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Abstract. We propose a generic construction of a Σ-protocol of commit-and-prove type, which is
an and-composition of Σ-protocols on the statements that include a common commitment. Our pro-
tocol enables a prover to convince a verifier that the prover knows a bundle of witnesses that have
a common component which we call a base witness point. When the component Σ-protocols are of
witness-indistinguishable argument systems, our Σ-protocol is also a witness-indistinguishable argu-
ment system as a whole. As an application, we propose a decentralized multi-authority anonymous
authentication scheme. We first define a syntax and security notions of the scheme. Then we give a
generic construction of a decentralized multi-authority anonymous authentication scheme. There a wit-
ness is a bundle of witnesses each of which decomposes into a common global identity string and a
digital signature on it. We mention an instantiation of the generic scheme in the setting of bilinear
groups.

Keywords: interactive proof, sigma protocol, witness indistinguishability, decentralized, collusion resis-
tance
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1 Introduction

Global identities such as Passport Numbers (PNs) or Social Security Numbers (SSNs) in each country are
currently common for identification. They are used not only for governmental identification but also for com-
mercial services; that is, when we want to use a commercial service, we often ask the service administration
authority to issue an attribute certificate at the registration stage. In the stage, the authority confirms our
identities by the global identity string such as PN or SSN. Once the attribute certificate is issued, we become
to be accepted at the authentication stage of the service. Hence the global identity strings work for us to be
issued our attribute certificates. It is notable that recently multi-factor authentication schemes are utilized
to prevent misauthentication. In the scheme a user of a service is granted access only after presenting several
separate pieces of evidence. Actually the multi-factor authentication of using both a laptop PC, which is
connected to the internet by a service provider, and a smartphone, which is activated by a cellular carrier,
is getting usual. Thus, there is a compound model that involves independent administration authorities for
us to be authenticated and receive benefit of a service.

Privacy protection is a function to be pursued in the authentication, especially recently. The growth
of the internet of things and related big data analysis have protecting privacy more critical to involved
users. For the purpose, an authentication framework of identity strings and passwords should be evolved
into a framework where anonymity is guaranteed at the authentication stage. For example, when a smart
household machine generates a report about the situation of a house via the internet as a query for a
useful suggestion (such as air conditioning or cooking recipes), the identity information is often unnecessary.
A further example is a connected-to-the-internet vehicle which uses a combination of plural services like
local traffic information system and the passenger’s web-scheduler, the identity information should not be
leaked even when the memberships are needed in the registration stages. In this example a user should be
authenticated by the service providers at the same time in the authentication stages, anonymously. This is
an authentication framework in which plural attributes of a single user are authenticated. However, there
is a threat on anonymous authentication frameworks; the collusion attack. A malicious user collects private
attribute keys from honest users with different identities, and tries to make a verifier accept anonymously
by the merged attribute keys. Here the vary anonymity is a critical potential drawback from the view point
of the collusion attacks.

1.1 Related Work and Our Contribution

A decentralized multi-authority attribute-based signature scheme (DMA-ABS) [OT13] is an ABS scheme
with decentralized key-issuing authorities. In an ABS scheme, a signer has credentials on her attributes.
The signer is able to sign a message with a signing policy expressed as a boolean formula on attributes.
There are assignment patterns to satisfy the boolean formula, and the attribute privacy of an ABS scheme
should assure that the signatures signed by a user do not leak any information on the satisfying pattern
which she used. We note that this property also requires the anonymity of the signer’s identity. On the other
hand, allowing decentralized multi-authorities is to have independent key-issuers each of which generates
each private attribute-key to the user.

In this paper, we propose a new notion; a witness-indistinguishable argument system (WIA) with Σ-
protocols for a bundled witness space. It is known that WIA is a natural building block to achieve anonymity
in cryptographic primitives ([Gol01]). However, there is no previous work for the multi-prover setting executed
by a hidden single prover who is able to convince a verifier that she is certainly a single prover. We construct
the kind of WIA by employing a commitment scheme as one of the building blocks.

As an application, we give a generic construction of a decentralized multi-authority anonymous authen-
tication scheme, which can be converted into an DMA-ABS scheme by the Fiat-Shamir transform [FS86].
Actually, if a prover chooses a monotone boolean formula instead of an all-and formula, and we apply the
Fiat-Shamir transform to the Σ-protocol in our authentication scheme, then we obtain a DMA-ABS scheme.

1.2 Organization of the Paper

In Section 2, we prepare for needed notions and notations. In Section 3, we describe building blocks and give
a generic construction of our witness-indistinguishable argument system with a Σ-protocol for the bundled
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witness space. In Section 4, we first define a syntax and security notions of our decentralized multi-authority
anonymous authentication scheme. Then, we give a generic construction of the scheme. In Section 5, we
conclude our work. In Appendix A, we briefly show an instantiation of the scheme in the setting of bilinear
groups.

2 Preliminaries

The security parameter is denoted by λ. The bit length of a string a is denoted by |a|. The number of elements
of a set S is denoted by |S|. A uniform random sampling of an element a from a set S is denoted as a ∈R S.
The expression a =? b returns a boolean 1 (true) when a = b, and otherwise 0 (false). The expression a ∈? S
returns a boolean 1 when a ∈ A, and otherwise 0. When an algorithm A with input a returns z, we denote it
as z ← A(a), or, A(a)→ z. When a probabilistic polynomial-time (ppt, for short) algorithm A with input a
and a randomness r on a random tape returns z, we denote it as z ← A(a; r) When an algorithm A with input
a and an algorithm B with input b interact with each other and return z, we denote it as z ← 〈A(a), B(b)〉.
The transcript of all the messages of the interaction is denoted by transc〈A(a), B(b)〉. When an algorithm
A accesses an oracle O, we denote it by AO. When A accesses n oracles O1, . . . ,On concurrently, i.e. in
arbitrarily interleaved order of messages, we denote it by AOi|ni=1 . The probability of an event E is denoted
by Pr[E]. The conditional probability of an event E given events F1, . . . , Fn in this order is denoted by
Pr[E|F1, . . . , Fn]. The distribution of a random variable X is denoted by dist

(
X
)
. The distribution of a ran-

dom variable X whose probability is given by a joint probability of random variables X,Y1, . . . , Yn is denoted
by dist

(
X|X,Y1, . . . , Yn

)
. We say that a probability p is negligible in λ if it is upper-bounded by the inverse of

any polynomial poly(λ) of positive coefficients (i.e. p < 1/poly(λ)). We say that a probability p is overwhelm-
ing in λ if it is lower-bounded by 1−(the inverse of any fixed polynomial poly(λ) of positive coefficients) (i.e.
p > 1− 1/poly(λ)).

2.1 Interactive Argument System, Σ-protocol and Witness-Indistinguishability

Suppose that there exists a predicate Φ that defines the membership of a binary relation R; i.e., Φ maps

(x,w) ∈ ({0, 1}∗)2 to true or false. The relation R is defined as R
def
= {(x,w) ∈ ({0, 1}∗)2|Φ(x,w) = true}.

We say that R is polynomially bounded if there exists a polynomial `(·) such that |w| ≤ `(|x|) for any
(x,w) ∈ R. We say that R is an NP relation if R is polynomially bounded and Φ is computable within
polynomial-time in |x| as an algorithm. For a pair (x,w) ∈ R we call x a statement and w a witness of
x. We call R the witness relation, and Φ(·, ·) the predicate of the witness relation R. When a set of public
parameter values PP are needed to define the predicate (for example, to set up algebraic operations), we
denote it as ΦPP. An NP language L for an NP relation R is defined as the set of all possible statements:

L
def
= {x ∈ {0, 1}∗;∃w ∈ {0, 1}∗, (x,w) ∈ R}. We denote the set of witnesses of a statement x by W (x):

W (x)
def
= {w ∈ {0, 1}∗ | (x,w) ∈ R}. We call the union W of all the sets W (x) for x ∈ L the witness space

of L: W
def
=
⋃
x∈LW (x). We denote an interactive proof system on an NP relation R [Bab85,GMR85] by

Π = (Π.Setup, P, V), where Π.Setup is a set up algorithm for a set of public parameter values PP, and P

and V are a pair of interactive algorithms. P, which is called a prover, is probabilistic and unbounded, and V,
which is called a verifier, is probabilistic polynomial-time (ppt). If P is also limited to ppt, then Π is called
an interactive argument system.

Σ-protocol [Cra96,Dam10] Let R be an NP relation. A Σ-protocol Σ on the relation R is a 3-move
public-coin protocol of an interactive argument system Π = (Π.Setup, P, V) [Cra96,Dam10]. We introduce
six ppt algorithms for a Σ-protocol: Σ = (Σcom, Σcha, Σres, Σvrf, Σext, Σsim). The first algorithm Σcom is
executed by P. On input a pair of a statement and a witness (x,w) ∈ R, it generates a commitment message
com and outputs its inner state St. It returns them as Σcom(x,w) → (com, St). The second algorithm
Σcha is executed by V. On input the statement x, it reads out the size of the security parameter as 1λ and
chooses a challenge message cha ∈R chaSp(1λ) from the challenge space chaSp(1λ) := {0, 1}ω(λ), where
ω(·) is a super-log function [BP02]. It returns the message as Σcha(x) → cha. The third algorithm Σres is
executed by P. On input the state St and the challenge message cha, it generates a response message res.
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It returns the message as Σres(St,cha) → res. The fourth algorithm Σvrf is executed by V. On input the
statement x and the messages com, cha and res, it computes a boolean decision d. It returns the decision
as Σvrf(x,com,cha,res)→ d. If d = 1, then we say that P is accepted by V on x. Otherwise, we say that P
is rejected by V on x. The vector of all the messages (com,cha,res) is called a transcript of the interaction
on x.

