
Decentralized Policy-Hiding Attribute-Based
Encryption with Receiver Privacy

Yan Michalevsky1 and Marc Joye2

1 Anjuna Security and Stanford University (USA)
2 NXP Semiconductors (USA)

Abstract. Attribute-based encryption (ABE) enables limiting access to
encrypted data to users with certain attributes. Different aspects of ABE
were studied, such as the multi-authority setting (MA-ABE), and policy
hiding, meaning the access policy is unknown to unauthorized parties.
However, no practical scheme so far provably provides both properties,
which are often desirable in real-world applications: supporting decen-
tralization, while hiding the access policy. We present the first practi-
cal decentralized ABE scheme with a proof of being policy-hiding. Our
construction is based on a decentralized inner-product predicate encryp-
tion scheme, introduced in this paper, which hides the encryption policy.
It results in an ABE scheme supporting conjunctions, disjunctions and
threshold policies, that protects the access policy from parties that are
not authorized to decrypt the content. Further, we address the issue of
receiver privacy. By using our scheme in combination with vector com-
mitments, we hide the overall set of attributes possessed by the receiver
from individual authorities, only revealing the attribute that the author-
ity is controlling. Finally, we propose randomizing-polynomial encodings
that immunize the scheme in the presence of corrupt authorities.

1 Introduction

Attribute-based encryption (ABE), first proposed by Sahai and Waters [26], ad-
dresses the need to provide fine-grained access control to data according to some
policy. In contrast to traditional public-key encryption, data is encrypted not
under a public key associated with the identity of the intended recipient, but
rather under a set of attributes that can be possessed by one or more entities.

This concept falls into the more general paradigm of functional encryp-
tion (FE) [6,25]. In functional encryption, a setup algorithm produces a matching
pair of public/secret keys (mpk ,msk). The master public key mpk enables any-
one to encrypt data and the master secret key msk enables its holder to issue
functional keys —for example, a secret key skf for a certain function f . Given
a ciphertext ct = Encrypt(mpk , x) of some message x, anyone who has skf can
obtain f(x). An important subclass of functional encryption is Predicate Encryp-
tion (PE) [7,17], and in particular Inner-Product Predicate Encryption (IPPE),
where data can be accessed if and only if the ciphertext ct and the key sk satisfy
a certain predicate P (sk , ct) (namely, orthogonality).

To illustrate ABE, suppose we want to encrypt data stored on the university
server such that it is accessible to anyone who “is a network administrator,
or a university student and is taking the class Introduction to Cryptography”.
In single-authority ABE, an authority associated with the university can be in
charge of verifying a user’s identity and providing a key that certifies all her
attributes. However, it is often impractical to rely on a single authority to verify
and certify all possible attributes. Continuing the previous example: different
university departments are in charge of protecting their own data independently,
while also being supported by the IT department. In this case a policy can be
“is network administrator or computer science department staff.” The university
IT and the computer science department are, in this case, two independent
authorities that verify and issue keys for their own attributes.

Multiple works addressed this issue, starting with the ones by Chase [9],
Chase and Chow [10], and Müller et al. [19] on multi-authority ABE, and fol-
lowing with a decentralized ABE scheme by Lewko and Waters [18]. This last
construction enables to encrypt a ciphertext under a general access structure,
while the corresponding secret keys are issued by independent authorities that
do not need to communicate with each other, or with any central authority, and
only refer to common parameters generated by a one-time trusted setup. Another
construction with similar properties is by Okamoto and Takashima [21].3

Those schemes, however, do not address the often desirable property of hid-
ing the encryption policy. Attribute-hiding means that the ciphertext policy is
protected and remains unknown under inspection of the ciphertext. There is a
weaker notion, called weakly attribute-hiding, which guarantees that the policy
is hidden from anyone but a party that is capable of decrypting the ciphertext;
i.e., information about it is leaked only upon successful decryption. It is impor-
tant to be able to hide the access policy since it can contain sensitive meta-data.
One example is messaging or emails addressed to a group of users with certain
attributes. In addition to protecting the content we may want to hide the target
group. In Appendix D, we show that an adversary can reveal the encryption
policy in Lewko-Waters’ scheme, even when it is not explicitly given. While it is
yet to be studied whether there is a policy inference attack on the scheme in [21]
or whether it can be proved to be weakly attribute-hiding for inner-products,
the paper neither claims, nor proves this property. In this work we set out to
provide this important property in a decentralized setting.

While we previously illustrated the use of decentralized ABE with a sim-
ple toy example, it has practical real-world applications. Prior work on multi-
authority ABE mentions supporting multiple authorities authorizing access to
DRM-protected content [19], where hiding the policy is important to protect
meta-data that can reveal potentially sensitive information about the content.
To mention another example, ABE has recently been explored in the context
of access-control for blockchains [23,24]. Indeed, in a blockchain setting, both

3 The full version of a paper published in PKC 2013 is mainly concerned with decen-
tralized attribute-based signatures; however, it proposes a decentralized ABE scheme
in Appendix E.

2

decentralization and policy protection are desirable. Attribute-based encryption
or signatures can be an extension of the näıve multi-signature implementations
in early blockchain-based crypto-currencies like Bitcoin [20], while policy-hiding
can serve to preserve the recipient’s privacy.

Our contributions. We propose a decentralized, policy-hiding ABE scheme that
supports several very useful classes of access policies. To the best of our knowl-
edge, this is the first practical scheme with a proof of the attribute-hiding prop-
erty. We instantiate ABE from a decentralized inner-product predicate encryp-
tion for which we provide a construction and a proof of security in the random
oracle model, under the k-linear assumption. The decryption procedure of the
underlying inner-product predicate scheme is very efficient, and requires only
a small number of pairing operations (as little as four when k = 2), indepen-
dent of the vector size. Based on it, we devise attribute-hiding multi-authority
ABE schemes supporting conjunctions, disjunctions, hidden-vector encryption,
and threshold policies. On top of that, we add receiver privacy, by preventing
individual authorities from knowing the full set of attributes possessed by the
recipient when issuing keys.

Achieving security for a decentralized inner-product PE is not trivial since
corrupt authorities can assist an adversary to satisfy the predicate by issuing
illegitimate keys for specific vector elements. We prevent it by proposing secure
policy encodings. This contribution is of independent interest, as it can be ap-
plied to any decentralized PE scheme, and is not particular to the construction
used in this paper. It is important to note that while [17] proposes several policy
encodings in terms of inner-product predicates, it is a single-authority scheme
that does not face the problems that arise in a decentralized setting with some
corrupt authorities. Our policy encodings specifically address this challenge, and
as such constitute a novel contribution.

Decentralization of a PE scheme, that is naturally single-authority, comes at
a certain price, and our scheme has two drawbacks: the first is that we require
each authority to publish a Diffie-Hellman public key that is visible to other
authorities, and the second is that a change of attributes on the receiver’s side
requires requesting new keys from all participating authorities and not only from
the one that controls the changed attribute. However, those are affordable in an
on-line setting where requesting a new key for an unchanged attribute may only
require presenting a certificate (or key) that has been previously obtained from
the authority.

Paper structure. In Section 2, we briefly present required preliminaries and state
our computational assumptions. In Section 3, we formally define decentralized
inner-product predicate encryption and the corresponding security game.

Section 3.3 describes an important enhancement to the key request proce-
dure, which relieves the receiver from disclosing all its attributes to each author-
ity. Section 4 explains how to turn the decentralized inner-product predicate
encryption into an attribute-hiding ABE scheme. In Section 5, we address the
presence of corrupt authorities, colluding with the adversary, by introducing

3

randomizing-polynomial encodings. We formally define the security game in this
new setting, and suggest several encodings that immunize the underlying predi-
cate encryption scheme from corrupt authorities. Finally, we state related prior
work and outline related open problems.

2 Background and Preliminaries

2.1 Inner-product predicate encryption

In a predicate encryption scheme, access to encrypted data is controlled by a
certain predicate defined over the attributes included in the ciphertext policy. In
particular, in inner-product predicate encryption, ciphertexts and secret keys are
associated with vectors. In order to decrypt, the secret key has to be associated
with a vector that is orthogonal to the vector associated with the ciphertext. The
works of Katz et al. [17] and Chen et al. [11] are examples of such cryptosystems.

2.2 Pairing groups

Let G be an algorithm that on input a security parameter λ generates three
groups G1 = 〈g1〉, G2 = 〈g2〉 and GT of prime order p, admitting a pairing
ê : G1 ×G2 → GT that has the following properties:

1. Bilinearity: for all a, b ∈ Z, ê(g1
a, g2

b) = ê(g1, g2)ab;
2. Non-degeneracy: ê(g1, g2) 6= 1.

We write (p,G1,G2,GT , ê) ← G(1λ). Groups G1 and G2 are called the source
groups while GT is called the target group.

