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Abstract. This work describes a common framework for scale-invariant
families of fully homomorphic schemes based on Ring-LWE, unifying the
plaintext space and the noise representation. This new formalization al-
lows to build bridges between B/FV, HEAAN and TFHE and provides
the possibility to take advantage of the best of these three schemes. In
particular, we review how different strategies developed for each of these
schemes, such as bootstrapping, external product, integer arithmetic and
Fourier series, can be combined to evaluate the principle nonlinear func-
tions involved in convolutional neural networks. Finally, we show that
neural networks are particularly robust against perturbations that could
potentially result from the propagation of large homomorphic noise. This
allows choosing smaller and more performant parameters sets.
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1 Introduction

Homomorphic encryption provides the ability to operate on encrypted data with-
out decrypting it. Soon after the development by Gentry of the first fully ho-
momorphic encryption (FHE) scheme [19], many other schemes followed. In this
paper we are interested in three scale-invariant HE-families: TFHE [14, 13] based
on [20, 15], B/FV [3, 17, 8] and HEAAN [12, 11], that are nowadays among the
most efficient constructions.

The three above schemes are all based on the Ring-LWE problem and their
ciphertext space is the same up to rescaling by a factor. However, their plaintext
spaces are all different, and as a consequence, each of the schemes has different
properties and behaviour. For example, the B/FV message space allows to per-
form large vectorial arithmetic operations, as long as the multiplicative depth
remains small. Generally speaking, B/FV-type operations necessary treat many
slots in parallel, but are less efficient if each slot needs an individual treatment.



On the other side, TFHE performs very fast combinatorial operations on in-
dividual slots, as for example, automata, Boolean circuits and look-up table
evaluations. Yet, this scheme is not designed for accomplishing repetitive tasks.
TFHE usually tolerates large noise (so smaller parameters), and in the case of
automata evaluation, the multiplicative depth is quite large. The third scheme,
HEAAN, is a mixed encryption scheme dedicated to fixed point arithmetic and
has shown to be very efficient for floating point computations. However, this
scheme is not designed to produce exact integer computations.

Ideally, for use cases requiring homomorphic operations of different nature,
one would like to take advantage of the best of these three worlds. For this rea-
son, this work intends at defining a unified framework embodying these three
schemes, and aims at introducing bridges that will permit to switch from one
scheme to another. This unification becomes even more important with the re-
cent standardization initiatives of homomorphic schemes and common APIs [5].
Moreover, the TFHE, B/FV (Seal) and HEAAN schemes are currently part of
this standardization process.

This approach has many potential applications. In a scenario where opera-
tions on large datasets must be performed first and a decision must be taken
on the result, the first part would be easy in the B/FV world, whereas the de-
cision function can be easily evaluated in TFHE. Therefore, one would like to
easily pass from B/FV to TFHE. If a lot of approximated computations have to
be done, one would benefit from a connection from HEAAN to TFHE. In an-
other similar example, many machine learning algorithms use SIMD operations
to produce an output vector, and at the end one is interested in computing the
maximum of its coordinates. Conversely, some banking systems need to perform
many small computations on an encrypted database, with a possibly very large
multiplicative depth during a long period of time, and at the end of the month
provide statistics on the current dataset. In this case it is essential to operate
in bootstrapped mode as in TFHE, and then do the low-depth statistical cal-
culations in B/FV or HEAAN. In this case it is essential to have a bridge from
transforming TFHE ciphertexts to B/FV or HEAAN ones.

Unifying the different approaches is not an easy task. Notably, as the plain-
text spaces are all different, it is not obvious in some cases to find a meaningful
semantic to the bridges. Another difficulty is the noise management. For ex-
ample, HEAAN and B/FV have a radically different interpretation of noise. In
B/FV, computations on the plaintext are discrete and exact. Instead, HEAAN
follows the floating point model with fixed precision to represent a continuous
plaintext space. Each operation adds a new error and mathematically this can
be expressed as a loss of one bit of precision after each operation. Yet, fixed
point arithmetic is commonly used in long chains of computations: it is the
numerical stability of the global algorithm that corrects the result. In the intro-
duction of [11], the authors cite notably the examples of control systems with
negative feedback, or of gradient descent. In this paper, we extend these results
by measuring the effect of various perturbations models that correspond to FHE
approximation errors, on small, medium and large neural networks.
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The theory of TFHE unites these discrete/exact vs. continuous/approximate
visions and allows to interconnect all the worlds. By unifying the schemes, we
obtain some interesting observations. For example, the relinearisation in the
internal products of HEAAN and B/FV can now be expressed in terms of the
external TFHE product, and without loss as it is the same algorithm. Another
example is the functional keyswitch of TFHE, which can be used as a flexible
technique to manipulate, pack and unpack values, or apply linear maps to B/FV
slots. It is a valid alternative to the multi-Hadamard product, especially when
switching from a small key to a large one.

For a given nonlinear function (e.g. absolute value, rounding, comparison,
division), and depending on the desired level of precision in the output, we
have different options for evaluating it (choosing TFHE, B/FV or HEAAN).
With the bridges proposed in this paper, we can easily alternate between the
representations and between the arithmetic and logic/combinatorial phases.

Our Contributions

Unified framework and bridges. Our first contribution is a unified representa-
tion of three of the most promising homomorphic schemes: B/FV, TFHE and
HEAAN. In order to exploit the advantages of each scheme, we need to be able
to homomorphically switch between the different plaintext spaces. We propose
to reexpress all the plaintext spaces as subsets of the same module, and to use
the real distance on the torus to quantify the transformation errors. After that,
we introduce all the necessary bridges to interconnect the B/FV, TFHE and
HEAAN schemes as described in Figure 1. Moreover, with this unified represen-
tation the analytic techniques described in TFHE [13] can be used to analyze
the average noise propagation in the three schemes.
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Fig. 1: Bridges between R-LWE homomorphic schemes.
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Modeling of homomorphic operations and of the noise for convolutional neural
networks followed by experiments. In the second part we show how one can
homomorphically evaluate with the above schemes most of the deep learning
crucial functions (e.g. absolute value, sign, max, ReLU) and discuss about the
potential difficulties of such an approach. We model the noise generated during
the homomorphic operations and the loss of precision by adding a Gaussian error
to the output of each non-linear function. This model permits us to simulate
homomorphic evaluations with large amounts of noise, and predict the effect
on the classification accuracy, without the need of evaluating heavy and time-
consuming homomorphic operations. This allows to determine the best CNN
structure and the smallest FHE parameters required during a pre-study phase.

We performed experiments with perturbations on three different convolu-
tional neural networks of small (LeNet-5), medium (cat-and-dog-9) and large
(ResNet-34) size and we observed that all the neural network we tested support
quite large relative errors of at least 10%, without almost any impact on the
global accuracy. It means that only 4 bits of precision (instead of 20 to 40 bits
usually) are needed on all fixed point operations throughout the network, which
results in very small parameter sets and fast homomorphic operations.

2 Background

In this paper we denote by T the real Torus R/Z, the set of real numbers modulo
1. We denote by ZN [X] = Z[X]/(XN + 1) the ring of polynomials with integer
coefficients module XN + 1.

Respectively,RN [X] = R[X]/(XN +1) is the ring of real polynomials module
XN + 1.