These four algorithms (Σcom, Σcha, Σres, Σvrf) must satisfy the following property.
Completeness For any (x,w) ∈ R, a prover P(x,w) has a verifier V(x) accept with probability 1:
Pr[Σvrf(x,com,cha,res) = 1 | Σcom(x,w)→ (com, St), Σcha(x)→ cha, Σres(St,cha)→ res].

The fifth algorithm Σext concerns with the following property.
Special Soundness There is a ppt algorithm Σext called a knowledge extractor, which, on input a statement
x and two accepting transcripts with a common commitment message and different challenge messages,
(com,cha,res) and (com,cha′,res′), cha 6= cha′, computes a witness ŵ satisfying (x, ŵ) ∈ R with an
overwhelming probability in |x|:

ŵ ← Σext(x,com,cha,res,cha
′,res′). (1)

The sixth algorithm Σsim concerns with the following property.
Honest-Verifier Zero-Knowledge There is a ppt algorithm called a simulator Σsim, which, on input a state-
ment x, computes an accepting transcript on x:

( ˜com, ˜cha, ˜res)← Σsim(x), (2)

where the distribution of the simulated transcripts dist
(

˜com, ˜cha, ˜res
)

is identical to the distribution of the

real accepting transcripts dist
(
com,cha,res

)
.

Note 1: Our Use Case In a Σ-protocol the challenge message cha is a public coin. This property enables
us in this paper to use the following variant of the simulator Σsim(x): On input a simulated challenge message

˜cha that is chosen uniformly at random, the variant generates a commitment ˜com and a response ˜res:

˜cha ∈R chaSp(1λ), ( ˜com, ˜res)← Σsim(x, ˜cha). (3)

Witness-Indistinguishability [FS90,Gol01] Let R be an NP relation. Suppose that an interactive ar-
gument system Π = (Π.Setup, P, V) with a Σ-protocol Σ on the relation R is given. In this paper we focus
on the following property.
Perfect Witness Indistinguishability For any ppt algorithm V∗, any sequences of witnesses w = (wx)x∈L
and w′ = (w′x)x∈L s.t. wx, w

′
x ∈ W (x), any string x ∈ L and any string z ∈ {0, 1}∗, the two distributions

dist
(
x, z, transc〈P(x,wx), V∗(x, z)〉

)
and dist

(
x, z, transc〈P(x,w′x), V∗(x, z)〉

)
are identical.

2.2 Commit-and-Prove Scheme [CLOS02,EG14]

A commit-and-prove scheme CmtPrv consists of five ppt algorithms: CmtPrv = (CmtPrv.Setup, Cmt =
(Cmt.Com, Cmt.Vrf), Π = (P, V)).
CmtPrv.Setup(1λ) → PP. On input the security parameter 1λ, it generates a set of public parameter values
PP. It returns PP.
Cmt.Com(PP,m)→ (c, κ). On input the set of public parameter values PP, a message m in the message space
Msg(1λ), this ppt algorithm generates a commitment c. It also generates an opening key κ. It returns (c, κ).
Cmt.Vrf(PP, c,m, κ)→ d. On input the set of public parameter values PP, a commitment c, a message m and
an opening key κ, this deterministic algorithm generates a boolean decision d. It returns d.

The correctness should hold for the commitment part Cmt of the scheme: For any security parameter 1λ,
any set of public parameter values PP and any message m ∈Msg(1λ), Pr[d = 1 | (c, κ)← Cmt.Com(PP,m), d←
Cmt.Vrf(PP, c,m, κ)] = 1.

We denote by ΦPP a predicate that returns the boolean decision: ΦPP(c, (m,κ))
def
= (Cmt.Vrf(PP, c,m, κ)).

In the scheme there is an interactive argument system Π = (P, V) for the following relation R:

R := {(c, (m,κ)) ∈ {0, 1}∗ × ({0, 1}∗)2 | ΦPP(c, (m,κ)) = true}. (4)
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In this paper we focus on the following properties for the commitment part Cmt.
Perfectly Hiding For any security parameter 1λ, any set of public parameter values PP and any two mes-
sages m,m′ ∈ Msg(1λ), the two distributions dist

(
c | (c, κ) ← Cmt.Com(PP,m)

)
and dist

(
c | (c, κ) ←

Cmt.Com(PP,m′)
)

are identical.
Computationally Binding The attack of breaking binding property of Cmt by an algorithm A is defined by
the following experiment.

Expbind
Cmt,A(1λ) : (5)

PP← CmtPrv.Setup(1λ), (c,m, κ,m′, κ′)← A(PP) (6)

If Cmt.Vrf(PP, c,m, κ) = Cmt.Vrf(PP, c,m′, κ′) = 1 ∧m 6= m′, then Return Win else Return Lose (7)

The advantage of A over Cmt is defined as Advbind
Cmt,A(λ) := Pr[Expbind

Cmt,A(1λ) returns Win]. The commitment
scheme Cmt is said to be computationally binding if for any set of public parameter values PP and any ppt
algorithm A, the advantage Advbind

Cmt,A(λ) is negligible in λ.
Note 2: Our Use Case The commitment generation algorithm Cmt.Com uses random tapes [Gol01]. In this
paper we are in the case that a randomness r ∈ {0, 1}λ is used to generate a commitment c, and the opening
key κ is the randomness: κ := r. That is, Cmt.Com(PP,m; r)→ (c, r).

2.3 Digital Signature Scheme [FS86]

A digital signature scheme Sig consists of four ppt algorithms: Sig = (Sig.Setup, Sig.KG, Sig.Sign, Sig.Vrf).
Sig.Setup(1λ) → PP. On input the security parameter 1λ, it generates a set of public parameter values PP.
It returns PP.
Sig.KG(PP) → (PK,SK). On input the set of public parameter values PP, this ppt algorithm generates a
signing key SK and the corresponding public key PK. It returns (PK,SK).
Sig.Sign(PP,PK,SK,m)→ σ. On input the set of public parameter values PP, the public key PK, the secret
key SK and a message m in the message space Msg(1λ), this ppt algorithm generates a signature σ. It
returns σ.
Sig.Vrf(PP,PK,m, σ)→ d. On input the public key PK, a message m and a signature σ, it returns a boolean
d.

The correctness should hold for the scheme Sig: For any security parameter 1λ and any message m ∈
Msg(1λ), Pr[d = 1 | PP ← Sig.Setup(1λ), (PK,SK) ← Sig.KG(PP), σ ← Sig.Sign(PP,PK,SK,m), d ←
Sig.Vrf(PP,PK,m, σ)] = 1.

An adaptive chosen-message attack on the scheme Sig by a forger algorithm F is defined by the following
experiment.

Expeuf-cma
Sig,F (1λ) : (8)

PP← Sig.Setup(1λ), (PK,SK)← Sig.KG(PP), (m∗, σ∗)← FSignO(PP,PK,SK,·)(PP,PK) (9)

If m∗ /∈ {mj}1≤j≤qs and Sig.Vrf(PK,m∗, σ∗) = 1, then Return Win else Return Lose (10)

In the experiment, F issues a signing query to its signing oracle SignO(PP,PK,SK, ·) by sending a message
mj at most qs times (1 ≤ j ≤ qs). As a reply, F receives a valid signature σj on mj . After receiving
replies, F returns a message and a signature (m∗, σ∗). A restriction is imposed on the algorithm F: The
set of queried messages {mj}1≤j≤qs should not contain the message m∗. The advantage of F over Sig is

defined as Adveuf-cma
Sig,F (λ) := Pr[Expeuf-cma

Sig,F (1λ) returns Win]. The digital signature scheme Sig is said to
be existentially unforgeable against adaptive chosen-message attacks if for any given ppt algorithm F, the
advantage Adveuf-cma

Sig,F (λ) is negligible in λ.

3 Witness-Indistinguishable Arguments with Σ-Protocols for Bundled
Witness Space

In this section, we propose a generic construction of an interactive argument system that is a witness-
indistinguishable argument system for a newly introduced bundled witness space. Our protocol of the inter-
active argument system is an AND-composition of Σ-protocols together with a commitment scheme, which
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is to prove the knowledge of witness pairs each of which consists of two components; one is a common
component (such as a global identity string) and the other is an individual component (such as a digital
signature issued by an individual authority on the global identity). We prove that our protocol is certainly
a Σ-protocol. Finally, we prove that our interactive argument system with the protocol is perfectly witness-
indistinguishable under the condition that the employed commitment scheme is perfectly hiding and the
component Σ-protocols are perfectly witness-indistinguishable.

3.1 Building Blocks

Component Interactive Argument Systems with Σ-protocols For a polynomially bounded integer
n, let A be the set of indices: A := {1, . . . , n}. We start with an efficiently computable predicate ΦaPP for each
index a ∈ A, which determines an NP witness relation Ra:

Ra = {(xa, wa) ∈ {0, 1}∗ × {0, 1}∗ | ΦaPP(xa, wa) = true}, a ∈ A. (11)

We suppose for each a ∈ A that there is an interactive argument system Πa = (Π.Setup, Pa, Va) which is
executed in accordance with a Σ-protocol for the relation Ra:

Σa = (Σa
com, Σ

a
cha, Σ

a
res, Σ

a
vrf, Σ

a
ext, Σ

a
sim). (12)

We suppose further that the witness space W a decomposes into two components W a = W a
0 ×W a

1 for each
a ∈ A. In this paper, our interest is in the case that all the 0th components W a

0 , a ∈ A, are equal, which we
denote by W0. We call the equal set W0 the base witness space of the witness spaces W a, a ∈ A, and an
element w0 ∈W0 a base witness point. Then a witness wa ∈W a consists of w0 and wa1 . That is;

W a = W0 ×W a
1 ,

∈ ∈

wa = (w0, w
a
1).

