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Abstract. Low Entropy Masking Scheme (LEMS) has attracted wide
attention for its low-cost feature of small fixed mask sets in Side-Channel-
Analysis (SCA). To achieve the expected side channel security, it is nec-
essary to find a balanced mask set to reduce the correlations between key
dependent variables and their corresponding leakages. However, the se-
curity proof of LEMS, based on an inadequate assumption, might lead to
consequent mask sets proposed without balance property, which could
cause vulnerable LEMS implementations. This paper focusing on cor-
recting and improving this scheme, first gives the formal definitions of
univariate balance property on mask sets and extends it to multivariate
settings. From these definitions, we propose three fundamental properties
to analyze the balance of mask sets in Rotating Sbox Masking (RSM),
the most popular LEMS implementations. To demonstrate the defini-
tions and properties, three state-of-the-art RSM mask sets were selected
as research objects. The corresponding attacks when any properties vio-
lated distinctly indicate the necessity of evaluating the balance property
of the mask set in advance (during the design phase). However, it is found
impossible to get a mask set for the RSM with all three properties sat-
isfied, which means the vulnerabilities of RSM scheme in its unbalanced
mask set are unavoidable. Thus, this promising masking scheme may be
broken for its unqualified mask set.
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1 Introduction

Side-Channel-Analysis have been proved to be a serious threat to practical se-
curity of hardware implementations. Since the pioneering work was proposed by
Kocher et al. [14] in 1996, SCA has received much more attention due to its strong
analytical power. Subsequently, many attacks have been emerged in succession,
such as differential power analysis (DPA) [15], correlation power analysis (C-
PA) [16] and mutual information analysis (MIA) [20]. In SCA, an adversary can
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exploit the physical leakages underlying device during the algorithm execution
(e.g., the execution time [11], the power consumption [4] or the electromagnetic
radiations [19]) to recover some secret information. The recent Meltdown and
Spectre Attacks are typical examples of utilizing SCA to steal secret data. As
a consequence, countermeasures against SCA must be developed and applied to
protect our secret information.

The countermeasures against SCA can be divided into five different categories
according to their level of integration: chip level, system level, algorithm level,
gate level and transistor level, respectively [18]. Among them, the algorithm-level
countermeasures, such as shuffling and masking, have the unique advantage of
device independence. Namely, there is no need to design different protection
schemes for each type of devices (ASICs, DPSs, CPUs, GPUs and FPGAs).
Specifically, masking [28–31] is the most investigated and popular technique to
improve the security of cryptographic implementations against SCA. The mask-
ing countermeasure, by adding random values before and after sensitive opera-
tions, prevents the dependency between sensitive intermediate values and side
channel leakages. While attacking masked implementations, the adversary needs
to combine different leakages to compensate the effect induced by masks, which
reduces the SNR (signal to noise ratio) of leakages and increases the difficulty of
attacks. Despite all the above advantages, the main drawback of masking schemes
is the significant overhead of their implementations for masking, demasking and
generating massive random numbers, especially toward block ciphers such as
AES. In practice, the resources (e.g. the code size, the execution time and the
RAM needed) are limited by the application, so it is necessary to reduce the cost
to make the masking scheme more practical.

To lower the cost of masked cryptographic implementations, Low Entropy
Masking Scheme (LEMS) emerged with a fixed mask set, which is a strict sub-
set of a full mask set composed of all possible values. Therefore, the design of
mask sets has become a crucial issue in LEMS. Then, the RSM scheme [21] was
proposed as a typical and complete LMES with low cost but high performance
(RSM aims at keeping performances and complexity close to an unprotected
AES design while being as robust against first-order SCA attacks as the state-
of-the-art masking in hardware [21]). Its lightweight implementation is achieved
by precisely designing the mask sets and embedding them into each round func-
tion structures. And RSM was adopted by DPA Contest v4 (both v4.1 and v4.2)
as the official countermeasure against SCA and is extensively studied. Origi-
nally, the RSM scheme was designed to protect sensitive intermediates with a
low entropy mask set against 1O-, 2O- and 3O- zero-offset correlation power
attacks [24]. It was proven [22] that such security can be achieved with only 16
mask values. However, we find that the premise of a qualified mask set in [22] is
dubious, which results in most mask sets based on it would not achieve expected
security level. In researching from the perspective of inherent property of the
mask sets, there are two unsolved questions: how to evaluate the balance of a
mask set to filter out unqualified mask sets, and how to find a qualified mask
set to make RSM scheme reach a high security level. This paper concentrates



on developing methods of evaluating whether a mask set is balanced, and how
to find a qualified one. Unexpectedly, it proved that there are no qualified mask
sets, and it means that the RSM scheme cannot meet desired security with any
potential mask sets. Therefore, it is necessary to change the framework of RSM
scheme to fix these unavoidable vulnerabilities.

This paper’s contributions mainly lie in the following aspects. To analyze
the balance of mask set thoroughly, it first give the formal definitions of bal-
ance property on mask sets. On the basis of these definitions, we propose three
fundamental properties (necessary but not sufficient) to analyse the balance of
mask sets in RSM scheme. Then we demonstrate their validity by attacking
three state-of-the-art RSM-masked implementations (proposed by DPA Contest
v4.2 [23], by Moradi et al. [17] and by Veshchikov et al. [5]) which cannot meet
the three properties simultaneously. The attack results show that all three state-
of-the-art RSM-masked implementations are insecure because of the lack of these
three properties. Finally, we prove that there is no qualified mask set for RSM
existing, which means it is impossible to make the RSM scheme achieve expected
security level only by selecting a proper mask set. Thus the framework of RSM
scheme must be modified to achieve a higher security level.

The rest of the paper is organized as follows. Section 2 reviews the details of
LEMS and RSM scheme, then Section 3 gives the definitions of balance properties
of mask sets and proposes three fundamental properties to analyze the validity
of mask sets. Afterwards, in Section 4 it shows the attacks and experimental
results toward RSM-masked implementations for each corresponding property
unsatisfied to demonstrate their reasonability and validity. Section 5 proves that
it is impossible to find a proper mask set for RSM. Finally, Section 6 contains
observations and conclusions.

