of degree d (defined over
ZN ) with m many monomials. As we know that in the BTA family, adversarial inputs determine the
rational polynomials of the challenge term as its coefficients. Hence we can apply the extended adaptive
parameter-hiding property for this rational polynomials. Also we consider the auxiliary information as

Aux = {hζ
(j)(x)

1 }j=2,T for BTA assumption defined in G, where ζ(j)(x) ∈
{
a
(j)
i (x)

b
(j)
i (x)

}nj
i=1

.

4.2 SGH implies BTA

In this section we prove that all the q-type assumptions that belong to BTA family defined over
composite-order pairing can be reduced from SGH assumption. This reduction uses the extended adap-
tive parameter-hiding property defined in Definition 3. As mentioned earlier, instead of polynomial
function we apply this property for rational polynomial function.

For the q-type assumption that belongs to BTA family, it is guaranteed from the BTA definition that
atleast one of the parameter from {n1, n2, nT } can be written as some function of q, where q = poly(λ).
Now we consider the BTA assumption defined in G. As a concrete example, we consider q-co-SDH
assumption described in Example 1 that belongs to BTA family with n1 = n2 = q + 1 and nT = 0.
Now without loss of generality, it is sufficient to consider the BTA assumption defined in G with n1

being expressed as some function of q. Since the other possible choices can be covered by constructing
a strong assumption using the polynomials of the other group exponents from the weaker assumption
and then apply the DéjàQ techniques on this stronger assumption. For example, we consider a BTA
assumption (say P1) defined in G with n1 and nT are some constants but n2 is expressed as some

3 Even if N = p1 . . . pn, we decompose G using two of its subgroups G1 and G2 such that G1 (resp.
G2) is a subgroup of order p1 . . . pn−1 (resp. pn).
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function of q (say n2(q)). First one can construct a stronger assumption (say P2) from P1 assumption
by including all its n2(q) many exponents of H component to the exponent of G in the P2 assumption.

Now we proceed with Chase-Meiklejohn’s DéjàQ framework along with the extended adaptive
parameter-hiding property on BTA assumption with n1 being expressed as some function of q. First we
define a variant of BTA assumption, which will be useful while proving SGH implies BTA assumption.

Assumption 4 Let Θ = (N,G,H,GT , e, µ)
$← G(λ) with µ = {G1, G2}. G is said to satisfy a variant

of bilinear target assumption (vBTA)4 in G, if for every PPT adversary A and for all ` = poly(λ), the

advantage of this assumption is defined as, Adv
vBTAGι
A := Pr[A(Γ )→ ∆] = negl(λ), where

Γ =

(
Θ, g1g

∑̀
i=1

ri

2 , h1,

{
g

a
(1)
i

(x)

b
(1)
i

(x)

1 g

∑̀
j=1

rj
a
(1)
i

(xj)

b
(1)
i

(xj)

2

}n1

i=1

,

{
h

a
(2)
i

(x)

b
(2)
i

(x)

1

}n2

i=1

,

{
e(g1, h1)

a
(T )
i

(x)

b
(T )
i

(x)

}nT
i=1

,

{{
a
(j)
i (X)

b
(j)
i (X)

}nj
i=1

}
j∈{1,2,T}

, pub

)
,

for g1
$← G1, g2

$← G2 r {1} and rj
$← ZN , x,xj

$← ZmN and the output ∆ is
(
g
r(x)
s(x)

1 g

∑̀
j=1

rj
r(xj)

s(xj)

2 ,

r(X), s(X)
)

and sol.

Now we prove that BTA assumption defined in G is implied by Assumption 4 using subgroup hiding
assumption and extended adaptive parameter-hiding property.

Theorem 2 For a bilinear group generator G(λ)
$→ (N,G,H,GT , e, µ), consider G satisfies (d,m,

n1, n2, nT ) bilinear target assumption in G. Suppose that if G satisfies the following, (i) subgroup hiding
assumption for subgroup G1 with respect to µ = {g2, h1} and for subgroup H1 with respect to µ = {g1}
and (ii) extended adaptive parameter-hiding with respect to

F =

{{
a
(1)
i (x)

b
(1)
i (x)

}n1

i=1

,
r(x)

s(x)

}
and Aux =

{
hζ1
}
ζ∈
{{

a
(2)
i

(x)

b
(2)
i

(x)

}n2

i=1

,

{
a
(T )
i

(x)

b
(T )
i

(x)

}nT
i=1

}
for any h1 ∈ H1 and if G2 is of prime-order, then the BTA assumption is implied by the Assumption 4.

Proof sketch. The detailed proof can be found in §C and it uses the hybrid argument using sequence of
games. The intuitive argument is as follows, consider the BTA assumption defined over composite-order
bilinear groups, first translate all the elements from the group of composite-order to its subgroup G1.
Thus the elements of G and H are shifted to subgroups G1 and H1 and this shifting goes unnoticed
under subgroup hiding in G and H respectively. Notice that the challenge term of BTA belongs to
the group G, as BTA is defined in G. Since the exponent of the group elements are interpreted as
rational polynomials that are evaluated at some secret vector x, then the translation of elements from
G1 into G2 retains the same polynomial evaluation as its shadow copy in the exponent of G2. This
transition is unnoticed under subgroup hiding in G. Now the shadow copy of the rational polynomials
that corresponds to the subgroup G2’s exponents are evaluated using different secret vector x1 and is
statistically identical to its previous state. This transition is achieved by using the extended adaptive
parameter-hiding property defined in Definition 3. We repeat the above procedure polynomial many
times (say `) and prove the theorem. ut

Now we provide the enough entropy by taking ` to be n1 + 2 which will guarantee the hardness of
Assumption 4 in the following corollary. This implies that the BTA assumption is reduced from SGH
assumption.

4 As similar to BTA assumption, hardness of vBTA assumption ensures that the instance and challenge
terms should satisfy certain linearly independent condition that corresponds to Equation 1. However
we omit such condition here and prove the hardness of vBTA assumption in Corollary 3.

10



Corollary 3 For a bilinear group generator G(λ)
$→ (N,G,H,GT , e, µ), we prove that G satisfies

(d,m, n1, n2, nT )-BTA assumption in G, if (i) N = p1 . . . pn for distinct primes p1, . . . , pn ∈ Ω(2λ)
and G satisfies the following, (ii) subgroup hiding for subgroup G1 with respect to µ = {g2, h1} and for
subgroup H1 with respect to µ = {g1}, (iii) extended adaptive parameter-hiding with respect to class F
and Aux which are defined as in Theorem 2 and (iv) the polynomials in F are linearly independent and
have maximum degree poly(λ).

Proof. From the requirements (ii) and (iii), Theorem 2 tell us that BTA assumption is implied by
the Assumption 4. In order to prove this corollary, it is sufficient to prove that the advantage of the
Assumption 4 is negligible in the security parameter. Now for the sake of simplicity we assume that
g1 and x are public, hence adversary can compute the G1 component of any challenge term. Now this

boils down to computing g

∑`
j=1 rj

r(xj)

s(xj)

2 . Also note that the auxiliary information Aux doesn’t provide
any advantage in computing the above element, since they operate on different groups with completely
independent set of variables. Consider the following matrix from the G2 component of Assumption 4,

V =


1
a
(1)
1 (x1)

b
(1)
1 (x1)

. . .
a
(1)
n1

(x1)

b
(1)
n1

(x1)

r(x1)
s(x1)

...
...

. . .
...

...

1
a
(1)
1 (x`)

b
(1)
1 (x`)

. . .
a
(1)
n1

(x`)

b
(1)
n1

(x`)

r(x`)
s(x`)

 .

Here we set ` as n1 + 2. From the requirement (iv), [CM14, Lemma 4.4] ensures that the above matrix
V is nonsingular. For randomly chosen vector r from Zn1+2

N (it was chosen during the simulation), we
define y = r ·V . Thus from this matrix relation, the first n1 + 1 elements are given to A and his goal is
to compute the last element of y. Since V is invertible and r is chosen uniformly at random from Zn1+2

N .
This makes the vector y uniformly at random, in particular the last element is uniformly distributed.
Hence probability of computing such challenge term is negligible in the security parameter. ut

Remark 2 We can also prove that SGH implies all the q-type assumptions belonging to BTA assump-
tion defined in target group GT . This can be further simplified by Ghadafi and Groth [GG17] result, as
they proved that all the BTA assumption in GT are implied by bilinear simple fractional (BSFracT ) and
bilinear gap (BGap) assumptions defined in GT . Now we can use Chase et al’s [CMM16] techniques to
give a reduction from SGH assumption to both q-BGap and q-BSFrac assumptions. In particular for the
reduction of q-BGap assumption from SGH, we can use the extended parameter-hiding property, as its
challenge term do not contain any adversarial input. However for the reduction of q-SFrac assumption
from SGH we can use extended adaptive parameter-hiding property, as the polynomial coefficients in
the challenge terms are chosen by the adversary.

Remark 3 Having proved that SGH implies BTA assumption in the composite-order pairing setting,
the natural question arises for the similar reduction in the prime-power setting. We don’t have a positive
answer, since emulating the parameter-hiding property for any polynomial and rational polynomial
functions other than the affine function of the form f(x) = ax + b [LM15] is still an interesting open
problem.

4.3 DéjàQ for BTA1 and BTA2

In this section we explain why the existing DéjàQ techniques are not applicable for q-type assumptions
that belong to either BTA1 or BTA2 family. We explain the difficulty of proving the reduction with a
concrete example. Here we could identify two issues for this difficulty.