(13)

Commit-and-Prove Scheme with Σ-protocol We employ a commit-and-prove scheme with a Σ-
protocol: CmtPrv = (CmtPrv.Setup, Cmt = (Cmt.Com, Cmt.Vrf), Π0 = (P0, V0)), where the predicate Φ0,PP and
the relation R0 is defined as follows, and Π0 is executed in accordance with a Σ-protocol Σ0:

Φ0,PP(c0, (w0, r0))
def
= (Cmt.Com(PP0, w0; r0) =? (c0, r0)), (14)

R0
def
= {(c0, (w0, r0)) ∈ {0, 1}∗ × ({0, 1}∗)2 | Φ0,PP(c0, (w0, r0)) = true}, (15)

Σ0 = (Σ0,com, Σ0,cha, Σ0,res, Σ0,vrf, Σ0,ext, Σ0,sim). (16)

Note that a message m to be committed is a base witness point w0.

3.2 On the Existence of a Σ-protocol for Simultaneous Satisfiability

We introduce for each index a ∈ A the following composed relation determined by the two predicates ΦaPP
and Φ0,PP. That is, the relation Ra0 is for simultaneous satisfiability of the two predicates ΦaPP and Φ0,PP on
the base witness point w0:

Ra0 :=
{

(xa0 = (xa, c0), wa0 = (w0, w
a
1 , r0)) |

{
ΦaPP(x

a, (w0, w
a
1)) = true and

Φ0,PP(c0, (w0, r0)) = true

}
, a ∈ A. (17)

We require here that the Σ-protocols Σa and Σ0 can be merged into a single Σ-protocol Σa
0 of an interactive

argument system Πa
0 = (Π.Setup, CmtPrv.Setup, Pa0 , V

a
0) for the above relation Ra0 :

Σa
0 = (Σa

0,com, Σ
a
0,cha, Σ

a
0,res, Σ

a
0,vrf, Σ

a
0,ext, Σ

a
0,sim). (18)

• Σa
0,com(xa0 , w

a
0)→ (coma,coma,0, St

a
0). This ppt algorithm is executed by Pa0 . On input a statement xa0 =

(xa, c0) and a witness wa0 = (w0, w
a
1 , r0), it runs the algorithms Σa

com(xa, (w0, w
a
1)) and Σ0,com(c0, (w0, r0))

7



to obtain the commitment messages and the inner states, (coma, Sta) and (coma,0, Sta,0), respectively, with
a constraint that the knowledge extractor Σa

0,ext should return a witness which simultaneously satisfies the
two predicates Φa and Φ0 on the base witness point w0. It sets the state as Sta0 := (Sta, Sta,0). It returns
(coma,coma,0, St

a
0). Pa0 sends (coma,coma,0) to Va0 as a commitment message, and keeps the state Sta0 .

• Σa
0,cha(xa0) → cha. This ppt algorithm is executed by Va0 . On input the statement xa0 , it reads out the

size of the security parameter as 1λ and chooses a challenge message cha ∈R chaSp(1λ). It returns cha. Va0
sends cha to Pa0 as a challenge message.
• Σa

0,res(St
a
0 ,cha) → (resa,resa,0). This ppt algorithm is executed by Pa0 . On input the state Sta0 and the

challenge message cha, it runs the algorithms Σa
res(St

a,cha) and Σ0,res(Sta,0,cha) to obtain the response
messages resa and resa,0, respectively, with the constraint that the knowledge extractor Σa

0,ext should return
a witness which simultaneously satisfies Φa and Φ0 on w0. It returns (resa,resa,0). Pa0 sends (resa,resa,0)
to Va0 as a response message.
• Σa

0,vrf(x
a
0 , (com

a,coma,0),cha, (resa,resa,0)) → d. This deterministic algorithm is executed by Va0 . On
input the statement xa0 = (xa, c0) and all the messages (coma,coma,0), cha and (resa,resa,0), it runs the
algorithms Σa

vrf(x
a,coma,cha,resa) and Σ0,vrf(c0,coma,0,cha,resa,0) to obtain two boolean decisions da

and da,0. If the both da and da,0 are 1, then it returns d := 1, and otherwise d := 0. Va0 returns d as the
decision of the interactive protocol on xa0 .
• Σa

0,ext(x
a
0 , (com

a,coma,0),cha, (resa,resa,0),cha′, (resa′,resa,0
′)) → (ŵa0 , ŵ

a
1 , r̂a,0). This ppt

algorithm is for knowledge extraction. On input the statement xa0 = (xa, c0) and two
accepting transcripts with a common commitment message and different challenge messages,
((coma,coma,0),cha, (resa,resa,0)) and ((coma,coma,0),cha′, (resa′,resa,0

′)), cha 6= cha′, it runs the
algorithms Σa

ext(x
a,coma,cha,resa,cha′,resa′) and Σ0,ext(c0,coma,0,cha,resa,0,cha

′,resa,0
′) to ob-

tain witnesses (ŵa0 , ŵ
a
1) and (ŵa,0, r̂a,0) satisfying (xa, (ŵa0 , ŵ

a
1)) ∈ Ra and (c0, (ŵa,0, r̂a,0)) ∈ R0 with an

overwhelming probability in |xa| and |c0|, respectively. Here the simultaneous satisfiability on w0 should
assure the following equality:

ŵa0 = ŵa,0 with probability one. (19)

It returns (ŵa0 , ŵ
a
1 , r̂

a
0).

• Σa
0,sim(xa0 , ˜cha) → (( ˜com

a
, ˜coma,0), ( ˜res

a
, ˜resa,0)). This ppt algorithm is for the simula-

tion of an accepting transcript. On input a statement xa0 = (xa, c0) and a uniform ran-
dom string ˜cha ∈R chaSp(1λ), it runs the algorithms Σa

sim(xa, ˜cha) and Σ0,sim(c0, ˜cha)
to obtain the remaining part of the transcripts ( ˜com

a
, ˜res

a
) and ( ˜coma,0, ˜resa,0), respec-

tively. The simulated messages (( ˜com
a
, ˜coma,0), ˜cha, ( ˜res

a
, ˜resa,0)) should form a distribution

dist
(
( ˜com

a
, ˜coma,0), ˜cha, ( ˜res

a
, ˜resa,0) | generated by chaSp(1λ) and Σa

0,sim(xa0 , ˜cha)
)

which is identical

to the distribution dist
(
(coma,coma,0),cha, (resa,resa,0) | real accepting transcript

)
.

Remark To construct the algorithm Σa
0,com of commitment message and the algorithm Σa

0,res of response
message is a non-trivial task. That is, we have to construct Σa

0,com and Σa
0,res so that the knowledge extractor

Σa
0,ext returns a witness which simultaneously satisfies Φa and Φ0 on a base witness point w0. The idea of

the construction is to use a common random tape to generate commitment messages coma and coma,0,
but we do not describe the inner treatment of the random tapes in Σa

0,com and Σa
0,res for generality. Hence

our approach is to show the construction when we instantiate the Σ-protocol Σa
0 . In Section A we actually

demonstrate the construction of Σa
0 in an algebraic setting.

3.3 Bundled Witness Space

We now introduce an NP witness relation for our bundled witness space. We first fix the base witness point
w0 in the base witness space W0 and consider a subset Raw0

for each NP witness relation Ra, a ∈ A:

Raw0
:= {(xa, wa) ∈ Ra | wa = (w0, w

a
1) for some wa1} ⊂ Ra, a ∈ A. (20)

Then we run the base witness point w0 to claim the following property.

Claim 1 For a polynomially bounded integer n, let A be the set of indices {1, . . . , n}. Then we have:⋃
w0∈W0

(∏
a∈A

Raw0

)
⊂
∏
a∈A

( ⋃
w0∈W0

Raw0

)
=
∏
a∈A

Ra. (21)
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Proof. The equality of the right-hand side is because
⋃
w0∈W0

Raw0
= Ra. An element of the left hand side is

of the form (x1, (w0, w
1
1)), . . . , (xn, (w0, w

n
1 )) where w0 ∈ W0 and (xa, (w0, w

a
0)) ∈ Ra for a ∈ A. This is an

element of
∏
a∈AR

a, and hence the inclusion follows. �
Deleting the redundancy, we obtain the following one-to-one correspondence as sets (‘'’):

Ra∈Abnd
def
= {

(
(xa)a∈A, w0, (w

a
1)a∈A

)
∈ {0, 1}∗ × ({0, 1}∗)2 | (xa, (w0, w

a
1)) ∈ Ra, a ∈ A} (22)

'
⋃

w0∈W0

(∏
a∈A

Raw0

)
. (23)

Claim 2 For a polynomially bounded integer n, let A be the set of indices {1, . . . , n}. Then the relation
Ra∈Abnd is an NP relation.

Proof. We first note that the number of indices |A| is polynomially bounded. To bound the bit lengths
of witnesses by a fixed polynomial, let polya(·) denote for a ∈ A the polynomial which bounds the bit
lengths of witnesses: |wa| < polya(|xa|) for (xa, wa) ∈ Ra. Let a polynomial poly(·) be the sum: poly(·) :=∑
a∈A polya(·). Then poly(·) bounds the bit length of the witness as

|w0, (w
a
1)a∈A| ≤ |(w0, w

a
1)a∈A| = |(wa)a∈A| ≤

∑
a∈A

polya(|xa|) ≤
∑
a∈A

polya(|(xa)a∈A|) = poly(|(xa)a∈A|).

(24)

As for efficiency of deciding the membership of the relation Ra∈Abnd , we just remember that the number of
indices |A| is polynomially bounded. �

Definition 1 (Relation for Bundled Witness Space) For a polynomially bounded integer n, an NP
witness relation for the bundled witness spaces is defined as Ra∈Abnd .