2 Low Entropy Masking Schemes

With the rapid development of communication, the device involving crypto-
graphic applications is becoming increasingly lightweight, so it is necessary to
make the implementations of cryptographic algorithms smaller and faster. In
order to address the high overhead caused by masking scheme for lightweight
implementations, low entropy masking scheme (LEMS) was proposed as an al-
ternative to provide first-order side channel security for cryptographic implemen-
tations. In LEMS, all masks are chosen from a fixed mask set, that is a strict
subset of full entropy masking set (e.g. for a n-bit full entropy mask set has
2n elements from Fn

2 ). Thus the idea behind LEMS is to reduce the cardinality
of mask set while keeping immunity to certain order of side channel attacks,
which is a practical tradeoff between performance and security. As a result, the
selection of the Candidate mask set is the key for designing an optimal LEMS.

On one hand, the cardinality of mask set directly determines the number of a
mask values which could be used to protect sensitive variables in cryptographic
implementations. In this regard, Nassar et al. [2] formally analyzed the feasibility
of using decreased mask set to protect implementations and showed that it’s



possible to restrain both CPA and 2O-CPA with only 12 mask values (cardinality
equals 12). Bhasin et al. [22] proved that a byte-oriented block cipher such as
AES can be protected against 1O-, 2O- and 3O- zero-offset CPA with only 16
mask values (cardinality equals 16). Therefore, it’s a reasonable choice to set the
mask set’s cardinality at 16.

On the other hand, the elements of mask set play key roles in securing practi-
cal implementations. By using entropy analysis, Nassar et al. [2] also intensively
analyzed the dependency between the choices of mask values and correspond-
ing entropies (conditional entropy and mutual information). They exhaustively
searched for word size n ≤ 5-bit and using SAT-solver for n up to 8-bit to ob-
tain qualified mask sets. The following expression formally quantifies the amount
of dependency between L and V [22], where L and V denote the side channel
leakage and sensitive variable respectively.

L⊥V =⇒ ∀d ∈ N, V ar[E[Ld|V ]] = 0 (1)

E and V ar denote the expectation and variance operator, and d denotes the
d-th order moment. Since L connects with masked variables, let M denotes the
mask set of LEMS. Then the quantified dependency can be re-written as

∀d ∈ N, V ar[E[Ld(V �M)|V ]] = 0

=⇒ ∀d ∈ N, V ar[E[HW d(V ⊕M)|V ]] = 0
(2)

where symbol “�” denotes the masking operation. If it is boolean masking op-
eration, “�” can be replaced by “⊕”. L(·) is also used as a leakage model which
typically replaced by Hamming Weight model (HW).

Although V ar[E[Ld(V � M)|V ]] = 0 is a necessary requirement to select
a mask set, it’s far from sufficient to select a qualified one for LEMS. First-
ly, Hamming Weight model may be too simple to characterize the leakages of
a real-world devices, especially when characterizing leakages of different sensi-
tive bits with diverse leakages [6]. Thus V ar[V ar[Ld(V �M)|V ]] = 0 could be
another necessary condition for mask set selection, which characterizing the vari-
ance of masked values. Secondly, Eq.2 is only used to characterize univariable
dependencies between sensitive variables and corresponding leakages, but not
for multivariable leakages. However, Eq.1 and Eq.2 could be intuitively seen as
the balance properties of a mask set. Hereafter, this paper will recall the first
complete LEMS scheme named RSM with some practical attacks to explain the
necessary properties of the mask set to guarantee a certain security level.

2.1 Rotating Sbox Masking Scheme

On the basis of aforementioned requirements on mask sets, Rotating Sbox Mask-
ing scheme (RSM) [21] was proposed as a typical complete LEMS with |M | = 16
(|M | means the number of elements in mask set M) and V ar[E[HW d(V ⊕
M)|V ]] = 0 fully satisfied. RSM is very efficient (the performances in terms
of speed and complexity is very near to unprotected implementation and far



better than usual masking structures) and also declared to be immune to 1O-
and 2O- zero-offset CPA [21]. With its attractive properties in performance and
resistance to SCA, RSM was adopted as a main countermeasure by DPA Contest
v4 (both v4.1 and v4.2) to protect the public target AES implementation. In
order to give a first sight of RSM-masked implementation, this study shows the
first round of RSM-AES-256 which was used in DPA Contest v4.2 as Alg. 1, all
rounds in AES share the same low entropy mask set.

Algorithm 1 The first round of RSM protected AES implementation in DPA
Contest v4.2

Input: 16-bytes Plaintext Plain[16] and key[16],
Subkeys, 16-bytes first Roundkey[0][16] (only the first round considered)
16 mask values of 8-bit Mask[16],
/* Draw 16 4-bit values (uniformly random, unknown) offset[16] for the key

blinding */
/* Draw of a shuffling function(uniformly random permutation), Shuffle0[16]:

[0, 15]→ [0, 15], bijective */
Output: the next round input State[16]
1: State← Plain[16]
2: Roundkey[0][0 : 15]← key ⊕Mask[offset[0 : 15]]
3: State = State⊕Roundkey[0][0 : 15]
4: for i ∈ Shuffle0([0, 15]) do
5: Xi = MaskSboxoffset[i](Xi)

6: State = SR(State) /* SR means ShiftRow */
7: State = MC(State) /* MC means MixColumns */
8: for i ∈ [0, 15] do
9: MaskCompensaton[i] = Maskoffset[i]+1 ⊕ SR(MC(Maskoffset[i]+1))

10: State = State⊕MaskCompensaton[0 : 15]
11: return State

Considering the different mask sets used in LEMS, the state-of-the-art mask
sets are categorized into four classes: M1 used in DPA Contest v4.1 which is a
[8,4,4] linear code and its variant M2 proposed by Moradi et al. [17], M3 used
in DPA Contest v4.2 which is not a linear code but more secure than M1, and
M4 proposed by Veshchikov et al. [5] with sixteen variants. Note that mask set
M2 proposed by Moradi et al. is a variant of M1 with changed order (we omit
the mask set M5 referenced in [7] since |M5| = 12 with a lower security level
when compared to mask set M1,M2 and M3). These four mask sets are listed
as follows.



