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Abstract

Secret sharing is a fundamental cryptographic primitive. One of the main goals of secret
sharing is to share a long secret using small shares. In this paper we consider a family of
statistical secret sharing schemes indexed by N , the number of players. The family is associated
with a pair of relative thresholds τ and κ, that for a given N , specify a secret sharing scheme
with privacy and reconstruction thresholds, Nτ and Nκ, respectively. These are non-perfect
schemes with gap N(κ− τ) and statistical schemes with errors ε(N) and δ(N) for privacy and
reconstruction, respectively. We give two constructions of secret sharing families as defined
above, with security against (i) an adaptive, and (ii) a non-adaptive adversary, respectively.
Both constructions are modular and use two components, an invertible extractor and a stochastic
code, and surprisingly in both cases, for any κ > τ , give explicit families for sharing a secret
that is a constant fraction (in bits) of N , using binary shares. We show that the construction for
non-adaptive adversary is optimal in the sense that it asymptotically achieves the upper bound
N(κ−τ) on the secret length. We relate our results to known works and discuss open questions.

1 Introduction

Secret sharing was introduced independently by Blakely [3] and Shamir [33], and is a fundamental
cryptographic primitive with numerous important applications including Multiparty Computation
(MPC) and Threshold Cryptography [40]. In a threshold secret sharing scheme a dealer shares a
secret s among a set of N players such that: (i) a set of up to t players learn no information about the
secret, and (ii) a set of t+1 players can (efficiently) recover the secret. The requirements for privacy
is that no information be leaked to unauthorised sets and, secret recovery for authorised set is with
probability 1. In statistical secret sharing schemes these requirements are relaxed: correctness
holds with high probability and for any two secrets, the statistical distance of the shares of an
unauthorised set, is small. One of the key questions in secret sharing is the required share length
for a given secret length. Threshold secret sharing schemes require that the share length (in bits) is
at least equal to the secret length. Statistical threshold secret sharing schemes can only marginally
relax this bound. Blakley and Meadows [17] introduced ramp secret sharing schemes with the goal
of improving share efficiency by relaxing threshold property. Ramp schemes are non-perfect secret
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sharing schemes and allow some unauthorised sets that cannot recover the secret, learn partial
information about it. The access structure of a ramp scheme is described by two thresholds t and
k: a set of at most t players (called forbidden sets) learn nothing, a set of k players can reconstruct
the secret and more than t but less than k players learn partial information. It was shown that
the ramp schemes constructed in [17] has the share length equal to a fraction of the secret length,
that is 1

k−t of the secret length. That was later proved to be the shortest possible share length for
the specified thresholds, and so optimal [36]. Families of linear ramp schemes satisfy an additional
homomorphic property and have found wide applications in MPC [10, 9, 6, 7, 5, 20] and distributing
cryptographic functions [16, 28].

Our contributions:

Our goal is to construct Secret Sharing Schemes (SSS) with ramp access structure that is defined
by a privacy threshold and a reconstruction threshold, and with the shortest share length. We thus
consider binary shares. We use the relaxed notion of ε statistical privacy for forbidden sets, and δ
correctness for authorised sets, and define a family of SSS indexed by N , the number of players,
as follows. For two (constant) relative thresholds τ and κ, where τ, κ ∈ [0, 1] and κ > τ , a binary
(ε(N), δ(N))-SSS for N players, is a ramp SSS where the leakage measured in statistical distance
of secret to a set of corrupted players of size at most t(N) = Nτ is bounded by ε(N), and a set
of k(N) = Nκ players can find the secret, with probability at least 1 − δ(N). It is assumed that
ε(N), δ(N) are negligible in N . When clear from context, we omit N and write ε, δ, t and k. We
consider two types of adversaries: non-adaptive adversaries who choose the set of corrupted players
in one step, and adaptive adversaries who corrupt the players (up to t) adaptively, at each step
taking into account all their current information (see Definition 5). It is easy to see that perfect
privacy implies independence of the shares of a forbidden set from the secret, and so equivalence of
adaptive and non-adaptive adversary. This argument however does not hold for statistical privacy
and as seen in our constructions, our non-adaptive secure construction becomes insecure against
adaptive adversaries (see Remark 2).

We give two computationally efficient constructions that, in the case of non-adaptive adversary,
asymptotically achieves the best achievable secret length. In adaptive case, although the upper
bound from non-adaptive case applies, achieving the bound remains an open question. The con-
structions are both modular with two building blocks: Stochastic Affine-Erasure Correcting Code
(SA-ECC) and randomness extractors (see Section 2 for basic definitions).

Adaptive adversary:

An affine extractor AExt is called invertible if there is an efficient algorithm AExt−1 that samples
a random pre-image of any given extractor output (see Definition 7). An affine extractor AExt :
{0, 1}n → {0, 1}` is (n− t, ε2)-almost perfect if the probability that each output occurs, is bounded
within

(
2−`(1− ε

2), 2−`(1 + ε
2)
)

when its source has at least n − t bits of entropy (see Definition
8). There are affine extractors (see Lemma 4) that can be transformed into an invertible, almost
perfect affine extractor that extracts a constant fraction of uniform bits given a constant fraction
of source entropy (see comment on this in Appendix B).

A stochastic code has a randomised encoder and a deterministic decoder. It is called a stochastic
affine code if for any value of the encoder randomness, the encoder is an affine function. We
construct a Stochastic Affine-Erasure Correcting Code (SA-ECC) by adapting a construction in [19],
which uses an erasure correcting code and a list of pseudo-random objects (generators, permutations
and samplers). In particular, we show there is an explicit SA-ECC that corrects p fraction of
(oblivious) adversarial erasures and achieves the rate 1− p (see Theorem 5).
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Theorem 3. (informal) Let AExt : {0, 1}n → {0, 1}` be an invertible (n − t, ε2)-almost perfect
affine extractor. Let (SA-ECCenc, SA-ECCdec) be a stochastic affine-erasure correcting code that
tolerates N−k erasures and decodes with success probability at least 1−δ. Then the (Share,Recst)
defined as follows is an adaptive (ε, δ)-SSS with threshold pair (t, k).{

Share(s) = SA-ECCenc(AExt−1(s));
Recst(ṽ) = AExt(SA-ECCdec(ṽ)).

The (k, δ)-reconstruction property follows directly from the erasure correction guarantee of the
SA-ECC. The adaptive (t, ε)-privacy property relies on the security of the AExt: uniform output
of AExt means perfect privacy, which is explained as follows. To quickly see the intuition of the
construction, one can tactically assume that the secret S is uniformly distributed on {0, 1}` (our
formal proof does not use uniform secret assumption). According to the definition of an inverter,
AExt−1(S) is uniformly distributed on {0, 1}n. We do not need the randomness of the SA-ECC for
providing (t, ε)-privacy. We consider any value of the encoding randomness of SA-ECC and only
use the fact that its encoder is an affine function. After revealing the answers to up to t query
bits, the conditional distribution of the AExt−1(S) on any value of the query answers has at least
n − t bits entropy. The affine property of SA-ECC here plays a crucial role for guaranteeing an
affine structure in this conditional distribution. This is because each codeword bit of the SA-ECC
gives a linear equation about its message AExt−1(S) (as n unknown bits). Knowing t codeword bits
amount to imposing t linear equations on the n unknowns and resulting in an affine distribution.
Now if the output of AExt with respect to this conditional distribution is perfectly uniform, the
distribution of the answer to up to t bits query is independent of the secret (since before and after
the query, the secret has the same uniform distribution). On the other hand, when the output of
AExt is not perfectly uniform but with a non-zero error, one has to carefully bound this error. This
is handled by requiring the almost perfect property from AExt.

With the aforementioned instantiations, the SA-ECC is optimal: n
N = κ − o(1) (Theorem 5).

The entropy requirement of AExt is n − t = N(κ − τ) + o(N), which is a constant fraction of N
(also n), for any κ > τ . With a constant fraction of entropy, ` = Ω(n) according to Lemma 4. The
construction in Theorem 3 shows the following.

Corollary 6. (informal) There is an explicit family of adaptive (ε, δ)-SSS with relative
threshold pair (τ, κ) that shares Ω(N) bits secret among N users for any (τ, κ) pair,
0 ≤ τ < κ ≤ 1.

Non-adaptive adversary:

A strong seeded extractor Ext : {0, 1}d × {0, 1}n → {0, 1}` for an n-bit source and using d
bits of randomness, is a family of functions Ext(z, ·) : {0, 1}n → {0, 1}` each labeled by a seed
z ∈ {0, 1}d. Let εz denote the statistical distance from uniform distribution U` of the output of
Ext(z, ·) (with respect to a source). By the definition of a seeded extractor, we should have that
(with respect to a source) Ezεz ≤ ε. A linear strong seeded extractor means that each function
Ext(z, ·) is linear. If the source is an affine source X with flat distribution on Supp(X) ⊂ {0, 1}n,
the output of Ext(z, ·) is perfectly uniform if and only if the linear function Ext(z, ·) restricted
to Supp(X) is surjective, namely, Ext(z, Supp(X)) = {0, 1}`. More importantly, once the equality
does not hold, Ext(z,Supp(X)) is at most an ` − 1 dimensional subspace of {0, 1}`. We then have
SD(Ext(z,X);U`) ≥ 1

2 . This gives that εz = 0 for at least 1 − 2ε fraction of the seeds. Another
benefit of linearity is that linear functions are efficiently invertible. So a natural inverter for a
linear seeded extractor is to sample a uniform seed Z and invert the linear function labeled by Z:

(Z||Ext−1(Z, ·)), where Z
$← {0, 1}d. This transformation incurs an overhead of d bits. But if d is
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negligible in N , it is considered for free. There are explicit linear strong seeded extractors with a
negligible seed length that extract all the randomness (see Lemma 8).