Definition 2 (Bundled Witness Space) For a polynomially bounded integer n, let A be the set of indices
{1, . . . , n}. Let Ra, a ∈ A be NP witness relations where each witness space decomposes W a = W0×W a

1 , a ∈ A.
Then the bundled witness space is defined as follows.

W a∈A
bnd

def
= W0 × (W a

1 )a∈A. (25)

3.4 Generic Construction of Σ-protocol for Bundled Witness Space

By using the above Σ-protocols (Σa
0 )a∈A and a commitment generation algorithm Cmt.Com, we construct an

interactive argument system Πa∈A
bnd = (P, V) for the witness relation Ra∈Abnd with a protocol Σa∈A

bnd . Σa∈A
bnd is

actually a Σ-protocol, which consists of the six ppt algorithms described below (see also Fig.1):

Σa∈A
bnd = (Σa∈A

bnd,com, Σ
a∈A
bnd,cha, Σ

a∈A
bnd,res, Σ

a∈A
bnd,vrf, Σ

a∈A
bnd,ext, Σ

a∈A
bnd,sim). (26)

• Σa∈A
bnd,com((xa)a∈A, (w0, (w

a
1)a∈A)) → (c0, (com

a,coma,0)a∈A, St). This ppt algorithm is executed by P.

On input a statement that is a vector (xa)a∈A and a witness that is a vector (w0, (w
a
1)a∈A), it computes a

commitment c0 to the base witness point w0 with a randomness r0 ∈R {0, 1}λ by running the commitment
generation algorithm of Cmt: (c0, r0)← Cmt.Com(w0; r0). It sets the extended statement as xa0 := (xa, c0) and
the extended witness as wa0 := (w0, w

a
1 , r0) for each a ∈ A. it runs the algorithms Σa

0,com(xa0 , w
a
0) to obtain

(coma,coma,0, St
a
0) for each a ∈ A. It sets the state as St := (Sta0)a∈A. It returns (c0, (com

a,coma,0)a∈A, St).
P sends (c0, (com

a,coma,0)a∈A) to V as a commitment message, and keeps the state St.
• Σa∈A

bnd,cha((xa)a∈A)→ cha. This ppt algorithm is executed by V. On input the statement (xa)a∈A, it reads

out the size of the security parameter as 1λ and chooses a challenge message cha ∈R chaSp(1λ). It returns
cha. Va0 sends cha to Pa0 as a challenge message.
• Σa∈A

bnd,res(St,cha) → (resa,resa,0)a∈A. This ppt algorithm is executed by P. On input the state St and
the challenge message cha, it runs the algorithms Σa

0,res(St
a
0 ,cha) to obtain (resa,resa,0) for each a ∈ A.

It returns (resa,resa,0). P sends (resa,resa,0)a∈A to V as a response message.
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• Σa∈A
bnd,vrf((x

a)a∈A)→ d. This deterministic algorithm is executed by V. On input the statement (xa)a∈A and

all the messages (c0, (com
a,coma,0)a∈A), cha and (resa,resa,0)a∈A, it first sets the extended statement

as xa0 := (xa, c0) for each a ∈ A. Then it runs the algorithms Σa
0,vrf(x

a
0 ,com

a,coma,0,cha,res
a,resa,0) to

obtain boolean decisions, for each a ∈ A. If all the decisions are 1, then V returns 1, and otherwise, 0.
These four algorithms (Σa∈A

bnd,com, Σ
a∈A
bnd,cha, Σ

a∈A
bnd,res, Σ

a∈A
bnd,vrf) must satisfy the following property.

Proposition 1 (Completeness) If Cmt is correct, and if Σa
0 is complete for a ∈ A, then our Σa∈A

bnd is
complete.

Proof. The completeness of our Πa∈A
bnd comes from the correctness of Cmt and the completeness of Πa

0 for
each a ∈ A. �

• Σa∈A
bnd,ext((x

a)a∈A, (c0, (com
a,coma,0)a∈A),cha, (resa,resa,0)a∈A,cha′, ((resa)′, (resa,0)′)a∈A) →

(ŵ0, (ŵ
a
1)a∈A). This ppt algorithm is for knowledge extraction. On input the state-

ment (xa)a∈A and two accepting transcripts with a common commitment message
and different challenge messages, ((c0, (com

a,coma,0)a∈A),cha, (resa,resa,0)a∈A)) and
((c0, (com

a,coma,0)a∈A),cha′, (resa′,resa,0
′)a∈A)), cha 6= cha′, it first sets the ex-

tended statement as xa0 := (xa, c0) for each a ∈ A. Then it runs the algorithms
Σa

0,ext(x
a
0 , (com

a,coma,0),cha, (resa,resa,0),cha′, (resa′,resa,0
′)) to obtain (ŵa0 , ŵ

a
1 , r̂

a
0) for each

a ∈ A. If this event does not occur (i.e. at least at one a Σa
0,ext fails to extract a witness), then it returns ⊥.

Otherwise, if ŵa0 = ŵa
′

0 for any a, a′ ∈ A, then it sets the common value ŵ0 := ŵa0 and returns (ŵ0, (ŵ
a
1)a∈A).

Otherwise it returns ⊥∗. The binding property of the commitment scheme Cmt assures that the former case
holds with an overwhelming probability, as claimed in the following proposition.

Proposition 2 (Special Soundness) If Cmt is correct and computationally binding, and if Σa
0 has the

special soundness for a ∈ A, then our Σa∈A
bnd has the special soundness.

Proof. By employing (Σa∈A
bnd,com, Σ

a∈A
bnd,cha, Σ

a∈A
bnd,res, Σ

a∈A
bnd,vrf, Σ

a∈A
bnd,ext) as subroutines, we construct a ppt al-

gorithm A that breaks the binding property of Cmt in accordance with the experiment Expbind
Cmt,A(1λ). A

is given as input the set of public parameter values PPCmtPrv. A first reads out the security parameter 1λ

from PPCmtPrv, and runs the setup algorithms Π.Setup(1λ) to obtain the set of public parameter values PPΠ .
A merges the sets of public parameter values as PP := (PPΠ , PPCmtPrv). Then A executes Πa∈A

bnd = (P, V). If
the decision d of V is 1, then A rewinds P back to the timing at which P had sent the challenge message
cha of the protocol Σa∈A

bnd . If the decision d of V is again 1, A runs the knowledge extractor Σa∈A
bnd,ext on

input ((xa)a∈A, (c0, (com
a,coma,0)a∈A)),cha, (resa,resa,0)a∈A,cha′, ((resa)′, (resa,0)′)a∈A). If Σa∈A

bnd,ext

outputs ⊥∗, then there must be a pair a, a′ ∈ A∗, a 6= a′ such that (ŵa0 , ŵ
a
1 , r̂a,0) and (ŵa

′

0 , ŵ
a′

1 , r̂a′,0) pass the

verification Cmt.Vrf and ŵa0 6= ŵa
′

0 . The vector (c0, ŵ
a
0 , r̂a,0, ŵ

a′

0 , r̂a′,0) breaks the binding property to yields

Win in Expbind
Cmt,A(1λ). This completes the description of A, and the following equality holds.

Advbind
Cmt,A(λ) = Pr[Σa∈A

bnd,ext returns ⊥∗] (27)

= 1− (Pr[Σa∈A
bnd,ext returns(ŵ0, (ŵ

a
1)a∈A)] + Pr[Σa∈A

bnd,ext returns ⊥]). (28)

Therefore,

Pr[Σa∈A
bnd,ext returns(ŵ0, (ŵ

a
1)a∈A)] = 1− (Advbind

Cmt,A(λ) + Pr[Σa∈A
bnd,ext returns ⊥]) (29)

= 1− (Advbind
Cmt,A(λ) + (1−

∏
a∈A

Pr[Σa
0,ext returns a witness])). (30)

The right-hand side is an overwhelming probability because Pr[Σa
0,ext returns a witness] is an overwhelming

probability for each a ∈ A and |A| is bounded by a polynomial in |x|. �
Note 3: Our Use Case For simplicity of the later discussion, we hereafter assume that, for all a ∈ A,
Pr[Σa

0,ext returns a witness] = 1. That is, we assume that Pr[Σa
0,ext returns ⊥] = 0 for each a ∈ A.

• Σa∈A
bnd,sim((xa)a∈A, ˜cha) → ((c̃0, ( ˜com

a
, ˜com

a
0)a∈A), ( ˜res

a
, ˜res

a
0)a∈A). This ppt algorithm is for the
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P((xa)a∈A, w0, (w
a
1 )a∈A) V((xa)a∈A)

Σa∈A
bnd,com((xa)a∈A, w0, (w

a
1 )a∈A)

(c0, r0)← Cmt.Com(w0; r0)
For a ∈ A:
xa0 := (xa, c0), wa0 := (w0, w

a
1 , r0)

Σa
0,com(xa0 , w

a
0 )→ (coma,coma,0, St

a
0)

St := (Sta0)a∈A

Return (c0, (com
a,coma,0)a∈A, St) c0, (com

a,coma,0)a∈A

→ Σa∈A
bnd,cha((xa)a∈A)

cha ∈R chaSp(1λ)
cha Return cha

Σa∈A
bnd,res(St,cha) ←
For a ∈ A:
Σa

0,res(St
a,cha)→ (resa,resa,0)

Return (resa,resa,0)a∈A (resa,resa,0)a∈A

→ Σa∈A
bnd,vrf((x

a)a∈A)

For a ∈ A:
xa0 := (xa, c0)
Σa

0,vrf(x
a
0 , (com

a,coma,0),cha, (resa,resa,0))
=? 1

If true for all a ∈ A, then Return d := 1
else Return d := 0

Return d

Fig. 1. The protocol Σa∈A
bnd of our proof system Πa∈A

bnd for the NP witness relation Ra∈Abnd .

simulation of an accepting transcript. On input a statement (xa)a∈A and a uniform random string
˜cha ∈R chaSp(1λ), it first chooses a base witness point w̃0 ∈R W0 uniformly at random, and runs

the commitment generation algorithm with a randomness r̃0, Cmt.Com(w̃0; r̃0) → (c̃0, r̃0), to obtain a
commitment c̃0. Then it sets the extended statement as xa0 := (xa, c̃0) for each a ∈ A. Then, it runs
the algorithms Σa

0,sim(xa0 , ˜cha) to obtain (( ˜com
a
, ˜coma,0), ( ˜res

a
, ˜resa,0)) for each a ∈ A. It returns

((c̃0, ( ˜com
a
, ˜coma,0)a∈A), ( ˜res

a
, ˜resa,0)a∈A).