M1 = {0x00, 0x0f, 0x36, 0x39, 0x53, 0x5c, 0x65, 0x6a,

0x95, 0x9a, 0xa3, 0xac, 0xc6, 0xc9, 0xf0, 0xff}
M2 = {0x00, 0x0f, 0x36, 0x39, 0x53, 0x95, 0x5c, 0xc9,

0xff, 0xc6, 0xac, 0x9a, 0x6a, 0xa3, 0x65, 0xf0}
M3 = {0x03, 0x0c, 0x35, 0x3a, 0x50, 0x5f, 0x66, 0x69,

0x96, 0x99, 0xa0, 0xaf, 0xc5, 0xca, 0xf3, 0xfc}
M4 = {0x13, 0x94, 0x25, 0xcb, 0x8e, 0x5f, 0xd9, 0x37,

0x77, 0xc6, 0xa8, 0x38, 0x05, 0xea, 0x70, 0xe8}

(3)

Note that only the first variant M4 in [5] (there are totally 16 variant mask
sets in [5]) is listed since all sixteen variants have similar properties.

From a perspective of evaluating the mask set M , it’s obvious that all four
mask sets satisfy the balance properties characterized by Eq.2. However, Moradi
et al. [17] and Veshchikov et al. [5] both showed the practical attacks against
RSM-masked AES-256 by exploiting vulnerabilities existing in mask set M1.
Other attacks [8, 25] also showed different ways to utilize these vulnerabilities
to attack RSM-masked AES-256. For M3, Liu et al. [3] presented bivariate first-
order attacks by using flaws existing in M3. Although there is no attack against
RSM scheme with M2 and M4 for now, we will show in this paper that all four
mask sets are vulnerable in practical attacks which exploiting flaws in mask
sets. In summary, these attacks evidently show that Eq.2 is far from sufficient to
quantify the balance property of a mask set. To intensively quantify the balance
property of a mask set, next section first defines the balance properties of a mask
set and then evaluates the balance of all four mask sets.

3 Balance of Mask Sets in LEMS

The balance of mask sets in LEMS has an appreciable effect on the security of
masking implementations. To make it clear that which security level the LEMS
can reach without estimating by attacks or experiments, we propose four def-
initions of univariable balance and multivariable balance for low entropy mask
sets.

3.1 Definitions for Balanced Mask Set

The study grades the balance of mask sets from univariable balance up to multi-
variable balance. Univariable balance of mask sets is most important for LEMS
to maintain its security level. In theory, the LEMS cannot protect against first-
order attacks or high order zero-offset attacks if the mask set is not univariable
balanced.

Definition 1 (Univariable Balance of n-bit Mask Sets). Let M be a n-bit
mask set, v ∈

{
0, 1, · · · , 2n−1

}
and v is uniformly distributed, the univariable



balance of mask set M can be defined by:

ublcdn = V ar[E(Ld(v,M)|v)] (4)

if ublcdn = 0, then the n-bit mask set M is d-order univariable balanced.

where v denotes the n-bit intermediate value, d denotes the targeted order of
resistance to zero-offset attacks, we can assume that L(v,M) = HW (v �M),
the symbol “�” denotes the masking operation (like xor). Definition 1 mean-
s all E(Ld(v,M)|v) are equal for a uniformly distributed variable v. Since the
conditions when n = 1 and n = 8 are the commonest in cryptographic imple-
mentations, this paper defines univariable balance on single bit and single byte.

Definition 2 (Univariable Balance on Single Bit). Let M be a single bit
mask set, v ∈ {0, 1} and v is uniformly distributed, if ublcd1 = V ar[E(Ld(v,M)|v)] =
0, then mask set M is d-th order univariable balanced on single bit.

Definition 3 (Univariable Balance on Single Byte). Let M be a 8-bit mask
set, v ∈ {0, 1, · · · , 255} and v is uniformly distributed, if ublcd8 = V ar[E(Ld(v,M)|v)] =
0, then mask set M is d-th order univariable balanced on single byte.

When the mask set is not univariable d-order balanced, we can inevitably
launch a univariable d-order zero-offset attack on LEMS to get the secret key.
However, the adversary can also combine different variables to launch multivari-
able attacks [17,25]. Therefore if LEMS implementations need to reach a higher
security level, univariable balance for the mask set is a necessary condition but
not sufficient [5], multivariable balance must also be considered.

Definition 4 (Multivariable Balance of n-bit Mask Sets). Let M be a
n-bit mask set, v1, v2, · · · , vs,∈

{
0, 1, · · · , 2n−1

}
and v1, v2 · · · vs is uniformly

distributed, the univariable balance of mask set M can be defined by:

mblcs,dn = V ar[E(Ld(v1, v2, · · · , vs,M)|v1v2 · · · vs)] (5)

if mblcs,dn = 0 then the n-bit mask set M is d-order s-variable balanced.

We can assume that L(v1, v2, · · · , vs,M) = HW ((v1 �M) ◦ (v2 �M) · · · ◦
(vs �M)), where “◦” denotes combined operation toward masked intermediate
values, s denotes the number of intermediate variables the adversary can use to
combine for attacks.

Remark 1. As above, define multivariable balance on single bit and single byte.
For the sake of brevity, these definitions have been eliminated in this paper.

In theory, if the mask set is not s-variable balanced, the adversary can launch
no more than s-varible SCA attacks to recover secret key (the d-th order and s-
variable we mentioned in this paper are similar with [7]). However, the adversary
may use less variables to attack (even only one variable) to successfully recover
the key if the masking scheme is not carefully implemented [5, 25].



Table 1: the univariable balance of M1, M2, M3, M4 for LEMS with d=1

Mask Set ublc11 ublc18
mblc2,11

(0,1-th bits)

M1 0 0 0
M2 0 0 0
M3 0 0 0
M4 0 0 0.0157

Theoretically, we measure the balance of each mask sets on single bit, single
byte and 2-variable bit (say for example, we combine 0-th and 1-th bit as a new
2-bit mask set), the results are shown as Table 1.

Clearly, These mask sets are always univariable balanced. But M4, the latest
mask set proposed by Veshchikov et al. [5], is not balanced when combined 0-th
bit and 1-st bit of each mask value, which proves that the original method for
mask sets selecting is problematic. In fact, combining other bits may also be
unbalanced. For the sake of brevity, in this paper we just show one of them in
table 1.

Applying these definitions to some specific implementations of LEMS such
as RSM, the study proposes three fundamental properties to simultaneously
evaluate the balance and entropy of RSM mask sets, which are both crucial to
the security level of RSM implementation.