Our construction for non-adaptive adversary uses the same optimal SA-ECC as in previous
construction but replaces the affine extractor with a linear strong seeded extractor.

Theorem 7. (informal) Let Ext : {0, 1}d × {0, 1}n → {0, 1}` be a linear strong seeded (n− t, ε2)-
extractor. Let (SA-ECCenc, SA-ECCdec) be a stochastic affine-erasure correcting code that tolerates
N−k erasures and decodes with success probability at least 1−δ. Then the following coding scheme
(Share,Recst) is a non-adaptive (ε, δ)-SSS with threshold pair (t, k).{

Share(s) = SA-ECCenc(Z||Ext−1(Z, s)),where Z
$← {0, 1}d;

Recst(ṽ) = Ext(z̄, x̄),where (z̄||x̄) = SA-ECCdec(ṽ).

Again, the (k, δ)-reconstruction property follows directly from the erasure correction guarantee
of the SA-ECC. Similar to the analysis of previous construction, the affine property of SA-ECC
helps in guaranteeing an affine distribution. Now using the above discussion about strong seeded
extractors, we have the output of Ext(z, ·) is perfectly uniform for 1− ε fraction of the seeds, which
directly implies the non-adaptive (t, ε)-privacy. Here we do not need the almost perfect property
as required for the previous construction. On the other hand, we crucially rely on the fact that
the reading of the adversary is not adaptive. An adaptive adversary can first choose the query bits
to learn about the extractor seed Z, and then once the seed is learnt (to some extent) chooses the
remaining query bits. In this case, the source (the conditional distribution induced by the choice
of reading positions) is not independent of the seed and we can not use the definition of the strong
seeded extractor.

With the aforementioned specific instantiation, the SA-ECC is optimal: n+d
N = κ−o(1) (Theorem

5). The entropy requirement of Ext is n− t = n−Nτ = N(κ− τ)− d− o(N). The extractor Ext
extracts all the randomness ` = n− t− o(n) and the seed length is negligible d = o(n) (see Lemma
8). We then have ` = N(κ− τ)− o(N). The construction in Theorem 7 shows the following.

Corollary 9. (informal) There is an explicit family of non-adaptive (ε, δ)-SSS that
shares N(κ− τ)− o(N) bits secret among N users for any (τ, κ) pair, 0 ≤ τ < κ ≤ 1.

Bounds and optimality:

For each value of N , we have a (ε(N), δ(N))-SSS with thresholds Nτ and Nκ for privacy

and reconstruction respectively. Using the bound in [36, Theorem 13], gives 1 ≥ `(N)
N(κ−τ) and so

`(N)
N ≤ κ − τ , where `(N) is the length of the secret. But this bound was proved for the case
ε(N) = δ(N) = 0. We use a connection to the Wyner wiretap channel to show that asymptotically
the same bound holds even when ε(N) and δ(N) are not zero, but negligible. (see Connections to
wiretap channel below for more details and Appendix A for a proof).

Our construction for non-adaptive adversary is optimal in the sense that it achieves the above
asymptotic bound. Our construction for adaptive adversary however fails to achieve the above
asymptotic bound. There are a few obstacles that prevent it from achieving the above asymptotic
bound. There are known constructions of binary affine extractors that extract all the randomness
[32]. Such affine extractors can be made invertible while only incurring negligible overhead [8].
But unfortunately, these affine extractors do not have almost perfect property. Nevertheless, our
construction for adaptive adversary achieves the following “relative threshold” property. For any
arbitrarily small relative gap ξ = κ − τ > 0, there are explicit (ε, δ)-SSS with security against
adaptive adversary that share Ω(N) bits of secret. Known adaptive (ε, δ)-SSS before this work do
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not have vanishing relative gap. Example 1 in Section 3 summarises a probabilistic construction of
ramp SSS from random linear codes which shows existence of adaptive (0, 0)-SSS with secret length
` = N(1− h2(τ)− h2(1− κ))− o(N) provided that 1− h2(τ)− h2(1− κ) > 0. This construction is
not explicit and the relative gap κ− τ > 1

2 .

Connections to wiretap channel:

In the Wyner wiretap channel model [39, 13], there are two Discrete Memoryless Channels
(DMC): one for the legitimate receiver called the main channel, the other for the eavesdropper
called the wiretapper channel. The coding problem for the wiretap channel model is to provide
privacy against an eavesdropper observing from the wiretapper channel and reliability for the
legitimate receiver observing from the main channel (see Section 2 for a brief introduction and
discussion for different privacy definitions). In Appendix A, we prove the asymptotic upper bound
`(N)
N ≤ κ− τ for the non-adaptive (ε, δ)-SSS by reducing it to a wiretap code for a wiretap channel

with a pair of Binary Erasure Channels (BEC).

Later, Ozarow and Wyner proposed the wiretap channel II, where an adversary observes ar-
bitrary t out of the total n bits of the communication [29]. Let us call the wiretapper channel
of the wiretap channel II model a n−t

n -erasure channel. The non-adaptive (ε, δ)-SSS with relative
threshold pair (τ, κ) can be interpreted as a generalised wiretap II, where the wiretapper channel
is a (1 − τ)-erasure channel and the main channel is a (1 − κ)-erasure channel. Our construction
in Theorem 7 gives a capacity achieving construction in this model. The contributions are three-
fold. Firstly, we find the capacity of this generalised wiretap II model by proving a lower bound
that matches a trivial upper bound, which can be derived through a reduction to Wyner wiretap
channel with two BEC’s similar to Appendix A. Secondly, we show the lower bound remains tight
even when the privacy of the wiretap II is strengthened to indistinguishability. Thirdly, the lower
bound is proved through giving an explicit construction. This answers an open question posted in
[1]. The authors studied a generalisation of the wiretap II model, where the adversary chooses t
bits to observe and erases them. They showed that the rate 1 − τ − h2(τ) (while the quantity is
non-negative) can be achieved and left open the question of whether a higher rate is achievable.
Our result shows that in their model, the rate 1− 2τ can be explicitly achieved.

Related work:

Using linear codes for constructing linear secret sharing schemes dates back to [27, 22, 25].
These constructions are for threshold SS with perfect secrecy, and use special classes of linear
codes. In [11], a general construction of ramp secret sharing from a linear code and a universal
hash family is given. The construction uses results from [7] that relate linear codes and linear secret
sharing.The construction has perfect privacy and δ-reconstruction. The construction has similarity
with our non-adaptive construction if we consider the universal hash family as an extractor. The
two constructions however are completely different, not only because of the type of privacy that
they offer (perfect versus statistical) but the way extractor is used and the security is proved. In
[11], a hash function h is randomly chosen from the family, and the pre-image of the secret under h,
is encoded using an error correcting code. The security of the construction holds with overwhelming
probability (depending on the choice of h). This is very different from our construction in Theorem
7 where the seed (description of the function) is part of the input to the stochastic code that is
used to recover the secret from Nκ erasures, and security is proved directly (always hold). We also
remark that the results in [7] shows a construction of linear ramp schemes by randomly generating
the generator matrices of linear codes. The construction will support long secret and will succeed
with overwhelming probability.
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The idea of using the combination of a linear error correcting code and an invertible affine
extractor was first proposed in [8]. The coding problem they used this construction for is a wiretap
protocol with active adversary. A wiretap protocol is the wiretap channel II with a slightly gener-
alised security definition (see Section 2 for brief introduction to wiretap channel). Our construction
for adaptive adversary uses a combination of a stochastic affine-erasure correcting code and an
invertible almost perfect affine extractor. On one hand, the coding part is generalised from linear
to stochastic affine. On the other hand, our affine extractor is more restricted. These two changes
are crucial for achieving the arbitrarily small relative threshold gap property and adaptive privacy,
respectively. The construction in [8] only achieves security for uniform message.

In [21], (ε, δ)-secret sharing with adaptive and non-adaptive adversaries, as well as robust SS
where the adversary can tamper with shares is considered. The goal there is to relax privacy to
achieve large secrets over small alphabets, which is similar to ours. However the paper considers
high privacy threshold and perfect reconstruction from the whole share set (and not a reconstruction
threshold Nκ). Their main results for adaptive (passive) adversary ([21, Theorem 1.2]) and active
adversary ([21, Theorem 1.6]) are for binary shares when the complete share vector is input to the
reconstruction algorithm.

2 Preliminaries

A binary error correcting code (or simply a code) of length n is defined by its code book, which
is a subset of {0, 1}n. The encoder of the code is a deterministic function taking a message to
its corresponding codeword. The decoder is also deterministic and has certain error-correcting
property.