Proposition 3 (Honest-Verifyer Zero-Knowledge) If Cmt is perfectly hiding, and if Σa
0 is honest-

verifier zero-knowledge for a ∈ A, then our Σa∈A
bnd is honest-verifier zero-knowledge.

Proof. The perfectly hiding property assures that the distribution of simulated commitment c̃0 is the
same as the real. Then on input (xa0 , ˜cha), the simulator Σa

0,sim works to return the remaining part of

the simulated transcript, (( ˜com
a
, ˜coma,0), ( ˜res

a
, ˜resa,0)), for each a ∈ A. Then, the merged transcripts

((c̃0, ( ˜com
a
, ˜coma,0)a∈A), ( ˜res

a
, ˜resa,0)a∈A) is identically distributed to the real. �

Theorem 1 If Cmt is correct, computationally binding and perfectly hiding, and if Σa
0 is a Σ-protocol for

a ∈ A, then our protocol Σa∈A
bnd is a Σ-protocol.

Proof. Propositions 1, 2 and 3 deduces that Σa∈A
bnd is a Σ-protocol. �

Theorem 2 If the component interactive proof system Πa
0 with Σa

0 is perfectly witness-indistinguishable for
each a ∈ A, and if Cmt is perfectly hiding, then our interactive argument system Πa∈A

bnd with Σa∈A
bnd is perfectly

witness-indistinguishable.

Proof. The transcripts form a distribution dista∈A := dist
(
(c0, (com

a,coma,0)a∈A),cha, (resa,resa,0)a∈A
)
,

where the challenge message cha is chosen by any given ppt verifier V∗ on input a set of statements (xa)a∈A,
any given auxiliary input z and a commitment message (c0, (com

a,coma,0)a∈A). If Cmt is perfectly hiding,
then the distribution of the commitment c0 is identical even if the committed element w0 varies. For each
a ∈ A, if Πa

0 is perfectly witness-indistinguishable, then the distribution of the commitment message and the
response message dist

(
(coma,coma,0), (resa,resa,0)

)
are identical even if the witness (w0, w

a
1) varies and

even if cha chosen by V∗((xa)a∈A, z, (c0, (com
a,coma,0)a∈A)) deviates from the uniform random distribution.

Therefore, for all a ∈ A, the distribution dista∈A is identical even if the witness (w0, (w
a
1)a∈A) varies. �
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Note. OR-composition and Boolean Formulas The OR-proof, and more generally the proof for mono-
tone formulas, are also possible [CDS94,AAS14] for our Σ-protocol Σa∈A

bnd .

4 Decentralized Multi-Authority Anonymous Authentication Scheme

In this section, we give a syntax and security definitions of an interactive anonymous authentication scheme
in a decentralized multi-authority setting on key generation.

4.1 Syntax and Security Definitions

Our scheme a-auth consists of five ppt algorithms, (Setup, AuthKG, PrivKG, P, V).
• Setup(1λ)→ PP. This ppt algorithm is needed to generate a set of public parameter values PP. On input
the security parameter 1λ, it generates the set of values PP. It returns PP.
• AuthKG(PP, a) → (PKa,MSKa). This ppt algorithm is executed by a key-issuing authority indexed by a
positive integer a. On input the set of public parameter values PP and the authority index a, it generates
the a-th public key PKa of the authority and the corresponding a-th master secret key MSKa. It returns
(PKa,MSKa).
• PrivKG(PP,PKa,MSKa, gid) → skagid. This ppt algorithm is executed by the a-th key-issuing authority.
On input the set of public parameter values PP, the a-th public and master secret keys (PKa,MSKa) and a
string gid of a prover (a global identity string), it generates a private secret key skagid of a prover. It returns
skagid.

• 〈P(PP, (PKa, skagid)
a∈A′), V(PP, (PKa)a∈A

′
)〉 → d. These two interactive ppt algorithms are a prover who is

to be authenticated, and a verifier who confirms that the prover certainly knows the secret keys for indices
a ∈ A′, respectively, where A′ denotes a subset of all indices at which the prover is issued her private secret
keys by authorities. On input the set of public parameter values PP and the public keys (PKa)a∈A to P

and V and the corresponding private secret keys (skagid)
a∈A to P, P and V interact with each other. After at

most polynomially many (in λ) moves of messages between P and V, V returns d := 1 (“accept”) or d := 0
(“reject”).

We discuss two security notions for our authentication scheme a-auth; security against concurrent and
collusion attacks that yield misauthentication, and anonymity for privacy of provers’ global identities.

Security against Concurrent and Collusion Attack of Misauthentication One of the possible attacks to cause
misauthentication is the concurrent and collusion attack on our a-auth. For a formal treatment we define the
following experiment on a-auth and an adversary algorithm A.

Exprconc-colla-auth,A (1λ) : (31)

qA ← A(1λ), A := {1, . . . , qA}, PP← Setup(1λ),For a ∈ A : (PKa,MSKa)← AuthKG(PP, a) (32)

qI ← A(PP, (PKa)a∈A), I := {1, . . . , qI},For i ∈ I : gidi ∈R {0, 1}λ (33)

For a ∈ A : For i ∈ I : skagidi ← PrivKG(PP,PKa,MSKa, gidi) (34)

(A∗, St∗)← AP(PP,(PKa,skagidi
)a∈A)|i∈I ,PrivKO(PP,PK·,MSK·,·)(PP, (PKa)a∈A) (35)

〈A(St∗), V(PP, (PKa)a∈A
∗
)〉 → d, If d = 1 then Return Win else Return Lose (36)

Intuitively, the above experiment describes the attack as follows. The adversary algorithm A, on input the
security parameter 1λ, first outputs the number qA of key-issuing authorities. Then, on input the set of public
parameter values PP and the issued public keys (PKa)a∈A, A outputs the number qI of provers with which
A interacts concurrently (i.e. in arbitrarily interleaved order of messages). In addition, A collects at most
qsk private secret keys by issuing queries to the private secret key oracle PrivKO(PP,PK·,MSK·, ·) with an
authority index a ∈ A and a global identity string gidj ∈ {0, 1}λ for j = qI + 1, . . . , qI + qsk. We denote by
Aj the set of authority indices for which the queries with the global identity string gidj were issued. That is,

Aj := {a ∈ A | A receives skagidj}, j = qI + 1, . . . , qI + qsk. (37)
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We here require that the numbers qA, qI and qsk are bounded by a polynomial in λ. At the last of this “learning
phase”, A outputs a target set of authority indices A∗ and its inner state St∗. Next, in the “attacking phase”,
on input the inner state St∗, the adversary A interacts with the verifier V(PP, (PKa)a∈A

∗
). If the decision d

of V is 1, then the experiment returns Win and otherwise, returns Lose.
A restriction is imposed on the adversary A: The target set of authority indices A∗ should not be a subset

of any single set Aj :

A∗ * Aj , j = qI + 1, . . . , qI + qsk. (38)

This restriction is because, otherwise, A is given private secret keys for A∗ on a single gidi∗ for some i∗,
qI < i∗ ≤ qI + qsk, and then A can trivially be accepted in the attacking phase.

The advantage of an adversary A over our authentication scheme a-auth in the experiment is defined as:

Advconc-coll
a-auth,A (λ)

def
= Pr[Exprconc-colla-auth,A (1λ) = Win]. An authentication scheme a-auth is called secure against

concurrent and collusion attacks of misauthentication if, for any given ppt algorithm A, the advantage
Advconc-coll

a-auth,A (λ) is negligible in λ.

Anonymity As is explained in Section 1, a critical feature to be attained is provers’ anonymity on global
identities when the provers are authenticated. For a formal treatment we define the following experiment on
a-auth and an adversary algorithm A.

Expranoa-auth,A(1λ) : (39)

qA ← A(1λ), A := {1, . . . , qA}, PP← Setup(1λ),For a ∈ A : (PKa,MSKa)← AuthKG(PP, a) (40)

gid0, gid1 ← A(PP, (PKa)a∈A),For a ∈ A : For i ∈ 0, 1 : skagidi ← PrivKG(PP,PKa,MSKa, gidi) (41)

b ∈R {0, 1}, b∗ ← AP(PP,(PKa,skagidb
)a∈A)(PP, (PKa, skagid0 , sk

a
gid1

)a∈A) (42)

If b = b∗, then Return Win, else Return Lose (43)

Intuitively, the above experiment describes the attack as follows. The adversary algorithm A, on input the
security parameter 1λ, first outputs the number qA of key-issuing authorities. Then, on input the issued
public keys (PKa)a∈A, A designates two identity strings gid0 and gid1 (as is usual in the indistinguishability
games). Next, A interacts with a prover P on input even the private secret keys (skagidb)

a∈A, where the index
b is chosen uniformly at random. If the decision b∗ of A is equal to b, then the experiment returns Win and
otherwise, returns Lose.