3.2 Three Fundamental Properties for RSM Mask Set

All definitions of balanced mask set in LEMS could be extended on algorithms for
which the datapath is segmented in words of n-bits. For instance, RSM scheme
is a representative LEMS, hence n = 8. To measure the security level easily,
the study refines the four definitions into three fundamental properties. These
three properties are necessary but not sufficient for secure SCA implementation
of RSM. Specially, RSM [21] requires a mask set M with 16 mask values. So let
|M | = 16, mb

i denotes the b-th bit of i-th mask value in M ,

Property 1 (Univariable Balance on Single Bit) For ∀b ∈ {0, 1, · · · , 7},
M should satisfy that

|M |−1∑
i=0

mb
i =
|M |

2
(6)

Property 2 (Multivariable Balance on Single Bit) For ∀s ∈ {2, 3} and
∀b1, · · · , bs ∈ {0, 1, · · · , 7}, M should satisfy that

|M |−1∑
i=0

(mb1
i ⊕ · · ·m

bs
i ) =

|M |
2

(7)



(a) Property 1 with b = 0 (b) Property 2 with e=2, b1 = 0 and b2 = 1

Fig. 1: Graphical illustration for Property 1 and Property 2

if s ∈ {1, 7} then Property2 has no different with Property 1, and s ∈ {2, 3}
is the same with s ∈ {5, 6}. At last, s = 4 is a special case, any low entropy mask
set can’t meet the Eq.8 when s equals to 4, so we have no need to consider this
condition.

Property 3 (Bivariable Balance on Adjacent Bytes) Let M ′ be an adja-
cent byte combined mask set M ′ =

{
mi ⊕m(i+1)mod 16|i ∈ {0, 1, · · · , 15}

}
, then

M ′ should meet |M ′| = 16, Property 1 and Property 2.

In fact, to make the mask set in RSM reach bivariable balance on single
byte, it is necessary to combine all possible two mask values mi and mj . How-
ever, assume j = (i + 1)mod 16 is adequate in this paper to show the attacks
and demonstrate the proof of unavoidable vulnerabilities of RSM. In order to
make these properties easier to be understood, transform mask set M into a
8× 16 binary matrix, where each column in the matrix represents a binary vec-
tor translated by its corresponding mask value, Property 1 and Property 2
can be expressed as Fig. 1 when b = 0 and b1 = 0, b2 = 1, respectively.

Based on Property 3, the number of elements in new set M ′ need not to
be lower than mask set M , so we define entropy loss by:

entropy loss = H(M)−H(M ′)

= −
|M |−1∑
i=0

P (mi)logP (mi) +

|M ′|−1∑
i=0

P (m′i)logP (m′i) (8)

To maintain the security while combine 2 adjacent masks, it is necessary to
reduce entropy loss to zero, so that the combining intermediate values are under
the same degree of protection. The entropy loss and balance of M1, M2, M3, M4

for RSM are showed in Table 2.
As showed in Table 2, M1, M3 and M4 are bivariable unbalanced. M2 is

balanced on adjacent bytes but the entropy loss is 1 bit, which make the masked
intermediate values not random enough and still correlated to their correspond-
ing leakages. In conclusion, all of these mask sets don’t meet Property 3.

Intuitively, if these three properties are not met, the mask set will be in-
evitably unbalanced and the RSM scheme is insecure accordingly. The next sec-
tion shows attacks based on those unbalanced properties. There might be more



Table 2: the entropy loss and bivariable balance of M1, M2, M3, M4 for RSM
with d=1 and s=2

Mask Set
mblc2,18

(Adjacent Bytes)
|M ′| entropy loss

M1 2.5908× 103 4 2.25
M2 0 8 1
M3 2.5908× 103 4 2.25
M4 1.0280× 103 14 0.25

effective attacks, but these attacks are feasible and can demonstrate the validity
of these three necessary properties.

4 Attacking RSM Scheme by Utilizing the Unbalance of
Mask Set

This section validates the properties by performing our attacks when one or more
of these three properties are not satisfied. In order to take a fair comparison, we
adopt the same RSM implementation framework as used in DPA Contest v4.2.
The smart card implementation of RSM can be found from the DPA Contest
v4 [23], and the study programmed the hex-file on a FunCard with an Atmel
ATmega 163 micro-processor, which is the suggested platform from DPA Contest
v4.

4.1 First-Order Attacks on Single Bit or Byte

The univariable first-order attack is a class of low cost methods which could be
used by adversary to recover the secret key. When an unsuitable mask set which
doesn’t even meet Property 1 is selected in RSM implementation, the mask
set is not first-order univariable balanced, thus it is possible to directly launch
a first-order attack.

The attacks can be launched with Hamming weight model or Bit model here.
When |M | < min(|M |) (min(|M |) is the minimum number of elements in RSM
mask set, [7, 8, 22] prove that if |M |=16, security can be achieved), if the |M |
is too small, the Hamming weight model can be used to attack directly. The
first round implementation of DPA Contest v4.2 is showed as Alg. 1. It is clear
that after MaskSbox, the output is Sbox(plain ⊕ key) ⊕ m(offset(i)+1)mod 16 ,
then assume the intermediate values is Sbox(plain ⊕ key) ⊕ mrandom, which
means all mask values are assumed to be mrandom. Then we have P (mrandom =
m(offset(i)+1)mod 16) = 1

|M | >
1
16 , that is a large enough probability to guess

right masks. Then we are able to recover the secret key.
Even if the number of mask set is suffuent, Bit model [9] can be used when

there is an unbalanced bit in RSM mask set. For example, a mask set M =
{0x01, 0x11, · · · , 0xf1}, the last bit of each element in M is always 1, so the mask



Table 3: Binary representation of masks M4 (proposed by Veshchikov et al. [5])

Masks
Bit Index

m1
i ⊕m0

i7 6 5 4 3 2 1 0

0x13 0 0 0 1 0 0 1 1 0
0x94 1 0 0 1 0 1 0 0 0
0x25 0 0 1 0 0 1 0 1 1
0xcb 1 1 0 0 1 0 1 1 0
0x8e 1 0 0 0 1 1 1 0 1
0x5f 0 1 0 1 1 1 1 1 0
0xd9 1 1 0 1 1 0 0 1 1
0x37 0 0 1 1 0 1 1 1 0
0x77 0 1 1 1 0 1 1 1 0
0xc6 1 1 0 0 0 1 1 0 1
0xa8 1 0 1 0 1 0 0 0 0
0x38 0 0 1 1 1 0 0 0 0
0x05 0 0 0 0 0 1 0 1 1
0xea 1 1 1 0 1 0 1 0 1
0x70 0 1 1 1 0 0 0 0 0
0xe8 1 1 1 0 1 0 0 0 0

P(bit=0) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.625

set does not protect the last bit of intermediate values, Bit model can be directly
used to recover key. These attacks are well known and widely validated [9, 12],
and we need not to repeat these attacks.