We denote by TN [X] = RN [X]/ZN [X] (a.k.a R[X] mod XN + 1 mod 1).
Note that TN [X] is a ZN [X]-module and not a ring. It does not have an internal
multiplication, but it has an external multiplication with coefficients in ZN [X].

We denote also BN [X] the subset of ZN [X] with binary coefficients.
We start here by a brief description of the three scale-invariant families of HE

schemes treated in this work. All of them are based on the Ring-LWE problem.

B/FV (Brakerski, Fan-Vercauteren, and Seal): In this scheme, the mes-
sage space is the ringRp = Z[X]/(XN+1) mod p, which has an internal addition
and multiplication. A message µ ∈ Rp is encrypted on a larger modulus ring, as
(a, b) ∈ R2

q, where Rq = Z[X]/(XN +1) mod q, a chosen is uniformly at random
in Rq and b is close to s.a + d qpµe, up to some small Gaussian error. Homo-

morphic addition of two ciphertexts (a1, b1) with (a2, b2) is performed termwise
on the two components, and homomorphic multiplication consists in expanding
µ1µ2 = µ as the polynomial equation p

q (b1 + a1.s)
p
q (b2 + a2.s) = p

q (b+ a.s), and
identifying its coefficients a and b. Since the modulo-p and modulo-q classes are
not compatible, all these products are actually performed on small representa-
tives in the real ring R[X]. Also, the quadratic term p

qa1a2.s
2 in the left hand

side is relinearized: it is bit-decomposed as a small public integer combination
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of the secret vector (s2, 2s2, 4s2, ..., q2s
2) and reencrypted as the same combina-

tion of KS = (Enc(s2),Enc(2s2), ...,Enc( q2s
2)) where KS is a public precomputed

vector of ciphertexts called ”KeySwitching key”. More details and formal defi-
nitions are given in the original papers (see [3, 17]). The noise amplitude grows
by a small factor O(N) on average after each multiplication, so it is a common
practice to perform a modulus-rescaling step, that divides and rounds each co-
efficient as well as the modulus q by an equivalent amount, in order to bring
the noise amplitude back to O(1), so that the subsequent operations continue
on smaller ciphertexts.

HEAAN In this scheme, the message space is the set of polynomials of Rq of
small norm ≤ B, with some uncertainty on the least significant bits, which means
that the O(1) least significant bits of the number are considered as noise and only
the most significant bits of µ are required to have an exact decryption. A HEAAN
ciphertext is also a Ring-LWE tuple (a, b) ∈ R2

q where a is uniformly random
in Rq, and b is close to a.s + µ, i.e. up to a Gaussian error of amplitude O(1).
This time, plaintexts and ciphertexts share the same space (no p

q rescaling).

Multiplication of two messages uses the same formula as in B/FV, including
relinearization with a keyswitch: if both input messages are bounded by B with
O(1) noise, the product is a message bounded by B2 with noise O(B). At this
point, it is a common practice to perform a modulus-rescaling step that divides
everything by B to bring the noise back to a O(1) level. Unlike B/FV, this
division in the modulus switching scales not only the ciphertext, but also the
plaintext by B. This can be fixed by adding a (public) tag to the ciphertext to
track how many of these divisions by B have been performed.

TFHE Here, messages and ciphertexts are expressed over the torus modulo 1
(T = R/Z). Each operation (on plaintexts or ciphertexts) is done at a given
noise amplitude α� 1. This means that only log2(α) fractional bits of precision
are considered, and least-significant bits that are left behind become part of
the ciphertext’s noise. TFHE can represent three plaintext spaces, and various
morphisms, or actions between them.

– TLWE encodes individual (continuous) messages over the torus T;
– TRLWE encodes (continuous) messages over R[X] mod (XN + 1) mod 1,

which can be viewed as the packing of N individual coefficients;
– TRGSW encodes integer polynomials in ZN [X] with bounded norm.

In TFHE, TLWE (resp. TRLWE) ciphertexts of a message µ have the same
shape (a, b = s.a+µ+ e) where a is uniformly random in TN (resp. TN [X]) and
e is a small zero-centered error.

TLWE (resp. TRLWE) is built around a secret Lipschitzian functional called
phase parametrized by a small (in general binary) secret key s, and usually
defined as ϕs : TN → T (resp. ϕs : TN [X]2 → TN [X]) that maps (a, b) to
b− s.a (resp. b(X)− s(X).a(X)). The fact that the phase is a Lipschitz function
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makes the decryption tolerant to errors and allows working with approximated
numbers.

TFHE proposes an analytic description of homomorphic operations where
each ciphertext is assimilated to a random variable that depends on the ran-
domness of a and e. In this case, the message and the error amplitude can
be analytically written as the expectation and standard deviation of the phase
ϕs(a, b) = b− sa = µ+ e of the ciphertext. The expectation, variance and stan-
dard deviation on the torus are well defined only for concentrated distributions
whose support is included in a ball of radius 1

4 (up to negligible tails). This is
the case of the error distribution of T(R)LWE. More information on the defi-
nition of expectation and standard deviation for concentrated distributions on
the torus can be found in [14]. The benefit of the definition of the message via
the expectation of the phase is that it is valid with infinite precision on any
(possibly continuous) subset of TN [X]. However, this definition is only analytic
in the sense that it can be used to prove the correctness of a cryptosystem by
induction, but it is not a definition that can be used for performing computa-
tions, since in practice the expectation of the phase cannot be computed from a
single sample of the distribution.

We describe below the algorithms that are used for the TFHE with TRLWE
encryption scheme.

Parameters: A security parameter λ, and a minimal noise α (implicitly defining
a minimal key size N).

KeyGen/Phase: A uniformly random binary key s ∈ BN [X], this implicitly
defines the secret phase function ϕ : TN [X]2 → TN [X], (a, b) 7→ (b− sa).

Encrypt (µ, s, α): Pick a uniformly random a ∈ TN [X], and a small Gaussian
error e← DTN [X],α and return (a, s.a+ µ+ e).

DecryptApprox(c, s): (approx) Return ϕs(c), which is close to the actual
message.

Decrypt(c, s,M): (rounded) Round ϕs(c) to the nearest point in M.
Message(c, s): (analytic) The message is the expectation of ϕs(c) (across all

possible randomizations of noise).
Public linear combination over ZN [X]: return

∑
ei.ci.

External product Given a TRGSW ciphertext A of M ∈ ZN [X] and a TRLWE
ciphertext b of µ ∈ TN [X], compute A�αb at precision α > 0, which encrypts
M.µ ∈ TN [X] (see [13]) �α : TRGSW × TRLWE −→ TRLWE

Apply a Z-module morphism f : use a Keyswitch algorithm (Theorem 2).

To ease the reading of this paper, we specify only one particular instantiation
of TFHE, as described in [13] where k = 1 and β = 1 (all bit-decompositions
are binary). We present all theorems with decomposition in base 2 (for boot-
strapping, keyswitch, external product and bitdecomp) to minimize the number
of parameters in the formulas.6.

6 With this choice, the parameters from [13] correspond to: k = 1, β = 1, Bg = 2,
` = − log(α), t = `, n = N , V KS = V BK = α2, which implies ε = α/2. As usual, a
non binary decomposition is possible and gives small poly-logarithmic improvements.
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To perform an operation at precision α� 1 (i.e. noise standard deviation α
during the operation), we always use ` = − log2(α) terms in every bit decompo-
sition.