2.3 Complexity assumptions

The Symmetric External Diffie-Hellman (SXDH) assumption states that the
DDH assumption holds in both source groups G1 and G2. Formally, we have:

Assumption 1 (SXDH) Given (p,G1,G2,GT , ê) ← G(1λ), there exists no
polynomial-time distinguisher that can decide with a non-negligible advantage be-
tween the distributions D0 = (g1, g2, g1

a, g1
b, g1

ab) and D1 = (g1, g2, g1
a, g1

b, g1
r)

where a, b, r
$← Zp, and symmetrically, exchanging the roles of G1 and G2, be-

tween the distributions D0 = (g1, g2, g2
a, g2

b, g2
ab) and D1 = (g1, g2, g2

a, g2
b, g2

r).

The SXDH assumption can be weakened using higher-rank matrices [13]. It
is useful to introduce some notation. For a1, a2, . . . , ak

$← Zp∗, consider

A =

a1 0 . . . 0
0 a2 0
...

. . .

0 0 ak
1 1 . . . 1

 ∈ Zp(k+1)×k and a⊥ =

a1
−1

a2
−1

...
ak
−1

−1

 ∈ Zp(k+1) .

4

Then, A
ᵀ
a⊥ = 0. We let Dk(Zp) denote the distribution induced by the previous

sampling.

Assumption 2 (k-Lin in G1) Given (p,G1,G2,GT , ê) ← G(1λ), there exists
no polynomial-time distinguisher that can decide with a non-negligible advan-
tage between the distributions D0 = (g1, g2, g1

A, g1
As) and D1 = (g1, g2, g1

A, g1
z)

where (A,a⊥)
$← Dk(Zp), s

$← Zpk, and z
$← Zpk+1.

The k-Lin assumption in G2 is defined similarly. By abuse of language, the k-Lin
assumption will refer to the k-Lin assumption in both G1 and G2.

3 Decentralized Inner-Product Predicate Encryption

Our goal is supporting a multi-authority setting, where keys for different at-
tributes can be requested from n independent authorities, that do not need to
communicate with each other or with a central authority. In inner-product pred-
icate encryption, keys are issued by a central authority, given a vector v, to
eligible parties. We decentralize the key generation algorithm, such that key-
parts are issued separately for different vector elements vi, by n independent
authorities. Without loss of generality, we assume that authority i issues keys
for attribute number i. Those key-parts are then combined to form a secret key
corresponding to the vector v = (v1, . . . , vn).

For simplicity, we first construct a scheme that is weakly attribute-hiding
in the absence of corrupt authorities. It is mostly useful as a stepping-stone, to
understand how, in combination with special policy encodings, it becomes secure
in the presence of corrupt authorities.

Definition 1. A decentralized inner-product predicate encryption scheme con-
sists of a tuple of PPT algorithms, (Setup,AuthSetup,KeyGen,Encrypt,Decrypt),
such that

– Setup takes as input the security parameter λ and outputs the master public
parameters pp.

– AuthSetup takes as input the public parameters pp and the authority index i,
and outputs the authority’s secret key SK i and public key PK i.

– KeyGen takes as input the master public parameters pp, the authority index i,
its secret key SK i, the public parameters {PK j}j 6=i of other authorities, a
user’s global identifier GID and the attribute vector v, and outputs a secret
key part sk i,GID,v.

– Encrypt takes as input the master public parameters pp, the public parameters
of the authorities {PK i}, the ciphertext policy vector x and a message M in
the message space, and outputs a ciphertext ct.
We express it as ct

$← Encryptpp(x,M).
– Decrypt takes as input the collection of obtained secret keys {sk i,GID,v}ni=1 and

the ciphertext ct, and outputs either the message M or the special symbol ⊥.
We express it as M ← Decrypt

(
{sk i,GID,v}, ct

)
.

5

For correctness we require that for all pp,x,v, sk i,GID,v:

Decrypt
(
{sk i,GID,v}ni=1,Encryptpp(x,M)

)
=

{
M if 〈x,v〉 = 0

⊥ otherwise

with all but negligible probability.
Definition 2 captures security in the absence of corrupt authorities.

Definition 2. A decentralized inner-product predicate encryption scheme is weakly
attribute-hiding, with respect to a set of attributes Σ, if for all PPT adversaries
A, the advantage of A in winning the following game against a challenger S is
negligible in the security parameter:

1. S runs Setup to generate pp and hands it to A.
2. S runs AuthSetup(pp, i) for each authority i, and gives {PKi} to A.
3. A may request keys for vectors v, indicating possession of attributes in Σ. In

response, S gives A the corresponding keys sk i,GID,v produced by KeyGenpp(i,
SK i,GID,v). GID is the global identifier of the requesting user; its role is
explained in Section 3.1.

4. A outputs two policy vectors x0,x1 and two equal-length messages M0,M1. S
checks that none of the previously queried attribute vectors v are orthogonal
to x0 or x1; i.e., 〈x0,v〉 6= 0 ∧ 〈x1,v〉 6= 0 for all previously requested v.
The challenger chooses a random bit b and gives A the ciphertext ct

$←
Encryptpp(xb,Mb).

5. A may request more keys for vectors v as they are not orthogonal to x0,x1.
6. A outputs a bit b′ and wins if b′ = b.

The advantage of A is defined as adv(A) =
∣∣Pr[b = b′]− 1

2

∣∣.
Note 1. The way attribute possession is encoded in the vector v is explained
further, when we discuss instantiations of ABE schemes using predicate encryp-
tion.

Definition 3 captures security in the presence of corrupt authorities. Here,
the adversary does not know x0,x1 explicitly, as opposed to Definition 2. It
provides the policies in the form of a boolean formula, or a threshold t-out-of-n
over a set of admissible attributes, or a matching pattern, etc.

Definition 3. We define a game between an adversary A and a challenger S:

1. S picks a random bit b ∈ {0, 1} and outputs the public parameters pp.
2. A outputs the set of corrupt authorities A?, and provides S with their public

parameters.
3. S runs AuthSetup for each one of the non-corrupt authorities, and gives the

public parameters to A.
4. A outputs two policies π0, π1 and two equal-length messages M0,M1. The

policies require attributes controlled by non-corrupt authorities, and must
agree on the attributes controlled by the corrupt authorities A?.

6

5. S outputs a challenge ciphertext ct
$← Encryptpp(xb,Mb), where xb is the

encoding vector of policy πb.
6. A generates key requests for the different authorities. S checks that the set

of attributes, controlled by the authorities for which a non-zero key has been
requested, cannot satisfy either of the two policies π0, π1.

7. A outputs a guess b′. If b′ = b it wins the game.

Definition 4 (Security). The scheme is secure (against static corruption of
authorities) if any PPT adversary A has only negligible advantage in winning
the game in Section 3 against a challenger S.

3.1 Collusion prevention and protection against corrupt authorities

A fundamental requirement from an ABE scheme is to prevent collusion be-
tween users. Let u1 and u2 be two users, possessing sets of key-parts K1,K2. K1

contains key-parts that enable obtaining a secret key to any v1 ∈ V1, and K2

contains key-parts that enable obtaining a secret key to any v2 ∈ V2. u1 and u2
must not be able to mix their key-parts in a way that gives them a secret key
to a new vector v such that v /∈ V1 and v /∈ V2. For example, to enforce the
policy “is a university student, and taking Introduction to Cryptography,” it is
not enough to secret share the message, and encrypt it under the public-keys of
the two authorities. Otherwise, two users having only one of the attributes each,
can collude to decrypt the ciphertext. Therefore, all works on multi-authority
ABE, including ours, address collusion prevention as one of the main challenges.

Prior works on multi-authority ABE [9,10,18] assign a global identifier (GID)
to each user. It is used to associate every secret key with an identity by incorpo-
rating it into the decryption keys issued by the authorities. In our setting, it is
not sufficient to restrict combination of keys to the same GID. Depending on the
policy encoding, we may have to ensure that keys are issued for a well-formed
attribute-vector v. For instance, in a threshold scheme, if a corrupt authority is-
sues a key for a value vi > 1, the user may be able to decrypt despite not having
sufficient attributes to satisfy the policy. For our basic scheme, we require the
user to supply its attribute vector v when requesting a key, and tie the issued
keys to the tuple (GID,v). This imposes the already mentioned requirement, on
part of the receiver, to update keys when attributes change.

We use hash functions H1(GID,v), . . . ,Hk+1(GID,v), modeled as random ora-
cles, to map (GID,v) to random elements. This ensures that different authorities
issue keys that correspond to some common parameter. As we show in Sec-
tion 3.3, we can replace the attribute vector with a commitment. The binding
property, in composition with the random oracle, guarantees that the authorities
issue keys for a common attribute vector. This modular combination enables us
to extend the scheme with receiver privacy, without changing the core construc-
tion or its proof of security.