4.2 First-Order Attacks on Multi-Bit

Since Property 1 is met but Property 2 is not, the mask set is not multi-
variable balanced on single bit, consequently we can launch a bivariable attack
to recover the key. However, the unbalanced bits are restricted to the same
univariable value, so it is possible to launch a univariable attacks to achieve the
same results. As showed in Table 1 and Table 3, the mask set M4 is not satisfied
Property 2, so the attacked target of RSM implementation uses mask set M4

(proposed by Veshchikov et al.). In fact, there are totally 16 mask sets proposed
by Veshchikov et al., none of them meet Property 2. To show the feasibility of
attacks, the study randomly selects any of them. The value of each bit is equally
likely to be 0 or 1, see Table 3.

On Table 3, we can see that although it is balanced for each bit, it is un-
balanced while combining some different bits. For example, we combine 0-th
bit and 1-th bit, 0 occurs 10 times while 1 occurs 6 times. Then calculate
P (m0

i ⊕m1
i = 0) = 10

16 = 0.625. This unbalance can be utilized as two ways:
1) Find the leakage corresponding to the selected bits, then launch a bivariable

attack [26,27];
2) Combine the unbalanced bits as a new intermediate value, for example, we

combine 0-th bit, 1-th bit as a 2-bit intermediate v, so v = m0
i m

1
i . Calculate
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Fig. 2: The leakages for each bit of output after MaskSbox

the Hamming weight of v, HW (v) and then launch an univariable first-order
attack.

The traces are obtained from a SASEBO-W platform, the RSM framework
is the same with DPA Contest v4.2 and mask set is replaced with the new
one which proposed by Veshchikov et al. The sampling rate is set to 250MHz,
and 50,000 points around the first round are taken to attack. First, we use the
Pearson correlation coefficient to detect the leakage for each bit of output after
MaskSbox with 5,000 traces gathered, and Fig. 2 shows the results. In fact, these
leakages can directly affect our attacks.

Leakage for each bit varies in amplitude and position, and the points of
interest may overlap for different bits, which may affect our attacks. Intuitively,
if the leakages of unbalanced bits are not obvious, the multi-variable attacks
on single bit will not be easy to success. Combine different unbalanced bits to
attack and the success rate and guessing entropy [10] are shown in Fig. 3, Fig.
4.

Fig. 3, Fig. 4 demonstrate that these two attacks are feasible and effective
when Property 2 is not met. Choosing different combinations can be dropped
to various effects, some multi-bit attacks can recover secret key within 4,000
traces.

4.3 bivariable Attack Based on Unbalance of Adjacent Masks

Because mask sets proposed by DPA Contest v4 (v4.1 and v4.2) only meet
Property 1 and Property 2 but not meet Property 3, this type of attacks
is the most discussed [5, 17, 25]. When Property 3 is not satisfied, we can
combine different mask values to construct a bias then launch a bivariable attack.



(a) The results of Success Rate (b) The results of Guessing Entropy

Fig. 3: Combine two unbalanced bits then launch bivariable attack RSM with
M4 (proposed by Veshchikov et al.)

(a) The results of Success Rate (b) The results of Guessing Entropy

Fig. 4: Combine multiple unbalanced bits then launch univariable first-order at-
tack on RSM with M4 (proposed by Veshchikov et al.)

Specifically, there are two intermediate values with adjacent masks protected in
first round implementation of DPA Contest v4.2, which are v1 = plain⊕ key ⊕
moffset(i) and v2 = Sbox(plain ⊕ key) ⊕ moffset(i)+1mod 16. Then we assume

that M ′ =
{
mi ⊕m(i+1)mod 16|i ∈ {0, · · · 15}

}
. If M ′ is not univariable balanced,

RSM scheme is also vulnerable.

The attacks on the FPGA implementation with mask set M1 (proposed by
DPA Contest v4.1) have already been discussed [25], these attacks also utilize



Table 4: Binary representation of M3 (proposed by DPA Contest v4.2 et al. [5])

Masks mi ⊕m(i+1)mod 16
Bit Index

7 6 5 4 3 2 1 0

0x03 0x0f 0 0 0 0 1 1 1 1
0x0c 0x39 0 0 1 1 1 0 0 1
0x35 0x0f 0 0 0 0 1 1 1 1
0x3a 0x6a 0 1 1 0 1 0 1 0
0x50 0x0f 0 0 0 0 1 1 1 1
0x5f 0x39 0 0 1 1 1 0 0 1
0x66 0x0f 0 0 0 0 1 1 1 1
0x69 0xff 1 1 1 1 1 1 1 1
0x96 0x0f 0 0 0 0 1 1 1 1
0x99 0x39 0 0 1 1 1 0 0 1
0xa0 0x0f 0 0 0 0 1 1 1 1
0xaf 0x6a 0 1 1 0 1 0 1 0
0xc5 0x0f 0 0 0 0 1 1 1 1
0xca 0x39 0 0 1 1 1 0 0 1
0xf3 0x0f 0 0 0 0 1 1 1 1
0xfc 0xff 1 1 1 1 1 1 1 1

P(mb
i ⊕mb

(i+1)mod 16=1) 0.5 0.125 0.5 0.375 1 0.625 0.75 0.875

the unbalance of combined mask values. In this paper, the target of RSM imple-
mentations we attack uses mask set M3 (proposed by DPA Contest v4.2 [23])
and M2 (proposed by Moradi et al. [17]). Mask set M2 is {0x03, 0x0c, 0x35,
0x3a, 0x50, 0x5f, 0x66, 0x69, 0x96, 0x99, 0xa0, 0xaf, 0xc5, 0xca, 0xf3, 0xfc},
each bit of elements in M ′ is equally likely to be 0 or 1, as shown in Table 4.
There are also two ways to attack:

1) When we XOR adjacent masks, we have the probability of 50% to get 0x0f,
which could be formulated as ∀i ∈ {0, 1, · · · , 15} , P (mi ⊕mi+1 = 0x0f) =
0.5. Then we can combine two intermediate mentioned above, and gain new
intermediate v1 ⊕ v2 = plain ⊕ key ⊕ Sbox(plain ⊕ key) ⊕ moffset(i) ⊕
m(offset(i)+1)mod 16. If we guess the unprotected intermediate plain⊕key⊕
Sbox(plain⊕ key) is masked by value 0x0f, we have the probability of 50%
to guess right. The probability is high enough to launch a bivariable attack
to recover the secret key.