The primary definition of α is the noise’s standard deviation during the cur-
rent operation: α is thus not a static parameter of the framework (noise rate,
precision and approximate decomposition error, keyswitch noise and bootstrap-
ping noises are thus equal or strongly related).

Any TLWE, TRLWE, TRGSW ciphertext, bootstrapping key or keyswitching
key given at a higher precision, can always be rounded and truncated to match
the current precision α. Working with precision α implies a minimal size for the
current binary key (roughly N ≈ max(256, 32α) from the security estimates for
a security parameter of λ = 128 bits (see Section 6 of [13]).

Whenever α varies (e.g. increases after each multiplication, or decreases after
a bootstrapping), we always use the last keyswitching and bootstrapping oper-
ation to switch to a new encryption key whose entropy is as close as possible to
the lower bound N ≈ max(256, 32α) from the security estimates.

External Product In this case, we have for the external product the following
theorem (see [13]):

Theorem 1. (External Product) Let A be TRGSW ciphertext of message µA ∈
ZN [X] and b be an (independent) TRLWE ciphertext of µb ∈ TN [X]. Then, there
exists a homomorphic external product algorithm, noted A�α b (first introduced
in [4] and formalized on the torus in [14]), such that Message(A�α b) = µA · µb
and Var(Err(A�α b)) ≤ 2`NVar(Err(A)) + 1+N

4 ‖µA‖22 α2 + ‖µA‖22 Var(Err(b)).
This theorem will in general be used to multiply a TRLWE ciphertext b with

a precomputed TRGSW ciphertext (e.g. a ciphertext of the binary secret key in
the case of bootstrapping): in this case, we can choose Var(Err(A)) = α2, and

we have ‖µA‖22 ≤ N (or even ‖µA‖22 = 1 if TRGSW ciphertexts encrypt only
single bits, as in [14] and [13]). In this case, the working precision α equals the
targeted output precision divided by N , so that the first two error terms in the
theorem remain negligible.

KeySwitching. In order to switch between the scalar and polynomial message
space T and TN [X], the authors of [13] generalized the notions of sample ex-
traction and keyswitching. On the one side a PubKS(f,KS, c1, . . . , cp) algorithm
homomorphically evaluates linear morphisms f from any Z-module Tp to TN [X]
using the functional keyswitching keys KS. It is possible to evaluate also a private
linear morphism, but the algorithm is slower.

On the other side, the algorithm SampleExtracti(c) allows to extract from
c = (a, b) ∈ TRLWEK(µ) the TLWE sample that encodes the i-th coefficient µi
with at most the same noise variance or amplitude as c.

Theorem 2. (Functional Key Switch) Given p TLWE ciphertexts ci ∈ TLWES(µi),
a public R-lipschitzian morphism f : Tp → TN [X] of Z-modules, and KSi,j ∈
T(R)LWEK,α(Si2j ) with standard deviation α and Si the i-th coefficient of the key
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S, Algorithm 2 described in [13] outputs a T(R)LWE sample c ∈ T(R)LWEK(f(µ1, . . . , µp))
such that: Var(Err(c)) ≤ R2 max(Var(Err(ci))) + α2(`N2 + N

4 ).

Gate bootstrapping. The gate bootstrapping in TFHE is a method to refresh
noisy TLWE ciphertext c, and it can also change its plaintext space. For higher
level point of view the gate bootstrapping algorithm allows to evaluate any
pointwise defined negacyclic function f : T→ T to the phase of a TLWE sample.

Theorem 3. (Functional Bootstrap) Given a TLWE ciphertext c on n bits key
K, which has been rounded to ( 1

2NZ/Z)2, a negacyclic function f : 1
2NZ/Z→ T

defined pointwise [f( 0
2N ), . . . , f(N−12N )] and a bootstrapping key BK = TRGSWS(Ki)

with standard deviation α, Algorithm 10 described in [13] outputs a TLWE sam-
ple c′ ∈ T encrypted f(ϕK(c)) with key S such that: Var(Err(c′)) ≤ α2n(2`N +
N + 5

4 + `).

Until now, the most frequent non-linear function used in Bootstrapping is
the rounding function, since rounding the phase of a ciphertext is equivalent
to decrypting it, and homomorphic decryption is the noise-reduction method
proposed by Gentry in 2009 [19].

3 Unified framework for scale invariant homomorphic
schemes

3.1 Unifying all message spaces

Interestingly, the three homomorphic schemes use nearly the same ciphertext
space (up to rescaling by a factor q), and the notion of phase can be ported to
all three up to minor differences (b − sa versus b + sa in B/FV, or

∑
ais

i in
Seal). However, plaintext spaces are completely different as they are based on
different mathematical structures (groups, rings, intervals, random sets). In order
to exploit the advantages of each scheme, we need to be able to homomorphically
switch between the different plaintext spaces, and most importantly, to give a
meaningful semantic to these transformations. Here, we propose to reexpress all
the plaintext spaces as subsets of the same module TN [X], and to use the real
distance on the torus to quantify the transformation error.

In this setting, all schemes use the same ciphertext space TN [X]2, the same
key space BN [X], and the same phase function ϕs(a, b) = b − s.a. Thus, the
analytic characterization of the message and error as respectively the expectation
and the standard deviation of the phase from TFHE is automatically ported to all
schemes. TFHE has two interpretations of the concrete decryption: the first one
says that the phase is always close (within a distance α) to the actual message,
and is a good enough approximation thereof. This is the default approach in
the HEAAN cryptosystem on approximate numbers, where only the significant
digits matter, and accumulated errors are not corrected by the cryptosystem (but
rather by the numerical stability of the physical system that is homomorphically
evaluated). The second approach consists in restricting the valid message space
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to a discrete subset of TN [X] with a packing radius ≥ α. In this case, which
corresponds to the B/FV setting, the exact message can be recovered by rounding
the phase to the closest valid message.

Preserving the user slots. Even if we unify the native plaintext of all schemes on
TN [X], we would like to preserve the notion of user-side slots, which corresponds
to the way the end-user actually employs the schemes.

In B/FV, homomorphic operations are presented to the user either as N
SIMD slots modulo a medium-sized integer p (in [17, 8]), or more recently as a
single big-number (or rational) slot modulo pN+1 [9]. Exact operations on paral-
lel slots can be used for example in financial applications, and exact big-number
operations can be applied to the homomorphic evaluation of cryptographic func-
tions like RSA or DSA. In all cases, these slots are isomorphic to a principal ideal
of ZN [X], which is viewed as the native plaintext in [9]. In our formalization,
we preserve the user-space slots, and we reexpress the native plaintext space as
a principal ideal sublattice M of TN [X]. Rounding the phase of a ciphertext to
the native plaintext space means solving a bounded distance decoding (BDD)
problem on the lattice M, which is easy if we know a very small generator of
M (which is the case in [8, 17, 9]). We formalize this in Section 3.2.

In HEAAN, homomorphic operations are presented as N/2 SIMD slots con-
taining fixed-point complex numbers, with the same public exponent and the
same precision. By interpolation on the complex roots of XN + 1, the native
plaintext can be mapped to small polynomials of TN [X] (e.g. a ball of small
fixed radius). We formalize this in Section 3.3.