Note that it does not prevent corrupted authorities from computing a key for
a different value than that appearing in v. However, in the absence of corrupted
authorities, it prevents an adversary from obtaining a key to an invalid attribute
vector, as well as collusion between multiple adversaries.

7

Minimal trust requirement. Given a set of l attributes (and l corresponding
controlling authorities), we require one special authority (we refer to it as the l+1
authority) to be trusted to issue keys only for vl+1 6= 0. Note that the authority
does not get to learn the policy, or the paylod. This requirement becomes clear
once we explain the way policies are encoded. It also ensures that no keys for
v = 0 are ever issued.

3.2 Construction

We build on the elegant predicate encodings framework by Chen and Wee [12],
and the single-authority ZIPE scheme by Chen et al. [11]. They use dual-system
groups instantiated with prime-order bilinear groups, based on the k-linear com-
putational hardness assumption. In particular, the choice of k = 1 corresponds to
the External Diffie-Hellman (XDH) assumption, and choosing k = 2 corresponds
to the decision-linear (DLIN) assumption. Essentially, we achieve decentraliza-
tion by substituting the randomness, chosen by the sender in their framework,
with a publicly computable hash function, modeled as a random oracle, that can
be computed by all parties. We also introduce masking terms that force the re-
ceiver to combine the key parts received from various authorities, prior to using
them in any way. We use a random oracle H : G2 × {0, 1}λ × Zpl+1 → Zpk+1,
to generate masking terms that depend on a combination of an authority, the
GID, and the attribute vector v (or a commitment to it). It is a simple way to
ensure that the receiver cannot use the key parts obtained from the different
authorities prior to combining them as specified in the construction. It implies a
requirement for certain minimal coordination between authorities. Each one of
them publishes a Diffie-Hellman public key, visible to the others. In this sense,
our scheme misses the desirable property of full-decentralization, that doesn’t
require any coordination between authorities whatsoever beyond referring to
common public parameters published on setup.

The scheme is as follows:

– Setup(λ): On input of a security parameter λ, the algorithm outputs (p, G1,
G2, GT , ê). Let g1, g2 be two generators of G1,G2 respectively. It picks a

random matrix A ∈ Zp(k+1)×k and a random matrix U ∈ Zp(k+1)×(k+1), and
publishes the public parameters

pp =
{
g1, g2, g1

A, g1
U

ᵀ
A
}

– AuthSetup(pp, i): The algorithm samples a random matrix Wi ∈ Zp(k+1)×(k+1),

a vector αi
$← Zpk+1 and a random σi ∈ Zp. The authority stores the secret

key SK i = {Wi,αi, σi} and publishes the public key

PK i =
{
g1

Wi
ᵀ
A, ê(g1, g2)α

ᵀ

iA, yi = g2
σi
}

– Encryptpp({PK i},x,m): Let x = (x1, . . . , xn) ∈ Zpn. The algorithm chooses

a random vector s ∈ Zpk and outputs the ciphertext C consisting of the

8

components

C0 = g1
As Ci = g1

(xiU
ᵀ
+Wi

ᵀ
)As

C ′ = m ·
n∏
i=1

ê(g1, g2)αi
ᵀ
As = m · ê(g1, g2)α

ᵀ
As

where α =
∑n
i=1αi.

– KeyGenpp({PKi},SK i,GID,v): The authority takes the public keys of all
other authorities, and computes a masking value µi ∈ Zp

µi =

i−1∑
j=1

H(yj
σi ,GID,v)−

n∑
j=i+1

H(yj
σi ,GID,v)

It is easy to check that
∑n
i=1 µi = 0.

We use H1(GID,v), . . . ,Hk+1(GID,v) to generate g2
h where h ∈ Zpk+1. Note

that the exponent h is unknown and is defined implicitly by the hash func-
tions. We denote

H(GID,v) =
(
H1(GID,v), . . . ,Hk+1(GID,v)

)T
The algorithm outputs the key sk i,GID,v which consists of

Ki = g2
αi−viWih+µi

– Decryptpp({sk i,GID,v},C,v): Compute

ê
(
C0,

∏n
i=1Ki

)
· ê
(∏n

i=1 Ci
vi ,H(GID,v)

)
= ê(g1, g2)α

ᵀ
As

and recover the message by computing

C ′/ ê(g1, g2)α
ᵀAs = m

Correctness. Let C =
(
C0, {Ci}ni=1, C

′) and {Ki := sk i,GID,v}ni=1 be as described
above. Then

ê
(
C0,

∏n
i=1Ki

)
· ê
(∏n

i=1 Ci
vi ,H(GID,v)

)
= ê(g1

As, g2
∑n
i=1 αi−viWih+µi) · ê(g1

∑n
i=1 vi(xiU

ᵀ
+Wi

ᵀ
)As, g2

h)

= ê(g1, g2)α
ᵀ
As−

∑n
i=1 vih

ᵀ
Wi

ᵀ
As · ê(g1, g2)〈x,v〉h

ᵀ
U

ᵀ
As+

∑n
i=1 vih

ᵀ
Wi

ᵀ
As

= ê(g1, g2)α
ᵀ
As · ê(g1, g2)〈x,v〉h

ᵀ
U

ᵀ
As

If 〈x,v〉 = 0, we obtain ê(g1, g2)α
ᵀ
As and can recover the message.

Note 2. Looking at the key format it is easy to see why this construction, in
general, requires the masking terms µi, and why their generation requires taking
v as input. Without it, an adversary can ask for keys corresponding to vi = 0

9

for ∀i = 1..n, obtaining g2
α. That, in turn, enables to decrypt any ciphertext

by pairing with C0. By examining the vector v, and tying the generated key to
it, the authorities ensure that the adversary doesn’t obtain a key to an all-zeros
vector (v = 0).

It also becomes clear why we need to trust the l+1 authority to refuse issuing
keys for vl+1 = 0. If that would have been the case, an adversary colluding with
a corrupt i-th authority would request keys from all other authorities presenting
v = ei in the request, while in fact obtaining a key for vi = 0 from the corrupt
authority. A formal proof of security is provided in Appendix B.

3.3 Receiver privacy

So far, the receiver has to provide its attribute vector v to each authority it
requests a key from. As a result, the authority learns not only whether the user
has the attribute which it controls, but also all other attributes it possesses. This
is an apparent violation of the user’s privacy in a decentralized setting.

We propose an enhancement that provides this additional privacy protection.
While we want to ensure consistency of the keys issued by different authorities,
and some properties of the vector they were issued for, we can avoid providing
v in the clear. We satisfy consistency and privacy using commitments. Proving
possession of attributes and certain properties of v is done by partial openings.

First, we propose to provide a vector c ∈ Zpn, consisting of one-bit Pedersen
commitments [22] to the values {vi}ni=1, instead of v itself, when requesting a key.
This method is useful when we do not use randomizing-polynomial encodings
(discussed in section 5) in the ciphertext, relying on honest authorities. In this
case, valid receiver attribute vectors are binary, consisting of 0 and 1 elements,
and authorities need to verify this property. This property is enforced by one-
bit Pedersen commitments, with each element checked by a different authority.
For encodings that require the receiver to request keys for arbitrary values,
generalized Pedersen commitments can be used. In both cases, the input to the
hash is the sequence of commitments.

Second, we propose to reduce the communication between the receiver and
the authority by compressing the commitment vector into a single value using an
accumulation technique. Catalano and Fiore [8] defined and constructed a Vector
Commitment scheme. It enables committing to an ordered sequence of values,
and later on opening the commitment in a certain position, proving that no
other value would have resulted in the previously supplied commitment. This is
called position-binding. The authors propose two different constructions —one
based on the Computational Diffie-Hellman assumption (CDH), and another
one based on the RSA assumption. Both constructions result in a constant size
commitment. A formal definition of a VC scheme and of the position-binding
property is provided in Appendix A.

We use it to hide the set of receiver attributes (v) from the authorities, while
guaranteeing that only key parts issued for the same v can be combined to a
valid key. Concretely, we use the vector commitment C as an input to the hash
functions H1, . . . ,Hk+1. To request a key from authority i, the receiver send

10

C, along with an opening in position i. The authority verifies the proof, and
generates the key using H(GID, C). Former security guarantees are maintained
by the fact that the commitment is binding, while attribute-privacy is achieved
by the fact that the commitment is hiding.

Application to our scheme. The modified Setup algorithm of our ABE scheme
uses VC.Setup in order to generate the public parameters for the vector com-
mitments. Prior to requesting keys, the user executes VC.Commit to produce a
commitment C to v. Upon requesting a key-part from authority i, it executes
VC.Open to produce a proof Pi for the value at the i-th position, and supplies
C and Pi along with the key request. The authority runs VC.Verify to verify the
proof against the commitment C, and uses H(GID, C) to generate the key.

Security. We argue that an adversary cannot mix-and-match keys issued for
different attribute vectors. Since the commitment to the vector is binding, the
adversary is unable, except with negligible probability, to find two inputs that
would yield the same commitment. Therefore, every unique attribute vector
results in a different input to the random oracle that is used by KeyGen.