2) When we XOR adjacent masks, almost all bits are unbalanced. The most
unbalanced is 3-th bit, because P (m3

i ⊕ m3
(i+1)mod 16 = 1) = 1. It means

3-th bit of the intermediate is totally unprotected, which is threatened by
bivariable attacks with Bit model.

We attack two groups of traces respectively: one is published by DPA Contest
v4.2, the other is collected from our laboratory. The published traces get higher
SNR, which makes the leakage more obvious. The leakage of traces collected from
our laboratory get more noise and is harder to conduct our attacks successfully.
The sampling rate for collecting is set to 500MHz, and 150,000 points around
the first round are taken to attack. Fig. 5 shows the result on 500 published
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(a) Leakage of Hamming weight and 3-th bit (b) Comparing two attacks

Fig. 5: Attack public traces when M3 (proposed by DPA Contest v4.2) is adopted

(a) Leakage of Hamming weight and 3-th bit (b) Comparing two attacks

Fig. 6: Attack traces collected from our laboratory when M3 (proposed by DPA
Contest v4.2) is adopted

traces and Fig. 6 shows the result on 5,000 collected traces from our laboratory.

It is obviously that SNR can strongly affect the correlation between single-
bit leakage and sensitive intermediate values, when SNR is low, the leakage is



Table 5: Binary representation of M2 (proposed by Moradi et al. [17])

Masks mi ⊕m(i+1)mod 16
Bit Index

7 6 5 4 3 2 1 0

0x00 0x0f 0 0 0 0 1 1 1 1
0x0f 0x39 0 0 1 1 1 0 0 1
0x36 0x0f 0 0 0 0 1 1 1 1
0x39 0x6a 0 1 1 0 1 0 1 0
0x53 0xc6 1 1 0 0 0 1 1 0
0x95 0xc9 1 1 0 0 1 0 0 1
0x5c 0x95 1 0 0 1 0 1 1 0
0xc9 0x36 0 0 1 1 0 1 1 0
0xff 0x39 0 0 1 1 1 0 0 1
0xc6 0x6a 0 1 1 0 1 0 1 0
0xac 0x36 0 0 1 1 0 1 1 0
0x9a 0xf0 1 1 1 1 0 0 0 0
0xa6 0xc9 1 1 0 0 1 0 0 1
0xa3 0xc6 1 1 0 0 1 1 0 0
0x65 0x95 1 0 0 1 0 1 0 1
0xf0 0xf0 1 1 1 1 0 0 0 0

P(mb
i ⊕mb

(i+1)mod 16=1) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

obvious and the success rate of attacking 3-th bit is high. However, we can always
attack successfully within 1,000 traces.

Moradi et al. also found this unbalance feature, and modified the mask set.
They change the order of the values in mask set in DPA Contest v4.1, and make
M ’ more balanced. The values of each bit in M ’ are showed in Table 5.

The modified mask set still doesn’t meet Property 3. As for attacks, We
can get |M ′| = 16

2 = 8, it means the elements of M ′ are too few to resist
against bivariable attacks. we have the probability of 1

8 = 12.5% to get that
mi ⊕m(i+1)mod 16 could be compensated with each value in M ′.

The sampling rate is also set to 500MHz, and 150,000 points around the first
round are taken to attack. Then we calculate the new set M ′, there are only 8
unique elements in it, M ′={0x0f, 0x36, 0x39, 0x6a, 0x95, 0xc6, 0xc9, 0xf0}. All
of these elements occur with a probability of 12.5%, so all of them can be used
to attack. The result is shown in Fig. 7.

In fact, the first four values equal the complement of last four values, so their
attack results must be the same, which is consistent with the results shown in
Fig. 7. In sum, all attacks based on unbalance of mask set are feasible. Similarly,
these attacks are also feasible on FPGA implementation, besides, it is possible
to mount univariable first order attack if the 2 combined intermediate variables
are stored in the same registers successively.



(a) XOR first four values {0x0f, 0x36, 0x39, 0x6a} (b) XOR last four values {0x95, 0xc6, 0xc9, 0xf0}

Fig. 7: Attacks when M2 (proposed by Moradi et al. [17]) is adopted

5 No Qualified Mask Set Exist for RSM

In [5,17,23], all authors try to find a qualified mask set to make RSM implemen-
tation reach a higher security level. Clearly, we can’t use an exhaustive method
to find it, since there are A16

256 ≈ 1038 mask sets, so we need to design a method
to find a qualified mask set. In [5], they randomly generate a large number of
mask sets then filter them based on inaccurate Eq.1, so all mask sets they found
don’t meet Property 2 and the RSM implementation with these mask sets can
be attacked by univariable first-order attacks as shown in Section 4.2.

In [23], the mask set is generated in a subtle way. Let M = {m0,m1, · · · ,m15},
and we can assume that H denotes high 4-bit of mi, and L denotes low 4-bit,
then the mask set and the sequence of the mask values can be expressed as
follows:

H and L denote the complement of H and L respectively. If high 4-bit
set {H1, H2, H3, H4} and low 4-bit set {L1, L2, L3, L4} are [4,2,2] linear codes,
the mask set M is a [8,4,4] linear codes accordingly. However, the sequence
of mask values is the reason why P (mi ⊕ m(i+1)mod 16 = 0x0f) = 0.5, and
∀i ∈ {0, 1, · · · , 15} ,m3

i ⊕m3
(i+1)mod 16 = 1, which makes the attacks mentioned

in Section 4.3 feasible. The modified sequence proposed by Moradi et al. [17]



can make each bit of mask set balanced, but reordered mask set still can’t meet
Property 3. So can we reorder this mask set again to make it totally balanced
with no entropy loss?

In fact, it is impossible by reordering the mask values to make these two
mask sets in DPA Contest v4.1 and v4.2 meet all properties. The mask set-
s in DPA Contest v4 are [8, 4, 4] linear codes (v4.1) or [8,4,4] linear codes
XOR with 0x03 (v4.2). So when XOR any two values from same mask set,
there are only 16 outcomes, one of them is 0x00 which can’t occur in set
M ′ =

{
mi ⊕m(i+1)mod 16|i ∈ {0, 1, · · · , 15}

}
. It means we always have |M ′| < 16

no matter how we reorder the mask set M, and there will still be at least
one mask value mrep occurred more than once. If we calculate the probabili-
ty P (mi ⊕ m(i+1)mod 16 = mrep) ≥ 2

16 = 0.125, this probability is not large
enough to reduce the correlation between intermediate values and correspond-
ing leakages to protect the secret key as shown in Section 4.3.