To illustrate the first issue, we consider the q-SFP′ problem (which is equivalent to q-SFP prob-
lem [AFG+10] except with negligible probability, see §A) defined in Table 1 in which, given the in-

stance
(
g, h, gz, gf , gr, gu, ga, gb, hc, hd,

{
g
ac−zzi−rri

ti , g
bd−fzi−uui

wi , hzi , hri , hti , hui , hwi
}q
i=1

)
compute
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(
g
ac−zz∗−rr∗

t∗ , g
bd−fz∗−uu∗

w∗ , hz
∗
, hr

∗
, ht

∗
, hu

∗
, hw

∗)
for r∗ 6= ri. The challenge terms of q-SFP′ prob-

lem also satisfy the two sets of PPEs. For simplicity we consider the first PPE, e(g
ac−zz∗−rr∗

t∗ , ht
∗
)

?
= e(ga, hc)e(gz, h−z

∗
) e(gr, h−r

∗
). One can use Chase et al’s [CMM16] techniques to prove a result

analogous to Theorem 2. However one can observe that from the above pairing equation, columns of

the matrix V that correspond to the elements ga, gz, gr and g
ac−zz∗−rr∗

t∗ will be linearly dependent.
This makes the matrix V to be singular. However in order to complete the reduction from SGH as-
sumption, Chase et al’s technique requires non-singular matrix V . Hence we cannot use the existing
DéjàQ techniques for q-SFP′ problem.

To illustrate the second issue, we consider the q-AGHO′ problem (which is equivalent to q-AGHO
problem [AGHO11]) defined in Table 1. It is stated as, given the instance

(
g, h, hw, hx, hy,

{
gx−aiw−riy,

gai , gri , ha
−1
i
}q
i=1

)
compute

(
gx−a

∗w−r∗y, ga
∗
, gr
∗
, h(a∗)−1)

. The challenge terms of q-AGHO′ problem

should satisfy the following PPEs such as e(gx−a
∗w−r∗y, h)

?
= e(g, hx) e(ga

∗
, hw)−1 e(gr

∗
, hy)−1 and

e(ga
∗
, h(a∗)−1

)
?
= e(g, h). First we try to apply Chase-Meiklejohn’s [CM14] techniques. During the

reduction simulator chooses the secret w, x, y to generate an instance and sends to adversary who
breaks the q-AGHO′ assumption. Then adversary outputs the challenge terms. Now in order to verify
the well-formedness of the challenge terms, simulator must use the above PPEs as he does not know
the exponents a∗ and r∗. This is the main bottleneck, as the corresponding PPEs cannot be used
to check the well-formedness of the challenge terms and hence it cannot distinguish the intermediate
games. Thus we cannot apply Chase-Meiklejohn’s technique. Now we apply the Chase et al’s [CMM16]
technique which uses two types of generators. The first type generator is analogous to the one used
in Chase-Meiklejohn techniques, whereas the second type generator is defined in such a way that it is
fixed throughout the reduction. One can use the second type generator for ga

∗
and gr

∗
, but we cannot

use for gx−a
∗w−r∗y, as it leaks the information about w, x, y mod p2. Hence one have to use the first

type generator for gx−a
∗w−r∗y. This results to PPEs which are unsatisfiable and hence we cannot use

these PPEs to check the well-formedness of the challenge terms. Thus one cannot distinguish between
the intermediate games. Similar issue arises for all the q-type problems except the q-SFP′, that are
listed in Table 1 and that belong to either BTA1 or BTA2 family.

5 Dual-Form Signature Variants

Here we consider two protocols whose security is proved under q-type assumptions that belong to either
BTA1 or BTA2 family. The first one is Abe et al’s [AGHO11] structure-preserving signature (SPS)
scheme which is secure under q-AGHO assumption. The second one is Boyen-Waters [BW07] group
signature (GS) scheme which is secure under q-HSDH assumption. We apply the dual-form signature
techniques of Gerbush et al’s [GLOW12] to construct a dual-form SPS scheme (and a dual-form GS)
where security is based on some static assumption.

5.1 Dual-Form Abe et al’s Structure-Preserving Signature Scheme

Structure-preserving signature (SPS) is used as a building block to construct several cryptographic
primitives such as group signature, blind signature, anonymous credentials etc. SPS is a special type
signature scheme where the message, public key and signature components belong to the underlying
bilinear groups and the signature is verified using pairing product equations over the public key, the
message and the signature.

Gerbush et al. introduced dual-form signature [GLOW12] which is defined using two signing al-
gorithms, namely SignA and SignB that will respectively return two forms of signature and both will
verify under the same public key. The security definition categorizes the forgeries into two types, Type
I and Type II which typically correspond to the signatures returned by SignA and SignB respectively.
See §D.1 for the definition of dual-form signature and its security and §E.1 for the definition of SPS
scheme and its security.
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Informally, we directly instantiate the original Abe et al’s SPS scheme [AGHO11] in the asymmetric
composite-order pairing and using dual-form signature techniques we prove its security under static
assumption. Without loss of generality, in the following we assume that the signer chooses the message
M from the group G. However the same techniques can be extended for the message vectors from either

or both of the source groups G and H. Let Θ := (N = p1p2, G,H,GT , e, µ = {g′1, g′2, h′1})
$← G(λ),

where g′i (resp. h′1) is a random element from the pi-order subgroup Gi (resp. H1) of G (resp. H)
and pairing is defined as e : G×H → GT . We instantiate the dual-form SPS scheme using the above
mentioned bilinear group generator G. In this construction, the public key and signatures returned by
SignA algorithm resides in the subgroup of order p1, whereas the signature returned by SignB algorithm
resides in the group of order N . The dual-form SPS scheme consists of four PPT algorithms, which are
defined as follows.

KeyGen(Θ). Choose gi (resp. h1) uniformly at random from Gi (resp. H1). Choose w, x, y1, y2 uni-
formly at random from ZN and compute W = hw1 , X = hx1 , Y1 = hy11 and Y2 = hy21 . Return the
secret key SK = (w, x, y1, y2, g2) and public key PK = (g1, h1,W,X, Y1, Y2).

SignA(SK,M). Choose r (resp. a) uniformly at random from ZN (resp. Z∗N ). Compute A = ga1 ,

D = h
1/a
1 , B = gx−aw−ry11 M−y2 and R = gr1 . Return the signature σ = (A,D,B,R) along with

the message M .
SignB(SK,M). Choose r, γ1, γ2, γ3 (resp. a) uniformly at random from ZN (resp. Z∗N ). Compute A =

ga1g
γ1
2 , D = h

1/a
1 , B = gx−aw−ry11 M−y2gγ22 and R = gr1g

γ3
2 . Return the signature σ = (A,D,B,R)

along with the message M .

Verify(PK,M, σ). Parse the signature and check A
?
∈ G,D

?
∈ H1

5 and B,R
?
∈ G. If any of the above

checks fail to hold, then abort, else checks

e(R, h1) 6= 1, e(A,D)
?
= e(g1, h1) and e(B, h1)e(A,W )e(R, Y1)e(M,Y2)

?
= e(g1, X). (4)

If all the above equations hold then return accept, otherwise return reject.

The signature returned by both SignA and SignB algorithms can be verified using Equation 4. It is
easy to check the correctness of the scheme from Equation 4. As similar to Abe et al’s [AGHO11] SPS
scheme, we prove the above dual-form SPS scheme is secure in the sense of strongly unforgeable, i.e.,
adversary can forge on the queried message but the corresponding signature obtained from the signing
oracle should differ from the forgery signature.

We define the variant of SGH assumptions such as Assumptions 5, 6 and 7 in Appendix E.2. Now
we state the security of dual-form SPS scheme under these assumptions in the following theorem. The
detailed proof can be found in Appendix E.2.

Theorem 4 The dual-form of Abe et al’s SPS scheme satisfies A-I matching, Dual-oracle invariance
and B-II matching if G satisfies Assumption 5, 6 and 7 respectively.

Proof sketch. The A-I matching is proved under Assumption 5. Given the instance, simulator B con-
structs the PK for dual-form SPS scheme by choosing the random exponents. Thus B knows all the
components of SK except g2. Hence B can answer for all the SignA queries. Once the adversary returns
a valid forgery of Type-II, B uses it to solve Assumption 5. Similarly we can prove B-II matching
under Assumption 7. Notice that the condition e(R, h1) 6= 1 in the Verify algorithm ensures that the
simulator in the B-II matching proof computes the non-trivial solution for Assumption 7. Whereas
dual-oracle invariance is proved under Assumption 6. Here simulator C chooses all the random expo-
nents to construct PK and the problem instance contains g2. Thus C knows the entire SK components
and hence he can answer for all the signing queries of both types. C embeds the challenge terms of the
Assumption 6 while answering for a challenge query. Again based on the adversary’s forgery types, C
solves the underlying assumption. In all cases, simulator uses the suitable backdoor verification test
(BVT) to check the forgery types returned by the adversary. ut
5 First we check A (resp. D) belongs to G (resp. H) by verifying AN = 1G (resp. DN = 1H). Then

the pairing equation e(A,D) = e(g1, h1) ensures that D indeed belongs to subgroup H1.
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5.2 Dual-Form Boyen-Waters Group Signature Scheme

We discuss the case of Boyen-Waters [BW07] group signature which was originally proved secure under
q-HSDH assumption. Since q-HSDH belongs to BTA1 family, we cannot apply the existing DéjàQ
technique (see §4.3). As before, we apply Gerbush et al’s [GLOW12] dual-form signature technique on
this scheme and prove its security under static assumption.