4 Decentralized Policy-Hiding ABE

We use the constructed inner-product predicate encryption to build policy-hiding
multi-authority ABE. The näıve encodings are simple, assuming the authorities
are trusted to issue keys as specified below. In the following, we explain how
the sender encodes the policy, and how the receiver issues key requests to the
authorities.

We begin with describing how to build an attribute-based encryption from
inner-product predicate encryption. We use an inner-product predicate encryp-
tion scheme as a building block, and demonstrate encodings for conjunctions,
threshold policies, and hidden-vector encryption (HVE).

Exact threshold ABE. Let A = {1, . . . , l} be the enumeration of all supported
attributes. Let S be the subset of attributes in the ciphertext policy. Let S′ be the
subset of attributes possessed by a party attempting to decrypt the ciphertext.
We require that it would be possible for a party to decrypt the ciphertext if it
possesses exactly t of those attributes; i.e., if |S ∩ S′| = t.

We instantiate a l+1 dimensional inner-product predicate encryption scheme.
To encrypt a messages under such policy we construct a vector x ∈ Zl+1

p as
follows

1. Set the first l entries such that xi =

{
1 i ∈ S
0 i 6∈ S

2. Set the l + 1 entry to −t; i.e., xl+1 = −t (mod p)

and output the ciphertext CTx = EncryptPK (x,M). To obtain a decryption key
for the attributes in S′, the receiver constructs a vector v ∈ Zl+1

N as follows

11

1. Set the first l entries such that vi =

{
1 i ∈ S′

0 i 6∈ S′

2. Set the l + 1 entry to 1; i.e., vl+1 = 1

and execute GenKey (v) to obtain SKv. Since |S ∪ S′| = t we have exactly t
matching entries with the value 1 that cancel out with −t, yielding 〈x,v〉 = 0,
thereby satisfying the predicate and enabling decryption.

This encoding is only secure in the absence of corrupt authorities. An adver-
sary, that does not have enough required attributes to satisfy the policy, may
collude with a corrupt authority and ask it to provide it with a key for a value
vi > 1 such that 〈v,x〉 = 0. In Section 5 we suggest another, less straightforward
encoding, that immunizes the scheme against corrupt authorities that are willing
to generate keys for arbitrary values.

Threshold ABE. A general threshold algorithm requires l − t+ 1 invocations of
the exact threshold decryption in the worst case, or O (l) invocations if t is small
compared to l. The receiver starts with the subset of its first t attributes, denoted
S′t and constructs the corresponding vector vt. It requests the corresponding
secret key, and attempts decryption. If decryption fails, it knows that it did
not hit the exact threshold of common attributes. It adds another attribute,
forming the set S′t+1, and constructs the corresponding vector vt+1. Once again,
it requests the corresponding secret key and attempts to decrypt. It continues
until it hits the exact threshold, or until all possessed attributes are included.

Corrupt Authorities. Matters become more complicated in the presence of cor-
rupt authorities colluding with the adversary. In case the encryption policy in-
cludes an attribute controlled by a corrupted authority, the adversary can use it
to issue a secret key for any value vi and break the näıve construction.

Let us consider a threshold-policy t-out-of-n, and let the sender include at-
tribute i in the ciphertext policy; i.e., xi = 1. If the adversary has some prior
knowledge that this attribute is included in the ciphertext policy, it can re-
quest a key component corresponding to vi = t. Then it combines it with key
components corresponding to vj = 0 for all j 6= i and the key component corre-

sponding to the threshold entry vl+1 = 1. In the inner product,
∑l
i=1 xivi = t

and xl+1vl+1 = −t cancel out, resulting in 〈x,v〉 = 0 and thus successful de-
cryption despite not possessing enough attributes. The attack stems from the
ability to request key components for arbitrary inputs.

The l + 1 authority has to be honest since it controls the threshold setting.
If this authority is corrupt, it can issue a secret key component corresponding
to a lower (or a zero) threshold - a condition that is much easier (or trivial) for
the adversary to satisfy.

In Section 5, we propose a threshold encoding that is secure in the presence of
corrupt authorities. However, this scheme, while more restrictive, requires linear
decoding time, and in certain cases may be preferable to the scheme in Section 5.

12

Conjunctions. Conjunctions are an important class of policies that state that
the receiver must possess a certain set of attributes in order to decrypt the
message. They are one of the most useful policies in real-world scenarios, since
access policies would often specify a combination of several properties that the
receiver must have. Suppose we have a total set of attributes Σ, indexed from 1
to l, and we require possession of a subset S. We encode it as a vector x ∈ Zl+1

p

as follows:

1. Set the first l entries such that xi =

{
ri

$← Zp i ∈ S
0 i 6∈ S

2. Set the l + 1 entry to −
∑l
i=1 ri (mod p).

Given the receiver’s set of attributes R, the vector v is set as follows:

1. Set the first l entries such that vi =

{
1 i ∈ R
0 i 6∈ R

2. Set the l + 1 entry to 1

We set the elements corresponding to attributes in S to random values, and
the last element to minus their sum. Thus, an inner-product with a vector that
has 1-s in all indices corresponding to the required attributes, yields 0, resolving
the policy, as illustrated below:

v1 v2 v3 . . . vl vl+1

1 1 0 . . . 0 1
· x1 x2 x3 . . . xl xl+1

r1 r2 0 . . . 0 −(r1 + r2)
= 0

Note that in this case the encoding itself immunizes the scheme against corrupted
authorities. Normally, an honest authority should only issue keys for values vi =
0 or vi = 1, indicating absence or possession of attribute i. However, a corrupt
authority can provide an adversary with a key issued for an adversarially chosen
value vi, in an attempt to satisfy the policy without actually having all necessary
attributes. By encoding the required attributes using randomly sampled ri-s over
a large field, we provide information theoretic security against an attempt to
craft a key by adversarially picking a value vi that would result in a zero inner-
product. Security of this encoding is captured by Definition 3. It readily follows
from the probability that the adversary correctly guesses which value it should
craft to cancel out the last entry, which is negligible (1

p).

Hidden-Vector Encryption. Hidden-Vector Encryption (HVE) was first in-
troduced by Boneh and Waters [7]. Given a set of attributes Σ, let Σ∗ = S∪{∗},
and the HVE predicate is

Phvea1,...,al
(x1, . . . , xl) =

{
1 ∀i : ai = xi ∨ ai = ∗
0 otherwise

.

Simply put, this is a pattern matching on an input, where ai = ∗ denotes a wild-
card (“don’t care”), indicating that at position i, the input vector is allowed to

13

have an arbitrary value. For l attributes, we need to use vectors of size l+1. The
ciphertext policy vector is constructed by sampling l random values ri

$← Zp,
and setting

xi =

{
ri Xi 6= ∗
0 Xi = ∗

: ∀i = 1..l and xl+1 = −
l∑
i=1

riXi (mod p) .

The receiver attribute vector is given by

vi =

{
ai i ∈ S
0 i 6∈ S

: ∀i = 1..l

where S is the set of attributes possessed by the receiver, and vl+1 = 1.
As in the encoding for conjunctions, this encoding is secure even in the pres-

ence of corrupt authorities. The proof of security is similar to the one for con-
junctions.

5 Randomizing-Polynomial Encodings

We propose encoding policies using polynomials with random coefficients as a
way to protect the scheme against corrupt authorities that extend the adversary’s
degrees of freedom in obtaining keys. Specifically, a corrupt authority i enables
the adversary to obtain a key-part Ki corresponding to an arbitrary value vi,
instead of being limited to 0 or 1.

By weak attribute-hiding, the adversary cannot infer the vector x used to
encode the access policy. The sender generates a randomized multivariate poly-
nomial P expressing the policy, and sets xi to its coefficients, and xl+1 =
±P (0, . . . , 0), depending on the policy type.

The receiver does not know the polynomial, and in order to obtain 0 it
has to evaluate P at (0, . . . , 0). It requests keys from the authorities for either
0 (when it doesn’t have the corresponding attribute), or some non-zero value
depending on the type of encoded policy (in case it has the attribute). The
l + 1 authority is special in that it only issues a key for vl+1 = 1. Attempting
reconstruction using any other coefficients would result in a non-zero inner-
product with high probability. In the following, we specify concrete encodings
and receiver procedures for several useful access policies.