Furthermore, is there any other mask choosing method existing to find a
mask set which can meet all three properties? The answer is also no. To prove
it, we need to prove Lemma 1 first.

Lemma 1. Let M be a mask set which meets Property 1 and Property 2,
G is a 8 × 16 binary matrix representation of M, each column in G represents
a binary vector translated by its corresponding mask value. Then M still meets
Property 1 and Property 2 when reorder the column or row values of G, or
flip any row values of G.

Proof. Change the columns or rows order of G, mask set M still meets Property
1 and Property 2. Because Property 1 only need the sum of each rows in G
to equal to 16

2 = 8, and Property 2 need the sum of XOR any two or three
rows in G to equal to 16

2 = 8, reordering the columns or rows has no effect for
M to satisfy the first two properties.

Let X, Y and Z be 16-bit values, and X ⊕ Y = Z. Then we have X ⊕ Y =
X⊕Y = Z. If there are 8 bits in Z equal to 1, there are also 8 bits in Z equal to
1. So M still meets Property 1 and Property 2 when we flip any row values
of G. �

Based on Property 1 and Property 2, we can reduce the number of can-
didate mask sets, but all remained candidate mask sets can’t meet Property 3,
so we have Theorem 1.

Theorem 1. There is no 8-bit mask set in RSM which can satisfy all three
properties.

Proof. Assume a mask set M satisfies with all three properties, M = {m0, · · · ,m15}.
And let M ′ =

{
mi ⊕m(i+1)mod 16|i ∈ {0, 1, · · · , 15}

}
.

We can transform M into a binary matrix G, the size of G is 8 × 16, each
row can be expressed as four 4-bit values as shown in Eq.9. Based on Property
1 and Lemma 1, there are eight 0 bits and eight 1 bits among each row and we
can change the rows or columns order optionally. Change the column order to




� � � �
� � � �
· · · · · · · · · · · ·
� � � �

→


f f 0 0
� � � �
· · · · · · · · · · · ·
� � � �

→


f f 0 0
f 0 f 0
· · · · · · · · · · · ·
� � � �

 (9)



f f 0 0
f 0 f 0
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �


→



f f 0 0
f 0 f 0
3 3 3 3
� � � �
� � � �
� � � �
� � � �
� � � �


→



f f 0 0
f 0 f 0
3 3 3 3
5 5 5 5
� � � �
� � � �
� � � �
� � � �


→



f f 0 0
f 0 f 0
3 3 3 3
5 5 5 5
3 c c 3
5 a a 5
6 9 6 9
6 6 9 9


(10)

make the first row m0
i become [f, f, 0, 0], which means the first two 4-bit values

are f and the last two 4-bit values are 0. Then consider the first two rows m0
i m

1
i ,

they represent the first two bits of mask set, and 00, 01, 10, 11 should each
occur four times. So we can change the columns to make the second row become
[f, 0, f, 0]. This transformation can be expressed as Eq.9, each “�” denotes a
4-bit value, and there are totally 8 rows in each matrix.

While the first two rows are finalized, we can filter out most unqualified
mask values. Based on principle 2, the values when XOR any two or three
rows should also be balanced. So each “�” in remaining six rows have to be
chosen in {< 3, c >,< 5, a >,< 6, 9 >}, the two values in each pair is mutual-
ly complemented. Similarly, consider the first three rows m0

i m
1
i m

2
i in matrix

G, 000, 001, 010, 011, 100, 101, 110, 111 should each occur twice, then we can
change the column order to make the third row become [3, 3, 3, 3]. The Ham-
ming distance between third row and other five rows has only three conditions,
which are HD([3, 3, 3, 3], [�,�,�,�]) = [4, 4, 0, 0] or [4, 2, 2, 0] or [2, 2, 2, 2] with-
out considering the order of 4-bit values.

By the method of exclusion, it can be easily proved that the case HD([3, 3, 3, 3],
[�,�,�,�]) = [4, 2, 2, 0] is impossible without changing the first two rows, and
HD([3, 3, 3, 3], [�,�,�,�]) = [4, 4, 0, 0] occurs only when [�,�,�,�]=[3, c, c, 3]
(or [c, 3, 3, c]). There must be at least one row to meet HD([3, 3, 3, 3], [�,�,�,�])
= [2, 2, 2, 2], rank this row on 4-th, then change the column order to make this
row become [5, 5, 5, 5] without changing any finalized rows. Analyze the Ham-
ming distance of the last four rows, each 4-bit value in the same row must belong
to the same pair of {< 3, c >,< 5, a >,< 6, 9 >}. So the last four rows have to
be [3, c, c, 3] (or [c, 3, 3, c]),[5, a, a, 5] (or [a, 5, 5, a]),[6, 6, 9, 9] (or [9, 9, 6, 6]) and
[6, 9, 6, 9] (or [9, 6, 9, 6]). This transformation can be expressed as Eq.10.

After execution Eq.10, we use G′ to denote the changed binary matrix. By
flipping some rows, changing rows order or columns order, we can transform
G′ back to G, then transform G into mask set M which should meet all three
properties.



Let Mmax = {mi ⊕mj |i, j ∈ {0, 1, · · · , 15} , i 6= j}, by eliminating duplicates
we get |Mmax| < 16, and we always have |M ′| ≤ |Mmax| < 16, which proves
there must be a mask mrep fit in with P (mi⊕m(i+1)mod 16 = mrep) = 2

16 = 0.125.
So the mask set M can’t satisfy Property 3, M is nonexistent. �

In summary, we can’t find a balanced mask set which meet all properties for
RSM, so it is necessary to modify the framework of RSM scheme.