Now we recall the Boyen-Waters [BW07] group signature scheme. The formal definition of group
signature and its security properties such as full anonymity and full traceability is recalled in §F.1. The
Boyen-Waters group signature was constructed using two-level hierarchical signature scheme (HSS)
along with Groth-Sahai’s [GS08] non-interactive witness indistinguishable (NIWI) proof. The security
of NIWI proof system ensures the full anonymity and security of two-level HSS (it was proved under
q-HSDH assumption) ensures the full traceability of group signature scheme. Note that in the Boyen-
Waters [BW07] construction, signer constructs the NIWI proof ensuring that one of the user has signed
the message. In particular, signer commits to the second level signatures returned by the appropriate
types of signing algorithm. From the verification equations of second level signature, signer could
construct the NIWI proof components that verify to the above commited values.

First we focus on constructing dual-form variant of two-level HSS [BW07] under subgroup hiding
assumption. The two-level HSS consists of Boneh-Boyen signature [BB04] at first level and Waters
signature [Wat05] at second level. In 2012, Yuen et al. [YCZY14] used dual-form signature techniques
to obtain the dual-form of Boneh-Boyen signature scheme under SGH assumption instead of q-SDH
assumption. In their construction, the original Boneh-Boyen signature component is modified to include
some additional random elements to avoid the dependence on q-type assumption. We can directly use
this dual-form Boneh-Boyen signature [YCZY14] along with the Waters signature [Wat05] to obtain
the dual-form two-level HSS as in the original Boyen-Waters [BW07] construction and it is described
in §F.2.

Now we focus on constructing dual-form variant of Boyen-Waters group signature scheme. As similar
to the original construction, the dual-form two-level HSS scheme outputs a constant size signature and
hence we could obtain the constant size dual-form variant of group signature. The scheme is defined
over symmetric composite-order pairing with product of four primes. Let Gi be the subgroup of G, for
any subset i ⊂ [1, 4]. As similar to Yuen et al’s construction [YCZY14], we use the subgroup G3 to
provide additional randomness and the subgroup G2 to define the second type group signatures.

Now we present the dual-form group signature which consists of seven PPT algorithms which are
defined as follows.

Setup(λ). Run the bilinear group generator G on λ which outputs (N,G,GT , e, µ), where N =
p1p2p3p4 with large primes pi > 2λ, for i ∈ [1, 4] and µ = {g1,4, g2,3, g3, g4}. Choose g, h, u, w, v0,
{vi}mi=1 (resp. α) uniformly at random from the subgroup5 G1,4 (resp. ZN ), for m = poly(λ). Now
define the public parameter PP as (N,G,GT , e, g, u,A = e(g, h), gα, w, v0, {vi}mi=1, g4) and master

enrollment key MK as (α, h, g3, g2,3, {si}2
k

i=1) and tracing key TK as prime p4, where si ∈ ZN is
a unique identifier of the user ID ∈ {0, 1}k in the system, for k = poly(λ). Then output PP , MK
and TK.

EnrollA(PP,MK, ID). Choose X3, X
′
3 (resp. r) uniformly at random from G3 (resp. ZN ). Compute

and output the private signing key KID = (K1, . . . ,K4), where

K1 = (hu−r)
1

α+sID X3, K2 = grX ′3, K3 = gsID , K4 = wsID .

EnrollB(PP,MK, ID). This algorithm is same as that of EnrollA except that K1 and K2 are defined

as K1 = (hu−r)
1

α+sID X2,3 and K2 = grX ′2,3, for randomly chosen X2,3, X
′
2,3 from G2,3.

SignA(PP,KID,M). Parse the message M = (µ1, . . . , µm) ∈ {0, 1}m and choose s uniformly at ran-
dom from ZN . First compute the initial signature components θ = (θ1, . . . , θ5), where θi = Ki,

5 Given a subgroup generator gi as part of µ, the random element x of the subgroup Gi is generated

by computing x = gri , for r
$← ZN . This holds for any subset i ⊂ [1, 4].
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for i ∈ [1, 3], θ4 = K4

(
v0
∏m
i=1 v

µi
i

)s
and θ5 = g−s. Choose ti uniformly at random from ZN and

compute

Si = θig
ti
4 , for i ∈ [1, 5], π1 = (θ1)t3(θ3g

α)t1ut2gt1t34 and π2 = wt3g−t4
(
v0
∏m

j=1
v
µj
j

)−t5 .
Then output the signature as σ = (S1, . . . , S5, π1, π2).

SignB(PP,KID,M). This algorithm is same as that of SignA except that it uses KID returned by the
EnrollB algorithm.

Verify(PP,M, σ). Parse the message M and signature σ and check that

e(S1, S3g
α)e(S2, u)A−1 ?

= e(π1, g4) and e(S3, w)e(S4, g)−1e
(
v0
∏m

j=1
v
µj
j , S5

)−1 ?
= e(π2, g4). (5)

If any of the above checks fail to hold, then output reject, otherwise output accept.

Trace(PP, TK, σ). Compute and check (S2)p4
?
= (gsIDi )p4 for every suspicious identity IDi and

return IDi if the above check holds, else output ⊥. This algorithm can be optimized further using
lookup table with preprocessing the exponentiation of all the user identity.

The group signature consists of commitment components (S1, . . . , S5) under the signer’s identifier sID
(associated with user index) and some additional NIWI proof components, namely, π1 and π2. Without
revealing sID, the proof components convinces the verifier that one of the signing key corresponding
to some user sID in the system produced the signature. The scheme correctness can be verified using
Equation 5. Let V be the collection of all message and signature pairs such that it satisfies Equation 5.
The Type I forgery is defined as a collection of message and signature pairs in V such that e(g2, S

∗
1 ) = 1

and e(g2, S
∗
2 ) = 1 holds, otherwise it is said to be Type II forgery.

The full anonymity of the group signature scheme can be proved under subgroup hiding assump-
tion. Given the SGH instance, simulator setup an experiment against full anonymity adversary. If
the challenge term belongs to subgroup G4 of G1,4 then the experiment is identical to the original
anonymity game, else we can prove that even an unbounded adversary cannot win the experiment as
similar to [BW07].

Theorem 5 Consider the bilinear group generator G(λ)
$→ (N,G,GT , e, µ). If G satisfies subgroup

hiding assumption, then the above described dual-form group signature is fully traceable.

Proof sketch. As similar to [BW07], we can establish a reduction for each security property of dual-
form group signature such as A-I matching, dual oracle invariance and B-II matching from that of
dual-form two-level HSS. Notice that the dual-form two-level HSS is defined only in the subgroup of
order p1p2p3, but still it uses the bilinear pairing defined over N . Hence the reduction extensively
uses the independent random exponents between the subgroups G1 and G4. This helps the reduction
to translate PP , first and second level signatures from the dual-form two-level HSS into PP , private
signing key and signatures of dual-form group signatures respectively. Also the reduction uses the
exponentiation by p4 as a function which always kill the component from the subgroup G4. This helps
the reduction to translate the forgery returned by the adversary from the group G to the subgroup
G1,2,3. ut
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Broader Reductions of q-Type Assumptions. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, volume 10032, pages 655–681, Springer, 2016.

[FHS14] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-preserving signatures
on equivalence classes and constant-size anonymous credentials. IACR Cryptology ePrint
Archive, 2014:944, 2014.

[FPV09] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable Constant-Size
Fair E-Cash. In Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, editors, CANS 2009
volume 5888, pages 226–247, Springer, 2009.

[Fuc09] Georg Fuchsbauer. Automorphic Signatures in Bilinear Groups and an Application to
Round-Optimal Blind Signatures. IACR Cryptology ePrint Archive, 2009:320, 2009.

[GG17] Essam Ghadafi and Jens Groth. Towards a classification of non-interactive computational
assumptions in cyclic groups. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT
2017, volume 10625, pages 66–96, Springer, 2017.

[Gha14] Essam Ghadafi. Efficient distributed tag-based encryption and its application to group
signatures with efficient distributed traceability. In Diego F. Aranha and Alfred Menezes,
editors, LATINCRYPT, volume 8895, pages 327–347. Springer, 2014.

[Gha15] Essam Ghadafi. Stronger security notions for decentralized traceable attribute-based sig-
natures and more efficient constructions. In Kaisa Nyberg, editor, CT-RSA, volume 9048,
pages 391–409. Springer, 2015.

[GL07] Jens Groth and Steve Lu. A Non-interactive Shuffle with Pairing Based Verifiability. In
Kurosawa, editor, ASIACRYPT, volume 4833, pages 51–67, 2007.

16



[GLOW12] Michael Gerbush, Allison B. Lewko, Adam O’Neill, and Brent Waters. Dual form signa-
tures: An approach for proving security from static assumptions. In Xiaoyun Wang and
Kazue Sako, editors, ASIACRYPT 2012, volume 7658, pages 25–42, Springer, 2012.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
Smart, editor, EUROCRYPT 2008, pages 415–432, Springer, 2008.

[JY09] David Jao and Kayo Yoshida. Boneh-boyen signatures and the strong diffie-hellman prob-
lem. In Hovav Shacham and Brent Waters, editors, Pairing 2009, volume 5671, pages 1–16,
Springer, 2009.

[Lew12] Allison B. Lewko. Tools for Simulating Features of Composite Order Bilinear Groups in the
Prime Order Setting. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT,
volume 7237, pages 318–335, Springer, 2012.

[LM15] Allison B. Lewko and Sarah Meiklejohn. A Profitable Sub-prime Loan: Obtaining the
Advantages of Composite Order in Prime-Order Bilinear Groups. In Jonathan Katz, editor,
PKC, volume 9020, pages 377–398, Springer, 2015.

[MSK02] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing. IEICE trans-
actions on fundamentals of electronics, communications and computer sciences, 85(2):481–
484, 2002.