Definition 1. The Hamming weight wt(c) of a vector c ∈ {0, 1}n is the number of non-zero
positions in c. The minimum distance dC of a code C is defined as min{wt(c−c′)|c, c′ ∈ C, c 6= c′}.
For a subspace C ⊂ {0, 1}n, the minimum distance is then min{wt(c)|c ∈ C\{0n}}. The ratio dC

n
is referred to as the relative distance of the code.

An [n, k, d]-code C is defined to be a k-dimensional subspace of {0, 1}n with d(C) = d.

Definition 2. The dual code C⊥ of a code C consists of all c′ ∈ {0, 1}n such that 〈c′, c〉 = 0 for all
c ∈ C, where 〈·, ·〉 denotes the standard inner product. Whenever d is used to denote the minimum
distance of C, d⊥ is used to denote the minimum distance of C⊥.

A stochastic code has a randomised encoder and a deterministic decoder. The encoder Enc :
{0, 1}k × R → {0, 1}n uses local randomness R ← R to encode a message m ∈ {0, 1}k. The
decoder is a deterministic function Dec : {0, 1}n → {0, 1}k ∪ {⊥}. The decoding probability is
defined over the encoding randomness R ← R. In our construction, we use a stochastic code that
can protect against an (oblivious) adversarial erasure channel, where the adversary can choose any
subset of shares to erase. The channel captures the provision of the incomplete share vector for
reconstruction.

Randomness extractors. Randomness extractors extract close to uniform bits from input sequences
that are not uniform but have some guaranteed entropy. The closeness to uniform of the extractor
output is measured by the statistical distance (half the `1-norm). For two random variables X,Y ←
Ω, the statistical distance between X and Y (or their distributions) is defined as,

SD(X; Y) =
1

2

∑
ω∈Ω

|Pr(X = ω)− Pr(Y = ω)| .
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We say X and Y are ε-close if SD(X,Y) ≤ ε. A randomness source is a random variable with lower
bound on its min-entropy, which is defined by H∞(X) = − log maxx{Pr[X = x]}. We say a random
variable X← {0, 1}n is a (n, k)-source if H∞(X) ≥ k.

For well structured sources, there exist deterministic functions that can extract close to uniform
bits. An affine (n, k)-source is a random variable that is uniformly distributed on an affine trans-
lation of some k-dimensional sub-space of {0, 1}n. Let Um denote the random variable uniformly
distributed over {0, 1}m.

Definition 3. A polynomial time function AExt : {0, 1}n → {0, 1}m is an affine (k, ε)-extractor if
for any affine (n, k)-source X, we have

SD(AExt(X);Um) ≤ ε.

More specially, a bit-fixing (n, k)-source is a random variable X = (X1, · · · ,Xn), where at least
k of the coordinates are uniformly and independently distributed on {0, 1} while the rest have
fixed values. A bit-fixing extractor can be similarly defined as one extracts close to uniform bits
from bit-fixing source. Since every bit-fixing source is an affine source, an affine extractor is also a
bit-fixing extractor.

For general (n, k)-sources, there does not exist a deterministic function that can extract close
to uniform bits from all of them simultaneously. A family of deterministic functions are needed.

Definition 4. A polynomial time function Ext : {0, 1}d × {0, 1}n → {0, 1}m is a strong seeded
(k, ε)-extractor if for any (n, k)-source X, we have

SD(S,Ext(S,X); S, Um) ≤ ε,

where S is chosen uniformly from {0, 1}d. A seeded extractor Ext(·, ·) is called linear if for any fixed
seed S = s, the function Ext(s, ·) is a linear function.

Wiretap channel. In the Wyner wiretap channel model [39, 13], there are two Discrete Memoryless
Channels (DMC): one for the legitimate receiver called the main channel, the other for the eaves-
dropper called the wiretapper channel. The coding problem is to design a wiretap code that provides
privacy of the message against a passive adversary that observes the communication from the wire-
tapper channel and reliability for the legitimate receiver whose observation is corrupted due to the
main channel. The privacy of the message has been defined with respect to a uniformly distributed

message M
$← {0, 1}m and requires that H(M|W) ≥ m(1− o(1)), where H(M|W) is the conditional

Shannon entropy and W denotes the view of the random codeword from the wiretapper channel.
The highest information rate of wiretap codes for a pair of DMC’s is called the secrecy capacity.
Basic examples of binary DMC are the Binary Symmetric Channel (BSC) and the Binary Erasure
Channel (BEC). A BECp is a probabilistic transformation that maps inputs 0 and 1 to a symbol ?
that denotes erasure with probability p and to the inputs themselves with probability 1− p. For a
main channel - wiretapper channel pair (BECpm ,BECpw) such that pm < pw, it is known that the
secrecy capacity is the difference of the respective channel capacities: (1−pm)−(1−pw) = pw−pm.

Remark 1. The privacy definition above is later strengthen to the so-called strong secrecy [26]
H(M|W) = m− o(1). Strong secrecy is also called mutual information security for random message

in [2], i.e. I(M; W) = o(1), M
$← {0, 1}m, where a strictly stronger security measure that removes

the uniform message condition is defined,

max
M←{0,1}m

I(M; W) = o(1),
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and shown to be equivalent to the standard cryptography semantic security and indistinguishability
security, with the latter defined by,

SD(Wm0 ; Wm1) = o(1), (1)

where Wmi denotes the wiretapper channel view of the random codeword encoding the message mi,
i = 0, 1, for any two messages m0 and m1.

Later, Ozarow and Wyner proposed the wiretap channel II, where an adversary observes ar-
bitrary t out of the total n bits of the communication [29]. In the original wiretap channel II
model, the legitimate receiver’s observation is the full n bits of codeword. There have been efforts
on generalising the wiretap channel II to one with a non-perfect main channel. For example, two
generalised wiretap channel II models with an adversary that can erase and respectively modify
the t bits observed are studied in [1]. For the erasure case, the authors show that a coding rate
of 1− µ− h2(µ), where µ = t

n is achievable, provided that the quantity is non-negative. It is also
commented that the same rate can be achieved even when the observed bits and erased bits are
different. But whether higher coding rate can be achieved was left as an open question. Another
line of works consider the Adversarial Wiretap (AWTP) model, where the adversary can read a ρr
fraction of the codeword components and either erase [38] or additively tamper [37] a ρw fraction
of the codeword components. This line of works consider big alphabet and do not yield results in
binary.

3 (ε, δ)-SSS

Definition 5. A (ε(N), δ(N))-SSS with relative threshold pair (τ, κ) for 0 ≤ τ < κ ≤ 1 is a pair
of polynomial-time algorithms (Share,Recst),

Share : {0, 1}`(N) ×R → {0, 1}N ,

where R denote the randomness set, and

Recst : ˜{0, 1}N → {0, 1}`(N) ∪ {⊥},

where ˜{0, 1}N denotes the subset of ({0, 1} ∪ {?})N with at least Nκ components not equal to the
erasure symbol “?”, that satisfy the following properties.

• (κ, δ)-reconstruction: Given k(N) = Nκ correct shares of a share vector Share(s), the recon-
struct algorithm Recst reconstructs the secret s with probability at least 1 − δ(N). When
δ(N) = 0, we say the SSS has perfect reconstruction.

• (τ, ε)-privacy (non-adaptive/adaptive):

– Non-adaptive: for any s0, s1 ∈ {0, 1}`(N), any A ⊂ [N ] of size |A| ≤ t(N) = Nτ ,

SD(Share(s0)A; Share(s1)A) ≤ ε(N). (2)

– Adaptive: for any s0, s1 ∈ {0, 1}`(N) and any adversary A adaptively reads up to t(N) =
Nτ shares, ∣∣∣Pr[AShare(s0)(s0, s1) = 1]− Pr[AShare(s1)(s0, s1) = 1]

∣∣∣ ≤ ε(N). (3)
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When ε(N) = 0, we say the SSS has perfect privacy. When ε(N) > 0 and (2) is satisfied,
we have a non-adaptive (ε(N), δ(N))-SSS. If (3) is further satisfied, we have an adaptive
(ε(N), δ(N))-SSS.

When clear from context, write ε, δ, t, k, ` instead of ε(N), δ(N), t(N), k(N), `(N).

Definition 5 with ε = δ = 0 is the so called ramp (also called quasi-threshold) SSS with t-privacy
and k-reconstruction constructed in [7]. It is easy to see that perfect privacy implies independence
of the shares of a forbidden set from the secret, and so equivalence of adaptive and non-adaptive
adversary. So any ramp scheme is an adaptive SSS. We then have the following example of adaptive
(0, 0)-SSS.

Example 1. (follows from Theorem 4 and Corollary 1 of [7]) By sampling a generator matrix of
a linear code of length N uniformly at random, with high probability one obtains a code C ′ with
minimum distance dC′ = N(1−κ) who has a sub-code C ⊂ C ′ with dual distance d⊥C = Nτ , as long
as h2(τ)+h2(1−κ) < 1, for τ ∈ [0, 1

2) and κ ∈ (1
2 , 1]. A linear SSS can be obtained from the pair of

nested codes C ⊂ C ′ as follows. Let φ : {0, 1}` → C ′/C be a group homomorphism taking a secret
s to its corresponding coset of C in C ′. The sharing algorithm chooses a member in the coset φ(s)
uniformly at random and outputs it as the share vector for s. The reconstruction uses the decoder
of C ′ to recover the full share vector from any Nκ shares and use the full share vector to identify
the coset φ(s). The secret length ` = log |C ′/C| is approximately N(1− h2(τ)− h2(1− κ)).

