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Abstract

Consensus is arguably one of the most fundamental problems in distributed computing, playing
also an important role in the area of cryptographic protocols as the enabler of a secure broadcast
functionality. While the problem has a long and rich history and has been analyzed from many dif-
ferent perspectives, recently, with the advent of blockchain protocols like Bitcoin, it has experienced
renewed interest from a much wider community of researchers and has seen its application expand
to various novel settings.

One of the main issues in consensus research is the many different variants of the problem that
exist as well as the various ways the problem behaves when different setup, computational assump-
tions and network models are considered. In this work we perform a systematization of knowledge in
the landscape of consensus research in the Byzantine failure model starting with the original formu-
lation in the early 1980s up to the present blockchain-based new class of consensus protocols. Our
work is a roadmap for studying the consensus problem under its many guises, classifying the way it
operates in the various settings and highlighting the exciting new applications that have emerged in
the blockchain era.

1 Introduction

The consensus problem—reaching agreement distributedly in the presence of faults—has been exten-
sively studied in the literature starting with the seminal work of Shostak, Pease and Lamport [PSL80,
LSP82]. The traditional setting of the problem involves parties connected by point-to-point channels,
possibly using digital signatures in order to ensure the integrity of the information that is exchanged in
the course of the protocol. For a relatively recent overview of the many variants of consensus that are
considered in the distributed systems literature see Cachin et al. [CGR11]. Tolerating “Byzantine” behav-
ior, i.e., the presence of parties that may behave arbitrarily, possibly in malicious ways, has been one of
the hallmark features in the study of the problem.

Bitcoin was introduced by Nakamoto in 2008-2009 [Nak08a, Nak09], with the objective of providing
a payment system that is decentralized in the sense of not relying on a central authority that should be
trusted for transactions to be considered as final. Expectedly, the fundamental enabling component of
the Bitcoin system is a consensus mechanism that facilitates agreement on the history of transactions.
Given the conflicting interests of the Bitcoin protocol participants, such a system should be resilient to
Byzantine behavior, which brings us to the main contribution of Bitcoin in the context of the consensus
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problem, namely. a non-traditional and novel approach from the perspective of distributed computing
to solve the problem in a setting that until then had not received sufficient attention.

In light of these developments, it is important to rethink the consensus problem in the blockchain
era and organize the landscape that is currently being formed, acknowledging all the new directions and
novel tools that have become available in the context of consensus protocol design.

One main aspect of our work is to look into the consensus problem from a modeling perspective
providing the definitions needed to understand the problem and the solutions that have been developed
over the years both in the traditional and the newer blockchain settings. In the course of this, we pro-
vide a taxonomy of protocols and impossibility results that comprehensively outline what is currently
known about consensus and which questions continue to remain open. Also important is to “extract”
the relevant consensus question that is particular to Bitcoin, which we term “ledger consensus” (some-
times referred to as “Nakamoto consensus”), and which is an instance of the state machine replication
problem that has been long-studied in distributed systems [Sch90].

Consequently, in this paper we provide precise definitions of the relevant versions of consensus that
have been investigated and systematize the existing knowledge about the problem with respect to (i) the
network model, (ii) trusted setup assumptions, and (iii) computational assumptions under which, and
at what cost in terms of running time and communication overhead, the problem can be solved.

We emphasize that our approach is problem-centric and the results being overviewed conceptual
and fundamental in nature, with a feasibility focus with respect to the “resources” mentioned above,
which means that in the case of classical consensus, a very active area of research in the distributed
systems community, we might only mention in passing (if at all) the more recent results on practical
Byzantine fault tolerance, for example. As such, our systematization complements the various other
enumerative surveys of results and publications on the subject (e.g., [CGR11, BSA+17, SJS+18]).

Organization of the paper. We start in Section 2 by specifying a model of multi-party protocol execu-
tion and how protocols’ properties will be deemed satisfied, as well as presenting the definition of (vari-
ants of) the consensus problem. We then specify the available resources and assumptions mentioned
above under which the problem has been studied: Network assumptions (communication primitives,
synchrony) in Section 3; trusted setup assumptions (no setup, public-state setup, private-state setup) in
Section 4; and computational assumptions (none, one-way functions, proofs-of-work, random oracle) in
Section 5. We then overview possibility (i.e., constructions) and impossibility results for consensus with
respect to number of parties as a function of misbehaving parties (resp., honest vs malicious computa-
tional power), trusted setup, running time and communication costs in the traditional (point-to-point
communication) setting (Section 6), and in the Bitcoin (peer-to-peer) setting (Section 7).

We present ledger consensus in Section 8. After defining the problem, we proceed to the evaluation
of existing results through a similar lens as in the case of (standard) consensus, including an adaptation
to ledger consensus of the impossibility of standard consensus for dishonest majorities.

Supplementary material including the ideal specification of some of the resources available to the
protocol can be found in the appendix.

2 Model and Definitions

2.1 Protocol execution

In order to provide a description of protocols and their executions it is useful to consider a formal model
of computation. We choose the Interactive Turing Machine (ITM)-based model put forth by [Gol01,
Can01]. An ITM is like a Turing Machine but with the addition of an incoming and an outgoing com-
munication tape as well as an identity tape and a “subroutine” tape. When an instance of an ITM is
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generated (we will henceforth call this an ITI, for interactive Turing machine instance), the identity tape
is initialized to a specific value that remains constant throughout the instance’s execution. The ITI may
communicate with other ITI’s by writing to its outgoing communication tape.

Let us consider a protocol Π that is modeled as an ITM. Ideally, we would like to consider the exe-
cution of this protocol in an arbitrary setting, i.e., with an arbitrary set of parties and arbitrary configu-
ration. A common way to model this in distributed cryptographic protocols is to consider that a certain
program, thought of as an adversary, produces this configuration and therefore the properties of the
protocol should hold for any possible choice of that program, potentially with some explicitly defined
restrictions. The advantage of this particular modeling approach is that it obviates the need to quantify
over all the details that concern the protocol (and substitutes them with a single universal quantification
over all such “environments”).

Suppose now that we have a protocol Π that is specified as an ITM and we would like to consider all
possible executions of this protocol in the presence of an adversary A , that is also modeled as an ITM.
We capture this by specifying a pair of ITMs (Z ,C ), called the environment and the control program,
respectively. The environment Z is given some input which may be trivial (such as a security parameter
1κ) and is allowed to “spawn” new ITIs using the programs of Π and A . By convention, only a single
instance of A will be allowed. Spawning such new instances is achieved by writing a single message to
its outgoing tape which is read by C . The control program is responsible for approving such spawning
requests by Z . Subsequently, all communication of the instances that are created will be routed via
C , i.e., C will be receiving the instances’ outgoing messages and will be approving whether they can be
forwarded to the receiving parties’ incoming tape. Note that this may be used to simulate the existence
of point-to-point channels; nevertheless, we will take a more general approach. Specifically, the control
function C , will by definition only permit outgoing messages of running ITIs to be sent to the adversary
A (with instructions for further delivery). This captures the fact that the network cannot be assumed to
be de facto safe for the instances that are communicating during the protocol execution (see below where
we explain how the adversarial influence in the network may be constrained). Beyond writing messages
that are routed though A , ITIs can also spawn additional ITIs as prescribed by the rules hardcoded in
C . This enables instances of a protocol Π to invoke subroutines that can assist in its execution. These
subroutines can be sub-protocols or instances of “ideal functionalities” that may be accessible by more
than a single running instance.

Given those features, the above approach provides a comprehensive framework for reasoning about
protocol executions. In case a polynomial-time bound is required, in the setting where a computational
assumption is employed that holds only for polynomial-time bounded programs, for example, some care
needs to be applied to ensure that the total execution run time of the (Z ,C ) system remains polynomial-
time. This is because even if all ITIs are assumed to be polynomially bounded, the total execution run
time may not be. We refer to Proposition 3 in [Can01] for more details regarding enforcing an overall
polynomial-time bound.

Functionalities. We will next need to specify the “resources” that may be available to the instances
running protocol Π. For example, access to reliable point-to-point channels or a “diffuse” channel (see
below). To allow for the most general way to specify such resources we will follow the approach of de-
scribing them as “ideal functionalities” in the terminology of [Can01]. In simple terms, an ideal function-
ality is another ITM that may interact with instances running concurrently in the protocol execution. A
critical feature of ideal functionalities is that they can be spawned by ITIs running protocol Π. In such
case, the protocol Π is defined with respect to the functionality F . The ideal functionality may inter-
act with the adversary A as well as other ITIs running the protocol. One main advantage of using the
concept of an ideal functionality in our setting, is that we can capture various different communication
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resources that may be available to the participants running the protocol. For instance, a secure chan-
nel functionality may be spawned to transmit a message between two instances of Π that will only leak
the length of the message to the adversary. As another example, a message-passing functionality may
ensure that all parties are activated prior to advancing to the next communication round (see below in
synchronous vs. asynchronous executions).

Execution of multiparty protocols. When protocol instances are spawned by Z they will be initialized
with an identity which is available to the program’s code, as well as, possibly, with the identities of other
instances that may run concurrently (this is at the discretion of the environment program Z ). The iden-
tities themselves may be useful to the program instance, as they may be used by the instance to address
them. We will use the notation VIEWΠ,A ,Z to denote an execution of the protocolΠwith an adversary A

and an environment Z . The execution is a string that is formed by the concatenation of all messages
and all ITI states at each step of the execution of the system (Z ,C ). The parties’ inputs are provided
by the environment Z which also receives the parties’ outputs. Parties that receive no input from the
environment remain inactive. We denote by INPUT() the input tape of each party.

We note that by adopting the computational modeling of systems of ITMs by [Can01] we obviate
the need of imposing a strict upper bound on the number of messages that may be transmitted by the
adversary in each activation. In our setting, honest parties, at the discretion of the environment, are
given sufficient time to process all messages delivered by any communication functionality available to
them as a resource. It follows that denial of service attacks cannot be used to the adversary’s advantage
in the analysis – i.e., they are out of scope from our perspective of studying the consensus problem.

Properties of protocols. In our statements we will be concerned with properties of protocols Π. Such
properties will be defined as predicates over the random variable VIEWΠ,A ,Z by quantifying over all
adversaries A and environments Z .

Definition 1. Given a predicate Q we say that the protocol Π satisfies property Q provided that for all A

and Z , Q(VIEWΠ,A ,Z ) holds.

Note that in some cases, protocols may only satisfy properties with a small probability of error over
all possible executions. The probability space is determined by the private coins of all participants and
the functionalities they employ. In such cases, we may indicate that the protocol satisfies the property
with some (small, typically negligigle in a security parameter) error probability. We will only consider
properties that are polynomial-time computable predicates. Our notion of execution will capture the
single-session, stand-alone execution setting for protocols, hence properties will be single-session prop-
erties.

Asynchronous vs. synchronous execution. The model above is able to capture various flavors of syn-
chrony. This is achieved by abstracting the network communication as a functionality and specifying
how the adversary may interfere with message delivery. The functionality may keep track of parties’ ac-
tivations and depending on the case ensure that parties will be given a chance to act as the protocol
execution advances.

Static vs. dynamic environments. In terms of protocol participants, the model we present captures
both static and dynamic environments. Specifically, it is suitable for protocols that run with a fixed num-
ber of parties that should be known to all participants in advance, but it also allows protocols for which
the number of participants is not known beforehand and, in fact, it may not even be known during the
course of the execution. Note that in order to allow for proper ITI intercommunication we will always
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assume that the total set of parties is known, but, nevertheless, only a small subset of them may be active
in a particular moment during the protocol execution.