Finally, in TFHE, the message space is an arbitrary subset of TN [X]: the
only constraint is the local stability of each operation. For example in the gate
bootstrapping, fresh/bootstrapped LWE samples encode Boolean values on the
plaintext space {− 1

8 ,+
1
8} which is not a group. The computation of binary gates

uses exclusively a linear combination of two fresh samples with coefficients ∈
{−1, 0, 1} (which temporarily brings the message space to {− 1

4 , 0,+
1
4}), followed

by a bootstrapping. In this case, the packing radius is 1
8 , which is larger than

the 1
16 we would get if TFHE was described on the smallest group that contains

these plaintexts.
The unified native plaintext spaces and the correspondance with the user-

space slots are shown in Figure 2.

3.2 A general abstraction of B/FV over the torus

B/FV uses a ring space, which means that the plaintext space has an internal
multiplication. In order to support approximations, the multiplication is lifted to
multiplication over the real ring RN [X]. Depending on the choice of the plaintext
ring, usually presented as a subring of ZN [X], and up to ring isomorphism, this
allows the user to work on more friendly slots, such as a vector of independent
integers in Z/pZ for a medium-sized integer p (see [17, 3]), a vector of elements
in a finite field (see [24]), or recently, a big integer or rationals modulo pN + 1
(see [9]) via the NTRU trick (see [26]). The B/FV scheme is very efficient in
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Ciphertext Phase Native Message User Slots

(a, b)
b− s.a

any M⊆ TN[X]

small continuous interval

principal ideal lattice

local stability of homomorphic ops

Arbitrary subset

P (X) = p, N SIMD slots modulo p

P (X) = X-p, 1 bignum slot modulo pN+1

N/2 fixed point SIMD slots over C

fast operations on individual slots

N independent coefs over T

P (X) =
∏

(X-pi) SIMD slots, each mod pNi +1

TN[X]2 TN[X] M⊆ TN[X]

(TFHE)

(B/FV)

(HEAAN)

M = ZN[X].∆P mod 1

coefs∈ [− 1
2`
, 1
2`

]

where ∆P = P−1 ∈ RN[X]

=
µ+ e

Fig. 2: Unifying the plaintext space in RLWE-schemes

evaluating arithmetic circuits (i.e. polynomials within the native plaintext ring
structure), however huge slowdowns are noticed when evaluating comparisons,
the sign function, or other non-linear decision diagrams that do not correspond
to sparse low depth polynomials. Here, we propose an alternative that consists
in switching to a different scheme, and for instance, execute the non-arithmetic
operation via TFHE’s gate bootstrapping. We explain how to unify the plaintext
spaces to enable this conversion.

For this, we adopt the dual description that is used to tackle both independent
slots and the big-numbers case in [18, 9]. Given an integer polynomial P (X) ∈
Z[X] relatively prime to XN+1, we can identify P (X) with its negacyclic matrix
P (containing its coefficients). Let ∆P = P−1 be the matrix of the inverse of P (X)
in RN [X]. We call respectively L(P) and L(∆P) the real lattices generated by the
rows of P and ∆P. These lattice are dual to each other.

The native plaintext space M is the submodule of TN [X] generated by
∆P (X). Geometrically, it corresponds to the vectors in the lattice L(∆P) whose
coefficients are reduced modulo 1. By duality, M is also the set of all the real
polynomials µ(X) ∈ RN [X] such that µP is integer (mod XN + 1).

Algebraically, M is in bijection with the integer ring defined as RP = Z[X]
mod XN + 1 mod P (X) and this is the most frequently used representation in
the literature. We verify that the two plaintext spaces are isomorphic and that
multiplication by ∆P (X) is the isomorphism.

Lemma 1. The right multiplication by ∆P (X) is a ZN [X]-module isomorphism
from RP = Z[X] mod XN + 1 mod P (X) to M.

Proof. Consider the mapping ψ : ZN [X]→M, U(X) 7→ U.∆P . This application
is surjective by definition. We now compute ker(ψ). Let U ∈ ZN [X] such that
U(X).∆P (X) = 0 ∈ TN [X].
By definition, there exists an integer polynomial V (X) ∈ ZN [X] such that
U(X).∆P (X) = V (X) ∈ RN [X]. Multiplying both sides by P (X), we get
U(X) = V (X)P (X), which is an integer multiple of P . Reciprocally, all integer
multiples of P are sent to 0 by ψ, so ker(ψ) = ZN [X].P . By the isomorphism
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theorem, we can conclude that multiplication by ∆P is an isomorphism from
ZN [X] mod P toM, and thererefore provides an induced ring structure onM.

ut
By the isomorphism, the native plaintext space M has an induced internal

multiplication, which can be written as the following Mongomery product:

Definition 1 (Native plaintext product).

M×M→M
(µ1, µ2) 7→ µ1 �P µ2 = (P × µ1 × µ2) mod XN + 1 mod 1.

(1)

Here, the product P × µ1 × µ2 is done over R[X] by choosing any real represen-
tative for µ1, µ2.

We now explain how this product handles approximations of µ1 and µ2 with
small continuous errors, if used for TRLWE ciphertexts.

Multiplication in B/FV We now review how the exact multiplication over plain-
texts extends to an approximate B/FV multiplication over TRLWE samples.
Given a TRLWE ciphertext c ∈ TN [X]2, we call (a, b) ∈ RN [X]2 the smallest
representative of c if c = (a, b) mod 1 and a, b have all their coefficients in
[− 1

2 ; 1
2 ).

Let s ∈ BN [X] be a TRLWE key, and RK be a relinearization key, which is a
TRGSW encryption of s with key s. Let c1, c2 be two TRLWE ciphertexts under
the same key s. We note c1 �P,α c2 the following product:

Definition 2 (Internal homomorphic product). Let RK = TRGSWs(s) be a
relinearization key, i.e. a self-encryption of a key s ∈ BN [X] with noise standard
deviation α > 0, and let P be an integer polynomial. Let c1 = (a1, b1), c2 =
(a2, b2) be two TRLWE ciphertexts. We denote by (a′i, b

′
i), (a′2, b

′
2) the smallest

representatives of the ciphertexts over RN [X] with coefficients in (− 1
2 ,

1
2 ) and

C0 = P × b′1× b′2, C1 = P × (a′1× b′2 + a′2× b′1) and C2 = P × a′1× a′2. We define

c1 �P,α c2 = (C1, C0)−RK �α (C2, 0). (2)

Note that this definition of the internal B/FV product relies on a precom-
puted TRGSW external product (which is faster). This connection between the
two products becomes possible because the plaintext space of B/FV and TFHE
is unified. A formulation closer to the original relinearization presented in B/FV
would rather take RK′ an encryption of s2, and compute (C1, C0) + RK ′ �α
(0, C2), but this approach generates more noise in the case of a partial bit-
decomposition since

∥∥s2
∥∥
2
≥ ‖s‖2.