Perfect privacy imposes stringent conditions on (ε, δ)-SSS. This is seen by relating SSS to a
closely related problem called All-Or-Nothing Transform (AONT), introduced by Rivest [31] in
computational setting, and later [15] extended to information theoretic setting. In a nutshell, an
information theoretic AONT is an invertible randomized transformation T(·) that takes an input
m and outputs a pair (cp, cs), where cp is public and cs secret, and a deterministic function that
recovers the message from the pair. The security guarantee of the transformation is that if t out of
N bits of the secret part cs of T(m) are known, the input remains indistinguishable. In the secret
only case, only the secret output exists. The security of information-theoretic secret only AONT
is defined in non-adaptive and adaptive models identical to the ( t

N , ε)-privacy of SSS in Definition
5. And in the ε = 0 case, there is a stringent lower bound on the output length N in terms of the
fraction τ = t

N of leakage and the input length, for secret only AONT.

Lemma 1 ([15]). If T : {0, 1}` → {0, 1}N is a secret only AONT with perfect privacy and a τ
fraction of leakage, then

Nτ ≤ N

2
+

N

2(2` − 1)
− 1.

For τ ≥ 1
2 . Lemma 1 says that

N

2
≤ Nτ ≤ N

2
+

N

2(2` − 1)
− 1 =⇒ N ≥ 2(2` − 1).

An N player (0, δ)-SSS with threshold pair (t, k) for t
N ≥

1
2 is always a secret only AONT with

perfect privacy for τ ≥ 1
2 fraction of leakage. This means that under perfect privacy, the number

of secret bits that can be shared by an N player (0, δ)-SSS is less than logN , even given all the N
shares to reconstruct.

Coding rate of (ε(N), δ(N))-SSS. In this work, we are concerned with binary SSS that shares a
secret of length ` that is a constant fraction of N (` = Ω(N)).
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Definition 6. A coding rate R ∈ [0, 1] is achievable for the pair (τ, κ) if there exists a family of
(ε(N), δ(N))-SSS with relative threshold pair (τ, κ) such that ε(N) and δ(N) are both negligible

in N and `(N)
N → R. The highest achievable coding rate for a pair (τ, κ) is called its capacity.

By relating (ε, δ)-SSS with relative threshold pair (τ, κ) to Wyner wiretap codes for a pair of
binary erasure channels we obtain the following coding rate upper bound.

Lemma 2. The coding rate capacity of (ε, δ)-SSS with relative threshold pair (τ, κ) is asymptoti-
cally upper-bounded by κ− τ .

The proof is given in Appendix A.

In the rest of the paper, we give two constant rate constructions of (ε, δ)-SSS against adaptive
adversary and non-adaptive adversary, respectively. The non-adaptive adversary construction is
optimal in the sense that the coding rate achieves the upper bound in Lemma 2.

4 Adaptive Adversary

We now introduce the building blocks before stating the construction theorem.

It is explicit in the definition of randomness extractors that the forward direction of extracting
is efficient. In some applications, we usually need to efficiently invert the process and sample a
random pre-image for a given extractor output.

Definition 7 ([8]). Let f be a mapping from {0, 1}n to {0, 1}m. For v ≥ 0, a function Inv :
{0, 1}m × {0, 1}r → {0, 1}n is called a v-inverter for f if the following conditions hold:

• (Inversion) Given y ∈ {0, 1}m such that its pre-image f−1(y) is nonempty, for every z ∈ {0, 1}r
we have f(Inv(y, z)) = x.

• (Uniformity) Inv(Um, Ur) is v-close to Un.

A v-inverter is called efficient if there is a randomized algorithm that runs in worst-case polynomial
time and, given y ∈ {0, 1}m and z as a random seed, computes Inv(y, z). We call a mapping
v-invertible if it has an efficient v-inverter, and drop the prefix v from the notation when it is zero.
We abuse the notation and denote the inverter of f by f−1.

The following almost perfect notion was defined on resilient functions (bit-fixing extractors) for
the construction of adaptive AONT [14] 1. Here we generalise it to affine extractors. Almost perfect
property can be trivially achieved by requiring an exponentially (in m) small error in statistical
distance, using the relation between `∞-norm and `1-norm.

Definition 8. An affine extractor AExt : {0, 1}n → {0, 1}m is called (k, ε)-almost perfect if for any
affine (n, k)-source X,∣∣∣∣Pr[AExt(X) = y]− 1

2m

∣∣∣∣ ≤ 2−m · ε, for any y ∈ {0, 1}m.

Affine source plays an important role in both of our constructions. We define a general require-
ment for the stochastic code used in the outer layer that facilitates an affine structure.

1The relaxation from (perfect) resilient functions to ε-almost resilient functions with a small error ε was first
studied in [23]
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Definition 9 (Stochastic Affine codes). Let Enc : {0, 1}m × R → {0, 1}n be the encoder of a
stochastic code. We say it is a stochastic affine code if for any r ∈ R, the encoding function
Enc(·, r) specified by r is an affine function of the message. That is we have

Enc(m, r) = mGr + ∆r,

where Gr ∈ {0, 1}m×n and ∆r ∈ {0, 1}n are determined by the code and the randomness r.

We are ready to give our construction for adaptive adversary.

Theorem 3. Let AExt : {0, 1}n → {0, 1}` be an invertible (n− t, ε2)-almost perfect affine extractor
and AExt−1 : {0, 1}`×R1 → {0, 1}n be its inverter that maps an s ∈ {0, 1}` to one of its pre-images
chosen uniformly at random. Let (SA-ECCenc, SA-ECCdec) be a stochastic affine-erasure correcting
code with encoder SA-ECCenc : {0, 1}n ×R2 → {0, 1}N that tolerates N − k erasures and decodes
with success probability at least 1 − δ. Then the (Share,Recst) defined as follows is an adaptive
(ε, δ)-SSS with threshold pair (t, k).{

Share(s) = SA-ECCenc(AExt−1(s));
Recst(ṽ) = AExt(SA-ECCdec(ṽ)),

where ṽ denotes an incomplete version of a share vector v ∈ {0, 1}N with some of its components
replaced by erasure symbols.

Proof. The (k, δ)-reconstructability follows directly from the erasure correcting capability of the
SA-ECC. For any ṽ with at most N − k erasure symbols and the rest of its components consistent
with a valid codeword v ∈ {0, 1}N , the SA-ECC decoder identifies the unique codeword v with
probability 1 − δ over the encoder randomness. The corresponding SA-ECC message of v is then
inputted to AExt and the original secret s is reconstructed with the same probability.

We next prove the (t, ε)-privacy. For any r ∈ R2, the affine encoder of SA-ECC is characterised
by a matrix Gr ∈ {0, 1}n×N and an offset ∆r. For n unknowns x = (x1, · · · , xn), we have

SA-ECCenc(x) = xGr + ∆r = (xG1, · · · ,xGN ) + ∆r,

where Gi = (g1,i, · · · , gn,i)T (here the subscript “r” is omitted to avoid double subscripts) denotes
the ith column of Gr, i = 1, · · · , N . This means that knowing a component ci of the SA-ECC
codeword is equivalent to obtaining a linear equation ci⊕∆i = xGi = g1,ix1 + · · ·+gn,ixn about the
n unknowns x1, · · · , xn, where ∆i (again, the subscript “r” is omitted) denotes the ith component
of ∆r.

Now take any distinguisher A, any secret s ∈ {0, 1}`, and any possible view View
Share(s)
A of A

having oracle access to Share(s) through adaptively obtaining t components. We assume that A is
deterministic and argue security holds for any deterministic distinguisher.

Now, we find Pr[View
Share(s)
A = w] for arbitrary w (assuming the probability is non-zero). Note

11



that since AExt−1(s) is uniformly selected from the set of pre-images of s, we have

Pr[View
Share(s)
A = w] = Pr[View

ECCenc(X)
A = w|AExt(X) = s]

=
Pr[AExt(X) = s|View

ECCenc(X)
A = w] · Pr[View

ECCenc(X)
A = w]

Pr[AExt(X) = s]

(i)
=

(1± ε
2)2−` · Pr[View

ECCenc(X)
A = w]

Pr[AExt(X) = s]

(ii)
=

(1± ε
2)2−` · 2n−rank(A)

2n

2−`

= (1± ε

2
) · 2−rank(A).

In above, we first use the fact that Pr[View
Share(s)
A = w] can be seen as the probability of randomly

selecting X from {0, 1}n, with the condition that AExt(X) = s. This is true because the sets
AExt−1(s) for all s, partition {0, 1}n. The shorthand “y = 1 ± ε

2” denotes “1 − ε
2 ≤ y ≤ 1 + ε

2”.
The rank(A) denotes the rank of A’s choice of up to t columns of G. The equality (i) follows from
the fact that AExt is an almost perfect affine extractor and the uniform X conditioned on at most
t linear equations is an affine source with at least n− t bits entropy. The equality (ii) follows from

the assumption that X is chosen uniformly at random from {0, 1}n. The observation View
Share(s)
A of

A with respect to a secret s has a distribution only depends on rank(A) (independent of the secret
s) and and the error for each w is bounded by ε

2 · 2
−rank(A). We have for any distinguisher A,∣∣∣Pr[AShare(s0)(s0, s1) = 1]− Pr[AShare(s1)(s0, s1) = 1]

∣∣∣ ≤ ε.
Instantiations of the construction.