Setup assumptions. In a number of protocols, there is a need to have some pre-existing configuration
(such as the knowledge of a common reference string [CRS], or a public-key infrastructure [PKI]). Such
setup assumptions can be also captured as separate functionalities F that are available to the protocol
ITIs.

Permissioned vs. permissionless networks. In the context of the consensus problem, this terminology
became popular with the advent of blockchain protocols. The Bitcoin blockchain protocol is the proto-
typical “permissionless” protocol where read access to the ledger is unrestricted and write access (in the
form of posting transactions) can be obtained by anyone that possesses BTC (which may be acquired, in
principle, by anyone that is running the Bitcoin client and invests computational power solving proofs
of work). On the other hand, a permissioned protocol imposes more stringent access control on the read
and write operations that are available as well as with respect to who can participate in the protocol. Ex-
trapolating from the terminology as applied in the ledger setting, a permissionless consensus protocol
would enable any party to participate and contribute input for consideration of the other parties. With
this in mind, the traditional setting of consensus is permissioned, since only specific parties are allowed
to participate; on the other hand, consensus in the blockchain setting can be either permissioned or
permissionless.

Cryptographic primitives. We now overview some standard cryptographic primitives, as they are em-
ployed by some of the consensus protocols. A digital signature scheme consists of three PPT algorithms
(Gen, Sign, Verify) such that (vk, sk) ← Gen(1κ) generates a public-key/secret-key pair; σ← Sign(sk,m)
signs a message m; and Verify(vk,m,σ) returns 1 if and only ifσ is a valid signature for m given vk. A digi-
tal signature scheme is existentially unforgeable, if for any PPT adversary A that has access to a Sign(sk, ·)
oracle, the event that A returns some (m,σ) such that Verify(vk,m,σ) = 1 has measure negl(κ), where
the probability is taken over the coin tosses of the algorithms, negl() denotes a negligible functon, and κ
is the security parameter. A collision resistant (keyed) hash function family {Hk }k∈K has the property that
Hk : {0,1}∗ → {0,1}κ, it is efficiently computable and the probability to produce x 6= y with Hk (x) = Hk (y)
given k is negl(κ). Another, less standard primitive that has been widely deployed in consensus protocol
design with the advent of the Bitcoin blockchain is proof of work (PoW); see Section 5 for more informa-
tion on the primitive.

2.2 The consensus problem

As mentioned earlier, consensus (aka Byzantine agreement), formulated by Shostak, Pease and Lam-
port [PSL80, LSP82], is one of the fundamental problems in the areas of fault-tolerant distributing com-
puting and cryptographic protocols, in particular secure multi-party computation [Yao82,GMW86,BGW88,
CCD87]. In the consensus problem, n parties attempt to reach agreement on a value from some fixed
domain V , despite the malicious behavior of up to t of them. More specifically, every party Pi starts
the consensus protocol with an initial value v ∈ V , and every run of the protocol must satisfy (except
possibly for some negligible probability) the following conditions (we note that all properties below are
expressible as Q predicates according to Definition 1).

– Termination: All honest parties decide on a value.

– Agreement: If two honest parties decide on v and w , respectively, then v = w .
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– Validity: If all honest parties have the same initial value v , then all honest parties decide on v .

The domain V can be arbitrary, but frequently the case V = {0,1} is considered given the efficient trans-
formation of binary agreement protocols to the multi-valued case cf. [TC84].1

There exist various measures of quality of a consensus protocol: its resiliency, expressed as the frac-
tion ( t

n ) of misbehaving parties a protocol can tolerate; its running time—worst number of rounds by
which honest parties terminate; and its communication complexity—worst total number of bits/mes-
sages communicated during a protocol run.

In the consensus problem, all the parties start with an initial value. A closely related variant is the
single-source version of the problem (aka the Byzantine Generals problem [LSP82], or simply (reliable or
secure) “broadcast”), where only a distinguished party—the sender—has an input. In this variant, both
the Termination and Agreement conditions remain the same, and Validity becomes:

– Validity: If the sender is honest and has initial value v , then all honest parties decide on v .

A stronger, albeit natural, version of the consensus problem requires that the output value be one of
the honest parties’ inputs, a distinction that is only important in the case of non-binary inputs. In this
version, called strong consensus [Nei94], the Validity condition becomes:

– Strong Validity: If the honest parties decide on v , then v is the input of some honest party.

Note that the distinction with the standard version of the problem is only relevant in the case of non-
binary inputs. Further, the resiliency bounds for this version also depend on |V | (see Section 6).

Another way to enhance validity is to require that the output of an honest party conforms to an ex-
ternal predicate Q [CKPS01]. In this setting, each input v is accompanied by a proof π and is supposed
to satisfy Q(v,π) = 1 (for instance, π can be a digital signature on v and Q would be verifying its valid-
ity). Note that the resulting guarantee is weaker than strong validity (since it could be the case that the
decision is made on an input suggested by a corrupted party), but nevertheless it can be suitable in a
multi-valued setting where only externally validated inputs are admissible as outputs.

Finally, we point out that, traditionally, consensus problems have been specified as above, in a property-
based manner. Protocols for the problem are then proven secure/correct by showing how the properties
(e.g., the Agreement, Validity and Termination conditions) are met. Nowadays, however, it is widely ac-
cepted to formulate the security of a protocol via the “trusted-party paradigm” (cf. [GMW86, Gol01]),
where the protocol execution is compared with an ideal process where the outputs are computed by a
trusted party that sees all the inputs. A protocol is then said to securely carry out the task if running
the protocol with a realistic adversary amounts to “emulating” the ideal process with the appropriate
trusted party. One advantage of such a simulation-based approach is that it simultaneously captures all
the properties that are guaranteed by the ideal world, without having to enumerate some list of desired
properties. Simulation-based definitions are also useful for applying composition theorems (e.g., [Can00,
Can01]) that enable proving the security of protocols that use other protocols as sub-routines, which
typically would be the case for consensus and/or broadcast protocols.

The above captures the classical definition of the consensus problem. A related and recently exten-
sively studied version of the problem is state-machine replication or “ledger” consensus that we will treat
in Section 8.

On the necessity of an honest majority. Regardless of the resources available to the parties in the proto-
col execution, an upper bound of (less than) n/2 can be shown for resiliency (see, for example, [Fit03]).

1Refer to Section 6 for more efficient transformations, where in particular the longer message is only transmitted O(n) times,
as opposed to O(n2).
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Specifically, consider a set n of parties that are equally divided with respect to their initial values between
inputs 0 and 1, and an adversary that with 1/3 probability corrupts no one (case 1), with 1/3 probability
corrupts the parties that have input 0 (case 2) and with 1/3 probability corrupts the parties that have
input 1 (case 3). In any case, the adversarial parties follow the protocol. Observe that case 1 requires
from the honest parties to converge to a common output (due to Agreement), while in the other two
cases the honest parties should output 0 (case 2) and 1 (case 3). However, all three cases are perfectly
indistinguishable in the view of the honest parties and as a result a logical contradiction ensues.

3 Network Assumptions

3.1 Communication primitives

Consensus protocols are described with respect to a network layer that enables parties to send messages
to each other. An important distinction we will make is between point-to-point connectivity vs. message
“diffusion” as it manifests in a peer-to-peer communication setting.

Point-to-point channels. In this setting parties are connected with pairwise reliable and authentic
channels. We call that resource RMT, for reliable message transmission. When a party sends a message it
specifies its recipient as well as the message contents and it is guaranteed that the recipient will receive
it. The recipient can identify the sender as the source of the message. Refer to Appendix A for the specifi-
cation of the RMT ideal functionality. In such fixed connectivity setting, all parties are aware of the set of
parties running the protocol. Full connectivity has been the standard communication setting for consen-
sus protocols, see [LSP82], although sparse connectivity has also been considered (cf. [DPPU88,Upf92]).
We present the functionality for RMT in the appendix.

In terms of measuring communication costs in this model, it will be simpler for us to use the (maxi-
mum) total number of messages in a protocol run, rather than the total number of communicated bits,
assuming a suitable message size. See, e.g., [Fit03] (Chapter 3) for a detailed account of the communica-
tion complexity of consensus (and broadcast) protocols.

Peer-to-peer diffusion. This setting is motivated by peer-to peer message transmission that happens
via “gossiping,” i.e., messages received by a party are passed along on to the party’s peers. We refer to this
basic message passing operation as “Diffuse.” Message transmission is not authenticated and it does
not preserve the order of messages in the views of different parties. When a message is diffused by an
honest party, there is no specific recipient and it is guaranteed that all activated honest parties will receive
the same message. Nonetheless, the source of the message may be “spoofed” and thus the recipient
may not reliably identify the source of the message,2 and when the sender is malicious not everyone is
guaranteed to receive the same message. Contrary to the point-to-point channels setting, parties may
neither be aware of the identities of the parties running the protocol nor their precise number. The ideal
functionality capturing the diffuse operation is also presented in Appendix A.

In order to measure the total communication costs of peer-to-peer diffusion, one needs to take into
account the underlying network graph. The typical deployment setting will be a sparse constant-degree
graph for which it holds that the number of edges equals O(n). In such setting, each invocation of the
primitive requires O(n) messages to be transmitted in the network.

2Note that in contrast to a sender-anonymous channel (cf. [Cha81]), a diffuse channel will leak the identity of the sender to
the adversary.
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Relation between the communication primitives. It is easy to see that given RMT, there is a straight-
forward, albeit inefficient, protocol that simulates Diffuse; given a message to be diffused, the protocol
using RMT will send the message to each party in the set of parties running the protocol. On the other
hand, it is not hard to establish that no protocol can simulate RMT given Diffuse. The argument is as
follows, and it works no matter how the protocol using Diffuse may operate. When a party A transmits
a message M to party B , it is possible for the adversary in the Diffuse setting to simulate a “fake” party
A that sends a message M ′ 6= M to B concurrently. Invariably, this will result to a setting where B has to
decide which is the correct message to output and will have to produce the wrong message with non-
negligible probability. It follows that Diffuse is a weaker communication primitive: one would not be
able to substitute Diffuse for RMT in a protocol setting.

Other models. The above models may be extended in a number of ways to capture various real world
considerations in message passing. For instance, in point-to-point channels, the communication graph
may change over the course of protocol execution with edges being added or removed adversarially,
something that may also result in temporary network partitions. Another intermediate model between
point-to-point channels and diffusion, formulated by Okun [Oku05a], is to have a diffusion channel with
“port awareness,” i.e., the setting where messages from the same source are linkable, or without port
awareness, but where each party is restricted to sending one message per round (see Section 3.2 for
the notion of round) and their total number is known. Yet another intermediate model in terms of par-
tial knowledge of parties and authentication has been treated, e.g., in [BF99, ABdSFG08] and follow-up
works.

3.2 Synchrony

The ability of the parties to synchronize in protocol execution is an important aspect in the design of
consensus protocols. Synchrony in message passing can be captured by dividing the protocol execution
in rounds where parties are activated in some sequence and each one of them has the opportunity to
send messages which are received by the recipients at the onset of the next round. This reflects the fact
that in real world networks messages are delivered most of the time in a timely fashion and thus parties
can synchronize the protocol execution in discrete rounds.