The advantage of an adversary A over our authentication scheme a-auth in the experiment is defined as:

Advano
a-auth,A(λ)

def
=
∣∣Pr[Expranoa-auth,A(1λ) = Win] − (1/2)

∣∣. An authentication scheme a-auth is called to have
anonymity if, for any ppt algorithm A, the advantage Advano

a-auth,A(λ) is negligible in λ.

4.2 Generic Construction

We give a generic construction of our authentication scheme a-auth. The building blocks are the interactive
proof system Πa∈A

bnd with our Σ-protocol Σa∈A
bnd and a digital signature scheme Sig. We note that a commit-

and-prove scheme CmtPrv is employed in Σa∈A
bnd .

• Setup(1λ)→ PP. On input the security parameter 1λ, this ppt algorithm generates a set of public parameter
values by running the setup algorithms Sig.Setup(1λ), Π.Setup(1λ) and CmtPrv.Setup(1λ). These algorithms
are for the digital signature scheme Sig, the interactive argument systems (Πa

0 )a∈A, and the commitment
generation algorithm Cmt.Com. They generate PPSig, PPΠ and PPCmt, respectively. It merges them as PP :=
(PPSig, PPΠ , PPCmt). It returns PP.
• AuthKG(PP, a)→ (PKa,MSKa). On input the set of public parameter values PP and an authority index a,
this ppt algorithm executes the key generation algorithm Sig.KG(PPSig) to obtain a signing key SK and the
corresponding public key PK. It sets the master secret key as MSKa := SK and the corresponding public
key as PKa := PK. It returns (PKa,MSKa).
• PrivKG(PP,PKa,MSKa, gid)→ skagid. On input the set of public parameter values PP, a public key PKa, the
corresponding master secret key MSKa and a string gid, this ppt algorithm executes the signing algorithm
Sig.Sign(PPSig,PKa,MSKa, gid) to obtain a digital signature σagid on the message gid. It puts a private secret
key skagid as skagid := σagid. It returns skagid.
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Setup(1λ) AuthKG(PP, a) PrivKG(PP,PKa,MSKa, gid)

PPSig ← Sig.Setup(1λ) (SK,PK)← Sig.KG(PPSig) σagid ← Sig.Sign(PPSig,PKa,MSKa, gid)

PPΠ ← Π.Setup(1λ) PKa := PK,MSKa := SK skagid := σagid
PPCmtPrv ← CmtPrv.Setup(1λ) Return (PKa,MSKa) Return skagid
PP := (PPΠ , PPCmtPrv, PPSig)
Return PP

P(PP, (PKa)a∈A, (skagid)
a∈A) V(PP, (PKa)a∈A)

For a ∈ A: xa := PKa, wa1 := skagid For a ∈ A: xa := PKa

w0 := gid

(Execute Σa∈A
bnd )

Return (d← Σa∈A
bnd,vrf)

Fig. 2. Generic construction of our decentralized multi-authority anonymous authentication scheme a-auth.

• P(PP, (PKa)a∈A, (skagid)
a∈A) and V(PP, (PKa)a∈A). On input the set of public parameter values PP and the

public keys (PKa)a∈A to the prover P and the verifier V, and the corresponding private secret keys (skagid)
a∈A

to P, ppt algorithms P and V first set the statements as xa := PKa for a ∈ A and P sets the witness as
w0 := gid and wa1 := skagid for a ∈ A. The witness spaces W a, a ∈ A are described as follows.

W a =W0 ×W a
1 , (44)

W0 = {gid | string of length λ} = {0, 1}λ, (45)

W a
1 = {σagid | σagid ← Sig.Sign(PPSig,PKa,MSKa, gid) for some gid ∈W0}. (46)

P and V execute the Σ protocol Σa∈A
bnd . V returns the returned boolean d of the verifier algorithm Σa∈A

bnd,vrf.

4.3 Properties

Theorem 3 If the component proof system Πa
0 is perfectly witness-indistinguishable for each a ∈ A, if the

commitment scheme Cmt is perfectly hiding and computationally binding, and if the digital signature scheme
Sig is existentially unforgeable against adaptive chosen-message attacks, then our a-auth is secure against
concurrent and collusion attacks. More precisely, let qA denote the maximum number of authorities. For any
given ppt algorithm A that executes a concurrent and collusion attack on our a-auth in accordance with the
experiment Exprconc-colla-auth,A (1λ), there exists a ppt algorithm F that generates an existential forgery on Sig in

accordance with the experiment Expeuf-cma
Sig,F (1λ) and there exists a ppt algorithm B that breaks the bandaging

property of Cmt in accordance with the experiment Expbind
Cmt,B(1λ) satisfying the following inequality.

Advconc-coll
a-auth,A (λ) ≤ 1

chaSp(1λ)
+

√
2λ

2λ − 1
· qA ·Adveuf-cma

Sig,F (λ) + Advbind
Cmt,B(λ). (47)

Proof. Given any ppt algorithm A on Exprconc-colla-auth,A (1λ), we construct a ppt algorithm F that generates

an existential forgery on Sig in accordance with the experiment Expeuf-cma
Sig,F (1λ). F is given as input the

set of public parameter values PPSig and a public key PKSig. F first reads out the security parameter
1λ from PPSig, and runs the setup algorithms Π.Setup(1λ) and CmtPrv.Setup(1λ) to obtain the sets of
public parameter values PPΠ and PPCmtPrv, respectively. F merges the sets of public parameter values as
PP := (PPSig, PPΠ , PPCmtPrv). Then F invokes the algorithm A with 1λ to obtain the number qA of key-issuing
authorities. F chooses a target index a∗ from the set A := {1, . . . , qA} uniformly at random. For a ∈ A except
the target index a∗, F runs the authority key generation algorithm honestly. As for a∗, F uses the input
public key:

For a ∈ A s.t. a 6= a∗ : (PKa,MSKa)← AuthKG(PP, a), (48)

PKa∗ := PKSig. (49)
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F inputs the set of public parameter values PP and the public keys (PKa)a∈A into A to obtain the number
qI of concurrent provers. F sets I as I := {1, . . . , qI}.
Simulation of Concurrent Provers F chooses a single identity string g̃id ∈R {0, 1}λ. For a ∈ A except the

target index a∗, F runs the private secret key generation algorithm with g̃id honestly. As for a∗, F issues a
signing query with g̃id:

For a ∈ A s.t. a 6= a∗ : skag̃id ← PrivKG(PP,PKa,MSKa, g̃id), (50)

ska
∗

g̃id ← SignO(PPSig,PKSig,SKSig, g̃id). (51)

In the simulation of concurrent provers P(PP, (PKa, skagidi)
a∈A)|i∈I which A interacts with, F uses the pri-

vate secret keys (skag̃id)
a∈A. Note that this is a perfect simulation. This is because of the perfect witness-

indistinguishability of our Σa∈A
bnd (Theorem 2).

Simulation of Private Secret Key Oracle When A issues a private secret key query with a ∈ A and gidj ∈
{0, 1}λ (qI + 1 ≤ j ≤ qI + qsk), if a 6= a∗, then F runs the private secret key generation algorithm with gidj
honestly, and otherwise (i.e. a = a∗), F issues a signing query with gidj :

If a ∈ A s.t. a 6= a∗ : skagidj ← PrivKG(PP,PKa,MSKa, gidj), (52)

otherwise (i.e. a = a∗) ska
∗

gidj
← SignO(PPSig,PKSig,SKSig, gidj). (53)

F replies to A with the secret key skagidj . This is also a perfect simulation.
At the end of the “learning phase” A outputs a target set of authority indices A∗ and its inner state St∗.

Generating Existential Forgery Next, in the “attacking phase”, on input the inner state St∗, the adversary

A interacts with the verifier. That is, F runs a verifier V with input (PP, (PKa)a∈A
∗
). If the decision d of

V is 1, then F rewinds (Bellare-Palacio [BP02]) A back to the timing at which A had sent the challenge
message of the Σ-protocol Σa∈A

bnd . If the decision d of V is again 1, F runs the knowledge extractor Σa∈A
bnd,ext on

input ((xa)a∈A, (c0, (com
a,coma,0)a∈A)),cha, (resa,resa,0)a∈A,cha′, ((resa)′, (resa,0)′)a∈A). If Σa∈A

bnd,ext

outputs a witness ŵ := (ŵ0, (ŵ
a
1)a∈A), then F sets a message gid∗ as gid∗ := ŵ0, and a signature σ∗ as

σ∗ := ŵa
∗

1 . F returns (gid∗, σ∗). This completes the description of F.

Probability Evaluation The probability that the returned value (gid∗, σ∗) is actually an existential forgery
is evaluated as follows. We name the events in the above as:

Acc : the event that V accepts A, (54)

Rst : the event that V accepts A both before and after the rewinding with different cha, (55)

TgtAuthIdx : the event that â = a∗, (56)

Ext : the event that Σa∈A
bnd,ext returns a witness ŵ := (ŵ0, (ŵ

a
1)a∈A), (57)

NewID : the event that gid∗ 6= g̃id, (58)

Forge : the event that (gid∗, σ∗) is an existential forgery on Sig. (59)

We have the following inequality by Reset Lemma [BP02].

Pr[Acc] ≤ 1

chaSp(1λ)
+
√

Pr[Rst]. (60)

Besides, the above discussion as well as the definitions deduce the following equalities.

Advconc-coll
a-auth,A (λ) = Pr[Acc], (61)

Pr[TgtAuthIdx,Rst,Ext,NewID] = Pr[Forge], (62)

Pr[Forge] = Adveuf-cma
Sig,F (λ). (63)

The left-hand side of the equality (62) is expanded as follows.