There are explicit constructions of binary affine extractors that, given a constant fraction of
entropy, outputs a constant fraction of random bits with exponentially small error.

Lemma 4 ([4, 24]). For every constant 0 < µ ≤ 1, there is an explicit affine extractor AExt :
{0, 1}n → {0, 1}m for sources with min-entropy nµ with output length m = Ω(n) and error at most
2−Ω(n).

There are known methods for constructing an invertible affine extractor AExt′ from any affine
extractor AExt such that the constant fraction output size and exponentially small error properties
are preserved. A simple method is to let AExt′(Un||M) := AExt(Un) ⊕M (see Appendix B for a
discussion).

We discuss two constructions of SA-ECC, one non-explicit the other explicit. The non-explicit
construction uses an optimal rate linear erasure list-decodable code (existence proved in [18]) and
an Algebraic Manipulation Detection (AMD) code (e.g. constructed in [12]). List-decodable codes
correct worst-case erasures by outputting a list of candidate codewords that include the correct
codeword. The AMD pre-coding is then used to identify the correct codeword in the list, hence
restoring the correct message. Since the erasure list-decodable code [18] is linear, the combination is
a stochastic affine code (see Appendix C). This construction requires a linear erasure list-decodable
code that corrects up to p fraction of Erasures, and achieves coding rate 1−p. However construction
of such codes is an open problem.
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We next describe another rate optimal construction of SA-ECC that is also explicit and results
in an SSS with vanishing relative gap, as N grows. The construction uses the same approach as the
construction of stochastic code for additive oblivious 2 error, in [19, Theorem 6.1]. The main idea
of the construction is to convert the adversarial erasure channel to a random erasure channel by
permuting the codeword components, using a randomly selected permutation, whose description is
sent to the receiver along with the codeword. The description of the permutation must be robustly
(against erasure) “transmitted” to the decoder. This is done by first using a highly robust and low
rate code in big alphabet, and then encoding each component of the code (alphabet symbol) using a
stochastic erasure correcting code with detection property that detects a random translation. The
stochastic erasure correcting code with detection property can be the above combination of a linear
erasure list-decodable code and an AMD. The rate of the list-decodable code is not required to be
optimal here because the control information is negligible compared to the so called payload that
carries the encoded message. The control information blocks are randomly mixed into the payload
blocks to form the final codeword of SA-ECC. There is one more building block that prevents
(using the detection property of the stochastic erasure correcting code) the payload blocks from
being mistaken for the control information blocks during the first step of decoding in which the
control information must be correctly recovered. We outline this construction (see Appendix D) as
part of the proof for the following theorem.

Theorem 5. For every p ∈ [0, 1), and every ε > 0, there is an efficiently encodable and decodable
stochastic affine code (Enc,Dec) with rate RECC = 1−p−ε such that for every m ∈ {0, 1}NRECC and

erasure pattern of at most p fraction, we have Pr[Dec(Ẽnc(m)) = m] ≥ 1− exp(−Ω(ε2N/ log2N)),

where Ẽnc(m) denotes the partially erased random codeword and N denotes the length of the
codeword.

The proof of Theorem 3 says that as long as AExt is an affine extractor with the right parameters,
the SSS provides privacy. Let RECC denote the rate of the SA-ECC. Using the notations in the
proof, there are n − τN = n(1 − τ

RECC
) bits of entropy in X, where τ = t

N . Let us assume

τ < RECC . Using the AExt from Lemma 4 (more precisely, an invertible affine extractor AExt′ :
{0, 1}n′ → {0, 1}` constructed from AExt) with µ = 1− τ

RECC
, a constant fraction Ω(n) of random

bits can be extracted with exponentially small error. This says that (τ, ε)-privacy is guaranteed
for τ ∈ [0, RECC). We then want to have RECC as big as possible. The stochastic affine ECC in
Theorem 5 asymptotically achieves the rate 1− (1− κ) = κ. We then have the following corollary.

Corollary 6. There is an explicit constant coding rate adaptive (ε, δ)-SSS with relative threshold
pair (τ, κ) for any 0 ≤ τ < κ ≤ 1.

The construction above achieves a constant coding rate for any (τ, κ) pair satisfying 0 ≤ τ <
κ ≤ 1. Since the binary affine extractor in Lemma 4 does not extract all the entropy from the
source (meaning the output length is equal to the source entropy minus a negligible amount) and
moreover the step that transforms an affine extractor into an invertible affine extractor incurs non-
negligible overhead, the coding rate of the above construction is strictly smaller than the upper
bound κ− τ . We give another construction in Section 5 that uses a linear seeded extractor instead
of an affine extractor, which achieves the coding rate κ − τ . This construction, however, only
achieves non-adaptive privacy.

2An offset of Hamming weight at most Np is chosen obliviously and added to the N -bit codeword.
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5 Non-adaptive Adversary

The following construction achieves the upper bound in Lemma 2 and is hence capacity-achieving.
The main reason is the use of a linear seeded extractor, which extracts all the randomness from
the source. The linearity makes the functions invertible without incurring overhead. Moreover, the
linearity of the extractor functions together with the affine structure of the SA-ECC has a special
effect on the extractor error: either perfect extraction or big error (also observed and exploited in
[11, Theorem 1] to achieve perfect privacy in their construction). This directly leads to the desired
privacy error without requiring an exponentially small extractor error, which would have incurred
non-negligible loss in coding rate. The drawback of using a seeded extractor is that we can only
prove non-adaptive privacy for the construction (see Remark 2).

Theorem 7. Let Ext : {0, 1}d×{0, 1}n → {0, 1}` be a linear strong seeded (n− t, ε4)-extractor and
Ext−1(z, ·) : {0, 1}`×R1 → {0, 1}n be the inverter of the function Ext(z, ·) that maps an s ∈ {0, 1}`
to one of its pre-images chosen uniformly at random. Let (SA-ECCenc,SA-ECCdec) be a stochastic
affine-erasure correcting code with encoder SA-ECCenc : {0, 1}d+n × R2 → {0, 1}N that tolerates
N − k erasures and decodes with success probability at least 1 − δ. Then the following coding
scheme (Share,Recst) is a non-adaptive (ε, δ)-SSS with threshold pair (t, k).{

Share(s) = SA-ECCenc(Z||Ext−1(Z, s)),where Z
$← {0, 1}d;

Recst(ṽ) = Ext(z̄, x̄),where (z̄||x̄) = SA-ECCdec(ṽ).

Here ṽ denotes an incomplete version of a share vector v ∈ {0, 1}N with some of its components
replaced by erasure symbols.

Here we give a direct proof using techniques similar to that of Theorem 3. In Appendix E, we
prove a general property of linear seeded extractors, from which Theorem 7 follows as a corollary.

Proof. The algorithm Share(·) has three parts of randomness: the uniform seed Z
$← {0, 1}d, the

randomness of the inverter sampled from R1 and the randomness of the stochastic code sampled
from R2 . In our analysis, we always consider a fixed randomness r ∈ R2 of the stochastic code.
We will first consider a fixed seed z ∈ {0, 1}d and solely use the randomness of the inverter in the
argument for privacy of the scheme. We show that for most of the seed z ∈ {0, 1}d, the scheme is
perfectly secure and hence when the seed is uniformly chosen, the privacy error can be bounded by
the fraction of “bad” seeds.

We next prove the (t, ε)-privacy. For any r ∈ R2, the affine encoder of SA-ECC is characterised
by a matrix Gr ∈ {0, 1}n×N and an offset ∆r. Here the message of the SA-ECC is a (d + n)-bit
string, where the first d bits constitute the seed of Ext. Our analysis is first done for each particular
seed and then average over the seed space. So we assume the first d bits of the message of SA-ECC
are fixed values z and only consider the remaining n bits x = (x1, · · · , xn) as unknowns. Then for
any r ∈ R2, we have

SA-ECCenc(z||x) = (z||x)Gr + ∆r = (xG′1, · · · ,xG′N ) + ∆̂(z) + ∆r,

where G′i = (gd+1,i, · · · , gd+n,i)
T , i = 1, · · · , N denotes the ith column of G′r, which is obtained from

Gr by removing the top d rows, and ∆̂(z) ∈ {0, 1}N denotes the offset obtained from multiplying
z to the top d rows of Gr. This means that knowing a component ci of the SA-ECC codeword is
equivalent to obtaining a linear equation on the n unknowns x1, · · · , xn:

ci ⊕∆i ⊕ ∆̂(z)i = xG′i = gd+1,ix1 + · · ·+ gd+n,ixn. (4)
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Now, we consider an arbitrary secret s and for any non-adaptiveA’s choice of A ⊂ [N ] with |A| ≤
t, we find Pr[View

Share(s)
A = w] for each w ∈ {0, 1}|A|. Since we have the following decomposition

with respect to the uniform seed Z,

Pr[View
Share(s)
A = w] =

∑
z∈{0,1}d

2−d · Pr[View
Share(s)
A = w|Z = z], (5)

we proceed with considering a fixed seed Z = z.