A first important relaxation to the synchronous model is to allow the adversary to control the activa-
tion of parties so that it acts last in each round having access to all messages sent by honest participants
before it decides on the actions of the adversarial participants and the ordering of message delivery for
the honest parties in the next round. This concept is standard in the secure mult-iparty computation lit-
erature [GMW87, BGW88, CCD88] and is commonly referred to as the “rushing adversary” [Can01]. This
is captured by the functionalities in Figures 3 and 4. A second relaxation is to impose a time bound on
message delivery that is not known to the protocol participants. We shall refer to this as the “partially
synchronous setting” [DLS88]. The partial synchronous setting is easy to capture by the functionalities
in Figures 3 and 4 as follows: a parameter ∆ ∈N is introduced in each functionality that determines the
maximum time a message can remain “in limbo.” For each message that is sent, a counter is introduced
that is initially 0 and counts the number of rounds that have passed since its transmission (note that this
concept of round is not any more a “message passing” round). When this counter reaches∆ the message
is copied to the inbox(·) strings for the active participants.

An even weaker setting than partial synchrony is that of message transmission with eventual message
delivery, where all messages between honest parties are guaranteed to be delivered but there is no spe-
cific time bound that mandates their delivery in the course of the protocol execution. This is the classical
model in fault tolerant distributed computing that is referred to as asynchronous [FLP85, Lyn96]. Again,
it is easy to adapt Figures 3 and 4 to accomodate eventual delivery, following the recent formalization
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of this model in [CGHZ16]. Note that it is proven that no deterministic consensus protocol exists in this
setting [FLP85], and the impossibility can be overcome by randomization [BO83, Rab83, CD89, FM97].

Finally, in the “fully asynchronous setting” (cf. [Can01]), where messages may be arbitrarily delayed
or dropped consensus is trivially impossible.

4 Setup Assumptions

In the context of protocol design, a setup assumption refers to information that can be available at the
onset of the protocol to each protocol participant. Consensus protocols are designed with respect to a
number of different setup assumptions that we outline below.

4.1 No setup

In this setting we consider protocols that parties do not utilize any setup functionality beyond the ex-
istence of the communication functionality. Note that the communication functionality may already
provide some information to the participants about the environment of the protocol; nevertheless, this
setting is distinguished from other more thorough setup assumptions that are described below. We note
that in this setting it may be of interest to consider protocol executions wherein the adversary is allowed
a certain amount of precomputation prior to the onset of execution that involves the honest parties.

4.2 Public-state setup

A public-state setup is parameterized by a probability ensemble D. For each input sizeκ, the ensemble D

specifies a probability distribution that is sampled a single time at the onset of the protocol execution to
produce a string denoted by s that is of length polynomial in κ. All protocol parties, including adversarial
ones, are assumed to have access to s. In this setting, the consensus protocol will be designed for a
specific ensemble D.

The concept of a public-state setup can be further relaxed in a model that has been called “sun-
spots” [CPS07], where the ensemble is further parameterized by an index a. The definition is the same
as above but now the protocol execution will be taken for some arbitrary choice of a. Intuitively, the
parameter a can be thought as an adversarial influence in the choice of the public string s. In this setting,
the consensus protocol will be designed with respect to the ensemble class {Da}a .

4.3 Private-state setup

As in the public state case, a private state setup is parameterized by an ensemble D. For each input size κ
and number of parties n, D specifies a probability distribution that is sampled a single time to produce a
sequence of values (s1, . . . , sn). The length of each value si is polynomial in κ. At the onset of the protocol
execution, the ensemble is sampled once and each protocol participant will receive one of the values
si following some predetermined order. The critical feature of this setting is that each party will have
private access to si . Observe that, trivially, the setting of private-state setup subsumes the setting of
public-state setup.

As in the case of a public-state setup, it is important to consider the relaxation where the ensemble
D is parameterized by string a. As before sampling from Da will be performed from some arbitrary
choice of a. It is in this sense where private-state setup has been most useful. In particular, we can use
it to express the concept of a public-key infrastructure (PKI). In this setting the ensemble D employs
a digital signature algorithm (Gen,Sign,Verify) and samples a value (vki , ski ) ← Gen(1κ) independently
for each honest participant. For each participant which is assumed to be adversarial at the onset of the
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execution, its public and secret key pair is set to a predetermined value that is extracted from a. The
private input si for the i -th protocol participant will be equal to (vk1, . . . , vkn , ski ), thus giving access
to all parties’ public (verification) keys and its own private key. Other types of private setup include
“correlated randomness” [Bea96], where parties get correlated random strings (r1,r2, ...,rn) drawn from
some predetermined distribution, which has been used to implement a random beacon [Rab83].

One may consider more complicated interactive setups, such as for example the adversary choosing
a somehow based on public information available about (s1, . . . , sn), but we will refrain from considering
those here. An alternative (and subsumed by the above) formulation of a private setup includes the avail-
ability of a broadcast channel prior to the protocol execution, which enables participants to exchange
shared keys [PW92].

5 Computational Assumptions

The assumptions used to prove the properties of consensus protocols can be divided into two broad
categories. In the information-theoretic (aka “unconditional”) setting, the adversary is assumed to be
unbounded in terms of its computational resources. In the computational setting, on the other hand, a
polynomial-time bound is assumed.

5.1 Information-theoretic security

In the information-theoretic setting the adversarial running time is unbounded. It follows that the ad-
versary may take arbitrary time to operate in each invocation. Note that the protocol execution may
continue to proceed in synchronous rounds, nevertheless the running time of the adversary within each
round will dilate sufficiently to accomodate its complete operation. When proving the consensus prop-
erties in this setting we can further consider two variations: perfect and statistical. When a property,
Agreement for example, is perfectly satisfied this means that in all possible executions the honest par-
ties never disagree on their outputs. On the other hand, in the statistical variant, there will be certain
executions where the honest parties are allowed to disagree. Nevertheless, these executions will have
negligible density in a security parameter (in this case, n) among all executions. We observe that the sta-
tistical setting is only meaningful for a probabilistic consensus protocol, where the honest parties may
be “unlucky” in their choices of coins.

5.2 Computational security

In the computational setting the adversarial running time, and/or the computational model within which
the adversary (and the parties running the protocol) are expressed becomes restricted. We distinguish
the following variants.

One-way functions. A standard computational assumption is the existence of one-way functions. A
one-way function is a function f : X → Y for which it holds that f is polynomial-time computable, but
the probability A (1|x|, f (x)) ∈ f −1( f (x)) for a randomly sampled x, is negligible in |x| for any polynomial
time bounded program A . One-way functions, albeit quite basic, are a powerful primitive that enables
the construction of more complex cryptographic algorithms that include symmetric-key encryption, tar-
get collision-resistant hash functions and digital signatures [NY89]; the latter in particular play an impor-
tant role when categorizing consensus protocols as we see below.
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Proof of Work. A proof of work (PoW) [DN92] is a cryptographic primitive that enables a verifier to be
convinced that certain amount of computational effort has been invested with respect to a certain con-
text, e.g., a plaintext message or a nonce that the verifier has provided. A number of properties have been
identified as important for the application of the primitive specifically to blockchain protocols, includ-
ing amortization resistance, sampleability, fast verification, hardness against tampering and message
attacks, and almost k-wise independence [GKP17]. Some variants of PoWs have been shown to imply
one-way functions [BGJ+16].

The random oracle model. In the previous subsections the level of security described was captured
in the standard computational model where all parties are assumed to be Interactive Turing machines.
In many cases, including consensus protocol design, it is proven useful to describe properties in the
random oracle model, [BR93]. The random oracle model can be captured as an ideal functionality FRO

(see Appendix A). In a relevant adaptation of the FRO model for the consensus setting, the access to
the oracle is restricted by a quota of q ≥ 1 queries per party per round of protocol execution [GKL15].
This bound is also imposed on the adversary who is assumed to control t parties. In case t < n/2, the
execution will be said to impose honest majority in terms of “computational power.”

6 Consensus in the Point-to-Point Setting

In the traditional network model of point-to-point reliable channels between every pair of parties, the
problem was formulated in [LSP82] in the two settings described in Section 5: the information-theoretic
setting and the computational (also called cryptographic, or authenticated) setting. As mentioned above,
in the former no assumptions are made about the adversary’s computational power, while the latter relies
on the hardness of computational problems (such as factoring large integers or computing discrete logs),
and requires a trusted setup in the form of a PKI. Depending on the setting, some of the bounds on the
problems’ quality measures differ. Refer to Figure 1 (specifically, the left subtree) as we go through the
classification below.

Number of parties. For the information-theoretic setting, n > 3t is both necessary and sufficient for the
problem to have a solution. The necessary condition is presented in [LSP82] for the broadcast problem
(see [FLM86] for the consensus version of the impossibility result), as the special case of 3 parties (“gen-
erals”), having to agree on two values (‘attack’, ‘retreat’), with one of them being dishonest. As in the
information-theoretic setting (with no additional setup) the parties are not able to forward messages in
an authenticated manner, it is easily shown that an honest receiver cannot distinguish between a run
where the sender is dishonest and sends conflicting messages, and a run where a receiver is dishonest
and claims to have received the opposite message, which leads to the violation of the problem’s con-
ditions (Agreement and Validity, respectively). The general case (arbitrary values of n) reduces to the
3-party case. The (broadcast) protocol presented in [LSP82] matches this bound (n > 3t ), and essentially
consists in recursively echoeing messages received in a round while excluding the messages’ senders. (In
the first round, only the sender sends messages.) This is done for t +1 rounds, at which point the parties
take majority of the values received for that instance, returning that value as they exit that recursive step.
The party’s output is the value returned for the first recursive call. t +1 rounds were later shown to be
optimal (see below), but the protocol requires exponential (in n) computation and communication.

Lamport et al. [LSP82] also formulated the problem in the computational setting, where, specifically,
there is a trusted private-state setup (of a PKI), and the parties have access to a digital signature scheme.
This version of the problem has been referred to as authenticated Byzantine agreement. In contrast to the
information-theoretic setting, in the computational setting with a trusted setup the bounds for broad-
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Figure 1: The taxonomy of consensus protocols and impossibility results in the synchronous setting;
nmax/nmin refers to participation tolerance (cf. Sec 7).

cast and consensus differ: n > t [LSP82] and n > 2t (e.g., [Fit03]), respectively. The protocol presented
in [LSP82] runs in t +1 rounds but, as in the information-theoretic setting, is also exponential-time; an
efficient (polynomial-time) protocol was presented early on by Dolev and Strong [DS83], which we now
briefly describe. In this protocol in the first round the sender digitally signs and sends his message to
all the other parties, while in subsequent rounds parties append their signatures and forward the result.
If any party ever observes valid signatures of the sender on two different messages, then that party for-
wards both signatures to all other parties and disqualifies the sender (and all parties output some default
message). This simple protocol is a popular building block in the area of cryptographic protocols.

The original formulation of the problem in the computational setting assumes a PKI. In [Bor96],
Borcherding considered the situation where no PKI is available, which he refers to as “local authenti-
cation,” meaning that no agreement on the parties’ keys is provided, as each party distributes its verifi-
cation key by itself. Borcherding shows that in this case, as in the information-theoretic setting above,
broadcast and consensus are not possible if n ≤ 3t , even though this setting is strictly stronger, as a
dishonest party cannot forge messages sent by honest parties. The gist of the impossibility is that the
adversary can always confuse honest parties about the correct protocol outcome and digital signatures
cannot help if they are not pre-associated with the parties running the protocol in advance (something
only ensured given a private setup).

Regarding the “strong” version of the problem (the decision value must be one of the honest par-
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ties’ input values), Fitzi and Garay [FG03] showed that the problem has a solution if and only if n >
max(3, |V |)t in the unconditional setting3, where V is the domain of input/output values, and n > |V |t in
the computational setting with a trusted setup, giving resiliency-optimal and polynomial-time protocols
that run in t +1 rounds.