[Oka06a] Tatsuaki Okamoto. Efficient Blind and Partially Blind Signatures Without Random Oracles.
In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876, pages 80–99, Springer, 2006.

[Oka06b] Tatsuaki Okamoto. Efficient blind and partially blind signatures without random oracles.
IACR Cryptology ePrint Archive, 2006:102, 2006.

[Wat05] Brent Waters. Efficient Identity-Based Encryption Without Random Oracles. In Ronald
Cramer, editor, EUROCRYPT 2005, pages 114–127, Springer, 2005.
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A Complexity Assumptions

We recall some of the computational assumptions definition that are used in this paper. All these
assumptions are defined in the asymmetric prime-order setting using bilinear group generator G. Let

Θ = (p,G1,G2,GT , e, g, h)
$← G(λ), where g (resp. h) is a generator of the group G1 (resp. G2). Now

we describe some of the computational q-type problems in Table 1, which includes Θ as part of the
problem instance.

We say that the computational problem is said to have discrete logarithm representation, if each
element in both instance and challenge terms are represented with an explicit discrete logarithm of
that element specified in the exponent of some fixed generator. Now we explain that both the dis-
crete logarithm representation and avoiding pairing product equations (PPEs) will help to classify the
concrete q-type assumptions in to BTA1 or BTA2 families. For example, the variant of q-AGHO and
q-SFP problems use the discrete logarithm representation and avoid using the corresponding PPEs,
as opposed to its respective original counter-part from [AGHO11] and [AFG+10]. These variants are
denoted as q-AGHO′ and q-SFP′ respectively and both are classified into BTA1 family. Similarly the
variant of q-SP problem avoids the PPEs as opposed to its original counter-part [GL07] and is denoted
as q-SP′ problem. This variant is classified into BTA2 family. Similarly the variant of q-ADHSDH prob-
lem, denoted as q-ADHSDH′, uses the discrete logarithm representation for challenge terms as opposed
to its original counter-part [Fuc09] and classified into BTA1 family. Now we prove the equivalence of
these new variants with their respective original counter-parts.
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Problem Instance (Γ ) Challenge (Ω)

BTA family

q-DHI [MSK02] hx,
{
gx
i}q
i=1

g
1
x

q-GDHE [BGW05] hx,
{
gx
i}2q
i=1,i 6=q+1

gx
q+1

q-SDH [BB04] hx,
{
gx
i}q
i=1

(
c, g

1
x+c
)

q-mSDH [BW07] gx, hx,
{
g

1
x+ai , ai

}q
i=1

(
c, g

1
x+c
)

s.t c 6= ai

q-2SDH6 [Oka06a] hy,
{
gx
i

, hx
i

, gyx
i}q
i=1

, g
y+b
x+a , a, b

(
c, g

1
x+c
)

q-mDSDH7 [FPV09] gx, hx, gy,
{
g
y+bi
x+ai , ai, bi

}q
i=1

(
g
y+d
x+c , c, d

)
s.t c 6= ai

BB-CDH [BCC+09] gx, gy, hx, {g
1

x+ci , ci}qi=1 gxy

q-co-SDH [FHS14]
{
gx
i

, hx
i}q
i=1

(
r(X), s(X), g

r(x)
s(x)
)

s.t 0 ≤ deg r(X) < deg s(X) ≤ q
BTA1 family

q-HSDH [BW07] gx, hx, u,
{
g

1
x+ai , uai , hai

}q
i=1

(
g

1
x+c , uc, hc

)
s.t c 6= ai

q-ADHSDH′9 [Fuc09] gx, hx, gy, u,
{
g
y+bi
x+ai , uai , hai , gbi , hbi

}q
i=1

g
y+d
x+c , uc, hc, gd, hd

s.t (c, d) 6= (ai, bi)

q-AGHO′9 [AGHO11] hw, hx, hy,
{
gx−aiw−riy, gai , gri , ha

−1
i
}q
i=1

gx−a
∗w−r∗y, ga

∗
, gr
∗
, h(a∗)−1

q-SFP′8 [AFG+10]
(
gz, gf , gr, gu, ga, gb, hc, hd,

{
g
ac−zzi−rri

ti ,
(
g
ac−zz∗−rr∗

t∗ , g
bd−fz∗−uu∗

w∗ ,

g
bd−fzi−uui

wi , hzi , hri , hti , hui , hwi
}q
i=1

)
hz
∗
, hr
∗
, ht
∗
, hu

∗
, hw

∗)
, r∗ 6= ri

BTA2 family

BB-HSDH [BCC+09] gx, hx, u,
{
g

1
x+ai , ai

}q
i=1

)
g

1
x+c , uc, hc s.t c 6= ai

q-TDH [BCKL08] gx, gy, hx, {ci, g1/(x+ci)}qi=1 hµx, gµy, gµxy

q-SP′8 [GL07] {gxi , gx
2
i }qi=1

({
hyi
}q
i=3

, h

∑q
i=3

xi(xi−x2)yi
x1(x2−x1) ,

h

∑q
i=3

xi(xi−x1)yi
x2(x1−x2)

)
q-2SDH6 [Oka06b] gx, hx, gy, hy,

{
g
y+bi
x+ai , h

y+bi
x+ai , ai, bi

}q
i=1

(
g
y+d
θx+ρ , gx/θ+τ , h(θτ+ρ/θ)x+ρτ ,

hθx+ρ, d
)

s.t d 6= bi

(q, `)-Poly-SDH [Boy07]
{
gxi , hxi

}`
i=1

,
{
g

1
xi+cij , cij

}`,q
i,j=1

{
g

γi
xi+ci , ci

}`
i=1

,
∑̀
i=1

γi = 1

(q, `, `′)-Pluri-SDH [Boy07]
{
gxi , hxi

}
i
,
{
g

1
x
i′+ci′j , ci′j

}q
i′,j=1

{
g

γi
xi+ci , ci

}
i

s.t
∑
i γi = 1

i ∈ [−`′, `]− {0}, i′ ∈ [−`′,−1] i ∈ [−`′, `]− {0}
Table 1: Computational problems classification in BTA and its variants.

First we prove that q-SFP problem [AFG+10] is equivalent to q-SFP′ problem described in Table 1.
Informally q-SFP problem says that, given GZ , FZ , GR, FU , A, Ã, B, B̃ and {Zi, Ri, Si, Ti, Ui, Vi,Wi}qi=1

which satisfies Equation 6, compute (Z,R, S, T, U, V,W ) satisfying Equation 6. Here both instance and
challenge terms should satisfy the following PPEs and hence we use the common variables

(
Z∗, R∗, S∗,

T ∗, U∗, V ∗,W ∗
)
.

e(A, Ã)
?
= e(GZ , Z

∗)e(GR, R
∗)e(S∗, T ∗) and e(B, B̃)

?
= e(FZ , Z

∗)e(FU , U
∗)e(V ∗,W ∗). (6)

6 Chatterjee-Menezes [CM11] technique can be used to convert these problems from Type-II pairing
to Type-III pairing.

7 We rename the problem in Definition 15 of [FPV09] as q-mDSDH problem.
8 We argue the equivalence of these assumptions with its original counter-part except negligible prob-

ability.
9 We argue that these assumptions are equivalent to its original counter-part.
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As we are in the cyclic group of prime-order pairing setting, each element in the source groups can be
represented using some fixed generators (say) g and h. For simplicity, we consider the elements of prob-
lem instance corresponding to the first PPE from Equation 6. Thus elements A, Ã,GZ , GR, Zi, Ri, Si
and Ti from the instance are represented as A = ga, Ã = hc, GZ = gz, GR = gr, Zi = hzi , Ri =
hri , Si = gsi and Ti = hti respectively, for the appropriate randomness from Zp. Now applying this
representation on first PPE, we get

e(ga, hc)
?
= e(gz, hzi)e(gr, hri)e(gsi , hti) ⇔ e(g, h)ac

?
= e(g, h)zzi+rri+siti

⇔ ac = zzi + rri + siti mod p,
(7)

where the first equivalent condition holds due to bilinearity of the map e and the second equivalent
condition holds from the fact that in a cyclic group of order p, gx = gy if and only if p divides (x− y).

Now we can see that the following events are equal,

{ac = zzi + rri + siti mod p} = {ti = 0} ∧ {ac = zzi + rri mod p}
+ {ti 6= 0} ∧ {si = (ac− zzi − rri)/ti mod p}

(8)

The above equality of the events corresponds to the first PPE described in Equation 6. Similarly we
can obtain the equivalent conditions and events analogous to Equation 7, for the other set of instance
elements that corresponds to second PPE and for the challenge terms of q-SFP problem.

With this background, now we prove the following.

Lemma 6 The q-SFP problem [AFG+10] is equivalent to q-SFP′ problem defined in Table 1 except
with some negligible probability.

Proof. Assume that there exists a polynomial time adversary ASFP ′ for q-SFP′ problem. Now we
construct a simulator BSFP for q-SFP problem. Given the instance of q-SFP problem, simulator BSFP
relays the same as an instance of q-SFP′ problem to ASFP ′ , except when atleast one ti or wi is zero.
From the contradiction assumption, ASFP ′ returns a valid challenge terms of q-SFP′ problem which
are used as a challenge terms of q-SFP problem by BSFP . Thus from the probability calculation, we
have

AdvSFP
′

= Pr[ASFP ′(Γ ) = Ω]

= Pr
[ q∧
i=1

(ti 6= 0 ∧ wi 6= 0) ∧ ASFP ′(Γ ) = Ω
]

+ Pr
[ q∨
i=1

(ti = 0 ∨ wi = 0) ∧ ASFP ′(Γ ) = Ω
]

= Pr
[
BSFP (Γ ) = Ω

]
+ Pr

[ q∨
i=1

(ti = 0 ∨ wi = 0) ∧ ASFP ′(Γ ) = Ω
]

≤ AdvSFP +

q∑
i=1

(Pr[ti = 0] + Pr[wi = 0]) = AdvSFP + 2q/p.