Note that the inverter function Ext−1(z, ·) defines a partition of {0, 1}n into 2` subsets and maps
a secret to an n-tuple in the corresponding subset uniformly at random. Let X be the uniform
distribution over {0, 1}n. We have SA-ECCenc(z||Ext−1(z, s)) = (SA-ECCenc(z||X)) | (Ext(z,X) = s).
We then use the Bayes law and compute the following.

Pr
[
View

Share(s)
A = w|Z = z

]
= Pr[View

SA-ECCenc(z||X)
A = w|Ext(z,X) = s]

=
Pr[Ext(z,X) = s|View

SA-ECCenc(z||X)
A = w] · Pr[View

SA-ECCenc(z||X)
A = w]

Pr[Ext(z,X) = s]

(i)
=

2−` · Pr[View
SA-ECCenc(z||X)
A = w]

Pr[Ext(z,X) = s]

(ii)
=

2−` · 2n−rank(A)

2n

2−`

= 2−rank(A).

The above computation requires two conditions. The equality (i) holds when the linear function

Ext(z, ·) : {0, 1}n → {0, 1}` restricted to support of the random variable X|
(

View
SA-ECCenc(z||X)
A = w

)
is surjective. In this case, we say the seed z ∈ {0, 1}d is a good seed with respect to w. The equality
(ii) holds when there exists an x ∈ {0, 1}n such that SA-ECCenc(z||x)A = w. The short hand rank(A)
denotes the rank of the columns G′i that satisfy i ∈ A (see (4) for definition of G′i). Consider X
as unknowns for equations, the number of solutions to the linear system SA-ECCenc(z||X)A = w is
either 0 or equal to 2n−rank(A).

Note that whether z ∈ {0, 1}d is a good seed is in fact determined by z and the adversary’s
choice of A. Let KerA =

{
x ∈ {0, 1}n|SA-ECCenc(z||x)A = 0|A|

}
. Then the solutions to the linear

system SA-ECCenc(z||X)A = w can be written as a translate of the subspace KerA. We see that if
the linear function Ext(z, ·) : {0, 1}n → {0, 1}` restricted to KerA is surjective, it is also surjective
restricted to any translate of KerA. Let GA ⊂ {0, 1}d denote the set of good seeds with respect
to A. We next show that Pr[Z ∈ GA] ≥ 1 − ε

2 . Since there are at least t linear equations on n
unknowns, KerA is a subspace of {0, 1}n of dimension at least n− t. The flat distribution over KerA
is an affine source of min-entropy at least n − t. Now applying a linear function Ext(z, ·) to this
affine source, the output is uniform ` bits if and only if Ext(z,KerA) = {0, 1}`. On the other hand,
if Ext(z,KerA) 6= {0, 1}`, then the distribution of the output has at least 1

2 statistical distance from
uniform. This is because the image Ext(z,KerA) is a subspace of dimension at most ` − 1. The
security of the (n, n− t)-extractor Ext asserts that

0 · Pr[Z ∈ GA] +
1

2
· Pr[Z /∈ GA] ≤ 1

4
ε. (6)

This yields the desired bound Pr[Z ∈ GA] ≥ 1− ε
2 .
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Finally, we have shown that the distribution View
Share(s)
A | (Z = z) is independent of the secret

s when z ∈ GA. According to (5), the distribution View
Share(s)
A is independent of the secret s

conditioned on the event that Z ∈ GA. It then follows that for any two secrets s0 and s1, we always
have SD(Share(s0)A; Share(s1)A) ≤ ε.

Remark 2. Note that the same argument cannot be made if the set A is chosen according to the
seed z, in which case we can not define W = Share(S)A for all seeds of Ext and no longer have (6).
In a real life adaptive attack, the adversary can first spend some reading budget on figuring out
the value of the seed Z of Ext, and then decide the rest of the reading positions according to the
seed value.

Instantiations of the construction.

We will use Trevisan’s extractor [35] for the Ext in Theorem 7. In particular, we use the following
improvement of this extractor due to Raz, Reingold and Vadhan [30].

Lemma 8 ([30]). There is an explicit strong linear seeded (k, ε)-extractor Ext : {0, 1}d×{0, 1}n →
{0, 1}` with d = O(log3(n/ε)) and ` = k −O(d).

We now analyse the coding rate of the (ε, δ)-SSS with ( t
N ,

k
N )-threshold constructed in Theorem

7 with the SA-ECC from Theorem 5 and the Ext from Lemma 8. The secret length ` = n− t−O(d),
where the seed length is d = O(log3(2n/ε)). The SA-ECC is from n+d bits to N bits and with coding
rate RECC = κ−ξ for a small ξ determined by δ (they satisfy the relation δ = exp(−Ω(ξ2N/ log2N))
according to Theorem 5). We then have n = N(κ− ξ)− d. Finally, the coding rate is

R =
`

N
=
n− t−O(d)

N
=
N(κ− ξ)− t−O(d)

N
= κ− τ − (ξ +

O(d)

N
).

Since the seed length d is negligible in N for any privacy error ε, and the rate deficiency ξ of the
SA-ECC can be chosen arbitrarily small at the expense of a bigger N , we then conclude that the
rate κ− τ is achieved.

Corollary 9. There is an explicit construction of non-adaptive (ε, δ)-SSS with relative threshold
pair (τ, κ)achieving coding rate κ− τ .

6 Conclusion

Secret sharing is a fundamental cryptographic primitive with diverse applications. We consid-
ered (ε, δ) ramp schemes which allows bounded privacy and reconstructability errors (ε, and δ,
respectively), with the goal of achieving short shares for long secrets. We gave two efficient mod-
ular constructions with security against adaptive and non-adaptive adversaries, and showed an
(asymptotically) optimal instantiation of non-adaptive case. The constructions are non-linear, and
although are stated in terms of binary shares, can be extended to q-ary shares also. Interesting
open questions that arise from this work include, (i) tight upper bound for adaptive security, or
constructions that achieve the bound for non-adaptive case, and (ii) construction of linear (ε, δ)
ramp schemes with similar properties.

16



References

[1] Vaneet Aggarwal, Lifeng Lai, A. Robert Calderbank, and H. Vincent Poor. Wiretap channel
type II with an active eavesdropper. In IEEE International Symposium on Information Theory,
ISIT 2009, June 28 - July 3, 2009, Seoul, Korea, Proceedings, pages 1944–1948. IEEE, 2009.

[2] Mihir Bellare, Stefano Tessaro, and Alexander Vardy. Semantic security for the wiretap chan-
nel. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings, volume 7417 of Lecture Notes in Computer Science, pages 294–311. Springer,
2012.

[3] G. R. BLAKLEY. Safeguarding cryptographic keys. Proceedings of the 1979 AFIPS National
Computer Conference, pp. 313–317, 1979.

[4] J. Bourgain. On the construction of affine extractors. Geometric and Functional Analysis, vol.
17, no. 1, p. 33-57, 2007.

[5] Ignacio Cascudo, Hao Chen, Ronald Cramer, and Chaoping Xing. Asymptotically good ideal
linear secret sharing with strong multiplication over any fixed finite field. In Advances in
Cryptology - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 16- 20, 2009. Proceedings, pages 466–486, 2009.

[6] H. Chen and R. Cramer. Algebraic geometric secret sharing schemes and secure multiparty
computation over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
516–531. Springer, Heidelberg (2006).

[7] Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert de Haan, and Vinod Vaikuntanathan.
Secure computation from random error correcting codes. In: Naor M. (eds) Advances in
Cryptology - EUROCRYPT 2007. EUROCRYPT 2007. Lecture Notes in Computer Science,
vol 4515. Springer, Berlin, Heidelberg.

[8] Mahdi Cheraghchi, Fredric Didier, and Amin Shokrollahi. Invertible extractors and wiretap
protocols. Information Theory, IEEE Transactions on 58.2 (2012): 1254-1274.

[9] R. Cramer, I. Damgaard, and S. Dziembowski. On the complexity of verifiable secret sharing
and multi-party computation. Proceedings of STOC 2000, pp. 325– 334. ACM Press, 2000.

[10] R. Cramer, I. Damgaard, and U. Maurer. General secure multi-party computation from any
linear secret sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
316–334. Springer, Heidelberg (2000).

[11] Ronald Cramer, Ivan Bjerre Damg̊ard, Nico Döttling, Serge Fehr, and Gabriele Spini. Linear
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Appendices

A Proof of Lemma 2

Proof. Let (Share,Recst) be a non-adaptive (ε, δ)-SSS with relative threshold pair (τ, κ). We use
Share as the encoder and Recst as the decoder, and verify in the following that we obtain a Wyner
wiretap code for a BECpm main channel and a BECpw wiretapper channel, where pm = 1 − κ − ξ
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and pw = 1 − τ + ξ, respectively, for arbitrarily small ξ > 0. Erasure in SSS is worst case, while
it is probabilistic in the Wyner wiretap model. We however note that asymptotically, the number
of random erasures approaches Npm and Npw, respectively, with overwhelming probability, and so
a code that protects against worst case erasure can be used as a wiretap code with probabilistic
erasure. In our proof we also take into account the difference in the secrecy notion in SSS and in
the case of Wyner wiretap code.