Running time. Regarding the running time of consensus protocols, a lower bound of t + 1 rounds for
deterministic protocols was established by Fischer and Lynch [FL82] for the case of benign (“crash”) fail-
ures, and extended to the setting with malicious failures where messages are authenticated by Dolev and
Strong [DS83]. As mentioned above, the original protocols by Lamport et al. already achieved this bound,
but required exponential computation and communication. In contrast to the computational setting,
where a polynomial-time resiliency- and round-optimal protocol was found relatively soon [DS83], in the
information-theoretic setting this took quite a bit longer, and was achieved by Garay and Moses [GM98].
In a nutshell, the [GM98] result builds on the “unraveled” version of the original protocol, presented
and called Exponential Information Gathering by Bar-Noy et al. [BDDS92], applying a suite of “early-
stopping” (see more on this below) and fault-detection techniques to prune the tree data structure to
polynomial size. Regarding strong consensus, the t +1-round lower bound also applies to this version
of the problem, which the protocols by Fitzi and Garay [FG03] achieve (as well as being polynomial-time
and resiliency-optimal).

In the t +1-round lower bound for deterministic protocols, t is the maximum number of corruptions
that can be tolerated in order to achieve consensus in a given model. Dolev, Reischuk and Strong [DRS90]
asked what would the running time be when the actual number of corruptions, say, f is smaller than t ,
and showed a lower bound of min{t +1, f +2} for any consensus protocol, even when only crash failures
occur, which is important when f is very small. They called a consensus protocol satisfying this prop-
erty early-stopping. Faster termination, however, comes at a price of non-simultaneous termination,
as they also showed that if simultaneous termination is required, then t +1 rounds are necessary. (See
also [DM90].)

Optimal early stopping for the optimal number of parties (i.e., n > 3t ) was achieved in the information-
theoretic setting by Berman and Garay [BGP92b]; the protocol, however, is inefficient, as it requires ex-
ponential communication and computation. Relatively recently, an efficient (polynomial-time) optimal
early-stopping consensus protocol was presented by Abraham and Dolev [AD15a].

The above t+1-round lower bound applies to deterministic protocols. A major breakthrough in fault-
tolerant distributed algorithms was the introduction of randomization to the field by Ben-Or [BO83] and
Rabin [Rab83], which, effectively, showed how to circumvent the above limitation by using randomiza-
tion. Rabin [Rab83], in particular, showed that linearly resilient consensus protocols in expected constant
rounds were possible, provided that all parties have access to a “common coin” (i.e., a common source
of randomness). Essentially, the value of the coin can be adopted by the honest parties in case disagree-
ment at any given round is detected, a process that is repeated multiple times. This line of research
culminated with the work of Feldman and Micali [FM97], who showed how to obtain a shared random
coin with constant probability from “scratch,” yielding a probabilistic consensus protocol tolerating the
maximum number of misbehaving parties (t < n/3) that runs in expected constant number of rounds.

The [FM97] protocol works in the information-theoretic setting; these results were later extended
to the computational setting by Katz and Koo [KK09], who showed that assuming a PKI and digital sig-
natures there exists an (expected-)constant-round consensus protocol tolerating t < n/2 corruptions.
Recall that broadcast protocols in the computational setting with setup tolerate an arbitrary number
(i.e., n > t ) of dishonest parties; in contrast, the protocol in [KK09] assumes n > 2t (as it is based on
VSS—verifiable secret sharing [CGMA85]). In [GKKO07], Garay et al. consider the case of a dishonest
majority (i.e., n ≤ 2t ), presenting an expected-constant-round protocol for t = n

2 +O(1) dishonest par-

3The lower bound was in fact shown by Neiger, who formulated this version of the problem [Nei94].
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ties (more generally, expected O(k2) running time when t = n
2 + k), and showing the impossibility of

expected-constant-round broadcast protocols when n − t = o(n).
The speed-up on the running time of probabilistic consensus protocols comes at the cost of uncer-

tainty, as a party that terminates can never be sure that other parties have also terminated—i.e., there
cannot be simultaneous termination [DRS90], which is an issue when these protocols are invoked from
a higher-level protocol, as a party cannot be sure how long after he receives his output from a call to
such a probabilistic termination (PT) consensus protocol (cf. [CCGZ16]) he can safely carry out with
the execution of the calling protocol. The sequential composition of PT consensus protocols was ad-
dressed by Lindell et al. [LLR06] while the parallel composition of such protocols by Ben-Or and El-
Yaniv [BE03]. (The issue in the case of parallel invocations of expected-constant-round PT protocols is
that the overall running time of the parallel executions is not necessarily expected constant.) The above
results on sequential and parallel composition, however, do not use simulation-based security, and it
was therefore unclear how (or if) one would be able to use them to instantiate consensus (and/or broad-
cast) from a higher-level protocol. Such formal simulation-based (and therefore composable) definition
and constructions of consensus protocols with probabilistic termination has been recently presented
in [CCGZ16].

Trusted setup. We already covered this aspect above while describing the protocols achieving the dif-
ferent bounds on the number of parties; here we briefly summarize it. There is no trusted setup in the
unconditional setting, although in the case of randomized protocols there is the additional requirement
of the point-to-point channels being private in addition to reliable, while the “authenticated” consen-
sus protocols assume a PKI. Related to a trusted setup assumption, we remark that if a pre-computation
phase is allowed in the information-theoretic setting where reliable broadcast is guaranteed, then Pfitz-
mann and Waidner showed that broadcast and consensus are achievable with the same bounds on the
number of parties as in the computational setting, using a tool known as a “pseudo-signatures” [PW92].

Communication cost. A lower bound ofΩ(n2) on the number of messages (in fact,Ω(nt )) was shown by
Dolev and Reischuk for consensus for both information-theoretic and computational security [DR85];
for the latter, what they showed was that the number of signatures that are required by any protocol
is Ω(nt ), resulting in an Ω(nt |σ|) bit complexity (for a constant-size domain), where |σ| represents the
maximum signature size. The first information-theoretically secure protocols to match this bound were
given by Berman et al. [BGP92a] and independently by Coan and Welch [CW89]; regarding computa-
tional security, the protocol presented by Dolev and Strong [DS83] requires that many messages. By re-
laxing the model and allowing for a small probability of error, King and Saia [KS16], presented a protocol
that circumvents the impossibility result (with message complexity Õ(n1.5)).

The above bounds (except for [KS16]) reflect the fact that in typical protocols messages are commu-
nicated at leastΩ(n2) times, resulting in an overall communication complexity of at leastΩ(`n2) for `-bit
messages. In [FH06, HR14], Fitzi and Hirt and Hirt and Raykov show protocols for consensus and broad-
cast, respectively, where the long message is communicated O(n) times, which is optimal as no protocol
can achieve consensus or broadcast of an `-bit message with communication complexity o(`n). See
also [Pat11, GP16] for further improvements.

Beyond synchrony. The case of partial synchrony, introduced in [DLS88], considers the existence of an
unknown bound ∆ that determines the maximum delay of a message that is unknown to the protocol
participants.4 As shown in [DLS88], the resiliency bounds presented in the point-to-point subtree of
Figure 1 remain unaltered in the no setup and public setup cases, but it degrades to n/3 in the private
setup case.

4In [DLS88] partial synchrony between the clocks of the processors is also considered as a separate relaxation to the model.
In the present treatment we only focus on partial synchrony with respect to message passing.
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In the eventual delivery setting, as mentioned above, deterministic consensus is impossible but it is
still feasible to obtain protocols with probabilistic guarantees. Furthermore, note that in this setting it is
not possible to account for all of the honest parties’ inputs since parties cannot afford to wait for all the
parties to engage (since corrupt parties may never transmit their messages and it is impossible to set a
correct time-out). In more detail, without a setup in the information-theoretic setting, it is possible to
adapt the protocol in [FM97] and achieve n/4 resilience [Fel88] (see Figure 1). By allowing the protocol
not to terminate with negligible probability, Canetti and Rabin showed how to bring the resiliency to
n/3 [CR93], which was later on improved to guarantee termination with probability 1 by Abraham et
al. [ADH08]. Efficiency improvements to the above two results (specifically, communication of the first
one, and running time of the second one) were more recently presented in [PCR14, BCP18], respectively.

In the private-setup setting, assuming one-way functions, it is possible to obtain an always-terminating
protocol with n/3 resiliency (cf. [Fel88]). We note that it is infeasible to go beyond n/3 resiliency, as
shown in [BCG93, Can96], where this bound is argued for fail-stop failures, and thus the above results
are optimal in this sense.

Most protocols mentioned above demonstrate the feasibility of the respective bounds. Much effort
has also been dedicated to achieving practical Byzantine fault tolerance (BFT) in the eventual message
delivery model. For completeness, here we mention some relevant results, with the work by Castro and
Liskov [CL02] as a notable instance, where they focus on a fault-tolerant replicated transactions ser-
vice in the cryptographic setting with the corresponding Safety and Liveness properties (see Section 8),
achieving n/3 resiliency. Cachin et al. [CKS05] study consensus in the same model, showing an efficient
coin tossing protocol assuming a random oracle. Other related works focusing on practical efficiency in-
clude the work by Kursawe and Shoup on “asynchronous” atomic broadcast [KS05] (atomicity means that
broadcast executions are ordered in such a way that two broadcast requests are received in the same or-
der by any two honest parties), following the “optimistic” approach presented in [CL02] where first only
a “Bracha broadcast” protocol [Bra84] is first attempted, reverting to the use of cryptography if things
go wrong. Finally, Miller et al. [MXC+16] improve on the communication complexity of the protocol
in [CKPS01], and guarantee Liveness without any timing assumptions, which was the case in [CL02].

Property-based vs. simulation-based proofs As mentioned in Section 2.2, consensus and broadcast
protocols have been typically proven secure/correct following a property-based approach. It turns out, as
pointed out by Hirt and Zikas [HZ10] (see also [GKKZ11]), that in the case of adaptive adversaries who can
choose which parties to corrupt dynamically, during the course of the protocol execution (cf. [CFGN96]),
most existing broadcast and consensus protocols cannot be proven secure in a simulation-based man-
ner. The reason, at a high level, is that when the adversary (having corrupted a party) receives a message
from an honest party, can corrupt that party and make him change his message to other parties. This cre-
ates an inconsistency with the ideal process, where the party has already provided his input to the trusted
party/ideal functionality that abstracts consensus. To be amenable to a simulation-based proof, instead
of sending its initial message “in the clear,” the sender in a broadcast protocol sends a commitment to the
message, allowing the simulator in the ideal process to “equivocate” when the committed value becomes
known in case the party has been corrupted and the initial value changed [HZ10, GKKZ11].

7 Consensus in the Peer-to-Peer Setting

Consensus in the peer-to-peer setting is the consensus problem when the available communication re-
source is peer-to-peer diffusion (cf. Section 3), a weaker communication primitive compared to point-
to-point channels. (For this section, refer to the right subtree of Figure 1.) This setting arose with the
advent of the Bitcoin blockchain protocol, and was formally studied for the first time in [GKL15]. In a
nutshell, it constitutes an unauthenticated model of communication where no correlation of message
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sources across rounds can be established and the exact number of parties that participate may be un-
known to the protocol participants. Moreover, since the adversary may inject messages in the network,
an honest party cannot infer the number of participants from a message count.

We note that in a precursor model, where there is no correlation of message sources, but the point-to-
point structure is still in place albeit without authentication, Okun showed that deterministic consensus
algorithms are impossible for even a single failure [Oku05b, Oku05a], but that probabilistic consensus is
still feasible by suitably adapting the protocols of [BO83, FM97]5; the protocol, however, takes exponen-
tially many rounds.