Lemma 2 (B/FV noise propagation). Let RK, c1, c2 be a relinearization key
and two TRLWE ciphertexts of µ1, µ2 ∈ M = ZN [X].∆P , with the same key
s ∈ BN [X] as in Definition 2. Then the message of c1 �P,α c2 is the product
µ1 �P µ2 of the two individual messages, and the noise variance satisfies

Var(Err(c1 �P,α c2)) ≤ 1+N+N2

2
‖P‖22 max(Var(Err(ci)) +

(
2`N +

N2+N

4

)
α2

(3)
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Proof. Let µ1, µ2, e1, e2 ∈ RN [X] be the smallest representatives of respectively
the message and error of c1 and c2. By definition, for each i = 1, 2 we have
bi − s.ai = µi + ei + Ii where Ii is an integer and the variance of Ii is ≤ N .

ϕs(c1 �P,α c2) = C0 + s.C1 + s2.C2 + Err(RK �α (0, C2)) mod 1

= (b1 − sa1)(b2 − sa2)P + Err(RK �α (0, C2)) mod 1

= (µ1 + e1 + I1)(µ2 + e2 + I2)P + Err(RK �α (C2, 0)) mod 1

= µ1µ2P + e1µ2P + e2µ1P + e1e2P + e1I2P + e2I1P

+ Err(RK �α (C2, 0)) mod 1

= µ1 �P µ2 + e1µ2P + e2µ1P + e1e2P + e1I2P + e2I1P

+ Err(RK �α (C2, 0)) mod 1

Taking the expectation, since all multiples of ei as well as Err(RK � (0, C2))
have a null expectation, the message of c1 �P,α c2 is µ1 �P µ2. By bounding the
variance of each error term, we prove Eq. (3). ut

The working precision α should be chosen approximatively equal to the stan-
dard deviation of the input ciphertexts, so that the term in α2 remains negligible
compared to the first one in (3). Thus, the noise standard deviation multiplica-
tive overhead is bounded by O(N ||P ||2) in the average case.

Bridging B/FV slots with TFHE. In the classical description of B/FV or
Seal, P (X) is usually chosen as a constant integer p. In this case, the plaintext
space M consists in all the multiples of ∆P = 1

p mod (XN + 1) mod 1, which

is a rescaling of the classical plaintext space description Z/pZ[X]/(XN + 1). In
particular, if XN + 1 has N roots modulo p,M is isomorphic to N independent
integer slots modulo p (else, there are less slots, in extension rings or fields). From
a lattice point of view, M is assimilated to the orthogonal lattice generated by
1
pIN (IN is an integer). The packing radius of M is 1

2p , which is the maximal
error that can be tolerated on the phase. Rounding an element toM consists in
rounding each coordinate independently to the nearest multiple of 1

p .

In the literature, the isomorphism used to obtain the slot representation is

Z[X] mod (XN + 1) mod p→ (Z/pZ)N

µ 7→ (µ(r1), . . . , µ(rN )),

where r1, . . . , rN are the N roots of the polynomial (XN + 1) mod p.

This isomorphism allows to manipulate N independent slots in parallel. Typ-
ical values are N = 215 and p = 216 + 1 (allowing a very small noise α ≈ 2−886

according to [5], so a multiplicative depth of ≈ 28 without keyswitch according
to the propagation of Lemma 2).

If we identify a polynomial with its coefficient vector in (Z/pZ)N , the iso-
morphism between the coefficients and the slot corresponds to the Vandermonde
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matrix of (r0, . . . , rN−1) mod p

VDM =




1 r11 · · · rN−11

1 r12 · · · rN−12
...

... · · ·
...

1 r1N · · · rN−1N


 mod p. (4)

B/FV → TFHE. Suppose that we need to extract the slots of a B/FV ci-
phertext in order to process them with TFHE. From the slots (z1, . . . , zN ),
we would need to obtain a polynomial whose coefficients are 1

p (z1, . . . , zN ).
More generally, suppose that we want to evaluate a Z-module morphism f from
(Z/pZ)N → (Z/pZ)N of a matrix F and get the output as the polynomial∑N−1
i=0 µ′iX

i where (µ′0, . . . , µ
′
N−1) = 1

pf(z1, . . . , zN ).

Then, by definition, we have µ′ = (F.VDM)µ mod 1, where F.VDM can
be any integer representative of F.VDM mod p. In particular, we can always
take the representative with all coefficients in [−p2 ,

p
2 ]. This is a Np

2 -lipschitzian
Z-module morphism, and can be evaluated via the functional keyswitch of The-
orem 2. Coefficients can then be homomorphically extracted as individual TLWE
ciphertexts with the SampleExtract of TFHE.

Proposition 1 (B/FV slots→ TFHE). Let c = (a, b) be a TRLWE ciphertext
encoding N slots (z1, . . . , zN ) mod p with key K, let f be a public Z-module mor-
phism from (Zp)N → (Zp)N of matrix F ∈MN (Z) and let KSi,j ∈ TRLWES(Ki2j )
be a key switching key. By applying the functional keyswitch of Theorem 2 using
the integer transformation F.VDM mod p whose coefficients are between [−p2 ,

p
2 ]

to the N extracted TLWE ciphertexts ci of c, we obtain a TRLWE ciphertext c′

whose message is
∑N−1
i=0 µ′iX

i where (µ′0, . . . , µ
′
N−1) = 1

pf(z0, . . . , zN−1). The
noise variance satisfies

Var(Err(c′)) ≤
(
Np

2

)2

Var(Err(c)) + α2

(
`N2 +

N

4

)
.

TFHE → B/FV. In the reverse direction, we would like to transform k inde-
pendent TLWE ciphertexts (with messages (µ0, . . . , µk−1) ∈ Tk) into a TRLWE
ciphertext with slots ∈ Z/pZ. Again, we would need to define a lipschitzian
Z-module morphism g between Tk and (Z/pZ)N . Unfortunately, since for all
x ∈ Tk, there exists y ∈ T such that x = p.y, we have g(x) = p.g(y) = 0 in
(Zp)N and this implies that g is zero everywhere, which is of limited interest.

Therefore, we need to restrict the message space only to multiples of 1
p (this

prevents division by p). Such a plaintext space restriction may imply that input
TLWE ciphertexts must be bootstrapped before exporting them as B/FV slots
using gate bootstrapping from Theorem 3.

Then, let g be a morphism from (Zp)k → (Zp)N , of matrix G ∈ MN,k(Z).
To obtain a B/FV ciphertext whose slots are g(pµ0 mod p, . . . , pµk−1 mod p),
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the actual transformation to apply is VDM−1.G mod p. Again, we can choose
the representative with coefficients in [−p2 ,

p
2 ], which is nP

2 -lipschitzian.
If we want to decrease the noise, different possibilities for the algorithm of

bootstrapping exist in the literature [7, 17]. The first one is the naive bootstrap-
ping, where we evaluate the rounding function, in this case for p > 2N + 1
prime (p = 1 mod N), we need O(

√
p) internal products for the evaluation and

we preserve the N slots. The second one is the bootstrapping proposed in [7],
where p = re is a power of a prime number, and we need only (e − 1)(r − 1)
multiplications, but the number of slots is reduced.