The N -bit output Y = Y1, · · · , YN of a BECp has a distribution where each bit is identically
independently erased with probability p. By the Chernoff-Hoeffding bounds, the fraction η of
erasures satisfies the following. For arbitrarily small ξ > 0,

Pr[η ≥ p+ ξ] ≤
((

p
p+ξ

)p+ξ (
1−p

1−p−ξ

)1−p−ξ
)N

;

Pr[η ≤ p− ξ] ≤
((

p
p−ξ

)p−ξ (
1−p

1−p+ξ

)1−p+ξ
)N

.

Applying the two inequalities to BECpm and BECpw , respectively, we obtain the following conclu-
sions. The probability that the main channel BECpm has at most pm+ξ = 1−κ fraction of erasures
and the probability that the wiretapper channel BECpw has at least pw − ξ = 1 − τ fraction of
erasures are both at most exp(−Ω(N)) for arbitrarily small ξ > 0.

We are ready to prove the Wyner wiretap reliability and secrecy properties as defined in [39, 13].

• We show correct decoding with probability 1−o(1). When the erasures are below pm+ξ = 1−κ
fraction, it follows directly from the (κ, δ)-reconstructability of SSS that the decoding error is
bounded from above by δ, which is arbitrarily small for big enough N , where the probability
is over the randomness of the encoder. When the erasures are not below pm + ξ = 1 − κ
fraction, we do not have correct decoding guarantee. But as argued above, this only occurs
with a negligible probability over the randomness of the BECpm . Averaging over the channel
randomness of the BECpm , we have correct decoding with probability 1− o(1).

• We show random message equivocation secrecy H(S|W) ≥ `(1 − o(1)), where S is a uniform
message and W = BECpw(Share(S)) is the view from the wiretapper channel. We in fact
first prove the wiretap indistinguishability security as defined in (1) and then deduce that
it implies Wyner wiretap secrecy as defined in [39, 13]. For each of the erasure patterns
(say A ⊂ [N ] are not erased) of the wiretapper channel BECpw that exceeds pw − ξ = 1 − τ
fraction (equivalently, |A| ≤ Nτ), the (τ, ε)-privacy gives that for any two messages, the cor-
responding wiretapper channel views W|(S = s0, A not erased) and W|(S = s1, A not erased)
are indistinguishable with error ε, which is arbitrarily small for big enough N . The distribu-
tion (W|S = s0) and (W|S = s1) are convex combinations of W|(S = s0, A not erased) and
W|(S = s1, A not erased), respectively, for all the error patterns A of the wiretapper channel
BECpw . As argued before, the probability that the erasures does not exceed pw−ξ = 1−τ frac-
tion is negligible. We average over the channel randomness of the wiretapper channel BECpw

and claim that the statistical distance of (W|S = s0) and (W|S = s1) is arbitrarily small for
big enough N . According to Remark 1, this is strictly stronger than H(S|W) ≥ `(1 − o(1)),
where S is a uniform message. The deduction takes a few steps. The wiretap indistinguisha-
bility security as defined in (1) is equivalent to wiretap mutual information security. The
wiretap mutual information security is stronger than its random message analogue, which in
turn is stronger than the Wyner wiretap secrecy as defined in [39, 13].

Finally we use the coding rate upper bound of the Wyner wiretap code to bound the coding
rate of (ε, δ)-SSS. We have shown that a (ε, δ)-SSS with relative threshold pair (τ, κ) is a wiretap
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code for the pair (BECpm ,BECpw). According to [39, 13], the achievable coding rate for Wyner
wiretap code with a BECpm main channel and a BECpw wiretapper channel is (1−pm)−(1−pw) =
pw − pm = κ− τ + 2ξ. Since this holds for any constant ξ > 0, we obtain an upper bound of κ− τ
for (ε, δ)-SSS with relative threshold pair (τ, κ).

B One-Time-Pad Trick of Inverting Extractors

There is a well known way to transform an efficient function into one that is also efficiently invertible
through a “One-Time-Pad” trick. We give a proof for the special case of affine extractors, for
completeness.

Lemma 10. Let AExt : {0, 1}n → {0, 1}m be an affine (n, k)-extractor with error ε. Then AExt′ :
{0, 1}n+m → {0, 1}m defined as follows is a ε-invertible affine (n + m, k + m)-extractor with error
ε.

AExt′(z) = AExt′(x||y) = AExt(x) + y,

where the input z ∈ {0, 1}n+m is separated into two parts: x ∈ {0, 1}n and y ∈ {0, 1}m.

Proof. Let Z be a random variable with flat distribution supported on an affine subspace of
{0, 1}n+m of dimension at least k + m. Separate Z into two parts Z = (X||Y), where X ∈ {0, 1}n
and Y ∈ {0, 1}m. Then conditioned on any Y = y, X has a distribution supported on an affine
subspace of {0, 1}n of dimension at least k. This asserts that conditioned on any Y = y,

SD(AExt(X) + y;U{0,1}m) ≤ ε.

Averaging over the distribution of Y concludes the extractor proof.

We next show an efficient inverter AExt′−1 for AExt′. For any s ∈ {0, 1}m, define

AExt′−1(s) = (Un||AExt(Un) + s).

The randomised function AExt′−1 is efficient and AExt′−1(Um)
ε∼ Un+m.

This transformation only gives a v-invertible affine extractor with v = ε. But it is easy to see
that Theorem 3 can be restated with respect to a v-invertible affine extractor. On the other hand,
in the full version of this paper, we explicitly construct a v-invertible affine extractor with v = 0
that can be directly used in Theorem 3.

C Non-explicit Stochastic Affine ECC

The following construction using a linear optimal erasure list-decodable code and an AMD code
gives an SA-ECC that can be used in our constructions of (ε, δ)-SSS. The construction is simply a
concatenation of the systematic AMD in [12] and the erasure list-decodable code whose existence
is given below. The SA-ECC obtained further satisfies a special detection property that is needed
in Theorem 5.

Lemma 11 ([18]). For every integer L ≥ 1 and every p ∈ [0, 1], the achievable rate of binary linear
list-decodable codes that corrects a p fraction of erasures by outputting a list of L messages is at
least

1− p

r
log(2r − 1)− h2(p)

r
, (7)

where r = dlog(L+ 1)e.
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The bound in (7) shows that if we allow a big enough list size, the rate RECC can be made
arbitrarily close to 1 − p. Note that Lemma 11 only states the existence of high rate linear codes
with efficient algorithm that outputs a list of L messages. It is still an open problem to explicitly
construct codes with rate matching this bound.

D Proof Sketch of Theorem 5

Proof. We deter the details of the construction to the full version of this paper. For now we refer
to [19, Theorem 6.1] and point out the adaptations needed. There are six building blocks involved
in the construction: SC, RS, Samp, KNR, POLYt and REC. We replace the first and last building
blocks.

The first building block is a Stochastic Code (SC). We need two properties from this building
block: detect (output ⊥) when the codeword is masked by a random offset and correct from erasures
of no more than 1 − κ + ε fraction. While the former property is always satisfied by the original
SC used in [19], the latter property might not hold. When 1 − κ is small, we can let the decoder
of the SC used in [19] set the erased bits to 0 and decode from this “error”. But when 1− κ > 1

2 ,
this trick no longer works. We use the construction from Appendix C for SC in our construction
of SA-ECC.

The last building block is a Random Error Code (REC). We also need two properties from
this building block: correct from random erasures of 1 − κ fraction and the encoder is a linear
function. We need the latter property for affine property of the SA-ECC constructed. Explicit
linear codes at rate 1 − p that correct p fraction of random erasures are known. We can use any
explicit construction of capacity achieving codes for BEC1−κ for REC and use a similar argument
of [34].

We now refer to the Algorithm 1. in the proof of [19, Theorem 6.1] and show that, with the SC
and REC replaced accordingly, we do have a SA-ECC. The error correction capability and optimal
rate follow similarly as in the proof of [19, Theorem 6.1]. We next show affine property. Phase
1 and Phase 2 are about the control information, which are part of the encoding randomness
r of the SA-ECC to be fixed to constant value in the analysis of affine property. During Phase
3, the message m is linearly encoded (our REC is linear) and then permuted, followed by adding
a translation term ∆r. Since permutation is a linear transformation, we combine the two linear
transformations and write mGr + ∆r, where Gr is a binary matrix. Finally, during Phase 4,
some blocks that contain the control information are inserted into mGr + ∆r. We add dummy
zero columns into Gr and zero blocks into ∆r to the corresponding positions where the control
information blocks are inserted. Let mĜr + ∆̂r be the vector after padding dummy zeros. Let ∆̂′r
be the vector obtained from padding dummy zero blocks, complementary to the padding above,
to the control information blocks. We then write the final codeword of the SA-ECC in the form
mĜr + (∆̂r + ∆̂′r), which is indeed an affine function of the message m.