The consensus problem in the peer-to-peer setting has mostly been considered in the computational
setting utilizing one-way functions and the proof-of-work (PoW) primitive (Section 5). The first sugges-
tion for a solution was informally described in [AJK05], where it was suggested that PoWs can be used
as an “identity assignment” tool, which subsequently can be used to bootstrap a standard consensus
protocol like [DS83]. Nevertheless, the viability of this plan was never fully analyzed until an alternative
approach to the problem was informally described by Nakamoto in an email exchange [Nak08b], where
he argued that the “Byzantine Generals” problem can be solved by a blockchain/PoW approach tolerat-
ing a number of misbehaving parties strictly below n/2. As independently observed in [ML14, GKL14],
however, with overwhelming probability the Validity property is not satisfied by Nakamoto’s informal
suggestion.

The blockchain approach suggests to string PoWs together in a hash chain and achieve agreement
using a rule that favors higher concentrations of computational effort as reflected in the resulting hash
chains. The inputs to the consensus problem are “entangled” within the PoWs themselves and the final
output results from a processing of the hash chain. The approach was first formalized in [GKL15] where
also two constructions were provided that satisfy all properties assuming a public setup.

Without access to a public setup, it is also possible to obtain a construction based on the results
of [AD15b], who were the first to formalize the [AJK05] informal approach of using PoWs for identity as-
signment. Moreover, a blockchain-based approach is also possible as shown in [GKLP18]. Using a private
setup, it becomes feasible to use primitives such as digital signatures and verifiable random functions (by
storing the public key information as part of the public part of the setup, while the secret key informa-
tion is the private part of the setup) and obtain even more efficient constructions such as the consensus
sub-protocol of [CM19].

Number of parties. One of the most important characteristics of consensus in the peer-to-peer setting is
that the actual number of parties that are running the protocol is not assumed to be known in advance.
Instead, the actual number of parties becomes a run-time execution parameter and the protocol is sup-
posed to be able to tolerate a range of different of possible choices for the number of parties. We capture
this by posing a range of possible operational values [nmin,nmax], and posit that if the actual number
of parties falls within the range then the properties will be guaranteed. We call the ratio nmax/nmin for
a given protocol a protocol’s participation tolerance. We note that this notion is somewhat related to
models that have been considered in fault-tolerant distributed computing and secure multiparty com-
putation (see, e.g., [GP92] and [HLP11], respectively). In such scenarios the parties are subject to two
types of faults, Byzantine and benign, such as “going to sleep,” but adversarially scheduled. In the latter
type, the parties will cease participating in the protocol execution.

In the convention introduced in [GKL15], each party has a fixed quota of hashing queries that is al-
lowed per round. As a result, the number of parties is directly proportional to the “computational power”
that is present in the system and the total number of PoWs produced by the honest parties collectively
would exceed that of the adversary assuming honest majority with very high probability. Given this it is
tempting to imagine a direct translation of computational power to a set of identities [AJK05]. The main

5Hence, consensus in this setting shares a similar profile with consensus in the asynchronous network model [FLP85].
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problem is that the set of identities as perceived by the honest partipants in the protocol execution might
be inconsistent. This was resolved with the protocol of [AD15b] where PoWs are used to build a “graded”
PKI, where keys have ranks. The graded PKI is an instance of the graded agreement problem [FM97],
or partial consistency problem [CFF+05], where honest parties do not disagree by much, according to
some metric. Subsequently, it is possible to morph this graded consistency to global consistency by run-
ning multiple instances of [DS83]. This can be used to provide a consensus protocol with resiliency n/2
without a trusted setup.

It is unnecessary though for the parties to reach consensus by establishing identities. In the first
consensus protocol presented in [GKL15], the parties build a blockchain where each block contains a
value that matches the input of the party that produced the block. The protocol continues for a certain
number of rounds that ensures that the blockchain has grown to a certain length. In the final round, the
parties remove a k-block suffix from their local blockchain, and output the majority bit from the remain-
ing prefix. Based on the property called “common prefix” in [GKL15], it is shown that with overwhelming
probability in the security parameter, the parties terminate with the same output, while using the “chain
quality” property, it is shown that if all the honest parties start with the same input, the corrupt parties
cannot overturn the majority bit, which corresponds to the honest parties’ input. The number of toler-
ated misbehaving parties in this protocol is strictly below n/3, a sub-optimal resiliency due to the low
chain quality of the underlying blockhain protocol. The maximum resiliency that can be expected is
n/2, something that can be shown by easily adapting the standard argument for the necessity of honest
majority shown in Section 2.

Optimal resiliency can be reached by the second consensus protocol of [GKL15] as follows: The pro-
tocol substitutes Bitcoin transactions with a type of transactions that are themselves based on PoWs, and
hence uses PoWs in two distinct ways: for the maintenance of the ledger and for the generation of the
transactions themselves. The protocol requires special care in the way it employs PoWs since the ad-
versary should be incapable of “shifting” work between the two PoW tasks that it faces in each round.
To solve this problem, a special strategy for PoW-based protocol composition is introduced in [GKL15]
called “2-for-1 PoWs.” In the second solution presented in [GKL15] the number of tolerated misbehaving
parties is strictly below n/2.

We note that all these protocols come with a hard-coded difficulty level for PoWs which is assumed
to be correlated with the number of parties n. If f is the probability that at least one honest party will
produce a PoW in a round of protocol execution, it holds that f approaches 0 for small n while it ap-
proaches 1 for large n. It follows that the choice of PoW difficulty results in an operational range of values
[nmin,nmax] and it is possible to set the difficulty for any constant ratio nmax/nmin, so the participation
tolerance of the protocol can be set to any arbitrary constant. We note that the lower bound nmin can be
arbitrarily small as long as we are able to assume that even a single party has sufficient computational
power to ensure that finding PoWs is not very rare. In case this is not true and n < nmin, the protocol
cannot be guaranteed to satisfy Validity with high probability, while on the other hand, if n > nmax, the
protocol cannot be guaranteed to achieve agreement with high probability.

Using digital signatures and verifiable random functions (VRFs) (or just digital signatures and a
hash function modeled as a random oracle), it is possible to implement the second consensus proto-
col in [GKL15] over an underlying blockchain protocol that uses a public-key infrastructure as opposed
to PoWs, and allows for arbitrary participation tolerance such as [PS17] for optimal resiliency of n/2. The
idea is as follows: one can use VRFs for each participant to enable a random subset of elected transac-
tion issuers in each round. The ledger will then incorporate such transactions within a window of time
following the same technique and counting argument as in the second consensus protocol of [GKL15].
In Figure 1 this is the protocol referred to in the second leaf from the right.

Running time. In order to measure the running time that the protocols require in the peer-to-peer set-
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ting assuming PoW, one will have to also take into account that periods of silence, i.e., rounds without
any message passing, may also be required for ensuring the required properties with high probability in
κ, a security parameter. In the consensus protocol derived from the protocol of [AD15b], O(n) rounds
are required where n is the number of parties. This can be improved to O(κ) by, e.g., using a blockchain-
based approach [GKLP18]. In the public-setup setting, assuming that the number of parties fall within
the operational range, the protocols of [GKL15] run also in time O(κ).

It is worth noting the contrast to the approach used in randomized solutions to the problem in the
standard setting (cf. Section 6), where achieving consensus is reduced to (the construction of) a shared
random coin, and comparable guarantees are obtained after a poly-logarithmic number of rounds in the
number of parties. The probabilistic aspect in the blockchain setting stems from the parties’ likelihood
of being able to provide proofs of work.

In the private setup setting it is possible to improve the running time to expected constant, e.g., by
deploying the consensus sub-protocol of Algorand [CM19] for 1/3 resiliency.

Trusted setup. The relevant trusted setup assumption in the above protocols include a fresh random
string, that can be incorporated as part of a “genesis block” in the blockchain protocol setting, or in gen-
eral as part of the PoWs6. The objective of this public setup is to prevent a pre-computation attack by the
adversary that will violate the relative superiority of honest parties which would be derived by the hon-
est majority assumption. Note that protocols that require no trusted setup such as [AD15b,GKLP18] take
advantage of a special randomness exchange phase prior to PoW calculation that guarantees freshness
without the need of a common random string.

It is worth to emphasize the fundamental advantage of the PoW setting compared to other compu-
tational assumptions that have been used for consensus. Specifically, it is known that without a private
setup, consensus is not possible with more than n/3 corruptions [Bor96] even assuming digital signa-
tures. The n/3 impossibility result does not apply here since, essentially, proofs of work can make it
infeasible for the adversary to present diverging protocol transcripts without investing effort for distinct
PoW calculations.

Another observation is that assuming a private setup in the peer-to-peer setting, one can simulate
point-to-point connectivity, and thus run any consensus protocol from the previous section; neverthe-
less, this reduction is not efficient and in the peer-to-peer setting with private-setup one can still obtain
protocols that are more efficient (e.g., with subquadratic communication complexity).

Communication cost. The total number of transmitted messages in the consensus protocols described
above is, in expectation, O(n2κ) for the case of [AD15b, GKLP18] counting each invocation of the diffuse
channel as costing O(n) messages. For the two protocols of [GKL15] the number of messages is O(nκ)
in the public setup setting. In the private setup setting it can be possible to reduce this further using
techniques from [CM19].

We recall that an important difference with randomized consensus protocols in the standard setting
is that parties send messages in every round, while in the PoW setting (honest) parties only communicate
whenever they are able to produce a proof of work; otherwise, they remain silent. This also suggests that
there may be honest parties that never diffuse a message7 and thus it is feasible to drop communication
costs to below n2 (with a probabilistic guarantee; cf. Section 6).

Beyond synchrony. The consensus protocols of [GKL15] in Figure 1 can be analyzed in the partial syn-
chronous setting as well (refer to the the full version of [GKL14] as a starting point). Recall that the way

6Alternatively, the protocols would consider as valid any chain that extends the empty chain, and where the adversary is not
allowed any pre-computation.

7Note the similarity with standard consensus in the eventual-delivery setting (Section 6), where not all honest parties’ inputs
may be accounted for.
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the protocols operate in this setting is that a parameterisation of difficulty is hardcoded that provides a
reasonable PoW production rate over message passing time. The security of the protocols will then be
at the theoretical maximum in terms of resiliency as long as the original estimate is close to being safe
(network delay is low) and will degrade if the estimate is worse, dissipating entirely when the delay gets
larger (for the full argument, see [PSS17], where it is shown how the blockchain protocol’s consistency
collapses when delay is arbitrarily large).

Property-based vs. simulation-based proofs. To our knowledge, there is no simulation-based treatment
of consensus in the peer-to-peer setting, however it is easy to infer a functionality abstracting the prob-
lem. The only essential difference is that the actual number of parties involved in the execution are to be
decided on the fly and will be unknown to the protocol participants.

8 Ledger Consensus

Ledger consensus (aka “Nakamoto consensus”) is the problem where a set of servers (or nodes) operate
continuously accepting inputs (“transactions”) that belong to a set T and incorporate them in a public
data structure called the ledger. We assume that the language of all valid ledgers L has an efficient mem-
bership test and moreover for all tx there is an L ∈ L such that tx ∈ L . We call a language L trivial if
it holds that for all tx1, tx2 ∈ T there exists L ∈ L that contains both tx1, tx2. The purpose of ledger con-
sensus is to provide a unique view of the ledger to anyone asking to see it. The ledger view of a party P
is denoted by L̃P while the “settled” portion of the ledger in the view of P is denoted by LP . Note that
it always holds LP ¹ L̃P , where ¹ denotes the standard prefix operation. The properties that a ledger
consensus protocol must satisfy are as follows:

– Consistency (or Persistence): This property mandates that if a client queries an honest node’s ledger
at round r1 and receives the response L̃1, then a client querying an honest node’s ledger at round
r2 ≥ r1 will receive a response L̃2 that satisfies L1 ¹ L̃2.