Pr[TgtAuthIdx,Rst,Ext,NewID] = Pr[TgtAuthIdx] · Pr[Rst,Ext,NewID] (64)

= Pr[TgtAuthIdx] · Pr[Rst,Ext] · Pr[NewID | Rst,Ext]. (65)
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Lemma 1

Pr[TgtAuthIdx] = 1/qA. (66)

Proof. The restriction (38) of the experiment assures that there exists an authority index â such that â ∈
A∗, â /∈ Aj , qI ≤ ∀j ≤ qI + qsk. Besides, â coincides with a∗ with probability 1/qA. Therefore, the string gid∗

is different from all the queried strings gidj , qI ≤ ∀j ≤ qI + qsk with probability 1/qA. �

Lemma 2

Pr[NewID | Rst,Ext] =
2λ − 1

2λ
. (67)

Proof. The string g̃id for the simulation of concurrent provers is hidden from the view of A. Therefore gid∗

is different from g̃id with probability 2λ−1
2λ

. �

Lemma 3 For any given ppt algorithm A that executes a concurrent and collusion attack on our a-auth in
accordance with the experiment Exprconc-colla-auth,A (1λ), there exists a ppt algorithm B that breaks the bandaging

property of Cmt in accordance with the experiment Expbind
Cmt,B(1λ) satisfying the following equality.

Pr[Rst,Ext] = Advbind
Cmt,B(λ). (68)

Proof. Given any ppt algorithm A on Exprconc-colla-auth,A (1λ), we construct a ppt algorithm B that breaks the

binding property of Cmt in accordance with the experiment Expbind
Cmt,B(1λ). B is given as input the set of

public parameter values PPCmtPrv. B first reads out the security parameter 1λ from PPCmtPrv, and runs the
setup algorithms Π.Setup(1λ) and Sig.Setup(1λ) to obtain the sets of public parameter values PPΠ and
PPSig, respectively. B merges the sets of public parameter values as PP := (PPSig, PPΠ , PPCmtPrv). Then B
invokes the algorithm A with 1λ to obtain the number qA of key-issuing authorities. The simulation of
concurrent provers and the simulation of the private secret key oracle are done in the same way. (Note that
B does not need to choose a∗.) In the “attacking phase”, B runs a verifier V with input (PP, (PKa)a∈A

∗
). If

the decision d of V is 1, then B rewinds A back to the timing at which A had sent the challenge message
of the Σ-protocol Σa∈A

bnd . If the decision d of V is again 1, B runs the knowledge extractor Σa∈A
bnd,ext on

input ((xa)a∈A, (c0, (com
a,coma,0)a∈A)),cha, (resa,resa,0)a∈A,cha′, ((resa)′, (resa,0)′)a∈A). If Σa∈A

bnd,ext

outputs ⊥∗, then there must be a pair a, a′ ∈ A∗, a 6= a′ such that (ŵa0 , ŵ
a
1 , r̂a,0) and (ŵa

′

0 , ŵ
a′

1 , r̂a′,0) pass the

verification Cmt.Vrf and ŵa0 6= ŵa
′

0 . The vector (c0, ŵ
a
0 , r̂a,0, ŵ

a′

0 , r̂a′,0) breaks the binding property to yields

Win in Expbind
Cmt,B(1λ). This completes the description of B, and B satisfies (68). �

Note that we have the equality:

Pr[Rst] = Pr[Rst,Ext] + Pr[Rst,Ext]. (69)

Combining (62), (65), (66), (67), (68) and (69), we have:

Pr[Rst] =
2λ

2λ − 1
· qA · Pr[Forge] + Advbind

Cmt,B(λ). (70)

Combining (60), (61), (70) and (63), we have:

Advconc-coll
a-auth,A (λ) ≤ 1

chaSp(1λ)
+

√
2λ

2λ − 1
· qA ·Adveuf-cma

Sig,F (λ) + Advbind
Cmt,B(λ). (71)

�

Theorem 4 If the component proof system Πa
0 is perfectly witness-indistinguishable for each a ∈ A, and

if the commitment scheme Cmt is perfectly hiding, then our a-auth has anonymity. More precisely, for any
given ppt algorithm A that executes the anonymity game on our a-auth in accordance with the experiment
Expranoa-auth,A(1λ), the following equality holds.

Advano
a-auth,A(λ) = 0. (72)
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Proof. The perfect witness-indistinguishability of Πa
0 for each a ∈ A and the perfectly hiding property of

the commitment scheme Cmt assure that our proof system Πa∈A
bnd is perfectly witness-indistinguishable by

Theorem 2. Then the two distribution dista∈A := dist
(
(c0, (com

a,coma,0)a∈A),cha, (resa,resa,0)a∈A
)

is
identical even if the auxiliary input z is private secret keys (skagid0 , sk

a
gid1

)a∈A. Therefore, the advantage
Advano

a-auth,A(λ) is zero. �

Note. Relation with Attribute-Based Identifications and Signatures Using a monotone formula
instead of the and-composition, a decentralized multi-authority attribute-based authentication scheme
[AAHI13] is obtained over a small universe A. Moreover, the Fiat-Shamir transform gives a decentralized
multi-authority attribute-based signature scheme [OT13].

5 Conclusion

We proposed a generic construction of a Σ-protocol of commit-and-prove type, which is an and-composition
of Σ-protocols on the statements that include a common commitment. When the component Σ-protocols are
of witness-indistinguishable argument systems, our Σ-protocol is also a witness-indistinguishable argument
system as a whole. As an application, we gave a generic construction of a decentralized multi-authority
anonymous authentication scheme. There a witness is a bundle of witnesses each of which decomposes into
a fixed global identity string and a digital signature on it. We show an instantiation of the scheme in the
setting of bilinear groups.

A post-quantum instantiation should be our future work.
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Appendices

A Instantiation

In this section, we briefly discuss an instantiation of our generic authentication scheme a-auth in Section 4.
Basically, we can employ any three building blocks that satisfy requirements stated in Section 4. Below we

briefly mention an instantiation in the setting of bilinear groups. The three building blocks are the pairing version
of the Camenisch-Lysyanskaya digital signature scheme SigCL (See Appendix C) [Oka06,SNF11,TF12], the pairing
version of the Camenisch-Lysyanskaya perfectly witness-indistinguishable argument of knowledge system ΠCL (See
Appendix D) [Oka06,SNF11,TF12], and the Pedersen-Okamoto commit-and-prove scheme CmtPrvPO (See Appendix
E) which is a combination of the perfectly hiding commitment scheme of Pedersen [Ped91] and the perfectly witness-
indistinguishable argument of knowledge system by Okamoto [Oka92].

We obtain the following propositions and theorems. (The details and proofs are omitted.)

Proposition 4 ΣCL,a
PO,0 is a Σ-protocol.

Proposition 5 ΠCL,a
PO,0 is perfectly witness indistinguishable.

Theorem 5 If CmtPrvPO is perfectly hiding and computationally binding, and if SigCL is existentially unforgeable
against chosen-message attacks, then a-auth is secure against concurrent and collusion attacks.

Theorem 6 a-auth is anonymous.

B Algebraic Settings and Number-Theoretic Assumptions

Let (p,G) denote a cyclic group of prime order p, where |p| = λ. Let G denote a generator chosen uniformly at random,
G ∈R G\{1G}. Let G denote a ppt algorithm which, on input 1λ, returns the set of parameters Λ := (p,G, G). That
is, Λ := (p,G, G)← G(1λ).
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Let (p, e,G, G̃,GT ) denote bilinear groups of prime order p and of Type 3 [GPS08,BB08], where |p| = λ. Here
we require that the bilinear map e : G × G̃ → GT is efficiently computable (i.e., polynomial-time in λ). Let G
and G̃ denote generators chosen uniformly at random, G ∈R G\{1G}, G̃ ∈R G̃\{1G̃} with e(G, G̃) 6= 1GT . Let
BG denote a ppt algorithm which, on input 1λ, returns the set of parameters Λ := (p, e,G, G̃,GT , G, G̃). That is,
Λ := (p, e,G, G̃,GT , G, G̃) ← BG(1λ). Bilinear groups are widely recognized in the form of the pairing on elliptic
curves [GPS08].

B.1 Discrete Logarithm Assumption (DL) [EG85]

The DL assumption is stated as follows. For any PPT algorithm S, the advantage of S over G defined by the following
equality is negligible in λ:

Advdl
G,S(λ) := Pr[γ = γ∗

∣∣ Λ← G(1λ), γ ∈R Zp, γ∗ ← S(Λ,G,Gγ)]. (73)

The probability is taken over the random tape of G, the uniform random sampling of γ, and the random tape of S.

B.2 Strong Diffie-Hellman Assumption (SDH) [BB04]

The SDH assumption is stated as follows. Let q be a natural number that is a function of λ bounded by a polynomial
in λ. For any ppt algorithm S and for any q, the advantage of S over BG defined by the following equality is negligible
in λ:

Advsdh
BG,S(λ) := Pr[V γ+e = G

∣∣ Λ← BG(1λ), γ ∈R Zp, (V, e)← S(Λ, (G̃γ , G̃γ
2

, . . . , G̃γ
q

))]. (74)

The probability is taken over the random tape of G, the uniform random sampling of γ, and the random tape of S.