Bridging B/FV-big-number with TFHE. In the case of [9] (based on the
NTRU-trick [26]), the plaintext space consists in Z[X] mod (XN+1) mod (X−
p) for a small integer p. By evaluating a message in X = p, this space is isomor-
phic to the ring Z/(1+pN )Z and this allows to evaluate arithmetic operations on
big-numbers. In the native plaintext space,M is composed of all integer polyno-
mial multiples of ∆P (X) = P−1 = −1

pN+1

∑N−1
i=0 pN−1−iXi. Interestingly, since

the leading coefficient of the polynomial ∆P is 1/(pN + 1), the isomorphism be-
tweenM and 1

pN+1
.Z mod 1 corresponds to extracting the coefficient in XN −1

(i.e. the mapping µ =
∑N−1
i=0 µiX

i 7→ µN−1 mod 1). On this native plaintext
space, the näıve rounding algorithm: µ = bϕ.P e.∆P can solve the BDD problem
up to a distance ≈ 1

2p (which is the packing radius of the lattice M), which

allows to operate on ciphertexts with very large noise ≈ 1
2
√
Np

.

B/FV-big-number → msb-TFHE Given a TRLWE ciphertext c(X) =
(a(X), b(X)) encoding µ(X) with a key K, to obtain the TLWE encryption of
the most significant bit of µ(X) with key K it is enough to extract cp−1 =
SampleExtractp−1(c(X)).

TFHE → B/FV-big-number In the inverse direction, to transform k <
N TLWE independent ciphertexts c1, . . . , ck encoding µi = xi

p , where xi ∈
[0, p − 1] with key S into a TRLWE ciphertext enconding the big-number R =∑k
i=1 xip

N−i mod pN+1 with keyK, we can return an encryption of (µ1, . . . , µk)→∑k
i=1 µiX

N−i. Indeed, this polynomial is very close to our target R.∆P mod 1.
To that end, we can just apply the public key switch c = PubKS(id,KS, (c1, . . . , ck)),
where the key switching key is composed by KSi = TRGSWK(Si) to pack the k
ciphertexts as a single TRLWE ciphertext.

3.3 A general abstraction of HEAAN over the torus

Recently, Cheon et al. proposed HEAAN [11, 12], a homomorphic encryption
scheme of approximate numbers based on the RLWE problem. The idea of the
scheme is to match the encryption error with the approximation error of the
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fixed-point number. In this scheme only the significant digits are used and the
phase is taken as a good approximation.

HEAAN is a mixed encryption scheme dedicated to fixed point arithmetic
with public exponent. Like scale invariant schemes, the noise is appended to the
least significant bits of the phase, but unlike B/FV, the space of valid messages is
a small bounded interval, rather than evenly-distributed in the whole space. Also,
the maximal amount of noise is interpreted in terms of the ratio between the
diameter of the message space and the scale modulus q, rather than the usual
noise amplitude versus packing radius. As we keep performing homomorphic
operations, the message space diameter increases, until the majority of the space
is covered: at this point, the scale invariance property enables to extract the
message as a classical LWE sample that can be processed, for instance, by TFHE.
To fully enable this bridge between schemes, it is necessary to unify the message
spaces. To do so, we revisit the representation of a HEAAN ciphertext with the
following three tags/parameters:

– ρ ∈ N: bits of precision of the plaintext (global constant),
– τ ∈ Z: slot exponent (order of magnitude of the complex values in each slot),
– L ∈ N: level exponent (quantifies the max. amount of homomorphic ops.).

HEAAN can be viewed as an instantiation of TRLWE, whose native plaintext
space is the subset of all polynomials µ ∈ TN [X] of small norm ‖µ‖∞ ≤ 2−L. The
integer L > 0 is the level exponent of the ciphertext, it is public and decreases
with each multiplication. When the level is too low, the ciphertext must be
bootstrapped to allow further processing. The plaintext space is always given
with a global and fixed number ρ of significant digits, so the noise amplitude is
implicitly 2−(L+ρ). Finally, since the goal is to represent ρ-bit fixed-point values
of any order of magnitude, each ciphertext carries a public integer exponent
τ ∈ Z which represents the order of magnitude of its slots. Namely, for a given
message µ ∈ RN [X] where ‖µ‖∞ ≤ 2−L, its complex slots [z1, . . . , zN/2] are the
(rescaled) evaluation on the complex roots of XN + 1, so zk = 2L+τµ(ζk) ∈ C.
The evaluation on the last N

2 roots are the conjugates of the first ones, which
ensures that µ is real. If ‖µ‖∞ ≈ 2−L, this indeed implies that slot values

|zk| ≈
√
N2τ , and that the slot precision is up to 2τ−ρ.

In order to unify the message spaces, we redefine (tagged) HEAAN cipher-
texts as a quadruple (a(X), b(X), τ, L) ∈ TN [X]2 × Z × N where (a(X), b(X))
is a TRLWE ciphertext. The error standard deviation is implicitly 2−(L+ρ),
which corresponds to the parameter α in TFHE. This means that all cipher-
texts can safely be rounded to ≈ L+ ρ bits. As usual, the phase of a ciphertext
is (b(X)− s(X)a(X) mod 1), and the message is the expectation of the phase.

The slots of a ciphertext are the slots of its message µ(X), interpreted as
a small real polynomial in RN [X] of norm ≤ 2L, so not modulo 1. The slots
are the N/2 complex numbers (2τ+Lµ(ζk))k∈(1,...,N/2) (and implicitly, their N/2
conjugates). From a matrix point of view, the transformation between the coeffi-
cients and the slots is the multiplication with 2τ+L times the complex DFT ma-
trix of ζk. We have (z1, . . . , zN/2) = DFT.(µ0, . . . , µN−1) and (µ0, . . . , µN−1) =
2Re(IDFT.(z1, . . . , zN/2)).
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DFT =




1 ζ11 · · · ζN−11

1 ζ12 · · · ζN−12
...

... · · ·
...

1 ζ1N/2 · · · ζN−1N/2


 , IDFT =

1

N




1 1 · · · 1
ζ̄11 ζ̄12 · · · ζ̄1N/2
...

... · · ·
...

ζ̄N−11 ζ̄N−12 · · · ζ̄N−1N/2


 (5)

We now express the homomorphic operations over the slots:

Addition HeaanAdd((c1, τ1, L1), (c2, τ2, L2))→



c = 2τ1+L1−τ−Lc1 + 2τ2+L2−τ−Lc2 mod 1,
τ = max(τ1, τ2) + 1,
L = min(L1 + τ1, L2 + τ2)− τ

Proof. We can check that this transformation changes the slot value into
2τ+Lµ(ζk) = 2τ1+L1µ1(ζk) + 2τ2+L2µ2(ζk) = (z1 + z2), that proves the
correctness of the sum of two slots. The fact that τi + Li − τ − L ≥ 0,
for i ∈ (1, 2) means that the sum is an integer combination of the ci-
phertexts. At the end we verify that ||µ(X)||∞ ≤ 2τ1+L1−τ−L||µ1(X)||∞ +
2τ2+L2−τ−L||µ2(X)||∞ ≤ 2τ1+L1−τ−L−L1 + 2τ2+L2−τ−L−L2 ≤ 2−L.

Decrease level HeaanRSL→L′((c, τ, L), L′ < L)→ (2L−L
′
c′ mod 1, τ, L′)

Proof. We verify that the slot values are preserved, and that ||µ(X)||∞ <
2L−L

′ ||µ′(X)||∞ ≤ 2L−L
′−L = 2−L

′
.