– Liveness: If a transaction tx is given as input to all honest nodes at a round r and it holds that tx
is valid w.r.t. L̃P for every honest party P , then at round r +u it holds that LP includes tx for any
honest party P .

In classical distributed systems literature, such problem is often referred to as state machine repli-
cation [Sch90]. Consistency ensures that parties have the same view of the log of transactions, while
Liveness ensures the quick incorporation of transactions. Furthermore, a third property, called “order”
in [Sch90], is introduced which, in our notation, can be expressed as follows.

– Serializability: For transactions tx, tx′, if tx is given as input to all honest nodes at a round r and
it holds that tx is valid w.r.t. L̃P and tx′ 6∈ L̃P for every honest party P , then it holds that for any
r ′ > r , the ledger LP of any honest party cannot include tx′, tx in this order.

Given a consensus protocol it is tempting to apply it in sequential composition in order to solve
ledger consensus. The reduction indeed holds but some special care is needed. First, let us consider the
case where no setup is available. The construction in the synchronous network model is as follows. First,
suppose that we have at our disposal a consensus protocol that satisfies Agreement, (Strong) Validity, and
Termination after u rounds. The protocol has all nodes collect transactions and then run the consensus
protocol with the set of transactions as their input. When the protocol terminates after u rounds, the
nodes assign an index to the output (call it the i -th entry to the ledger) and move on to the next consensus
instance. It is easy to see that Consistency is satisfied because of Agreement, while Liveness is satisfied
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with parameter u because of Strong Validity and Termination. It is worth noting that “plain” Validity by
itself is not enough, since a ledger protocol is supposed to run for any given set of transactions and as
a result it is possible that no two honest nodes would ever agree on a set of inputs. In this case, Validity
might just provide that honest parties’ agree on an adversarial value, which might be the empty string.
As a result the ledger would be empty and Liveness would be violated. However it is possible to deal
with this problem without resorting to the full power of Strong Validity. For instance, it is sufficient to
consider a variant of consensus where each party has an input set Xi and the joint output set S satisfies
that Xi ⊆ S. We note that such a “union” consensus protocol can be implied by Interactive Consistency,
as defined in [PSL80], and it has also recently been considered explicitly as a consensus variant [DG17].
Other intermediate notions of Validity such as a predicate-based notion [CKPS01] can be useful here as
well.

Let us now comment how the reduction can be performed under different setup and network as-
sumptions. First, if a setup assumption is used, observe that the above reduction will require the avail-
ability of the setup every u rounds. Given this might be impractical, one may consider how to emulate
the sequence of setups using a single initial setup. This approach is non-black-box on the underlying
protocol and may not be straightforward. For instance, when sequentially composing a PoW-based
consensus protocol that relies on a public setup, the security of the protocol may non-trivially rely on
the unpredictability of the i -th setup. Techniques related to sequential composition of a basic building
block protocol have appeared in a number of ledger protocols, including [KRDO17, BPS16, CM19]. Re-
garding network aspects, we observe that the reduction can proceed in essentially the same way in the
peer-to-peer setting as in the point-to-point setting. Finally, note that when simultaneous termination
is not available in the underlying consensus protocol, special care is needed in applying composition
(cf. [CCGZ16]).

Ledger consensus was brought forth as an objective of the Bitcoin blockchain protocol. For this rea-
son, in the remaining of the paper, we only consider the problem in the peer-to-peer setting, although we
note that in the point-to-point setting it is possible to adapt standard BFT methods to solve the problem.
We refer to, e.g., [MXC+16, GAG+18] for some recent examples. We remark also that combining private
setup and the peer-to-peer setting, it is straightforward to simulate the point-to-point setting by relying
on the authentication information that can be made available by the setup. A pictorial overview of our
protocol classification is presented in Figure 2.

Number of parties. We start with an adapation of the impossibility result for dishonest majority as shown
in [Fit03]. The result shows that in all the relevant cases for practice, specifically, ledger consensus with
non-trivial ledgers, or providing serializability as defined above, honest majority is a necessary require-
ment.

Theorem 1. Suppose that the transaction set T satisfies |T| ≥ 2. Ledger consensus is impossible in case the
adversary controls n/2 nodes, assuming either (i) the language L is non-trivial or (ii) Serializability holds.

Proof. For simplicity we describe the impossibility result in a setting where the properties are perfectly
satisfied. The same argument can be easily extended to the setting where the properties are satisfied
with overwhelming probability. Suppose all parties are split in two sets A1, A2 of size exactly n/2. We
describe an environment and an adversary. The environment prepares two transactions tx1, tx2 ∈T that
are in conflict, i.e., it holds that no valid L exists for which it holds that both tx, tx′ ∈ L but they can be
both validly added to some ledger since they are members of T. The environment provides at round 1
the appropriate sequence of transactions so that parties in Ab receive transaction txb respectively and
advances the execution for at least u rounds, the Liveness parameter. We consider three adversaries
A0,A1,A2. The A0 adversary corrupts no party and allows the execution to advance normally. On the
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Figure 2: The taxonomy of ledger consensus protocols (peer-to-peer setting).

other hand, the adversary Ab with b ∈ {1,2} corrupts the set of parties Ab and simulates honest operation.
Consider a party P1 ∈ A1 and a party P2 ∈ A2. In case b ∈ {1,2}, by Liveness, at the end of the execution
it should be the case that txb ∈ Lb . In case b = 0, by Consistency, it should be that L1 ¹ L̃2. Given
that in the three cases the executions are perfectly indistinguishable, this means that tx1 ∈ L̃2 which is a
contradiction since tx2 ∈L2 ¹ L̃2.

The argument for the case of Serializability is similar to the above. In this case, we just assume that
transactions tx1, tx2 ∈T are just distinct (they do not have to be in conflict). Observe that by Liveness in
the experiments above we will have that txb ∈ Lb for party Pb . Moreover, due to Serializability, for Pb it
must be the case that transactions cannot be in the order tx3−b , txb . This leads to a contradiction due to
Consistency.

As in the case of peer-to-peer consensus (Section 7), the actual number of parties n is not known
in advance and may be assumed to fall within a range of operational parameters n ∈ [nmin,nmax]. This
is also related to the concept of “sporadic participation” that was considered in [PS17], where certain
honest parties may “go to sleep” for arbitrary amounts of time.

In the PoW setting, recall that each party has a fixed quota of queries that it can perform to a hash
function per unit of time and thus the number of parties is directly proportional to the total computa-
tional or hashing power that is available. In this setting, first [GKL15] showed that ledger consensus can
be achieved when the number of corrupted parties is strictly below n/2. This bound was also preserved
in the partially synchronous setting, as shown by Pass et al. [PSS17].

The above results refer to a static setting where there are no large deviations in the number of parties
throughout the execution. The setting where the population of parties running the protocol can dynam-
ically (and quite drastically) change over time with the environment introducing new parties and deac-
tivating parties that have participated was considered for ledger consensus for the first time in [GKL17].
Their main result is that ledger consensus can be achieved in the PoW setting, assuming an honest ma-
jority appropriately restated by considering the number of parties as they change over time: Assuming
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ni are the active parties at time unit i , it holds that the number of adversarial parties is bounded away
from ni /2.

Assuming a private setup and a setting where the adversary gets t Byzantine corruptions and s asleep
parties, in [PS17] it is shown that ledger consensus can be achieved as long as t is strictly bounded by a/2
where a = n − s is the number of “alert” parties, i.e., the number of asleep parties may be larger than
n/2 and hence an arbitrary participation ratio can also be achieved in this setting without resorting to
PoWs. With respect to lower bounds, in the case of sleep corruptions the bound can be generalized to
a/2; see [PS17]. A dynamic setting of parties was also considered in [KRDO17,BPS16,DGKR18], providing
a similar type of results assuming a PKI with honest “stake” majority. An important deficiency shared by
these works is that new parties have to be chaperoned into the system by receiving advice consistent
with the views of the honest parties. This was highlighted as the “bootstrapping from genesis” problem
in [BGK+18] which resolved it via a suitable chain selection rule; in the same work, a more refined model
of dynamic participation was put forth, called dynamic availability. This model allows finer control
from the environment’s perspective in terms of disconnecting parties, or having parties lose access to
resources such as the clock or the hash function.

Finally, in terms of participation tolerance, we observe that an arbitrary nmax/nmin can be achieved
by protocols such as [PS17, BGK+18] while Algorand [CM19] requires nmax/nmin to be (approximately) 1
since the expected participation is a hardcoded value in the protocol (it is worth noting that despite this
limitation, Algorand still qualifies as a peer-to-peer protocol, since the identities of the parties engaging
in the protocol need not be known in advance).

Transaction processing time. Contrary to a consensus protocol, a ledger consensus protocol is a proto-
col that is supposed to be running over an arbitrary, potentially long, period of time. Thus, the relevant
measure in this context is the amount of time that it takes for the system to insert a transaction in the log
that is maintained by the participants. This relates to the parameter u introduced as part of the Liveness
property, which determines the number of rounds needed in the execution model for a transaction to be
included in the log. Observe that Liveness is only provided for transactions that are produced by honest
participants or are otherwise unambiguously provided to the honest parties running the protocol.

In this setting we observe that [GKL15] achieves ledger consensus with processing time O(κ) rounds
of interaction, whereκ is the security parameter. This result is replicated in the partially synchronous set-
ting, where processing time takes O(κ∆) rounds, and where ∆ is the maximum delay that is imposed on
message transmission. The above results assume the adversarial bounds consistent with honest majority
which are tight (cf. [PS18]). Considering a weaker adversarial setting it is possible to improve Liveness;
for instance, Algorand [CM19] achieves expected-constant number of rounds while, Thunderella [PS18],
shows that the processing time can be dropped to O(1) rounds worst-case, assuming an honest super-
majority (i.e., adversarially controlled number of parties strictly below n/4) and the existence a specific
party called the accelerator to be honest.

Trusted setup. Ledger consensus can be achieved in the public- or private-state setup setting. Protocols
falling in the former category are [GKL15, PSS17, GKL17], whereas protocols consistent with the latter
are [CM19, PS17, KRDO17, BPS16, GHM+17]. In the absence of a trusted setup, it has been shown that
it is possible to “bootstrap” a ledger consensus protocol from “scratch,” either directly [GKLP18] or via
setting up a public-key directory using proofs of work [AD15b]. An important further consideration be-
tween public and private setup is that in the peer-to-peer setting, the former represents what typically is
consistent with the so-called persmissionless setting, while the latter is consistent with the permissioned
setting. This follows from the fact that anyone that has access to the peer-to-peer channel is free to par-
ticipate in the protocol, if no setup or a public setup is assumed. On the other hand, in the private setup
setting, a higher level of permissioning is implied: The parties that are eligible to run the protocol need to
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get authorized either by the setup functionaliy so that they receive the private information that is related
to the protocol execution, or, alternatively, interact with the parties that are already part of the protocol
execution so they can be inducted. Note that the point-to-point setting is—by definition—permissioned
via access to the RMT functionality.