In the above computation, the third equality comes from the above simulation for q-SFP assumption
and the fourth inequality comes from the basic probability results. We note that the restriction for the
above simulation is due to the event that atleast one of ti or wi is zero, for i ∈ [1, q]. This restriction
contribute to the additional term 2q/p in the above relation.

Now for the other direction, there exists a polynomial time adversary ASFP for q-SFP problem.
Now we construct a simulator BSFP ′ for q-SFP′ problem. Given the instance of q-SFP′ problem,
BSFP ′ relays the same as an instance of q-SFP problem to ASFP . From the contradiction assumption,
ASFP returns a valid challenge terms of q-SFP problem with some non-negligible advantage. From the
definition of q-SFP′ it is sufficient to look for those exponents t and w such that both are non-zero in
Zp. The probability calculation is similar to the previous direction but for a single pairs ti, wi instead
of q pairs. This directly imply that

AdvSFP ≤ AdvSFP
′

+ 2/p.
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Since q is polynomial in the security parameter λ and for large prime 1/p is negligible, hence 2/p
and 2q/p are negligible. Thus q-SFP problem is equivalent to q-SFP′ problem except with negligible
probability. ut

Similarly one can prove that q-AGHO and q-AGHO′ problems are equivalent. This is mainly because
the PPE for q-AGHO problem do not have a rational expression and hence there is no restriction while
simulating the reduction.

Now we consider the q-SP problem [GL07], in which both instance and challenge terms use the
discrete logarithm representation. However from the corresponding PPEs we can simplify and obtain the
explicit form of the challenge exponents, so that we can avoid using PPEs. This result to q-SP′ problem

which can be classified into BTA2 family. Recall that q-SP problem says that given g, h, {gxi , gx
2
i }qi=1,

compute {hyi}qi=1 such that
∏q
i=1 e(g

xi , hyi)
?
= 1 and

∏q
i=1 e(g

x2i , hyi)
?
= 1. Now we interpret these

PPEs as a system of equations having two equations with q many variables. We solve this system of
equations and obtain

y1 =

∑q
i=3 xi(xi − x2)si

x1(x2 − x1)
, y2 =

∑q
i=3 xi(xi − x1)si

x2(x1 − x2)
and yi = si

$← Zp, for i ∈ [3, q].

From this representation, we can construct q-SP′ problem as described in Table 1. Here the additional
restriction is x1 6= x2 and this happens with probability 1/p which is negligible. Thus we can justify
that q-SP and q-SP′ problems are equivalent except with negligible probability.

Similarly we can argue that q-ADHSDH′ problem is obtained from q-ADHSDH problem by ex-
pressing its challenge terms using discrete logarithm representation. The q-ADHSDH′ problem does
not contain any additional restriction and hence we can prove that it is equivalent to q-ADHSDH
problem.

B Proof of Lemma 1

To prove the Lemma 1 we follow the reduction techniques from Ghadafi and Groth [GG17]. Hence
we follow their computational assumption definition which emphasize the private information in priv.
The non-interactive computational assumption consists of (I,V), in which the instance generator I
takes λ as input and outputs an instance Γ along with pub and priv, where priv contains some
secret information such as the secret vectors x that was used to evaluate the rational polynomials, pub
contains information about the underlying bilinear groups and its order. The instance verifier V takes
the challenge terms Ω, pub, priv as input and outputs 1 or 0. Adversary takes the instance Γ and pub

as input and outputs the challenge terms Ω. From the definition of BTA and its variants BTA1 and
BTA2, we include the secret vector x and all the polynomial coefficients of the instance are included
as part of priv.

Proof. (i.) BTA2 implies BTA. First we prove the existence result. From the definition of BTA
and BTA2, instance of both BTA and BTA2 problems contain all the rational polynomials whose
coefficients are given explicitly. Hence any one can construct an instance of BTA2 from BTA. However
all the polynomial coefficients of the challenge term of BTA are given explicitly. Hence any one can
compute the challenge terms for BTA2 by exponentiating each of those polynomial coefficients in both
source groups. Thus constructing a BTA2 problem from that of BTA directly ensures the existence
result.

Now we prove the reduction using contradiction method. Assume that there exists a polynomial
time adversary A that breaks a BTA problem with some non-negligible advantage. Now we construct
a BTA2 solver, say B as follows. Given the instance of BTA2, B randomizes this instance and passes
to A. Observe that since B has to construct the challenge terms of BTA2 from that of BTA, hence the
appropriate parameters (which includes nc1 , nc2 and ncT ) are given as part of pub. Now B chooses nm
such that nm = max{nc1 , nc2 , ncT }. Thus B uses A as a subroutine in exactly nm many times in order
to construct the challenge terms for BTA2 problem. Let us denote the BTA2 instance as

Γ =

({
[1]j ,

{[
a
(j)
i (x)

b
(j)
i (x)

]
j

, a
(j)
i (X), b

(j)
i (X)

}nj
i=1

}
j∈{1,2,T}

, pub

)
,
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where pub contains the additional information such as description of bilinear groups Θ and priv

contains the secret vector x from Zmp . For each t ∈ [1, nm], B chooses θtj uniformly at random from Z∗p
and constructs a random BTA instance as

Γt =

{
θtj [1]j ,

{
θtj

[
a
(j)
i (x)

b
(j)
i (x)

]
j

, θtja
(j)
i (X), θtjb

(j)
i (X)

}nj
i=1

}
j∈{1,2,T}

along with the public (resp. private) information is denoted as pubt (resp. privt). Given the instance Γt,

pubt, privt, A outputs Ωt =
({[

r(j)(x)

s(j)(x)

]
j
, r(j)(X), s(j)(X)

}
j∈{1,2,T}

, sol′t

)
with some non-negligible

probability. Since nm is chosen in such a way that nm ≥ ncj , for j ∈ {1, 2, T}. Hence without loss of
generality, B runs A as subroutine nm many times and collects the first ncj number of polynomials
from A’s output collections. From this collection B constructs the challenge terms for BTA2 problem as
follows. Now B exponentiates the coefficients of those selected polynomials r(j)(X) and s(j)(X) using
the generators [1]1 and [1]2, as these coefficients are given explicitly. Thus B computes the challenge
terms Ω for BTA2 problem as,({{

θ−1
tj

[
r
(j)
t (x)

s
(j)
t (x)

]
j

,
({
θ−1
tj′

[
r
(j)
t (X)

]
j′

}2

j′=1
or r

(j)
t (X)

)
,

({
θ−1
tj′

[
s
(j)
t (X)

]
j′

}2

j′=1
or s

(j)
t (X)

)}ncj
t=1

}
j∈{1,2,T}

, sol

) (9)

In the above expression, B removes the randomness θtj that was used to generate the BTA instance

earlier. Also we notice that sol′t contains additional information such as how the polynomials r
(j)
t (X)

and s
(j)
t (X) were constructed. However it is sufficient to include all the polynomial coefficients that

are not given explicitly and hence we have sol ⊆ {sol′t}nmt=1.

From the definition of BTA, output of A satisfies Equations 2 and 3. Now we prove that the
challenge terms constructed in Equation 9 should satisfy Equations 2 and 3. Suppose that the challenge
terms constructed above do not satisfy Equations 2 and 3. In other words, for all t ∈ [1, ncj ] and

j1, j2 ∈ {1, 2, T}, each element
[
r
(j)
t (X)

s
(j)
t (X)

]
j
,
[
r
(j1)
t (X)

]
j

and
[
s
(j2)
t (X)

]
j

can be written as a linear

combination of
[
a
(j)
i (X)

b
(j)
i (X)

]
j
,
[
a
(ι1)
i1

(X)
]
j
,
[
b
(ι2)
i2

(X)
]
j
. In particular, the above linear relation for the

element
[
r
(j)
t (X)

s
(j)
t (X)

]
j

violates Equations 2 and 3. This contradicts the assumption that adversary A
outputs a valid challenge term for BTA problem with non-negligible probability.

(ii.) BTA2 implies BTA1. Proof is similar to the previous case, hence we give the high level idea.
Given the BTA2 instance, all the polynomial coefficients are exponentiated in both source groups to
construct the BTA1 instance. Once the adversary returns a valid challenge term, the same can be
forwarded as BTA2’s challenge term.

C Proof of Theorem 2

We prove this theorem using hybrid techniques using sequence of games. All the intermediate games
are described in Figure 1.1 and 1.2. Let A be a polynomial time adversary playing the game BTA (resp.
vBTA) that corresponds to the bilinear target assumption (resp. Assumption 4) defined in G and its
advantage is denoted as AdvBTAA (resp. AdvvBTAA ).