5.1 Examples of encodings for different policies

Threshold policy. Let S be the set of attributes that are considered admissible
by the sender (out of the total l attributes), and n = |S|. To implement a
threshold policy t-out-of-n (n ≤ l), the sender samples t random coefficients
ai

$← Zp that define a monic polynomial P (x) of degree t:

P (x) = xt + at−1x
t−1 + · · ·+ a1x+ a0 (mod p)

14

The sender generates n shares of P at publicly known points {zi : i ∈ S} and
sets

xi =

{
P (zi) i ∈ S
0 i 6∈ S

: ∀i = 1..l and xl+1 = −P (0) = −a0

For example, a ciphertext policy vector can be

x1 x2 x3 . . . xl xl+1

P (z1) P (z2) 0 . . . P (zl) −P (0)

The receiver computes Lagrange polynomials λi at 0, using {zi} corresponding
to a subset of t attributes in its possession, and requests the corresponding keys
from the attribute authorities:

vi =

{
λi i ∈ S
0 i 6∈ S

: ∀i = 1..l and vl+1 = 1

The decryption procedure effectively performs Lagrange interpolation in the ex-
ponent, over the shares encoded in the ciphertext. If decryption fails, we form
another subset of t attributes, recompute the Lagrange polynomials and request
the corresponding keys, and retry decrypting. The receiver repeats this until it
succeeds, or until it used all attributes in its possession. A receiver that is not
able to decrypt does not learn the set of admissible attributes S. A drawback
of this method, is that it requires attempting O

(
l
t

)
≤ lt attribute subsets. It is

polynomial in the overall number of attributes, and exponential in the threshold
parameter. Hence, it is practical for small thresholds.

CNF and DNF formulas. Boolean CNF and DNF formulas can be repre-
sented by multivariate polynomials. We illustrate it with a simple example using
three attributes A1, A2 and A3. Any policy over this attribute set can be ex-
pressed using a polynomial in three variables x, y, z. In the general CNF case,
the polynomial can have the terms xyz, xy, xz, yz, x, y, z and a free coefficient.
Some terms may have a zero coefficient. For example, consider the CNF formula
(A1 ∨A2) ∧A3, which can be expressed as

P (x, y, z) = r1(x− 1)(y − 1) + r2(z − 1) = r1xy − r1x− r1y + r2z + (r1 − r2)

The corresponding ciphertext policy vector is given by

x1 x2 x3 x4 x5 x6 x7 x8
x y z xyz xy xz yz P (0, . . . , 0)
−r1 −r1 r2 0 r1 0 0 r1 − r2

Regular authorities, controlling actual attributes, are responsible for issuing
the keys corresponding to the terms x, y and z. In addition, special authorities
are responsible for issuing keys corresponding to the cross-terms xyz, xy, xz, yz

15

and the free coefficient. The authority corresponding to the free coefficient only
issues keys for vl+1 = 1. The trusted authorities, given v, enforce that the values
requested for the cross-terms are consistent with those requested for x, y and z.

The policy above can be written in its DNF form, namely (A1∧A3)∨ (A2∧A3),
which can be expressed as

P (x, y, z) = [r1(x− 1) + r3(z − 1)] · [r2(y − 1) + r3(z − 1)]

and encoded in a similar manner to the CNF representation.
Note that the encodings for CNF and DNF formulae can be seen as a random-

ized version of the encodings in [17]. Also, note that the authorities responsible
for the cross-terms learn sensitive information about the attributes possessed by
the receiver. To verify the values requested for the the cross-term, these authori-
ties need to see the relevant inputs. It is possible to improve receiver privacy using
commitments to the input values, and a zero-knowledge proof of the requested
value being equal to the output of the corresponding boolean circuit. However,
the cross-term value itself reveals considerable information and narrows down
the solution space for possibile inputs.

5.2 Security of Randomizing-Polynomial Encodings

Essentially, security of randomizing-polynomial encodings relies on the negligible
probability (1

p) that the adversary crafts an attribute vector v′ that is different
from a valid attribute-vector satisfying the policy. With overwhelming probabil-
ity, this reduces to the security of the underlying basic scheme. The formal proof
of security is the same as for conjunctions and HVE, and is given in Appendix C.

6 Related Work

ABE in a multi-authority setting was initially studied by Chase [9], who proposed
to to prevent collusion by incorporating a global user identifier into the key-
generation procedure. Further improvements were proposed by Müller et al. [19]
and Chase and Chow [10]. A fully decentralized scheme was proposed by Lewko
and Waters [18]. Those constructions do not hide the encryption policy.

Agrawal et al. constructed an inner-product PE [2] and a Fuzzy-IBE [1] based
on the learning-with-errors assumption (LWE). Lattice-based constructions often
naturally hide the encryption policy, and it would be interesting to construct a
decentralized scheme, based on LWE. Katz et al. introduce a zero-inner-product
PE scheme that is fully-hiding [17], meaning the policy remains hidden even for
a receiver who can decrypt the ciphertext.

The notion of vector commitments is related to cryptographic accumulators,
first introduced by Benaloh and de Mare [4]. Accumulators are compact repre-
sentations of a set of values, enabling to verify that a given element was used to
compute the representation. As an alternative to the VC scheme we used, vector
commitments can also be constructed using commitments to polynomials [16],
by setting the polynomial coefficients to the vector elements.

16

Wichs and Zirdelis [28] and Goyal et al. [14], independently introduced Lock-
able Obfuscation for Compute-and-Compare programs, based on LWE. A corol-
lary of lockable obfuscation is a transformation of any ABE scheme into one
that is weakly attribute-hiding. However, it requires obfuscating a circuit cor-
responding to the decryption procedure of the underlying ABE scheme. This is
highly impractical for the currently known multi-authority ABE schemes, and
is not nearly as efficient as our direct construction. However, it is worth men-
tioning that those constructions theoretically solve the problem of decentralized
policy-hiding ABE in a setting where the authorities don’t need to know each
other at all, and only refer to common public parameters.

Okamoto and Takashima constructed a decentralized ABE scheme, where
the authorities do not need to be aware of one-another [21]. Their work claims
payload-hiding, but not policy-hiding, and it is left to be studied whether their
decentralized scheme can be proven weakly-hiding for the case of inner-product
policies. In addition, our scheme enjoys a ciphertext that is at least two times
shorter in the number of group elements, and a decryption algorithm that in-
volves only a small constant number of pairings instead of a number proportional
to the vector size. Our scheme, however, requires the authorities to publish pub-
lic keys that are visible to the other authorities, whereas the scheme in [21] does
not require any coordination between authorities except for referring to the same
public parameters.

7 Future work

Our schemes require coordination between the authorities during setup, namely,
advertising public keys to compute the mutually canceling masking terms µi.
It implies that receivers have to reissue key-requests to all authorities, once the
overall set of supported attributes has changed. The desirable level of decen-
tralization is that of the decentralized ABE schemes in [18] and [21], where the
authorities do not need to be aware of each other at all. The only link is their
referral to common public parameters. Constructing such a fully-decentralized
ABE scheme that is proven to be policy-hiding remains an open problem.

Another desirable property is strong attribute-hiding, meaning that the en-
cryption policy remains hidden even from receivers that are authorized and ca-
pable of decrypting the message. Such strong hiding is provided in a single-
authority setting by the inner-product predicate encryption scheme of Katz et
al. [17]. Finally, building on inner-product PE limits us to the types of poli-
cies that can be expressed inner-products. Supporting more general policies like
linear span programs is highly desirable.

8 Conclusion

We address the problem of decentralized attribute-hiding attribute-based en-
cryption. Starting off the work of Chen et al. [11], we constructed a decentralized

17

inner-product predicate encryption scheme. We use it to instantiate a decentral-
ized ABE scheme that hides the ciphertext policy, and show that, in the presence
of corrupted authorities, it is not enough to prove security of the underlying PE
scheme, but also to properly encode policies. We provide encodings for multiple
useful policies. Finally, we propose an extra measure to protect receiver privacy,
by using commitments to the attribute vector.

References

1. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional en-
cryption for threshold functions (or fuzzy ibe) from lattices. In: Fischlin, M., Buch-
mann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer,
Heidelberg (May 2012)

2. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for in-
ner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (Dec 2011)

3. Barthe, G., Danezis, G., Grégoire, B., Kunz, C., Zanella-Beguelin, S.: Verified com-
putational differential privacy with applications to smart metering. In: Computer
Security Foundations Symposium (CSF), 2013 IEEE 26th. pp. 287–301. IEEE
(2013)

4. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative
to digital sinatures (extended abstract). In: Helleseth, T. (ed.) EUROCRYPT’93.
LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (May 1994)

5. Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving
aggregation of time-series data. ACM Trans. Inf. Syst. Secur. 18(3), 10:1–10:21
(Apr 2016)

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(Mar 2011)

7. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (Feb 2007)

8. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(Feb / Mar 2013)

9. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (Feb 2007)

10. Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority
attribute-based encryption. In: Al-Shaer, E., Jha, S., Keromytis, A.D. (eds.) ACM
CCS 09. pp. 121–130. ACM Press (Nov 2009)

11. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part II. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (Apr 2015)

12. Chen, J., Wee, H.: Dual system groups and its applications — compact HIBE and
more. Cryptology ePrint Archive, Report 2014/265 (2014), http://eprint.iacr.
org/2014/265

13. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework
for Diffie-Hellman assumptions. Journal of Cryptology 30(1), 242–288 (Jan 2017)

18

http://eprint.iacr.org/2014/265
http://eprint.iacr.org/2014/265

14. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: 58th FOCS. pp.
612–621. IEEE Computer Society Press (2017)

15. Halevi, S.: A sufficient condition for key-privacy. Cryptology ePrint Archive, Report
2005/005 (2005), http://eprint.iacr.org/2005/005

16. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomi-
als and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 177–194. Springer, Heidelberg (Dec 2010)

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. Journal of Cryptology 26(2), 191–224 (Apr
2013)

18. Lewko, A.B., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(May 2011)

19. Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption.
In: Lee, P.J., Cheon, J.H. (eds.) ICISC 08. LNCS, vol. 5461, pp. 20–36. Springer,
Heidelberg (Dec 2009)

20. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Consulted pp. 1–9
(2008), http://s.kwma.kr/pdf/Bitcoin/bitcoin.pdf

21. Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. Cryptology
ePrint Archive, Report 2011/701 (2011), http://eprint.iacr.org/2011/701

22. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (Aug 1992)

23. Rahulamathavan, Y., Phan, R.C.W., Rajarajan, M., Misra, S., Kondoz, A.:
Privacy-preserving blockchain based IoT ecosystem using attribute-based encryp-
tion. In: IEEE International Conference on Advanced Networks and Telecommu-
nications Systems. Odisha, India (Dec 2017)

24. Roberts, F.: UK/India consortium explore blockchain for healthcare IoT security.
https://internetofbusiness.com/consortium-blockchain-iot-security/

25. Sahai, A., Waters, B.: Slides on functional encryption. PowerPoint pre-
sentation (2008), http://www.cs.utexas.edu/~bwaters/presentations/files/

functional.ppt

26. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (May
2005)

27. Shi, E., Chan, T.H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving ag-
gregation of time-series data. In: NDSS 2011. The Internet Society (Feb 2011)

28. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: 58th FOCS. pp. 600–611. IEEE Computer Society Press (2017)

A Vector Commitments

A vector commitment scheme consists of the following algorithms:

– VC.Setup(1λ, n): On input of a security parameter λ and the vector size n,
output the public parameters pp which implicitly define the message space
M.

19

http://eprint.iacr.org/2005/005
http://s.kwma.kr/pdf/Bitcoin/bitcoin.pdf
http://eprint.iacr.org/2011/701
https://internetofbusiness.com/consortium-blockchain-iot-security/
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

– VC.Commitpp(v): On input the public parameters and a sequence of values
v = (v1, . . . , vn), where v1, . . . , vn ∈ M, output a commitment string C and
auxiliary information aux. The auxiliary information is simply a vector of the
underlying hiding per-element commitments.

– VC.Openpp(v, i, aux): Run by the committer (that requests the keys in our
setting) to produce a proof Pi that v is the i-th committed value.

– VC.Verifypp(C, v, i, Pi): Outputs true only if Pi is a valid proof that C was
created to a sequence of values v1, . . . , vn s.t. vi = v.

Definition 5 (Position-Binding). A vector commitment scheme VC is position-
binding if ∀i = 1, . . . , n and for every efficient adversary A, A has negligible
probability of producing a tuple (C, v, v′, i, P, P ′) where v 6= v′ s.t.

VC.Verifypp(C, v, i, P) ∧ VC.Verifypp(C, v
′, i, P ′)

While position-binding ensures that only key-parts issued for the same vector
v can be combined to obtain a functional decryption key, we require the vector-
commitment scheme to be hiding. Note that the vector commitment scheme is
hiding only when composed with a standard commitment scheme to generate a
hiding commitment for each element, that are in turn input to the vector com-
mitment scheme. As suggested in [8], we combine the generic VC scheme with a
hiding commitment scheme. Depending on whether valid attribute vectors con-
tain only 0 and 1 or arbitrary values, we can use Pedersen’s one-bit commitment
scheme [22] or generalized Pedersen commitments.

B Proof of Security for the Construction in Section 3.2

We prove that the scheme in section 3 is weakly attribute-hiding, according to
Definition 2, under Assumption 2.

Proof intuition. We define a sequence of games, starting with the actual
scheme and ending up with a challenge ciphertext that encodes a random mes-
sage using a random predicate vector. We argue that the games are indistin-
guishable to the adversary, concluding that the scheme is attribute-hiding. The
transition between the hybrids is based on switching to “semi-functional” keys,
and a “semi-functional” challenge ciphertext that cannot be decrypted using
those keys, and looks uniformly random to the adversary.

A semi-functional ciphertext is one where instead of As in the exponent,
we have a random vector z ∈ Zpk+1. A semi-functional key is one where α is

replaced by α + a⊥t̂ (t̂ ∈ Zp and h = Br, where r ∈ Zpk). It is easy to check
that a semi-functional key cannot decrypt a semi-functional ciphertext. That, in
turn, enables us to switch from a game where an actual message m is encrypted
under an actual policy vector x, to one where a random message m′ is encrypted
under a random policy vector x?. This sequence is similar to the one in the proof
of the weak attribute-hiding scheme in [11], with certain additions, modifications
and reordering of games.

20

For simplicity, we use the fact that the terms g2
µi are random in (G2)n, in

the adversarial view, as long as there are at least 2 honest authorities, unless
canceled by summation in the exponent. In fact, the key combining is similar to
the technique for privacy-preserving aggregation, as proposed by Shi et al. [27].
We can therefore refer to their security proof to justify this step. Barthe et al. [3]
also used a similar technique in their privacy-preserving aggregation protocol.
A tighter security reduction, linear in the number of adversarial queries, can be
achieved using Smooth Projective Hash Functions (SPHF), as in [5].

As a result, Ki are only useful as a product K =
∏n
i=1Ki. Therefore, we

prove the security of a scheme where the challenger computes K directly and
hands it to the adversary, since it can always split it to n random shares in G2.
It is easy to show that if there is an efficient adversary A that wins the game
in Definition 2 against S ′, S ′ can use it to win the modified game against S.
When A requests a key for (GID, i,v), S ′ asks S for a key for the whole vector
v, splits it to random multiplicative shares, and serves the correct share to A.
It can later use the other shares for subsequent requests corresponding to the
same GID and v. It is therefore enough to prove security of this modified game.

Notation. Throughout the proof, we denote α =
∑n
i=1αi. When a⊥ and b⊥

are used, they are assumed to be chosen such that ATa⊥ = 0 and BT b⊥ = 0.

Game Sequence. We outline the sequence of games:

– Game0 is the real security game as in Definition 2.
– Game1 is the same as Game0, except that the random oracle queries are an-

swered in the following way: the challenger picks a random r ∈ Zkp and com-

putes h = Br. It stores the value gh2 to answer future queries with the same
input, and returns it to the adversary.

– Game2,j,1 is the same as Game1, except that the challenger samples A, a⊥ s.t.
ATa⊥ = 0, B, b⊥ s.t. BT b⊥ = 0 and a random t̂ ∈ Zp, and the key queries are
answered as follows:
• The first j − 1 keys are given by

K = g
α+a⊥ t̂−

∑n
i=1 viWih

2

where h is constructed as in Game1, i.e. by picking a random r and com-
puting h = Br.
• The j-th key is given by

K = g
α−

∑n
i=1 viWih

2

where h is constructed by sampling random r ∈ Zkp and r̂ ∈ Zp, and

computing h = Br + a⊥r̂.
• The last q − j keys are constructed as

K = g
α−

∑n
i=1 viWih

2

where h is in the span of B, i.e. h = Br for some random r ∈ Zkp.

21

Note that adversarial random oracle queries are answered in the same manner.
If the adversary queries for a given input v, h is constructed according to
the current query counter. When a key for the same input is requested, the
challenger will reuse the stored value of h, and in addition use α or α+ a⊥t̂
according to the query counter value at the time of querying the random
oracle.

– Game2,j,2 is the same as Game2,j,1, except that the j-th key query is answered
by picking random r ∈ Zkp and r̂ ∈ Zp and outputting

K = g
α+a⊥ t̂−

∑n
i=1 viWih

2

where h = Br + a⊥r̂.
– Game2,j,3 is the same as Game2,j,2, except that the first j key queries are

answered by picking random r ∈ Zkp and outputting

K = g
α+a⊥ t̂−

∑n
i=1 viWih

2

where h = Br. Note that Game2,0,3 is exactly the same as Game1.
– Game3 is the same as Game2, except that the challenge ciphertext is semi–

functional. It is constructed by picking a random z
$← Zk+1

p and generating

C0 = gz1 C1,i = g
(xb,iU

T+WT
i)z

1 C ′ = m · ê(g1, g2)α
T z

where α =
∑n
i=1αi.

– Game4 is the same as Game3 except that the challenge ciphertext is a semi–
functional encryption of a random message in GT .