Communication cost. Given that ledger consensus is an ongoing protocol that processes incoming
transactions, defining communication costs requires some care. To our knowledge, no formal defini-
tions of communication costs for ledger consensus have been proposed. A first approach to the problem
is to consider a type of “communication overhead” on top of the transactions that are transmitted in the
system. It follows that the minimum communication necessary for each bit of transaction transmitted is
the diffusion of this bit. Given the above, the communication costs of ledger consensus protocols based
on blockchain protocols can be seen to be constant in the sense that parties transmit, up to constant
factors, more data.

Beyond synchrony. Initial work in ledger consensus protocols in the public setup [GKL15, GKL17] and
the no setup setting [GKLP16, GKLP18] assumed a rushing adversary and synchronous operation. This
can be extended to the partial synchrony setting as shown in [PSS17] as well as in the full version of
[GKL14] with the same limitations explained in Section 7.

Property-based vs. simulation-based proofs. The first simulation-based definition of ledger consensus
was presented by Badertscher et al. [BMTZ17]. A refinement of this definition was presented in [BGK+18],
where it was also shown how to adapt it in a setting where a private setup is available. In terms of com-
posability, an (expected) disadvantage for PoW-based protocols highlighted in the work of [BMTZ17] is
that access to the random oracle should be specific to the current ledger protocol session.

9 Acknowledgements

The second author was supported by H2020 Project Priviledge # 780477. The authors are grateful to
Christian Cachin, Arpita Patra, Björn Tackmann, Ivan Visconti and anonymous reviewers for helpful
comments and suggestions.

References

[ABdSFG08] Eduardo Adílio Pelinson Alchieri, Alysson Neves Bessani, Joni da Silva Fraga, and Fabíola Greve.
Byzantine consensus with unknown participants. In Theodore P. Baker, Alain Bui, and Sébastien
Tixeuil, editors, Principles of Distributed Systems, 12th International Conference, OPODIS 2008, Luxor,
Egypt, December 15-18, 2008. Proceedings, volume 5401 of Lecture Notes in Computer Science, pages
22–40. Springer, 2008.

[AD15a] Ittai Abraham and Danny Dolev. Byzantine agreement with optimal early stopping, optimal resilience
and polynomial complexity. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015, pages 605–614. ACM, 2015.

[AD15b] Marcin Andrychowicz and Stefan Dziembowski. Pow-based distributed cryptography with no trusted
setup. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part II, pages 379–399, 2015.

[ADH08] Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. An almost-surely terminating polynomial pro-
tocol forasynchronous byzantine agreement with optimal resilience. In Rida A. Bazzi and Boaz Patt-
Shamir, editors, Proceedings of the Twenty-Seventh Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2008, Toronto, Canada, August 18-21, 2008, pages 405–414. ACM, 2008.

23



[AJK05] James Aspnes, Collin Jackson, and Arvind Krishnamurthy. Exposing computationally-challenged
Byzantine impostors. Technical Report YALEU/DCS/TR-1332, Yale University Department of Com-
puter Science, July 2005.

[BCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure computation. In Kosaraju
et al. [KJA93], pages 52–61.

[BCP18] Laasya Bangalore, Ashish Choudhury, and Arpita Patra. Almost-surely terminating asynchronous
byzantine agreement revisited. In Calvin Newport and Idit Keidar, editors, Proceedings of the 2018
ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham, United Kingdom, July
23-27, 2018, pages 295–304. ACM, 2018.

[BDDS92] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond Strong. Shifting gears: Changing
algorithms on the fly to expedite byzantine agreement. Inf. Comput., 97(2):205–233, 1992.

[BE03] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in constant time. Dis-
tributed Computing, 16(4):249–262, 2003.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In Miller
[Mil96], pages 479–488.

[BF99] Amos Beimel and Matthew K. Franklin. Reliable communication over partially authenticated net-
works. Theor. Comput. Sci., 220(1):185–210, 1999.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan, and Brent Wa-
ters. Time-lock puzzles from randomized encodings. In Madhu Sudan, editor, Proceedings of the
2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January
14-16, 2016, pages 345–356. ACM, 2016.

[BGK+18] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas. Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availability. In David Lie, Moham-
mad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-
19, 2018, pages 913–930. ACM, 2018.

[BGP92a] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Bit Optimal Distributed Consensus, pages 313–321.
Springer US, Boston, MA, 1992.

[BGP92b] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Optimal early stopping in distributed consensus
(extended abstract). In Distributed Algorithms, 6th International Workshop, WDAG ’92, Haifa, Israel,
November 2-4, 1992, Proceedings, pages 221–237, 1992.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). pages 1–10, 1988.

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transaction ledger:
A composable treatment. In Katz and Shacham [KS17], pages 324–356.

[BO83] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols
(extended abstract). In Robert L. Probert, Nancy A. Lynch, and Nicola Santoro, editors, PODC, pages
27–30. ACM, 1983.

[Bor96] Malte Borcherding. Levels of authentication in distributed agreement. In Distributed Algorithms,
10th International Workshop, WDAG ’96, Bologna, Italy, October 9-11, 1996, Proceedings, pages 40–
55, 1996.

[BPS16] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake. IACR Cryptol-
ogy ePrint Archive, 2016:919, 2016.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In CCS ’93, Proceedings of the 1st ACM Conference on Computer and Communications
Security, Fairfax, Virginia, USA, November 3-5, 1993., pages 62–73, 1993.

24



[Bra84] Gabriel Bracha. An asynchronou [(n-1)/3]-resilient consensus protocol. In Tiko Kameda, Jayadev
Misra, Joseph G. Peters, and Nicola Santoro, editors, Proceedings of the Third Annual ACM Symposium
on Principles of Distributed Computing, Vancouver, B. C., Canada, August 27-29, 1984, pages 154–162.
ACM, 1984.

[BSA+17] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah Meiklejohn,
and George Danezis. Consensus in the age of blockchains. CoRR, abs/1711.03936, 2017.

[Can96] Ran Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann
Institute of Science, 1996.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology,
13(1):143–202, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas,
Nevada, USA, pages 136–145. IEEE Computer Society, 2001.

[CCD87] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols
(abstract) (informal contribution). page 462, 1987.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols (ex-
tended abstract). In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 11–19. ACM, 1988.

[CCGZ16] Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. Probabilistic termination and com-
posability of cryptographic protocols. In Matthew Robshaw and Jonathan Katz, editors, Advances
in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part III, volume 9816 of Lecture Notes in Computer Science,
pages 240–269. Springer, 2016.

[CD89] Benny Chor and Cynthia Dwork. Randomization in byzantine agreement. Advances in Computing
Research, 5:443–497, 1989.

[CFF+05] Jeffrey Considine, Matthias Fitzi, Matthew Franklin, Leonid A. Levin, Ueli Maurer, and David Metcalf.
Byzantine agreement given partial broadcast. J. Cryptol., 18(3):191–217, July 2005.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computa-
tion. In Miller [Mil96], pages 639–648.

[CGHZ16] Sandro Coretti, Juan A. Garay, Martin Hirt, and Vassilis Zikas. Constant-round asynchronous multi-
party computation based on one-way functions. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part
II, volume 10032 of Lecture Notes in Computer Science, pages 998–1021, 2016.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In 26th Annual Symposium on
Foundations of Computer Science, Portland, Oregon, USA, 21-23 October 1985, pages 383–395. IEEE
Computer Society, 1985.

[CGR11] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Introduction to Reliable and Secure Dis-
tributed Programming. Springer Publishing Company, Incorporated, 2nd edition, 2011.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun.
ACM, 24(2):84–88, 1981.

[CKPS01] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient asyn-
chronous broadcast protocols. In Advances in Cryptology - CRYPTO 2001, 21st Annual International
Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, pages 524–
541, 2001.

25



[CKS05] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantinople: Practical
asynchronous byzantine agreement using cryptography. J. Cryptology, 18(3):219–246, 2005.

[CL02] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst., 20(4):398–461, 2002.

[CM19] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci.,
777:155–183, 2019.

[CPS07] Ran Canetti, Rafael Pass, and Abhi Shelat. Cryptography from sunspots: How to use an imperfect
reference string. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007),
October 20-23, 2007, Providence, RI, USA, Proceedings [DBL07], pages 249–259.

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience. In
Kosaraju et al. [KJA93], pages 42–51.

[CW89] Brian A. Coan and Jennifer L. Welch. Modular construction of nearly optimal byzantine agreement
protocols. In Piotr Rudnicki, editor, Proceedings of the Eighth Annual ACM Symposium on Principles
of Distributed Computing, Edmonton, Alberta, Canada, August 14-16, 1989, pages 295–305. ACM,
1989.

[DBL07] 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23, 2007,
Providence, RI, USA, Proceedings. IEEE Computer Society, 2007.

[DG17] Florian Dold and Christian Grothoff. Byzantine set-union consensus using efficient set reconcilia-
tion. EURASIP Journal on Information Security, 2017(1):14, Jul 2017.

[DGKR18] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In Nielsen and Rijmen [NR18], pages 66–98.

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of partial syn-
chrony. J. ACM, 35(2):288–323, 1988.

[DM90] Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a byzantine environment:
Crash failures. Inf. Comput., 88(2):156–186, 1990.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In CRYPTO, pages
139–147, 1992.

[DPPU88] Cynthia Dwork, David Peleg, Nicholas Pippenger, and Eli Upfal. Fault tolerance in networks of
bounded degree. SIAM J. Comput., 17(5):975–988, 1988.

[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement. J.
ACM, 32(1):191–204, 1985.

[DRS90] Danny Dolev, Rüdiger Reischuk, and H. Raymond Strong. Early stopping in byzantine agreement. J.
ACM, 37(4):720–741, 1990.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for Byzantine agreement. SIAM J.
Comput., 12(4):656–666, 1983.

[Fel88] Paul Feldman. Optimal algorithms for Byzantine agreement. PhD thesis, Massachusetts Institute of
Technology, 1988.

[FG03] Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong and differential con-
sensus. In PODC, pages 211–220, 2003.

[FH06] Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued byzantine agreement. In Eric Rup-
pert and Dahlia Malkhi, editors, Proceedings of the Twenty-Fifth Annual ACM Symposium on Princi-
ples of Distributed Computing, PODC 2006, Denver, CO, USA, July 23-26, 2006, pages 163–168. ACM,
2006.

[Fit03] Matthias Fitzi. Generalized communication and security models in Byzantine agreement. PhD thesis,
ETH Zurich, Zürich, Switzerland, 2003.

26



[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive consistency.
Inf. Process. Lett., 14(4):183–186, 1982.

[FLM86] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for distributed
consensus problems. Distributed Computing, 1(1):26–39, 1986.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, 1985.

[FM97] Pesech Feldman and Silvio Micali. An Optimal Probabilistic Protocol for Synchronous Byzantine
Agreement. SIAM J. Comput., 26(4):873–933, 1997.

[GAG+18] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K. Reiter,
Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: a scalable decentralized trust infras-
tructure for blockchains. CoRR, abs/1804.01626, 2018.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand: Scal-
ing byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating
Systems Principles, Shanghai, China, October 28-31, 2017, pages 51–68. ACM, 2017.

[GKKO07] Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round complexity of authen-
ticated broadcast with a dishonest majority. In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings [DBL07], pages
658–668.

[GKKZ11] Juan A. Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adaptively secure broad-
cast, revisited. In Cyril Gavoille and Pierre Fraigniaud, editors, Proceedings of the 30th Annual ACM
Symposium on Principles of Distributed Computing, PODC 2011, San Jose, CA, USA, June 6-8, 2011,
pages 179–186. ACM, 2011.