E Alternative proof of Theorem 7

In this alternative proof, we first prove a general property of a strong linear (k, ε)-extractor
Ext : {0, 1}d × {0, 1}n → {0, 1}m. Roughly speaking, we prove that the pre-images (the pre-image
of m ∈ {0, 1}m is a random variable tuple (Z,X) that satisfies the condition Ext(Z,X) = m) of any
two extractor outputs can not be distinguished by any affine function fA : {0, 1}d+n → {0, 1}t with
t ≤ n− k. The privacy of the SSS in Theorem 7 then follows trivially as a natural consequence of
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this property.

E.1 Abstraction of privacy proof as showing an extractor property

Let ΠA : {0, 1}N → {0, 1}t be the projection function that maps a share vector to the t shares with
index set A ⊂ [N ] chosen by the non-adaptive adversary.

The first step of the abstraction is we interpret the combination of the projection function
Π and the SA-ECCenc : {0, 1}n+d → {0, 1}N (for any fixed randomness r) as the affine function
fA : {0, 1}d+n → {0, 1}ρn mentioned above. So the view of the adversary is simply the output of
the affine function fA = Π ◦ SA-ECCenc applied to a random variable tuple (Z,X) to be defined
below.

The second step of the abstraction is concerning how we obtain the random variable tuple
(Z,X). The sharing algorithm of the SSS (before applying the stochastic affine code) takes a secret,
which is a particular extractor output m ∈ {0, 1}m, and uniformly samples a seed z ∈ {0, 1}d of
Ext before uniformly finds an x ∈ {0, 1}n such that Ext(z, x) = m. This process of obtaining (z, x)

is the same as sampling (Ud, Un)
$← {0, 1}n+d and then restrict to Ext(Ud, Un) = m. In the rest of

the proof, we define the random variable tuple

(Z,X) := (Ud, Un)| (Ext(Ud, Un) = m) (8)

and refer to it as the pre-image of m.

We can now formulate the privacy of the SSS in this context. We want to prove that the
statistical distance of the views of the adversary for a pair of secrets can be made arbitrarily small.
The views of the adversary are the outputs of the affine function fA with inputs (Z,X) and (Z′,X′)
for the secret m and m′, respectively. It is sufficient to show that no affine function fA with t bits
output can distinguish the pre-images (Z,X) and (Z′,X′).

E.2 Proof of the property

We next prove a property of strong linear extractors. For the property to hold, we in fact only
need the extractor to be able to extract from affine sources. But since seeded extractors for general
sources with good parameters are not more difficult to construct than that for affine sources, we
state the property with a condition stronger than necessary.

Theorem 12. Let Ext : {0, 1}d × {0, 1}n → {0, 1}m be a strong linear (k, ε)-extractor. Let
fA : {0, 1}d+n → {0, 1}t be any affine function with output length t ≤ n − k. Let (Z,X) =
((Ud, Un)|Ext(Ud, Un) = m) and (Z′,X′) = ((Ud, Un)|Ext(Ud, Un) = m′) for any m,m′ ∈ {0, 1}m.
We have

SD(fA(Z,X); fA(Z′,X′)) ≤ 8ε.

Proof. Without loss of generality, we assume that the linear function Ext(·, z), for every seed z, has
the entire {0, 1}m as its image 3. Without loss of generality, it suffices to assume that fA is of the
form fA(Z,X) = (Z,W (X)) for some affine function W : {0, 1}n → {0, 1}t (this is because for any
arbitrary fA, the information contained in fA(Z,X) can be obtained from (Z,W (X)) for a suitable
choice of W ).

3If this condition is not satisfied for some choice z of the seed, there must be linear dependencies between the k
output bits of Ext(·, z). Therefore, for this choice Ext can never be an extractor and arbitrarily changing Ext(·, z) to
be an arbitrary full rank linear function will not change the overall performance of the extractor.
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Let D be the uniform distribution on the image of W . For the above pairwise guarantee to
hold, it suffices to show that for every fixed choice of m ∈ {0, 1}m, the distribution of fA(Z,X) is
(4ε)-close to Ud ×D, where Ud is the uniform distribution on {0, 1}d.

Let K ← {0, 1}n be a random variable uniformly distributed over the kernel of the linear
transformation defined by W , and note that it has entropy at least n − t ≥ k. The extractor Ext
thus guarantees that Ext(K,Z), for a uniform and independent seed Z, is ε-close to uniform. By
averaging, it follows that for at least 1 − 4ε fraction of the choices of the seed z ∈ {0, 1}d, the
distribution of Ext(K, z) is (1/4)-close to uniform. We now use the following claim:

Claim 1. Let U be uniformly distributed on {0, 1}m and U ′ be any affine source that is not uniform
on {0, 1}m. Then, the statistical distance between U and U ′ is at least 1/2.

Since Ext is a linear function for every seed, the distribution of Ext(z,K) for any seed z is an
affine source. Therefore, the above claim allows us to conclude that for at least 1 − 4ε fraction
of the choices of s, the distribution of Ext(z,K) is exactly uniform. Let G ⊆ {0, 1}d be the set of
such choices of the seed. Observe that if Ext(z,K) is uniform for some seed z, then for any affine
translation of K, namely, K + v for any v ∈ {0, 1}n, we have that Ext(z,K + v) is uniform as well.
This is due to the linearity of the extractor.

According to (8), the distribution (Z,W (X)) can be obtained as (Ud,W (Un))|(Ext(Ud, Un) = m).
We take two steps to get there. Step one, we find out the distribution (Ud,W (Un))|(Ext(Ud, Un) =
m, Ud = z) for a particular seed z (Proposition 2). Step two, the distribution we finally want is the
convex combination of the distributions obtained in Step one (Proposition 3).

Consider a uniformly distributed random variable M
$← {0, 1}m, and an independent and uni-

form Z
$← {0, 1}d. Let (Z,Y) be the pre-image of the random variable M and define the shorthand

W := W (Y). The rest of the proof is focus on the three random variables W, M and Z.

Proposition 2. Let z ∈ G and consider any m ∈ {0, 1}m. Then, the conditional distribution of
W|(Z = z,M = m) is exactly D.

Note that the distribution of (Z,Y) is uniform on {0, 1}d+n. Therefore, the distribution of
(Z,W) is exactly Ud ×D. In particular, for any z ∈ {0, 1}d, the conditional distribution W|(Z = z)
is exactly D.

Fix any z ∈ G and let w ∈ {0, 1}t be any element in the image of W . The conditional distribution
Y|(Z = z) is uniform over {0, 1}n and the conditional distribution Y|(Z = z,W = w) is uniform over
a translation of K. By the above argument, recalling M = Ext(Z,Y), we therefore know that the
conditional distribution of M|(Z = z,W = w) is exactly uniform over {0, 1}m. Since the conditional
distribution of W|(Z = z) is D, this means that the conditional distribution of (M,W)|(Z = z) is
exactly Um ×D. We have therefore proved Proposition 2.

Proposition 3. For any m ∈ {0, 1}m, the conditional distribution of (Z,W)|(M = m) is (4ε)-close
to Ud ×D.

It suffices to note that the distribution of (Z,W)|(M = m) is a convex combination of the
distributions (Z,W)|(M = m,Z = z) and then use the result of Proposition 2 along with the fact
that Pr[Z ∈ G] ≤ 4ε. A detailed derivation follows.

Recall that for any z ∈ {0, 1}d, the conditional distribution of W|(Z = z) is exactly D (since
Y|(Z = z) is uniform over {0, 1}n). Consider any event E ⊆ {0, 1}d+t and let p := Pr[(Z,W) ∈ E ].
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Since Z and W are independent, we have that

p = 2−d
∑

(z,w)∈E

D(w),

where D(w) denotes the probability assigned to the outcome w by D. On the other hand, we shall
write down the same probability in the conditional probability space M = m and show that it is
different from p by at most 4ε, concluding the claim on the statistical distance. We have

Pr[(Z,W) ∈ E|M = m] =
∑

(z,w)∈E

Pr[Z = z,W = w|M = m]

=
∑

(z,w)∈E,z∈G

Pr[Z = z,W = w|M = m] +
∑

(z,w)∈E,z/∈G

Pr[Z = z,W = w|M = m].

Note that

η :=
∑

(z,w)∈E,z/∈G

Pr[Z = z,W = w|M = m] ≤ Pr[Z /∈ G|M = m] ≤ 4ε,

since M and Z are independent. Therefore,

Pr[(Z,W) ∈ E|M = m] =
∑

(z,w)∈E,z∈G

Pr[Z = z,W = w|M = m] + η

= 2−d
∑

(z,w)∈E,z∈G

Pr[W = w|M = m,Z = z] + η (9)

= 2−d
∑

(z,w)∈E,z∈G

D(w) + η (10)

= 2−d
( ∑

(z,w)∈E

D(w)−
∑

(z,w)∈E,z/∈G

D(w)
)

+ η

where (9) uses the independence of X and S and (10) follows from Proposition 2. Observe that

η′ := 2−d
∑

(z,w)∈E,z/∈G

D(w) = 2−d
∑
z/∈G

∑
w :

(z,w)∈E

D(w) ≤ 2−d(2d − |G|) ≤ 4ε.

Therefore,

Pr[(Z,W) ∈ E|M = m] = p+ η − η′ = p± 4ε = Pr[(Z,W) ∈ E ]± 4ε,

since 0 ≤ η ≤ 4ε and 0 ≤ η′ ≤ 4ε. The claim follows.
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