Binary Shift (multiply by 2t) HeaanBS(t, (c, τ, L))→ (c, τ + t, L)

Proof. Slots are indeed transformed as z′ = 2τ+t+Lµ(ζk) = 2tz. Since the
ciphertext does not change, the native plaintext does not change either, and
the bound 2−L is preserved.

Multiplication with constant HeaanMultCst(a ∈ Z s.t.|a| ≤ 2ρ, (c, τ, L)→
(a.c′ mod 1, τ + ρ, L− ρ)

Proof. We can check that multiplication with a ≤ 2ρ transforms the slot
value into z′ = 2τ+Laµ′(ζk) = az, and the bound on the native plaintext
becomes 2−L+ρ. Note that the combination of constant integer multiplication
and binary shift allows to multiply by an arbitrary fixed-point plaintext of
precision ρ.

Constant slot-wise multiplication HeaanSlotMult((u1, . . . , uN/2), (c, τ, L))
Let u1, . . . , uN/2 be N fixed-point complex slots of the same order of mag-
nitude (e.g. uk = (xk + iyk).2−ρ where xk, yk are integers in [−2ρ, 2ρ].
Interpolate (or find by least mean square) an integer polynomial d(x) with co-
efficients in [−2ρ, 2ρ] and t an integer exponent such that the slots of d(X)2t

are all good approximations of z1, . . . , zn, up to precision 2t−ρ. Namely,

|d(ζk)2t − uk| ≤ 2t−ρ for all k ∈ [1,
N

2
]. (6)
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Then all we need is to multiply the input ciphertext by d(x) and shift the
result by τ bits. The level decreases by ρ bits, where 2ρ is the norm of d.

d(X) ∈ ZN [X](||d||∞ ≤ 2ρ), (c, τ, L) :




d(X) · c mod 1,
τ ′ = τ + ρ+ t,
L′ = L− ρ.

Proof. It follows from (6) that z′k = 2τ
′+L′

µ(ζk)d(ζk) = 2τ+Lµ(ζk)d(ζk)2t =

zk ·(uk+εk) where |zkεk| ≤ 2τ
′−ρ and that the native plaintext norm verifies

||µ′(X)||∞ ≤ 2−L+ρ = 2−L
′
.

Slot-wise precomputed secret multiplication :
HeaanPrivSlotMult(TRGSW(D), (c, τ, L))
In the previous multiplication, d(x) can be provided encrypted as a TRGSW
ciphertext of D.

General multiplication HeaanMult((c1, τ1, L
′), (c2, τ2, L′)) Use the Algorithm 1

below, proved in Proposition 2.

Algorithm 1 HEAAN homomorphic product on TN [X]

Input: Two HEAAN ciphertexts (a1, b1, τ1, L1), (a2, b2, τ2, L2) ∈ T2 × Z × N whose
slots are (z1,1, . . . , z1,N/2) and (z2,1, . . . , z2,N/2) under the same key s and precision
ρ > log2(N).

Output: a HEAAN ciphertext (a, b, τ, L) whose slots are zj = z1,jz2,j for j ∈ [1, N/2]
with the same key s

1: Set τ = τ1 + τ2 (slot exponent)
2: Set L′ = min(L1, L2) and use HeaanRSLi→L′ to decrease both ciphertexts to level L′

3: Let q = 2L
′+ρ, α = 1

q
, and L = L′ − ρ

4: Round (ai, bi) to the nearest multiple of α = 1
q
.

5: Let (a, b) = (a1, b1) �q,α (a2, b2) (with �q,α the internal homomorphic product
defined in the Definition 2)

6: return (a, b, τ, L)

Proposition 2 (HEAAN product). Let (a1, b1, τ1, L1), (a2, b2, τ2, L2) ∈ TN [X]2×
Z×N whose slots are (z1,1, . . . , z1,N/2) and (z2,1, . . . , z2,N/2) under the same key
s. We suppose that the precision ρ is larger than log2(N). Algorithm 1 computes
a HEAAN ciphertext (a, b, τ, L) whose slots are zj = z1,jz2,j for j ∈ [1, N/2]
with the same key s such that Var(Err((a, b))) remains implicitly 4−L−ρ.

Proof. (sketch) Since Algorithm 1 rescales both ciphertexts to the same level,
we can assume that both inputs have the same level L′. Compared to the proof
of Lemma 2, defining the same auxiliary quantities C0,C1,C2, we have

ϕs(a, b) = µ1 �q µ2 + e2µ1q + e1µ2q + e1e2q + e2I1q + e1I2q

+ Err(RK �α (C2, 0)) mod 1

= µ1 �q µ2 + e2µ1q + e1µ2q + e1e2q + Err(RK �α (C2, 0)) mod 1
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Here, the terms e1I2q and e2I1q dissapear because ei are exact multiples of
1
q after the rounding. The expectation of the phase is still µ1 �q µ2, so the

output slots contain zk = qµ1(ζk)µ2(ζk)2τ+L = z1,kz2,k since L = 2L′ − log2(q).

The native plaintext µ1 �q µ2 itself is bounded by q2−2L
′

= 2L
′+ρ−2L′

= 2−L.

The phase variances of e2µ1q, e1µ2q are bounded by
(
q2−L

′
2−L

′−ρ
)2

= 4−L−ρ,

e1e2q by 4−L−2ρ, and Var(Err(RK �α (C2, 0)) ≤
(

2`N + N2+N
4

)
α2 ≤ N2α2 ≤

4log2(N)−L′−ρ < 4−L
′ ≤ 4−L−ρ because ρ > log2(N). Overall, the output noise

standard deviation is 2−L−ρ, which corresponds to ρ bits of fixed-point precision.
ut

TFHE → HEAAN Given some TLWE ciphertext that encrypts µi, the first
use-case that we may imagine is to produce a HEAAN ciphertext whose slots
contain µi. However, µi is defined modulo 1, and the slots are over C, so to define
it properly, we would need to define a canonical representative, like for instance
the one in [− 1

2 ,
1
2 ]. Overall, this requires to homomorphically evaluate the mod

1 operation, which is essentially the bootstrapping proposed by HEAAN in [11]
combined with multiplications with DFT matrix in order to switch between co-
efficients and slots.

Another point of view is that given N/2 TLWE ciphertexts of µ1, . . . , µN/2, we
may instead want to get a single HEAAN ciphertext having exp(2iπµk) with level
L inside its slots. This allows to evaluate trigonometric polynomials, which have
a lot of potential applications, for instance for evaluating continuous functions
via fast-convergent Fourier series. We describe this algorithm as a variant of the
bootstrapping for HEAAN [11].