We provide polynomial time adversaries B0, C0 and {Bk}`k=1 such that

AdvBTAA (λ) ≤ AdvSGHB0 (λ) +AdvSGHC0 (λ) + (`− 1)AdvSGHBk (λ) +AdvvBTAA (λ)

for all λ ∈ N and which is enough to prove the Theorem2. In particular, we construct the simulators
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Main BTAA(λ) / GA0 (λ) / GA1 (λ)

(N,G,H,GT , e)
$← G(λ), g

$← G, g1
$← G1 , h

$← H, h1
$← H1 ,

Choose x
$← ZmN such that gcd(b

(j)
i (x), N) = 1,∀i ∈ [1, nj ], j ∈ {1, 2, T},

u
(1)
i ← g

a
(1)
i

(x)

b
(1)
i

(x) , u
(1)
i ← g

a
(1)
i

(x)

b
(1)
i

(x)

1 , ∀i ∈ [1, n1];u
(2)
i ← h

a
(2)
i

(x)

b
(2)
i

(x) , u
(2)
i ← h

a
(2)
i

(x)

b
(2)
i

(x)

1 , ∀i ∈ [1, n2],

u
(T )
i ← e(g, h)

a
(T )
i

(x)

b
(T )
i

(x) , u
(T )
i ← e(g1, h)

a
(T )
i

(x)

b
(T )
i

(x) , u
(T )
i ← e(g1, h1)

a
(T )
i

(x)

b
(T )
i

(x) ,∀i ∈ [1, nT ],

(v′, r(X), s(X))← A
(
N,G,H,GT , e,

{{
u
(j)
i ,

a
(j)
i (X)

b
(j)
i (X)

}nj
i=1

}
j∈{1,2,T}

)
,

Compute v ← g
r(x)
s(x) , v ← g

r(x)
s(x)

1 ,

return (v′ = v).

Figure 1.1: Games for the proof of Theorem 2 (for both Equations 10 and 11). The boxed (resp. dotted
boxed) game uses the boxed (resp. dotted boxed) code and other game do not.

B0, C0 and Bk such that

Pr[BTAA(λ)]− Pr[G0
A(λ)] ≤ AdvSGHB0 (λ), (in G1, µ = { }) (10)

Pr[GA0 (λ)]− Pr[GA1 (λ)] ≤ AdvSGHC0 (λ), (in H1, µ = {g1}) (11)

Pr[GAk (λ)]− Pr[GAk,1(λ)] ≤ AdvSGHBk (λ), (in G1, µ = {g2, h1}) (12)

Pr[GAk,1(λ)]− Pr[GAk+1(λ)] = 0, (extended adaptive parameter-hiding) (13)

Pr[GA` (λ)] = AdvvBTAA (λ). (14)

From the above inequalities we have,

AdvBTAA (λ) =Pr[BTAA(λ)]

=
(
Pr[BTAA(λ)]− Pr[GA0 (λ)]

)
+
(
Pr[GA0 (λ)]− Pr[GA1 (λ)]

)
+
( `−1∑
k=1

Pr[GAk (λ)]− Pr[GAk,1(λ)] + Pr[GAk,1(λ)]− Pr[GAk+1(λ)]
)

+ Pr[GA` (λ)]

≤AdvSGHB0 (λ) +AdvSGHC0 (λ) + (`− 1)AdvSGHBk (λ) +AdvvBTAA (λ).

Equation 10: BTAA vs GA0
Now we construct the simulator B0 which in-distinguish between the games BTA and G0 under SGH
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Main GAk (λ) / GAk,1(λ) / GAk+1(λ)

(N,G,H,GT , e)
$← G(λ), g1

$← G1, g2
$← G2 r {1}, h1

$← H1,

Choose rl, rk+1
$← ZN ,x,xl, xk+1

$← ZmN such that gcd(b
(j)
i (x), N) = 1,

gcd(b
(j)
i (xl), N) = 1, gcd(b

(j)
i (xk+1), N) = 1 ,∀i ∈ [1, nj ], j ∈ {1, 2, T}, l ∈ [1, k],

u
(1)
i ← g

a
(1)
i

(x)

b
(1)
i

(x)

1 g

k∑
j=1

rj
a
(1)
i

(xj)

b
(1)
i

(xj)

2 , u
(1)
i ← g

a
(1)
i

(x)

b
(1)
i

(x)

1 g

k∑
j=1

rj
a
(1)
i

(xj)

b
(1)
i

(xj)
+rk+1

a
(1)
i

(x)

b
(1)
i

(x)

2 ,

u
(1)
i ← g

a
(1)
i

(x)

b
(1)
i

(x)

1 g

k+1∑
j=1

rj
a
(1)
i

(xj)

b
(1)
i

(xj)

2 , ∀i ∈ [1, n1],

u
(2)
i ← h

a
(2)
i

(x)

b
(2)
i

(x)

1 , ∀i ∈ [1, n2]; u
(T )
i ← e(g1, h1)

a
(T )
i

(x)

b
(T )
i

(x) ,∀i ∈ [1, nT ],

(v′, r(X), s(X))← A
(
N,G,H,GT , e,

{{
u
(j)
i ,

a
(j)
i (X)

b
(j)
i (X)

}nj
i=1

}
j∈{1,2,T}

)
,

Compute v ← g
r(x)
s(x)

1 g

k∑
j=1

rj
r(xj)

s(xj)

2 , v ← g
r(x)
s(x)

1 g

k∑
j=1

rj
r(xj)

s(xj)
+rk+1

r(x)
s(x)

2 , v ← g
r(x)
s(x)

1 g

k+1∑
j=1

rj
r(xj)

s(xj)

2 ,

return (v′ = v).

Figure 1.2: Games for the proof of Theorem 2 (for both Equations 12 and 13). The boxed (resp. dotted
boxed) game uses the boxed (resp. dotted boxed) code and other game do not.

assumption for the subgroup G1 with µ = { } as follows,

B0(λ,N,G,H,GT , e, w)

Choose x
$← ZmN such that gcd(b

(j)
i (x), N) = 1, ∀i ∈ [1, nj ], j ∈ {1, 2, T},

Choose h
$← H compute u

(1)
i ← w

a
(1)
i

(x)

b
(1)
i

(x) , u
(2)
i ← h

a
(2)
i

(x)

b
(2)
i

(x) , u
(T )
i ← e(w, h)

a
(T )
i

(x)

b
(T )
i

(x) ,

(v′, r(X), s(X))← A
(
N,G,H,GT , e,

{{
u
(j)
i ,

a
(j)
i (X)

b
(j)
i (X)

}nj
i=1

}
j∈{1,2,T}

)
,

Return (v′ = w
r(x)
s(x) ).

If w
$← G, then this is identical to the BTA game and if w

$← G1, then this is identical to G0.

Equation 11: G0 vs G1

Now we construct the simulator C0 which in-distinguish between the games G0 and G1 under SGH
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assumption for the subgroup H1 with µ = {g1} as follows,

C0(λ,N,G,H,GT , e, g1, z)

Choose x
$← ZmN such that gcd(b

(j)
i (x), N) = 1, ∀i ∈ [1, nj ], j ∈ {1, 2, T},

Compute u
(1)
i ← g

a
(1)
i

(x)

b
(1)
i

(x)

1 , u
(2)
i ← z

a
(2)
i

(x)

b
(2)
i

(x) , u
(T )
i ← e(g1, z)

a
(T )
i

(x)

b
(T )
i

(x) ,

(v′, r(X), s(X))← A
(
N,G,H,GT , e,

{{
u
(j)
i ,

a
(j)
i (X)

b
(j)
i (X)

}nj
i=1

}
j∈{1,2,T}

)
,

Return (v′ = g
r(x)
s(x)

1 ).

If z
$← H, then this is identical to G0 and if z

$← H1, then this is identical to G1. Here A distinguish
the game G0 with game G1 based on the difference in the problem instance.

Equation 12: Gk vs Gk,1

Now we construct a simulator Bk that in-distinguish between the games Gk and Gk,1 under the SGH
assumption for the subgroup G1 with µ = {g2, h1} as follows,

Bk(λ,N,G,H,GT , e, g2, h1, w),

Choose x,xl
$← ZmN such that gcd(b

(j)
i (x), N) = 1, gcd(b

(j)
i (xl), N) = 1,

∀i ∈ [1, nj ], j ∈ {1, 2, T}, l ∈ [1, k],

Compute u
(1)
i ← w

a
(1)
i

(x)

b
(1)
i

(x) g

k∑
j=1

rj
a
(1)
i

(xj)

b
(1)
i

(xj)

2 , u
(2)
i ← h

a
(2)
i

(x)

b
(2)
i

(x)

1 , u
(T )
i ← e(w, h1)

a
(T )
i

(x)

b
(T )
i

(x) ,

(v′, r(X), s(X))← A
(
N,G,H,GT , e,

{{
u
(j)
i ,

a
(j)
i (X)

b
(j)
i (X)

}nj
i=1

}
j∈{1,2,T}

)
,

return (v′ = w
r(x)
s(x) g

k∑
j=1

rj
r(xj)

s(xj)

2 ).

If w = g1
$← G1, then this is identical to Gk game and if w

$← G, then write w = g1g
rk+1
2 , for some

g1
$← G1 and rk+1

$← ZN . Then it is clear that the above game is identical to Gk,1.

Equation 13: Gk,1 vs Gk+1

Define A := g

k∑
j=1

rj
a
(1)
i

(xj)

b
(1)
i

(xj)

2 . It is clear that A is independent of x and xk+1. Then we use the extended
adaptive parameter-hiding property with respect to the functions f and f ′ which corresponds to the

evaluation of rational polynomials
{{

a
(1)
i (X)

b
(1)
i (X)

}n1

i=1
, r(X)
s(X)

}
at some vectors x and xk+1 respectively

(modulo pn). Thus we obtain that the distributions g

a
(1)
i

(x)

b
(1)
i

(x)

1 g

rk+1
a
(1)
i

(x)

b
(1)
i

(x)

2 and g

a
(1)
i

(x)

b
(1)
i

(x)

1 g

rk+1
a
(1)
i

(xk+1)

b
(1)
i

(xk+1)

2

are identical. This ensure that the distribution of instance in the games Gk,1 and Gk+1 are identical.
Similarly we can prove that for the challenge term. Note that the auxiliary information Aux contains

the elements
{{

a
(2)
i (X)

b
(2)
i (X)

}n2

i=1
,
{
a
(T )
i (X)

b
(T )
i (X)

}nT
i=1

}
and these elements do not affect the above distributions

as they defined in different subgroup of H and GT .