C Camenisch-Lysyanskaya Signatures, Pairing Version [Oka06,SNF11,TF12]

The pairing version of the Camenisch-Lysyanskaya signature scheme SigCL, which was originally in the RSA setting,
was proposed by Okamoto [Oka06]. We summarize the digital signature scheme here in the form which is found in
Sudarsono-Nakanishi-Funabiki [SNF11] and Teranishi and Furukawa [TF12]. SigCL consists of four ppt algorithms,
SigCL := (SigCL.Setup, SigCL.KG, SigCL.Sign, SigCL.Vrf).
• SigCL.Setup(1λ)→ PP. On input the security parameter 1λ, this ppt algorithm generates a set of public parameter
values. That is, it runs a group generation algorithm BG to generate bilinear groups of a prime order p of length
|p| = λ: Λ := (p, e,G, G̃,GT , G, G̃)← BG(1λ). Besides, it chooses a set of base elements of G0, G1, G2 ∈R G, G̃0 ∈R G̃.
It returns PP := (λ,G0, G1, G2, G̃0).
• SigCL.KG(PP)→ (PK,SK). On input PP, this ppt algorithm chooses an exponent α ∈R Zp and computes G̃1 := G̃α0 .
It sets a public key and the corresponding secret key as PK := G̃1, SK := α, respectively. It returns (PK, SK).
• SigCL.Sign(PK, SK,m)→ σ. On input PP, PK, SK and a message m ∈ Zp, this ppt algorithm chooses two random-
nesses γ, δ ∈ Zp. It computes V := (G0G

m
1 G

γ
2 )1/(δ+α). It sets a signature σ := (V, γ, δ). It returns σ.

• SigCL.Vrf(PK,m, σ) → 1/0. On input PP, PK, m and σ, this deterministic polynomial time algorithm returns a
boolean decision 1 if the following holds. Otherwise, 0: e(G0G

m
1 G

γ
2 ) =? e(V, G̃

δ
0G̃1).

The pairing version of the Camenisch-Lysyanskaya signature scheme SigCL is known to be existentially unforgeable
against adaptive chosen-message attacks under the Strong Diffie-Hellman assumption on BG (see Appendix B.2)
[Oka06,SNF11,TF12].

D Camenisch-Lysyanskaya WIAoK, Pairing Version [Oka06,SNF11,TF12]

The pairing version of the Camenisch-Lysyanskaya argument of knowledge system ΠCL, which was originally in the
RSA setting, was first proposed by Okamoto [Oka06]. We summarize the argument system here in the form found in
Sudarsono-Nakanishi-Funabiki [SNF11] and Teranishi and Furukawa [TF12]. ΠCL = (ΠCL.Setup, P, V) is executed in
accordance with a Σ-protocol ΣCL = (ΣCL

com, Σ
CL
cha, Σ

CL
res, Σ

CL
vrf, Σ

CL
ext, Σ

CL
sim).

The setup algorithm ΠCL.Setup is the same as SigCL.Setup(1λ). The set of public parameter values PP is common.
For α ∈R Zp, the statement is x := G̃1 := G̃α0 . For a given string gid ∈ Zp, choose two randomnesses γ, δ ∈ Zp

and compute V := (G0G
gid
1 G

γ
2 )1/(δ+α). The witness of the statement x is w := (gid, V, γ, δ). Note that σ := (V, γ, δ) is

a Camenisch-Lysyanskaya signature on the message gid. The following equality holds.

e(G0G
gid
1 G

γ
2 , G̃0) = e(V, G̃δ0G̃1). (75)
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It is notable that the statement x does not include any information on the witness w, and the number of elements in
W (x) is p3 because there are three independent variable in w; that is, (gid, γ, δ). In other words, this number is the
number of the solutions of the equation (75) determined by PP and x.

The protocol between P and V is a Σ-protocol. It goes as follows.

• ΣCL
com(x,w)→ (com, St). This ppt algorithm is executed by P. On input a statement x and a witness w, it chooses

v ∈R Zp and re-randomize the secret element V as R := V Gv2 . It puts z := γ+ vδ. It chooses rgid, rz, rv, rδ ∈R Zp and
computes T := e(G1, G̃0)rgide(G2, G̃0)rze(G2, G̃1)rve(R, G̃0)−rδ . It puts the commitment message as com := (R, T ). It
returns com and its inner state St. P sends com to V. Note that the following equality holds after the re-randomization.

e(G1, G̃0)gide(G2, G̃0)ze(G2, G̃1)ve(R, G̃0)−δ = e(R, G̃1)/e(G0, G̃0). (76)

• ΣCL
cha(x)→ cha. This ppt algorithm is executed by V. On input the statement x, it reads out the size of the security

parameter as 1λ and chooses a challenge message c ∈R chaSp(1λ). It puts the challenge message as cha := c. It
returns cha. V sends cha to P.

• ΣCL
res(St,cha) → res. This ppt algorithm is executed by P. On input the state Sta and the challenge message

cha, it computes sgid := rgid + cgid, sz := rz + cz, sv := rv + cv, sδ := rδ + cδ. It sets the response message as
res := (sgid, sz, sv, sδ). It returns res. P sends res to V.

• ΣCL
vrf(x,com,cha,res) → d. This deterministic algorithm is executed by V. On input the statement x and all the

messages (com,cha,res), it checks whether the following equality holds. If it holds, then return 1 (“accept”), and
otherwise, 0 (“reject”).

e(G1, G̃0)sgide(G2, G̃0)sze(G2, G̃1)sve(R, G̃0)−sδ =? T (e(R, G̃1)/e(G0, G̃0))c. (77)

For the remaining two, ΣCL
ext and ΣCL

sim, see [SNF11,TF12]. The protocol ΣCL is known to be a Σ-protocol.

ΠCL is perfectly witness-indistinguishable [FS90]. This is because the distribution of transcripts is independent of
the witness w ∈W (x) even if the distribution of cha deviates from the uniform random distribution.

E Pedersen-Okamoto Commitment-and-Prove Scheme [Ped91,Oka92]

The Pedersen commitment scheme [Ped91] CmtPed is a commitment scheme in the discrete logarithm setting. CmtPed

consists of three ppt algorithms, CmtPed = (CmtPed.Setup, Cmt.ComPed, Cmt.VrfPed).

• CmtPed.Setup(1λ)→ PP. On input the security parameter 1λ, this ppt algorithm generates a set of public parameter
values. That is, it runs a group generation algorithm G to generate a cyclic group of a prime order p of length |p| = λ:
Λ := (p,G, G)← G(1λ). In addition, it chooses ρ ∈R Zp and computes H := Gρ. It returns PP := (p,G, G,H).

• Cmt.ComPed(PP,m)→ (C, κ). On input PP and a message m ∈ Zp, this ppt algorithm generates a commitment c ∈ G
and an opening key κ ∈ Zp. That is, it chooses u ∈R Zp and computes the commitment C = GmHu to m, and it sets
κ as κ := u. It returns (C, κ).

• Cmt.VrfPed(PP, C,m, κ) → d. On input PP, C, m and κ, this deterministic polynomial-time algorithm generates a
boolean decision d. That is, it checks whether C = GmHκ holds or not. If it holds, then it returns d := 1, and
otherwise, d := 0.

CmtPed is perfectly hiding. the distribution of the commitment C is independent of the committed message m.
CmtPed is computationally binding under the discrete logarithm assumption on G (see Appendix B.1). If a commitment
C is opened in two different ways (m,κ) 6= (m′, κ′) with non-negligible probability in λ, then a ppt algorithm S is
constructed and it solves instances of the discrete logarithm problem, H = Gρ. with a non-negligible probability in
λ.

The Okamoto interactive argument system ΠOka = (ΠOka.Setup, P, V) [Oka92] is executed in accordance with a
Σ-protocol ΣOka = (ΣOka

com, Σ
Oka
cha, Σ

Oka
res, Σ

Oka
vrf, Σ

Oka
ext, Σ

Oka
sim).

The setup algorithm ΠOka.Setup is the same as CmtPed.Setup(1λ). The set of public parameter values PP is common.

For t, u ∈R Zp, the statement is x := X := GtHu. The witness of x is w = (t, u). It is notable that the number of
elements in W (x) is p because there are one independent variable in w; that is, one of t and u. In other words, this
number is the number of the solutions of the equation X = GtHu determined by PP and x.

The protocol between P and V is a Σ-protocol. It goes as follows.

• ΣOka
com(x,w)→ (com, St). This ppt algorithm is executed by P. On input a statement x and a witness w, it chooses

rt, ru ∈R Zp and computes A := GrtHru . It puts the commitment message as com := A. It returns com and its inner
state St. P sends com to V.

• ΣOka
cha(x)→ cha. This ppt algorithm is executed by V. On input the statement x, it reads out the size of the security

parameter as 1λ and chooses a challenge message c ∈R chaSp(1λ). It puts the challenge message as cha := c. It
returns cha. V sends cha to P.

20



• ΣOka
res(St,cha)→ res. This ppt algorithm is executed by P. On input the state Sta and the challenge message cha,

it computes st := rt + ct, su := ru + cu. It sets the response message as res := (st, su). P sends res to V.
• ΣOka

vrf(x,com,cha,res) → d. This deterministic algorithm is executed by V. On input the statement x and all the
messages (com,cha,res), it checks whether the following equality holds: GstHsu =? AX

c.
For the remaining two, ΣOka

ext and ΣOka
sim, see [Oka92]. The protocol ΣOka is known to be a Σ-protocol.

ΠOka is perfectly witness-indistinguishable [FS90]. This is because the distribution of transcripts is independent of
the witness w ∈W (x) even if the distribution of cha deviates from the uniform random distribution.

Combining the Pedersen commitment scheme CmtPed and the Okamoto interactive argument system ΠOka with
the Σ-protocol ΣOka, we obtain the Pedersen-Okamoto commit-and-prove scheme CmtPrvPO = (CmtPrv.Setup, CmtPed =
(Cmt.ComPed, Cmt.VrfPed), ΠOka = (P, V)).
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