6 Conclusion

LEMS is essentially a masking countermeasure with a low entropy mask set, and
the balance of mask set directly determines its effectiveness against SCA. In this
paper, we find the flaws in original method which is used to measure the depen-
dency between intermediate values and corresponding leakages [22]. These flaws
have led to an incorrect inference for balanced mask set selection in LEMS. We
fix the flaws by formally defining balance (both univariable and multivariable) of
mask sets in LEMS. To prove the reasonability and validity of these definitions,
we apply these definitions on RSM scheme which is a specific implementations of
LEMS, then propose three fundamental properties (necessary but not sufficient)
for the balanced mask set in RSM. From an adversary perspective, we analyze
and evaluate three state-of-the-art RSM variants with different mask sets. The
experimental results show that all RSM variants are insecure because of their
unbalanced mask sets, and the one proposed by Veshchikov et al. [5] even can’t
thwart univariable first-order attacks. Finally, we prove that the mask set with
all three properties satisfied does not exist, which means it is impossible to make
RSM scheme resist bivariable attacks by changing the mask set. Furthermore,
we believe that all state-of-the-art LEMS may have the same vulnerabilities if
their mask set are not carefully selected.

References

1. Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger, Sylvain Guilley, Zakaria Najm.
Analysis and Improvements of the DPA Contest v4 Implementation. SPACE 2014:
201-218

2. Maxime Nassar, Sylvain Guilley, Jean-Luc Danger. Formal Analysis of the Entropy
/ Security Trade-off in First-Order Masking Countermeasures against Side-Channel
Attacks. INDOCRYPT 2011: 22-39

3. Zeyi Liu, Neng Gao, Chenyang Tu, Yuan Ma, Zongbin Liu. Detecting Side Channel
Vulnerabilities in Improved Rotating S-Box Masking Scheme - Presenting Four Non-
profiled Attacks. SAC 2016: 41-57

4. Willi Geiselmann, Rainer Steinwandt. Power attacks on a side-channel resistant
elliptic curve implementation. Inf. Process. Lett. 91(1): 29-32 (2004)

5. Nikita Veshchikov, Sylvain Guilley. Implementation flaws in the masking scheme of
DPA Contest v4. IET Information Security 11(6): 356-362 (2017)

6. Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Damien Marion, Olivier Rioul.
Optimal side-channel attacks for multivariate leakages and multiple models. J. Cryp-
tographic Engineering 7(4): 331-341 (2017)



7. Vincent Grosso, Francois-Xavier Standaert, Emmanuel Prouff. Low Entropy Mask-
ing Schemes, Revisited. CARDIS 2013: 33-43

8. Xin Ye, Thomas Eisenbarth. On the Vulnerability of Low Entropy Masking Schemes.
CARDIS 2013: 44-60

9. Amir Moradi, Francois-Xavier Standaert. Moments-Correlating DPA. TIS@CCS
2016: 5-15

10. Fran?ois-Xavier Standaert, Tal Malkin, Moti Yung. A Unified Framework for the
Analysis of Side-Channel Key Recovery Attacks. EUROCRYPT 2009: 443-461

11. Arnab Das, Prakash Narayan. Capacities of time-varying multiple-access channels
with side information. IEEE Trans. Information Theory 48(1): 4-25 (2002)

12. Thorben Moos, Amir Moradi. On the Easiness of Turning Higher-Order Leakages
into First-Order. COSADE 2017: 153-170

13. Tobias Schneider, Amir Moradi, Tim Gneysu. Arithmetic Addition over Boolean
Masking - Towards First- and Second-Order Resistance in Hardware. ACNS 2015:
559-578

14. Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. CRYPTO 1996: 104-113

15. Paul C. Kocher, Joshua Jaffe, Benjamin Jun. Differential Power Analysis. CRYP-
TO 1999: 388-397

16. Peter H. Schneider, Shankar Krishnamoorthy. Effects of correlations on accuracy
of power analysis - an experimental study. ISLPED 1996: 113-116

17. Amir Moradi, Sylvain Guilley, Annelie Heuser. Detecting Hidden Leakages. ACNS
2014: 324-342

18. Andreas Gornik, Ivan Stoychev, Jrgen Oehm. A Novel Circuit Design Methodology
to Reduce Side Channel Leakage. SPACE 2012: 1-15

19. Vincent Carlier, Herv Chabanne, Emmanuelle Dottax, Herv Pelletier. Electromag-
netic Side Channels of an FPGA Implementation of AES. IACR Cryptology ePrint
Archive 2004: 145 (2004)

20. Benedikt Gierlichs, Lejla Batina, Pim Tuyls. Mutual Information Analysis - A
Universal Differential Side-Channel Attack. IACR Cryptology ePrint Archive 2007:
198

21. Maxime Nassar, Youssef Souissi, Sylvain Guilley, Jean-Luc Danger. RSM: A small
and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset SCAs.
DATE 2012: 1173-1178

22. Shivam Bhasin, Claude Carlet, Sylvain Guilley. Theory of masking with codeword-
s in hardware: low-weight dth-order correlation-immune Boolean functions. IACR
Cryptology ePrint Archive 2013: 303

23. DPA Contest v4.2. Documentation. Available at: http://www.dpacontest.org/

v4/42_doc.php

24. Jason Waddle, David A. Wagner. Towards Efficient Second-Order Power Analysis.
CHES 2004: 1-15

25. Sebastian Kutzner, Axel Poschmann. On the Security of RSM - Presenting 5 First-
and Second-Order Attacks. COSADE 2014: 299-312

26. Katsuyuki Okeya, Kouichi Sakurai. A Second-Order DPA Attack Breaks a
Window-Method Based Countermeasure against Side Channel Attacks. ISC 2002:
389-401

27. Eric Peeters, Francois-Xavier Standaert, Nicolas Donckers, Jean-Jacques
Quisquater. Improved Higher-Order Side-Channel Attacks with FPGA Experi-
ments. CHES 2005: 309-323

28. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, Pankaj Rohatgi. Towards Sound
Approaches to Counteract Power-Analysis Attacks. CRYPTO 1999: 398-412



29. Jean-Sbastien Coron, Louis Goubin. On Boolean and Arithmetic Masking against
Differential Power Analysis. CHES 2000: 231-237

30. Stefan Mangard, Elisabeth Oswald, Thomas Popp. Power analysis attacks - reveal-
ing the secrets of smart cards. Springer 2007, ISBN 978-0-387-30857-9, pp. I-XXIII,
1-337

31. Emmanuel Prouff, Christophe Giraud, Sebastien Aumonier. Provably Secure S-Box
Implementation Based on Fourier Transform. CHES 2006: 216-230

32. Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike Hamburg: Meltdown.
meltdownattack.com (2018)

33. Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, Yuval Yarom: Spectre
Attacks: Exploiting Speculative Execution. meltdownattack.com (2018)