Equation 14: G`
From the definition of Assumption 4 it is clear that this Equation 14 holds.
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D Dual-Form Signature

D.1 Definition of Dual-Form Signature

We recall the definition of dual-form signature from [GLOW12] which consists of four algorithms.
Setup: Given a security parameter λ generate a key pair PK and SK,
SignA: Given SK and message M output a signature σ,
SignB: Given SK and message M output a signature σ,
Verify: Given PK, a signature σ and a message M output accept or reject.

The Type I (resp. Type II) forgery will be related to the signatures returned by SignA (resp. SignB)
algorithm. We denote V be the set of all message and signature pairs such that Verify algorithm outputs
accept under a fixed PK. Let V = VI ∪ VII , where VI (resp. VII) denotes the forgery of Type I (resp.
Type II).

We briefly mention the security properties of dual-form signature scheme. The formal definition
can be found in [GLOW12].
A-I Matching. Given the public key and signing oracle access which returns the signature from SignA,
for an adversary it is hard to create a forgery of Type I.
Dual Oracle Invariance. The public key and signing oracle access to both SignA and SignB are
given to adversary. At some point adversary outputs a challenge message m and challenger returns
a signature on m using either SignA or SignB with equal probability. Finally adversary outputs a
forgery pair (m∗, σ∗), where m∗ was not queried earlier to any of the signing oracles. The adversary’s
probability of producing a Type I forgery when the challenge signature is from SignA is approximately
same as when the challenge signature is from SignB .
B-II Matching. Given the public key and signing oracle access which returns the signature from
SignB , for an adversary it is hard to create a Type II forgery.

E Structure-Preserving Signature

E.1 Definition of Structure-Preserving Signature

Let G denote the bilinear group generator which takes the security parameter λ as input and out-
puts (N,G1,G2,GT , e). Now we recall the definition of structure-preserving signature scheme from
[AGHO11]. Scheme consists of four PPT algorithms which are defined as follows,

Setup(λ) Given the security parameter λ, it outputs a public parameter PP using G.
KeyGen(PP ) Given the public parameter PP , it outputs a public and secret key pair (PK,SK)

such that PK belongs to G1 and G2.
Sign(SK,M) Given the message M and secret key SK, it outputs the signature σ on M , where both

message M and signature σ belongs to G1 and G2.
Verify(PK,M, σ) Given public key PK, message M and signature σ it outputs accept or reject based

on the satisfiability of certain pairing product equations.

Existential unforgeability under chosen message attack (EUF-CMA) for a structure-preserving signa-
ture scheme is defined in the standard way. Informally, adversary is given PK and signing oracle access,
probability of returning a valid forgery that differs from the queried message is negligible.

E.2 Security of Dual-Form Abe et al’s SPS Scheme

In this section we prove the security of dual-form SPS scheme constructed in §5.1. Before that, we
define the forgery classes. For an element z chosen from ZN , we define z1 = z mod p1 and z2 = z
mod p2 and from Chinese Remainder Theorem, we write z as (z1, z2) ∈ Zp1 × Zp2 . Letting (z1, z2) =
(0 mod p1, 1 mod p2), we define the forgery classes as follows,

– Type I: VI = {(m∗, σ∗) ∈ V : (A∗)z = 1, (B∗)z = 1, (R∗)z = 1},
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– Type II: VII = {(m∗, σ∗) ∈ V : (A∗)z 6= 1 or (B∗)z 6= 1 or (R∗)z 6= 1}.

Here V denotes the set of all message-signature pair such that they verifies under the public key. Now
we define the subgroup hiding assumptions which will be used to prove the security of our dual-form
SPS scheme.

Assumption 5 Given (N,G,H,GT , e, µ = {g1, h1, X1X2, Z1Z2}, T ), it is hard to decide whether T ∈
H1 or T ∈ H, where X1X2 ∈ G and Z1Z2 ∈ H.

Assumption 6 Given (N,G,H,GT , e, µ = {g1, g2, h1, h
t−1

1 , Z1Z2}, T = gt1g
t2
2 ), it is hard to decide

whether T ∈ G1 or T ∈ G, where Z1Z2 ∈ H and t ∈ Z∗N .

Assumption 7 Given (N,G,H,GT , e, g1, g2, g
`
1X2, g

`y1
1 X ′2, h1, h

y1
1 , h2), it is hard to compute (g`c1 , g

`y1c
1 ),

for some c 6= 0 mod p1.

Assumption 5 is a specific instance of the general subgroup decision assumption [LM15, Assump-
tion 6.2], whereas Assumption 6 and 7 are proved to be hard in the generic group model, see Lemma 7
and 8 in §E.3.

Now we complete the proof of Theorem 4 by using the above defined assumptions in the following
lemmas.

Lemma 1. If G satisfies Assumption 5, then the dual-form SPS scheme is A-I matching.

Proof. Suppose that there exists an adversary A, given SignA oracle access, who can create a Type-
II forgery with some non-negligible advantage ε. Then we construct an algorithm B that breaks the
Assumption 5. Given g1, X1X2, h1, Z1Z2, T , B chooses w, x, y1, y2 uniformly at random from ZN and
defines all the components of SK except g2. Then B computes PK = (hw1 , h

x
1 , h

y1
1 , h

y2
1 ) and sends to A.

Note that B does not require g2 to respond to SignA queries. After making polynomial number of signing
queries, A returns a valid forgery (M∗, σ∗ = (A∗, D∗, B∗, R∗)). First B checks whether (M∗, σ∗) verifies
or not. If this check fails, then B will guess randomly, else B checks whether the forgery is Type-II or
not.

Now write T = gt11 g
t2
2 and write the forged signature components as, A∗ = ga

∗
1 gγ12 , D∗ = h

1/a∗

1 ,

B∗ = gx−a
∗w−r∗y1

1 (M∗)−y2gγ22 and R∗ = gr
∗

1 gγ32 , for some r∗, γ1, γ2, γ3 ∈ ZN and a∗ ∈ Z∗N . In order to
check the forgery types, B verifies the following backdoor verification test (BVT),

e(B∗, T )e(A∗, Tw)e(R∗, T y1)e(M∗, T y2)
?
= e(g1, T

x). (15)

If the forgery does not satisfy the above BVT, then B outputs 1 (i.e., T ∈ H), otherwise he flips a
coin b ∈ {0, 1} and outputs b. Since the forgery is valid, it satisfies the signature verification equation.

Hence the exponent of the above equation is simplified as t2(γ2 + γ1w + γ3y1)
?
= 0 mod p2.

B has to decide whether T is from H1 or H based on the type of forgery returned by A. Suppose
T ∈ H1, then whether A outputs Type-I or Type-II forgery, the above BVT holds. On the other hand,
when T comes from the whole group H then the above BVT holds provided γ2 + γ1w+ γ3y1 = 0 mod
p2. However, probability that the forgery signature satisfies the condition γ2 +γ1w+γ3y1 = 0 mod p2 is
negligible (in the security parameter), as w and y1 are chosen uniformly at random from ZN . Suppose
T ∈ H and γ2 + γ1w+ γ3y1 6= 0 mod p2, then the BVT fails to hold. Hence the forgery returned by A
is Type-II forgery. From our initial assumption, A outputs a Type-II forgery with some non-negligible
advantage. Hence the unsatisfiability of the BVT test over A’s forgery signature can be used by B to
break the Assumption 5 with non-negligible advantage. ut

Lemma 2. If G satisfies Assumption 6, then the dual-form SPS scheme is dual-oracle invariance.

Proof. Suppose that there exists an adversary A, given an oracle access to both SignA and SignB
algorithms, who can create a Type-II forgery with non-negligible advantage. Then we construct an

algorithm B to break the Assumption 6. Given the instance (g1, g2, h1, h
t−1

1 , Z1Z2, T = gt1g
t2
2 ), B
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chooses w, x, y1, y2 uniformly at random from ZN and sets as SK along with g2 and computes PK =
(hx1 , h

w
1 , h

y1
1 , h

y2
1 ) which then he sends to A. Since B knows SK, he can answer for A’s signing oracle

queries of both types. In the challenge phase, given the message M̃ ∈ G, B embeds the challenge term
to construct the signature as,

Ã = T a
′
, D̃ = (ht

−1

1 )1/a
′
, B̃ = gx1T

−wa′−y1r′M̃−y2 , R̃ = T r
′
,

for r′ (resp. a′) chosen uniformly at random from ZN (resp. Z∗N ). If T = gt11 , then the challenge
signature is distributed as an output of SignA algorithm. If T = gt11 g

t2
2 , then the challenge signature

is distributed as an output of SignB algorithm, since r′ and a′ are random mod p2. After receiving
the challenge signature, A makes polynomial number of signing oracle queries of both types. Finally
A returns a valid forgery (M∗, σ∗), where σ∗ = (A∗, D∗, B∗, R∗). In order to use the output of A to
determine the membership of T , B must be able to determine whether A returns a Type-I or Type-II
forgery. First B checks whether (M∗, σ∗) verifies or not. If this check fails, then B will guess randomly,
else B checks the following backdoor verification test (BVT),

e(B∗, Z1Z2)e(A∗, (Z1Z2)w)e(R∗, (Z1Z2)y1)e(M∗, (Z1Z2)y2)
?
= e(g1, (Z1Z2)x). (16)