– Game5 is the same as Game4, except that the predicate vector xb is replaced
by a random vector x?

$← Znp .

In Game5 the adversarial view is statistically independent of the challenger’s
choice of b, and the adversary has no advantage in winning the game.

Lemmas about indistinguishability between the subsequent games and their
proofs are provided below.

The condition that the adversary cannot ask for keys corresponding to v
s.t. 〈xb,v〉 = 0 is necessary for the transition to games 2, j, 1 and on. The
semi-functional keys can decrypt any self-produced ciphertext. However, they
cannot be successfully applied to the semi-functional challenge ciphertext. Had
the adversary been allowed to ask for a key corresponding to a set of attributes
that satisfy the policy, it would have been able to distinguish the two games, by
the success or failure of the challenge decryption.

Key-Privacy. Key-privacy in Game4 can also be argued based on Halevi’s suf-
ficient condition for key-privacy [15]. It states that data privacy provides key
privacy if the distribution of a random encryption of a random message is inde-
pendent of the public key. While in Game0 (the actual scheme) the encryption is

not independent of the public-key gA1 , {g
WT
i A

1 }ni=1, the semi-functional challenge

22

ciphertexts in subsequent games are independent of it, since a random z is used
instead of As. Hence, key-privacy follows readily from Halevi’s condition being
satisfied by the semi-functional encryption of a random message in Game4.

In the following we provide proofs of indistinguishability between the subsequent
games defined previously.

Lemma 1 (Indistinguishability of Game0 and Game1). For any adversary
A that distinguishes between the two games with a non-negligible advantage,
there exists S that has a non-negligible advantage in solving the k-linear decision
problem in G2, i.e.

|Adv0(λ)−Adv1(λ)| ≤ Advk−LinS (λ)

Proof. S receives an instance of a k-linear decision problem gB2 and gh2 , where h
is either Br for some random r ∈ Zkp or random in Zk+1

p . The public parameters,
authority public keys and challenge ciphertext are constructed as in the actual
scheme. The key queries are answered by computing

K = gα2 ·
n∏
i=1

(gh2)−viWi = g
α−

∑n
i=1 viWih

2

When h ∈ span(B) the keys and random oracle responses are distributed exactly
as in Game1, whereas in the other case the distribution is exactly as in Game0.
By the k-linear assumption, A has only negligible advantage in distinguishing
between the two.

Lemma 2 (Indistinguishability of Game2,j−1,3 and Game2,j,1). For j =
1, .., q, for any adversary A that makes at most q key queries, and distinguishes
between the two games with a non-negligible advantage, there exists S that has
a non-negligible advantage in solving the k-linear decision problem in G2, i.e.

|Adv2,j,1(λ)−Adv2,j−1,3(λ)| ≤ Advk−LinS (λ)

Proof. S receives an instance of a k-linear decision problem gB2 and gh2 where h
is either equal to Bt for some t ∈ Zkp or uniform in Zk+1

p .

Setup. S picks random αi ∈ Zk+1
p , a random t̂ ∈ Zp, random A, a⊥,Wi, U as

in the actual scheme, and publishes the public parameters gA1 , g
UTA
1 and the

authority public keys g
WT
i A

1 and ê(g1, g2)α
T
i A.

Key Queries. On input of the m-th key query, S outputs

K =

g
α+a⊥ t̂−

∑n
i=1 viWiBr

2 m < j

g
α−

∑n
i=1 viWih

2 m = j

g
α−

∑n
i=1 viWiBr

2 m > j

where r
$← Zkp.

23

Ciphertext. The challenge ciphertext is constructed by picking a random s ∈ Zsp
and computing

C0 = gAs1 C1,i = g
(xb,iU

T+WT
i)As

1 C ′ = mb · ê(g1, g2)α
TAs

When h ∈ span(B) the keys are distributed exactly as in Game2,j−1,3, whereas
in the other case they are distributed as in Game2,j,1, By the k-linear assumption
A has only non-negligible advantage in distinguishing between the two cases.

Lemma 3 (Indistinguishability of Game2,j,1 and Game2,j,2). For j = 1, .., q,
any adversary A that makes at most q key queries, has no advantage in distin-
guishing between the two games, i.e.

|Adv2,j,1(λ)−Adv2,j,2(λ)| = 0

Proof. 4 The difference between the two games is that in the latter we multiply

the j-th key by ga
⊥ t̂

2 where t̂ is sampled randomly from Zp by S. On the j-th
query S is given the vector v for which the adversary requests a key, and it
performs the following change of variables:

W ′i =

{
Wi + (via

⊥T b⊥)
−1
a⊥b⊥

T
vi 6= 0

Wi vi = 0

The distributions of Wi and W ′i are clearly identical. We can see that had the
ciphertexts and authorities’ public keys been generated using W ′i instead of Wi,
there would be no difference: for the public keys we have

g
W ′Ti A
1 = g

WT
i A+(via

⊥T b⊥)−1(a⊥b⊥
T
)TA

1 = g
WT
i A

1

and for the ciphertext

C1,i = g
(xiU

T+W ′Ti)As
1 = g

(xiU
T+WT

i)As+(via
⊥T b⊥)−1(a⊥b⊥

T
)TAs

1 = g
(xiU

T+WT
i)As

1

The j-th key query is answered using W ′i as follows

K = g
α−

∑n
i=1 viW

′
ih

2

where h = Br + t̂
na
⊥ for some r ∈ Zkp and t̂ ∈ Zp. We have

W ′ih = Wih+ (via
⊥T b⊥)−1(a⊥b⊥

T
)(Br +

t̂

n
a⊥)

= Wih+ v−1i (a⊥
T
b⊥)−1(a⊥b⊥

T
)a⊥

t̂

n

= Wih+ v−1i (a⊥
T
b⊥)−1a⊥(b⊥

T
a⊥)

t̂

n
= Wih+ v−1i a⊥

t̂

n
4 The proof technique of this lemma draws on the substitution technique used in the

proof of lemma 7 in [11].

24

and the key is therefore given by

K = g
α−

∑n
i=1(viWih+a

⊥ t̂
n)

2 = g
α+a⊥ t̂−

∑n
i=1 viWih

2

and we obtain the exact distribution of Game2,j,2.

Lemma 4 (Indistinguishability of Game2,j,2 and Game2,j,3). For j = 1, .., q,
for any adversary A that makes at most q key queries, and distinguishes between
the two games with a non-negligible advantage, there exists S that has a non-
negligible advantage in solving the k-linear decision problem in G2, i.e.

|Adv2,j,2(λ)−Adv2,j,3(λ)| ≤ Advk−LinS (λ)

Proof. S receives an instance of a k-linear decision problem gB2 and gh2 where h
is either equal Bt for some t ∈ Zkp or uniform in Zk+1

p .

Setup. S picks a random αi ∈ Zk+1
p , a random t̂ ∈ Zp, random A, a⊥,Wi, U

as in the actual scheme, and publishes the public parameters gA1 , g
UTA
1 and the

authority public keys g
WT
i A

1 and ê(g1, g2)α
T
i A.

Key Queries. On input the m-th key query, S outputs

K =

{
g
α+a⊥ t̂−

∑n
i=1 viWih

2 m ≤ j
g
α−

∑n
i=1 viWiBr

2 m > j

where r
$← Zkp.

Ciphertext. The challenge ciphertext is constructed by picking a random s ∈ Zkp
and computing

C0 = gAs1 C1,i = g
(xb,iU

T+WT
i)As

1 C ′ = mb · ê(g1, g2)α
TAs

When h ∈ span(B) the keys are distributed exactly as in Game2,j,3, whereas in
the other case they are distributed as in Game2,j,2, By the k-linear assumption
A has only non-negligible advantage in distinguishing between the two cases.

Lemma 5 (Indistinguishability of Game2,q,3 and Game3). For any adver-
sary A that distinguishes between the two games with a non-negligible advantage,
there exists S that has a non-negligible advantage in solving the k-linear decision
problem in G1, i.e.

|Adv2,q,3(λ)−Adv3(λ)| ≤ Advk−LinS (λ)

Proof. S receives a k-linear challenge consisting of gA1 and gz1 , where z = As
for some random s ∈ Zkp, or uniform in Zk+1

p . S samples random matrices U

25

and {Wi}ni=1, and vectors αi as in the actual scheme, and outputs the public

parameters gA1 , g
UTA
1 and authority public keys g

WT
i A

1 and

ê(gA1 , g
αi
2) = ê(g1, g2)α

T
i A

The challenge ciphertext is given by

C0 = gz1 C1,i = g
(xb,iU

T+WT
i)z

1 C ′ = mb · ê(g1, g2)α
T z

When z ∈ span(A) the challenge is distributed exactly as in Game1, whereas
in the other case the distribution is as in Game2. The keys are constructed
as in Game1. By the k-linear assumption A has only negligible advantage in
distinguishing between the two. Note that S knows neither A nor a⊥, however
it doesn’t need this knowledge to simulate the games.