[GKL14] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin Backbone Protocol: Analysis and
Applications. IACR Cryptology ePrint Archive, 2014:765, 2014.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes in Com-
puter Science, pages 281–310. Springer, 2015.

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains of
variable difficulty. In Katz and Shacham [KS17], pages 291–323.

[GKLP16] Juan A. Garay, Aggelos Kiayias, Nikos Leonardos, and Giorgos Panagiotakos. Bootstrapping the
blockchain - directly. IACR Cryptology ePrint Archive, 2016:991, 2016.

[GKLP18] Juan A. Garay, Aggelos Kiayias, Nikos Leonardos, and Giorgos Panagiotakos. Bootstrapping the
blockchain, with applications to consensus and fast PKI setup. In Michel Abdalla and Ricardo Da-
hab, editors, Public-Key Cryptography - PKC 2018 - 21st IACR International Conference on Practice
and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part
II, volume 10770 of Lecture Notes in Computer Science, pages 465–495. Springer, 2018.

[GKP17] Juan A. Garay, Aggelos Kiayias, and Giorgos Panagiotakos. Proofs of work for blockchain protocols.
IACR Cryptology ePrint Archive, 2017:775, 2017.

[GM98] Juan A. Garay and Yoram Moses. Fully polynomial byzantine agreement for n > 3t processors in t + 1
rounds. SIAM J. Comput., 27(1):247–290, 1998.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity and a
methodology of cryptographic protocol design (extended abstract). pages 174–187, 1986.

27



[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred V. Aho, editor, Proceedings of the 19th Annual
ACM Symposium on Theory of Computing, 1987, New York, New York, USA, pages 218–229. ACM,
1987.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques. Cambridge Univer-
sity Press, 2001.

[GP92] Juan A. Garay and Kenneth J. Perry. A continuum of failure models for distributed computing. In
Distributed Algorithms, 6th International Workshop, WDAG ’92, Haifa, Israel, November 2-4, 1992,
Proceedings, pages 153–165, 1992.

[GP16] Chaya Ganesh and Arpita Patra. Broadcast extensions with optimal communication and round com-
plexity. In George Giakkoupis, editor, Proceedings of the 2016 ACM Symposium on Principles of Dis-
tributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 371–380. ACM, 2016.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web: Computing with-
out simultaneous interaction. In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 -
31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, vol-
ume 6841 of Lecture Notes in Computer Science, pages 132–150. Springer, 2011.

[HR14] Martin Hirt and Pavel Raykov. Multi-valued byzantine broadcast: The t < n case. In Palash Sarkar
and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference
on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II, volume 8874 of Lecture Notes in Computer Science, pages
448–465. Springer, 2014.

[HZ10] Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, French Riviera, May 30 - June 3, 2010. Proceedings, pages 466–485, 2010.

[KJA93] S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors. Proceedings of the Twenty-Fifth Annual
ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA. ACM, 1993.

[KK09] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for Byzantine agreement.
Journal of Computer and System Sciences, 75(2):91 – 112, 2009.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A provably
secure proof-of-stake blockchain protocol. In Katz and Shacham [KS17], pages 357–388.

[KS05] Klaus Kursawe and Victor Shoup. Optimistic asynchronous atomic broadcast. In Luís Caires,
Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors, Automata, Lan-
guages and Programming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15,
2005, Proceedings, volume 3580 of Lecture Notes in Computer Science, pages 204–215. Springer, 2005.

[KS16] Valerie King and Jared Saia. Byzantine agreement in expected polynomial time. J. ACM, 63(2):13:1–
13:21, 2016.

[KS17] Jonathan Katz and Hovav Shacham, editors. Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part
I, volume 10401 of Lecture Notes in Computer Science. Springer, 2017.

[LLR06] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of authenticated byzantine
agreement. J. ACM, 53(6):881–917, 2006.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine Generals Problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1996.

[Mic16] Silvio Micali. ALGORAND: the efficient and democratic ledger. CoRR, abs/1607.01341, 2016.

28



[Mil96] Gary L. Miller, editor. Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. ACM, 1996.

[ML14] Andrew Miller and Joseph J. LaViola. Anonymous Byzantine consensus from moderately-hard puz-
zles: A model for bitcoin. University of Central Florida. Tech Report, CS-TR-14-01, April 2014.

[MXC+16] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of BFT protocols.
In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 31–42. ACM, 2016.

[Nak08a] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf,
2008.

[Nak08b] Satoshi Nakamoto. “The proof-of-work chain is a solution to the Byzantine Generals’ problem”.
The Cryptography Mailing List, https://www.mail-archive.com/cryptography@metzdowd.com/
msg09997.html, November 2008.

[Nak09] Satoshi Nakamoto. Bitcoin open source implementation of p2p currency. http://p2pfoundation.
ning.com/forum/topics/bitcoin-open-source, February 2009.

[Nei94] Gil Neiger. Distributed consensus revisited. Inf. Process. Lett., 49(4):195–201, 1994.

[NR18] Jesper Buus Nielsen and Vincent Rijmen, editors. Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in Computer
Science. Springer, 2018.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic applications.
In David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
May 14-17, 1989, Seattle, Washigton, USA, pages 33–43. ACM, 1989.

[Oku05a] Michael Okun. Agreement among unacquainted Byzantine generals. In Pierre Fraigniaud, editor,
DISC, volume 3724 of Lecture Notes in Computer Science, pages 499–500. Springer, 2005.

[Oku05b] Michael Okun. Distributed computing among unacquainted processors in the presence of Byzantine
failures. Ph.D. Thesis Hebrew University of Jerusalem, 2005.

[Pat11] Arpita Patra. Error-free multi-valued broadcast and byzantine agreement with optimal communica-
tion complexity. In Antonio Fernández Anta, Giuseppe Lipari, and Matthieu Roy, editors, Principles
of Distributed Systems - 15th International Conference, OPODIS 2011, Toulouse, France, December
13-16, 2011. Proceedings, volume 7109 of Lecture Notes in Computer Science, pages 34–49. Springer,
2011.

[PCR14] Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Asynchronous byzantine agreement with
optimal resilience. Distributed Computing, 27(2):111–146, 2014.

[PS17] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and Thomas Peyrin,
editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceed-
ings, Part II, volume 10625 of Lecture Notes in Computer Science, pages 380–409. Springer, 2017.

[PS18] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation. In Nielsen
and Rijmen [NR18], pages 3–33.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228–234, 1980.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part II, pages 643–673, 2017.

29



[PW92] Birgit Pfitzmann and Michael Waidner. Unconditional byzantine agreement for any number of faulty
processors. In STACS, volume 577, pages 339–350. Springer, 1992.

[Rab83] Michael O. Rabin. Randomized Byzantine Generals. In FOCS, pages 403–409. IEEE Computer Society,
1983.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Comput. Surv., 22(4):299–319, December 1990.

[SJS+18] Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Alexei Zamyatin, and Edgar R. Weippl. Agree-
ment with satoshi - on the formalization of nakamoto consensus. IACR Cryptology ePrint Archive,
2018:400, 2018.

[TC84] Russell Turpin and Brian A. Coan. Extending binary byzantine agreement to multivalued byzantine
agreement. Information Processing Letters, 18(2):73–76, 1984.

[Upf92] Eli Upfal. Tolerating linear number of faults in networks of bounded degree. In Norman C. Hutchin-
son, editor, Proceedings of the Eleventh Annual ACM Symposium on Principles of Distributed Com-
puting, Vancouver, British Columbia, Canada, August 10-12, 1992, pages 83–89. ACM, 1992.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). pages 160–164, 1982.

A Ideal Functionalities

The ideal functionality that captures RMT is presented in Figure 3 assuming a synchronous operation;
(cf. Section 3.2 where we discuss how the synchrony requirement can be relaxed). Given that not all
parties may be required to send a message in each communication round, the functionality has to keep
track of party activations and advance to the next “round” only when all parties have been given a chance
to act (note that an activation does not necessarily imply performing any protocol tasks).

The ideal functionality capturing the diffuse operation is presented in Figure 4 assuming again syn-
chronous network operation (likewise refer to Section 3.2 where we discuss how the synchrony require-
ment can be relaxed). A salient feature of protocols running in the FDiffuse setting, is that the session
id may just provide an abbreviation of the universe of parties P = {P1, . . . ,Pn}, of which only a subset
may be activated. The functionality capturing the formalization of a hash function as a random oracle is
shown in Figure 5.
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Functionality FRMT

The functionality interacts with an adversary S and a set P = {P1, . . . ,Pn} of parties. Initialize a Boolean
flag flag(Pi ) to false and a string inbox(Pi ) to empty, for all i = 1, . . . ,n.

– Upon receiving (Send,sid,Pi ,P j ,m) from Pi , store (Send,sid,Pi ,P j ,m) and hand
(Send,sid,Pi ,P j ,m,mi d) to S , where mi d is a unique identifier.

– Upon receiving (Activate,sid,Pi ) from Pi , set flag(Pi ) to true. If it holds that ∧n
i=1flag(Pi ), then

for all i = 1, . . . ,n, set flag(Pi ) to false, and for any (Send,sid,Pi ,P j ,m,mi d) that is recorded as
unsent, mark it as sent, and copy (Send,sid,Pi ,P j ,m,mi d) to inbox(P j ).

– Upon receiving (Deliver,sid,mi d) from S , assuming (Send,sid,Pi ,P j ,m,mi d) is recorded as un-
sent, mark it as sent, and copy (Send,sid,Pi ,P j ,m) to inbox(P j ).

– Upon receiving (Fetch,sid,Pi ) from Pi , return inbox(Pi ) to Pi and set inbox(Pi ) to empty.

Figure 3: The reliable message transmission ideal functionality in the synchronous setting.

Functionality FDiffuse

The functionality interacts with an adversary S and a set U of parties. Initialize a subset A ⊆U to ;, a
Boolean flag flag(Pi ) to false, and a string inbox(Pi ) to empty, for all i such that Pi ∈U .

– Upon receiving (Send,sid,Pi ,m) from Pi , set flag(Pi ) to true, store (Send,sid,Pi ,m) and hand
(Send,sid,Pi ,m,mi d) to S , where mi d is a unique identifier.

– Upon receiving (Activate,sid,Pi ) from Pi , set A = A ∪ {Pi } and flag(Pi ) to true. If it holds
that ∧i∈Aflag(Pi ), then for all i = 1, . . . ,n, set flag(Pi ) to false, and for any P j , j ∈ A, and
any (Send,sid,Pi ,m,mi d) that is recorded as unsent for P j , mark it as sent for P j , and copy
(Send,sid,Pi ,P j ,m,mi d) to inbox(P j ).

– Upon receiving (Deliver,sid,mi d ,P ′
i ,P j ) from S and j ∈ A, assuming (Send,sid,Pi ,m,mi d) is

recorded as unsent for P j , mark it as sent for P j , and copy (Send,sid,P ′
i ,P j ,m) to inbox(P j ).

– Upon receiving (Fetch,sid,Pi ) from Pi , return inbox(Pi ) to Pi and set inbox(Pi ) to empty.

Figure 4: The peer-to-peer diffuse ideal functionality in the synchronous setting.

Functionality FRO

The functionality interacts with an adversary S and a set P = {P1, . . . ,Pn} of parties.

– Upon receiving (Eval,sid, x) from Pi (resp. S ), return ρ to Pi (resp. S ) if (x,ρ) ∈ T . If no entry
for x is in T , then choose ρ← {0,1}κ, add (x,ρ) in T and return ρ to Pi .

Figure 5: The random oracle ideal functionality.
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