If the forgery does not satisfy BVT, then B outputs 1, otherwise he flips a coin b ∈ {0, 1} and outputs
b. Now we express T = gt11 g

t2
2 , Z1Z2 = hθ11 h

θ2
2 and write the forged signature components as, A∗ =

ga
∗

1 gγ12 , D∗ = h
1/a∗

1 , B∗ = gx−a
∗w−r∗y1

1 (M∗)−y2gγ22 and R∗ = gr
∗

1 gγ32 , for some r∗, γ1, γ2, γ3,∈ ZN and

a∗ ∈ Z∗N . As before, the exponent of the above BVT test can be simplified to θ2(γ2 + γ1w + γ3y1)
?
= 0

mod p2.
Now for the forgery returned by A, if the above BVT does not hold, then with probability 1, it is

a Type-II forgery. If the above BVT holds for the forgery, then it can be either of Type-I or Type-II.
However, we claim that A can create a Type-II forgery satisfying the above simplified BVT test only
with a negligible probability. In order to create a Type-II forgery with γ2 + γ1w + γ3y1 = 0 mod p2,
adversary A must implicitly determine −γ2 = γ1w+ γ3y1 mod p2 which is a polynomial function with
unknown values w and y1. However during the query phase, no information about w, y1 mod p2 is
revealed. Hence A must determine the values of w, y1 mod p2 only from the challenge signature. From
the challenge signature components, A can implicitly determine t2(a′w+r′y1) mod p2, which is a single
equation with two unknowns w and y1. This ensures that A cannot obtain unique values of w and y1
mod p2. Hence A can compute the correct values of w and y1 mod p2 only with negligible probability.
Thus if BVT holds for the forgery, then with non-negligible probability it is Type-I forgery. ut

Lemma 3. If G satisfies Assumption 7, then the dual-form SPS scheme is B-II matching.

Proof. Suppose that there exists an adversary A, given SignB oracle access, who can create a Type-I
forgery with non-negligible probability. Then we construct an algorithm B to break the Assumption 7.
Given the instance (g1, g2, g

`
1X2, g`y11 X ′2, h1, h

y1
1 , h2), B’s goal is to compute (g`c1 , g

`y1c
1 ), for some c 6= 0

mod p1. Now B chooses w, x, y2 uniformly at random from ZN and sets PK = (hw1 , h
x
1 , h

y1
1 , h

y2
1 ) and

SK = (w, x, y1, y2). Note that B does not know y1 and hence part of the secret keys are set implicitly.
However B can answer for SignB queries as follows. B chooses r′, γ1 (resp. a) uniformly at random from
ZN (resp. Z∗N ) and constructs the signature as,

A = ga1g
γ1
2 , D = h

1/a
1 , B = gx−aw1 (g`y11 X ′2)−r

′
M−y2 , R = (g`1X2)r

′
.

Here B implicitly sets r = r′` and it is easy to verify that the above signature is properly distributed.
After making polynomial number of signing queries, A returns a valid forgery (M∗, σ∗), where σ∗ =
(A∗, D∗, B∗, R∗) ∈ G×H×G2. First B checks whether (M∗, σ∗) verifies or not. If this check fails, then
B aborts, else B checks whether the forgery is Type-I or Type-II by

e(A∗, h2)
?
= 1, e(B∗, h2)

?
= 1 and e(R∗, h2)

?
= 1.

If any of the above checks fail to hold, then the forgery is Type-II and B will abort. Otherwise it
is a Type-I forgery which does not have G2 components. Hence we write the forgery signature as,
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A∗ = ga
∗

1 , D∗ = h
1/a∗

1 , B∗ = gx−a
∗w

1 g−`y1r
∗

1 (M∗)−y2 and R∗ = g`r
∗

1 , for r∗ ∈ ZN and a∗ ∈ Z∗N . Now B
computes g`r

∗
1 = R∗, g`y1r

∗

1 = (B∗)−1gx1 (A∗)−w(M∗)−y2 and returns to his challenger as a solution for
Assumption 7. Since A returns a valid forgery, which means it should satisfy Equation 4. In particular,
the condition e(R∗, h1) 6= 1 ensures that r∗ 6= 0 mod p1. Thus B relays the non-trivial solution for
Assumption 7. ut

E.3 Hardness of SGH Variants

We prove the hardness of Assumption 6 and 7 defined in §E.2. We follow the notation from [GLOW12,
Appendix B]. In particular, for j ∈ {1, 2, T}, random element x from the group Gj is denoted as
X = (X1, X2)j , where X1 (resp. X2) is the indeterminate that corresponds to the subgroup of order
p1 (resp. p2).

Lemma 7 Assumption 6 holds in the generic group model if it is hard to find a non-trivial factor of
N = p1p2.

Proof. Adversary is given with (1, 0)1, (0, 1)1, (L,X)1, (LY,W )1, (P1, P2)1, (1, 0)2, (0, 1)2, (Y, 0)2 and
(Q1, Q2)2. Then adversary must compute (Lc, 0)1, (LY c, 0)1 such that c 6= 0. In order to remove X
(resp. W ) from (L,X)1 (resp. (LY,W )1), adversary requires to have (0, X)1 (resp. (0,W )1), which is
not possible from the generic group operations, as these terms are linearly independent with the terms
that are given to the adversary. ut

Lemma 8 Assumption 7 holds in the generic group model if it is hard to find a non-trivial factor of
N = p1p2.

Proof. Adversary is given with (1, 0)1, (0, 1)1, (P1, P2)1, (1, 0)2, (T
−1
1 , 0)2, (Q1, Q2)2 and (T1, T2)1. Then

adversary must decide whether T2 is zero or not. In order to decide (T1, T2)1, adversary requires to have
(0, a)2 for some a 6= 0, which is not possible from the generic group operations, as (0, a)2 is linearly
independent with the terms that are given to the adversary. ut

F Group signature scheme

F.1 Definition of Group Signatures

We recall the definition of group signature scheme and its security from Boyen and Waters [BW07].
The scheme consists of five PPT algorithms which are defined as follows,

Setup(λ) Given the security parameter λ, it outputs the public parameter PP , master enrollment
key MK and tracing key TK.

Enroll(PP,MK, ID) Given identity of the signer ID ∈ {0, 1}κ and public parameter PP with master
enrolling key MK, it outputs a private signing key KID, where κ = poly(λ).

Sign(PP,KID,M) Given the message M ∈ {0, 1}m, public parameter PP and private signing key
KID on ID, it outputs a signature σ, where m = poly(λ).

Verify(PP,M, σ) Given message M and signature σ it outputs accept or reject.
Trace(PP, σ, TK) Given a signature σ and tracing key TK it outputs an identifier or ⊥.

We briefly mention the security properties of group signature scheme. The formal definition can be
found in [BMW03].
Fully anonymous. Given the public parameter, adversary is given access to both private signing key
queries and signature queries. In the challenge phase adversary gives a random message along with two
identities ID0 and ID1. Now the challenger chooses one of the identity and sign the message on behalf.
Given the challenge signature adversary have to guess the correct signer identity.
Fully traceable. Given the public parameter, adversary is given access to private signing key, signature
queries and tracing queries. After polynomial number of queries adversary have to output a valid forgery
whose components are not been used in any of oracle queries.
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F.2 Dual-Form HSS in Composite-order

The dual-form two-level HSS consists of six PPT algorithms which are defined as follows.

Setup(λ) Run the bilinear group generator G on λ which outputs (N = p1p2p3, G,GT , e, g1, g2,3, g3).
Choose h1, u, u1, v0, {vi}mi=1 uniformly at random from G1 and choose α uniformly at random from
ZN , for m = poly(λ). Then output the public key PK as (N,G,GT , e, g1, u1, e(g1, h1), gα1 , u, v0,

{vi}mi=1) and secret key SK as (α, h1, g3, g2,3, {si}2
k

i=1), where si ∈ ZN is a unique identifier of the
user in the system, for k = poly(λ).

ExtractA(PK,SK, ID) Choose r and X3, X
′
3 uniformly at random from ZN and G3 respectively.

Compute and output the first level signature KID := (K1, . . . ,K4), where

K1 = (h1u
−r
1 )

1
α+sID X3, K2 = gr1X

′
3, K3 = gsID1 , K4 = usID .

ExtractB(PK,SK, ID) Choose r and X2,3, X
′
2,3 uniformly at random from ZN and G2,3 respectively.

Compute and output KID := (K1, . . . ,K4), where

K′1 = (h1u
−r
1 )

1
α+sID X2,3, K′2 = gr1X

′
2,3, K3 = gsID1 , K4 = usID .

SignA(PK,KID,M) Parse the message M = (µ1, . . . , µm) ∈ {0, 1}m and choose s uniformly at ran-
dom from ZN . Compute and output the second level signature components σ = (S1, . . . , S5), where

S1 = K1, S2 = K2, S3 = K3, S4 = K4

(
v0
∏m

i=1
vµii
)s
, S5 = gs1.

SignB(PK,KID,M) Parse the message M = (µ1, . . . , µm) ∈ {0, 1}m and choose s uniformly at ran-
dom from ZN . Compute and output σ = (S1, . . . , S5), where

S1 = K′1, S2 = K′2, S3 = K3, S4 = K4

(
v0
∏m

i=1
vµii
)s
, S5 = gs1.

Verify(PK, ID,M, σ) Parse the message ID||M , signature σ and check that

e(S1, g
α
1 S3)e(S2, u1)

?
= e(g1, h1) and e(S4, g1)

?
= e(u, S3)e

(
v0
∏m

i=1
vµii , S5

)
(17)

If any of the above checks fail to hold, then output reject, otherwise output accept.

Here we omit the security proof, as it is very similar to the one described in [YCZY14, Appendix A].
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