Lemma 6 (Indistinguishability of Game3 and Game4). The two games are
statistically close and the adversary has no advantage in distinguishing between
the two, i.e.

|Adv3(λ)−Adv4(λ)| = 0

Proof. S samples A, a⊥ s.t. ATa⊥ = 0 and a random vector α ∈ Zk+1
p and a

random t̂ ∈ Zp. S computes α̂ = α− a⊥t̂.

Setup. The public parameters are given by gA1 , g
UTA
1 and the authority public

keys by g
WT
i A

1 and ê(g1, g2)α̂
T
i A = ê(g1, g2)α

T
i A.

Key Queries. These are answered with normal keys constructed using α̂:

K = g
α̂−

∑n
i=1 viWih

2

Ciphertext. S samples s ∈ Zkp and ŝ ∈ Zp and sets z = As+ b⊥ŝ. It computes

m′ = mb · ê(g1, g2)(a
⊥ t̂)T z = mb · ê(g1, g2)t̂ŝ(a

⊥)T b⊥

which is a random element in GT given that (a⊥)T b⊥ 6= 0 with high probability,
and random t̂, ŝ. The ciphertext is constructed as

C0 = gz1 C1,i = g
(xiU

T+WT
i)z

1

C ′ = m′ · ê(g1, g2)α̂
T z = mb · ê(g1, g2)t̂ŝ(a

⊥)T b⊥ · ê(g1, g2)α
T z−t̂(a⊥)T b⊥ŝ

= mb · ê(g1, g2)α
T z

We can see that this game is distributed exactly as Game3, and therefore there
is no advantage for the adversary in distinguishing between the two.

Lemma 7 (Indistinguishability of Game4 and Game5). The two games are
statistically close and the adversary has no advantage in distinguishing between
the two, i.e.

|Adv4(λ)−Adv5(λ)| = 0

26

Proof. C1,i is given by

C1,i = g
(xb,iU

T+WT
i)(As+b⊥ŝ)

1 = g
xb,iU

T (As+b⊥ŝ)
1 · gW

T
i (As+b⊥ŝ)

1

for some A, s ∈ Zkp, b⊥ ∈ Zkp s.t. BT b⊥ = 0 and ŝ ∈ Zp. The term g
WT
i (As+b⊥ŝ)

1 is

uniform in G1 given gA1 , g
As+b⊥ŝ
1 , {gW

T
i A

1 }ni=1 and gB2 . Therefore C1,i is uniform
in G1 and the adversary has no advantage in identifying the case where the
predicate vector is replaced by a random vector x?.

C Proof of Security for Randomized Encodings

The challenger generates masking terms µi for good authorities, as specified in
the construction. Therefore, as long as there is more than one good authority,
the key parts corresponding to them are random in the view of the adversary,
unless canceled by multiplication with {gµi2 : ∀i ∈ A?}. Therefore, the challenger
only has to simulate Kgood =

∏
i6∈A? Ki.

We denote αgood =
∑
i 6∈A? αi. We then have α = αgood +

∑
i∈A? αi. The

proof consists of a sequence of games, similar to that in appendix B, except that
S generates Kgood (and αgood) instead of K (and α).

Game Sequence. We outline the sequence of games:

– Game0 is the real security game as in section 3.
– Game1 is the same as Game0, except that the random oracle queries are an-

swered in the following way: the challenger picks a random r ∈ Zkp and com-

putes h = Br. It stores the value gh2 to answer future queries with the same
input, and returns it to the adversary.

– Game2,j,1 is the same as Game1, except that the challenger samples A, a⊥ s.t.
ATa⊥ = 0, B, b⊥ s.t. BT b⊥ = 0 and a random t̂ ∈ Zp, and the key queries are
answered as follows:
• The first j − 1 keys are given by

Kgood = g
αgood+a

⊥ t̂−
∑
i6∈A? (viWih+µi)

2

where h is constructed as in Game1, i.e. by picking a random r and com-
puting h = Br.
• The j-th key is given by

Kgood = g
αgood−

∑
i6∈A? (viWih+µi)

2

where h is constructed by sampling random r ∈ Zkp and r̂ ∈ Zp, and

computing h = Br + a⊥r̂.
• The last q − j keys are constructed as

Kgood = g
αgood−

∑
i6∈A? (viWih+µi)

2

where h is in the span of B, i.e. h = Br for some random r ∈ Zkp.

27

– Game2,j,2 is the same as Game2,j,1, except that the j-th key query is answered
by picking random r ∈ Zkp and r̂ ∈ Zp and outputting

Kgood = g
αgood+a

⊥ t̂−
∑
i6∈A? (viWih+µi)

2

where h = Br + a⊥r̂.
– Game2,j,3 is the same as Game2,j,2, except that the first j key queries are

answered by picking random r ∈ Zkp and outputting

Kgood = g
αgood+a

⊥ t̂−
∑
i6∈A? (viWih+µi)

2

where h = Br. Note that Game2,0,3 is exactly the same as Game1.
– Game3 is the same as Game2,q,3, except that the challenge ciphertext is semi–

functional. It is constructed by picking a random z
$← Zk+1

p and generating

C0 = gz1 C1,i = g
(xb,iU

T+WT
i)z

1 C ′ = m · ê(g1, g2)α
T z

where α =
∑n
i=1αi.

– Game4 is the same as Game3 except that the challenge ciphertext is a semi–
functional encryption of a random message in GT .

– Game5 is the same as Game4, except that the predicate vector xb is replaced
by a vector x? such that xi

$← Zp : ∀i 6∈ A?, i.e. it has random values in
entries corresponding to good authorities.

In Game5 the adversarial view is statistically independent of the challenger’s
choice of b, and the adversary has no advantage in winning the game.

The proofs of indistinguishability between Game0 and Game1, Game2,j−1,3
and Game2,j,1, Game2,j,1 and Game2,j,2, Game2,j,2 and Game2,j,3, Game3 and
Game4, and between Game4 and Game5, are the same as in appendix B.

Lemma 8 (Indistinguishability of Game2,j−1,3 and Game2,j,1). For any PPT
adversary A that distinguishes between the two games with a non-negligible ad-
vantage, there exists S that has a non negligible advantage in solving the k-linear
decision problem in G2, i.e.

|Adv2,j−1,3(λ)−Adv2,j,1(λ)| ≤ Advk−LinS (λ) +
d

p

where d is the number of decryption attempts made by the adversary.

Lemma 9 (Indistinguishability of Game2,j,1 and Game2,j,2). Any PPT ad-
versary A that makes at most q key queries, has only negligible advantage in
distinguishing between the two games, i.e.

|Adv2,j,2(λ)−Adv2,j,1(λ)| = d

p

where d is the number of decryption attempts made by the adversary.

28

Lemma 10 (Indistinguishability of Game2,j,2 and Game2,j3). Any PPT ad-
versary A that distinguishes between the two games with a non-negligible advan-
tage, there exists S that has a non negligible advantage in solving the k-linear
decision problem in G2, i.e.

|Adv2,j,2(λ)−Adv2,j,3(λ)| ≤ Advk−LinS (λ) +
d

p

where d is the number of decryption attempts made by the adversary.

Proof. The proof is similar to that in appendix B, except that in addition to
key queries, the adversary is allowed to perform a polynomial number (d) of
decryption attempts using attribute vectors v where the entries corresponding
to the corrupt authorities in A? can have arbitrary values. The probability that
a given attribute vector v ∈ Fl+1

p is orthogonal to the challenge ciphertext policy
vector xb is

Pr [〈v,xb〉 = 0] =
1

p

, which can be shown using the Schwartz-Zippel lemma.

D Inferring the Policy from Lewko-Waters Decentralized
ABE Ciphertexts

We show that it is possible for an adversary to learn which attributes were
included in the encryption policy of a Lewko-Waters ciphertext [18], without
having the access matrix. We strengthen that the construction in [18] does not
claim to protect the encryption policy, and therefore the result is quite expected.
We simply illustrate that not providing the access policy is not enough to protect
it, and the importance of proving that a scheme is actually policy-hiding.

Assume an adversarial coalition of colluding users that combine their knowl-
edge of the public parameters {PK i} of the attribute-authorities. It picks coef-
ficients cx ∈ ZN , that correspond to including certain attributes as part of the
policy. Next, it computes

e

(∏
x

Ccx3,x, g1

)
=
∏
x

e (g1, g1)
cxyρ(x)rx

and tests whether it equals to∏
x

e
(
C2,x, g

yρ(x)
1

)cx
=
∏
x

e (g1, g1)
cxyρ(x)rx .

If the two are equal, the adversary has successfully guessed the encryption policy
with high probability.

29

	Decentralized Policy-Hiding Attribute-Based Encryption with Receiver Privacy