Proposition 3 (Functional switching TFHE to HEAAN). Given N/2
TLWE ciphertexts (a1, b1), . . . , (aN/2, bN/2) of µi ∈ T with the key S, BKi =
TRGSWK(Si) with noise standard deviation α, and a precision parameter ρ ∈ N,
Algorithm 2 computes a HEAAN ciphertext (a, b, τ, L) whose slots are zk =
exp(2iπνk), where νk = ϕS(ak, bk) with a key K, with precision ρ, p =

√
ρ +

log2( 2πn√
ρ ) and

L = − log2 α− (p+ log2 ρ)ρ− 1

2

(
log2

(
−2nN log2 α+ n

1 +N

4

))

Proof. (sketch) To approximate exp(2πiνk) we used the idea of [11]: we first take
a small real representative of the input ciphertexts, and divide them by 2p for
a suitable p (that depends on the target precision). This way, the (real) phase
of the rescaled ciphertext νk/2

p is guaranteed to be bounded n/2p. We first
compute a good approximation, up to an error ≤ 2−ρ for exp(2πiνk/2

p) using
the first

√
ρ terms of the Taylor expansion of exp. For instance, Taylor-Lagrange

inequality gives | exp(ix)− (
∑√ρ−1
k=0

(ix)k

k! )| ≤ |x|
√
ρ

√
ρ! , so for x ≤ n/2p, it suffices to
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Algorithm 2 Switching TFHE to HEAAN

Input: N/2 TLWE ciphertexts (ak, bk) whose phases are νk ∈ T under the same key
s ∈ Bn and BKi = TRGSWK(si).

Output: a HEAAN ciphertext (a(X), b(X)) at level L whose slots are zk = e2πiνk for
k ∈ [1, N/2] with key K.

1: We call A the N/2× n+ 1 real matrix where Ai,j is the representative of the j-th
coefficient of ai ∈ [− 1

2
, 1
2
], and in the last column Aj,n+1 contains the representative

of bj ∈ [− 1
2
, 1
2
].

2: Let p =
√
ρ+ log2(2πn/

√
ρ)

3: Compute Pj ← 1
2pN

Re(IDFT ∗ Aj) for j ∈ [1, n + 1]. (Pj is the polynomial whose
slots are 1

2p
Aj).

4: c← (0, 2−(L+(p+1)ρ)Pn+1)−∑n
j=1BKj �α (0, 2−(L+(p+1)ρ)Pj).

5: Let C = (c, τ = 0, L+ (p+ 1)ρ)

6: Evaluate homomorphically E =
∑√ρ−1

k=0
ik

k!
Ck using Paterson algorithm (in depth:

log2(ρ)), HeaanMult for non-constant multiplications, and HeaanSlotMult for con-
stant multiplications. (E has parameters τ = 0 and level L+ pρ)

7: for j = 1 to p do
8: E ← HeaanMult(E, E) (the new E has parameters τ = 0 and level L+ (p− j)ρ)
9: end for

10: return E at level L

choose p =
√
ρ+ log2( 2πn√

ρ ) to get the required approximation within 2−ρ. Then,

we square and multiply (we square and square in this case) the result to raise
exp(2πiνk/2

p) to the power 2p to obtain the desired plaintext exp(2πiνk).
From Theorem 1 on TFHE’s external product, the noise of the ciphertext c

of line 4 is Var(Err(c)) ≤ (−2n log2 αN + n 1+N
4 )α2 ≤ 4−L−(p+log2(ρ))ρ.

Then, we evaluate the Taylor expansion of the complex exponential (up to
degree d =

√
ρ) via Patterson algorithm: this requires a depth of 2 log2(d) =

log2(ρ), uses 3
√
d non-constant (HeaanMult), and d constant multiplications

(HeaanSlotMult). After this step, the level decrease by ρ times the multiplicative
depth, so the level of E is ≤ L+ pρ.

Finally, we square the ciphertext p times to obtain the desired result. ut

HEAAN → TFHE In the reverse direction, once we have decreased the level
L of a HEAAN ciphertext to 1, so that the native plaintext covers the whole
torus interval, we can directly use the slots to coefficients procedure described in
[11] to extract HEAAN slots into coefficients of TRLWE (i.e. applying the IDFT
complex transformation homomorphically).

4 Tools for homomorphic neural network evaluation

In the previous section, we showed how to switch between different schemes.
We focus now on non-linear operations, such as the absolute value or the sign
function. Non-linear functions play a crucial role in homomorphic neural network
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evaluation as they permit among others to perform homomorphic comparisons,
to compute a maximum, to evaluate piecewise functions (e.g. the ReLU activation
function), or to evaluate a rounding, or a decryption function.

Note that the ReLU and max are easily expressed with the absolute value: for
x, y in (− 1

4 ,
1
4 ), 2 max(x, y) = (x+ y) + |x− y|, and for 2.ReLU(x) = x+ |x|.

4.1 Non-linear functions in TFHE

In TFHE, non-linear functions from T → T can be homomorphically applied
to the phase of an individual TLWE ciphertext via the functional bootstrapping
(Theorem 3). The constraints in this case are the following. The domain of the
function is restricted to only multiples of 1/2N where N is the bootstrapping
key size (in particular, it is a medium-sized power of 2), and the function must be
negacyclic, i.e. f(x+ 1

2 ) = −f(x). Otherwise, the function is defined pointwise,
so its graph can be arbitrary.

In the case of the absolute value and the sign function, there exists, as shown
below, a change of variables that makes both these functions negacyclic. For
other functions, if such a variable change does not exist, the domain of the
function should be restricted to half of a torus.

For instance, in the case of the absolute value function, suppose c is a TLWE
ciphertext that encrypts µ ∈ T and let c′ be the encryption of the absolute
value |µ|. To compute c′ it is enough to use the gate bootstrapping algorithm
to evaluate the negacyclic function f(x) = |x| − 1

4 and to translate the result by
adding a trivial ciphertext of 1

4 (see Figure 3). After bootstrapping, the message
of c′ is exactly |µ| but of course, the phase ϕs(c

′) is within a small Gaussian
error around |µ|. In Section 5, we use this noise model to estimate the stability
of neural networks if the ReLU is evaluated via TFHE’s gate bootstrapping.

0 1
4

1
2

- 1
4

- 1
2 0 1

2
- 1
2

Fig. 3: Absolute (on the left) and Sign (on the right) values TFHE

4.2 Non-linear functions in B/FV

In B/FV any arbitrary function from Zp, for a prime p, to itself is a polynomial of
degree ≤ p−1, and can be evaluated as an arithmetic expression of multiplicative
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depth 2 log2(p). This evaluates the polynomial simultaneously on the N slots.
If the function is described from T → T, both the domain and the image are
in this case rounded to exact multiples of 1

p . Compared to TFHE, the output

is more constrained (e.g. impossible to output non-multiples of 1
p ), but on the

other hand, there is no negacyclic constraint on the input, so the graph of the
non-linear function can be arbitrary everywhere.

However, except in very special circumstances, the polynomial to evaluate
is dense, so the number of homomorphic operations is Θ(p), which prevents
from using large p: the method does not apply to big-number slots. One notable
exception to this rule is the bootstrapping in [7] modulo pk, which proves that
the rounding function is the composition of sparse polynomials.

4.3 Non-linear functions in HEAAN

In HEAAN, non-linear functions can be obtained either as complex polynomials
(classical approach), or as trigonometric polynomials (via Algorithm 2 that packs
complex exponential values, and was also used in HEAAN’s bootstrapping).
Fourier series of smooth and regular functions converge very quickly: for example,
the Fourier series of a C∞ function converges super-algebraically fast, and if one
smooths any periodic function by convolution with a small Gaussian, its Fourier
series converges super-exponentially fast. However, the convergence is slower if
the function has discontinuities (convergence in Ω(1/d)), or discontinuities in its
derivative (convergence in Ω(1/d2)) where d is the degree of the serie.

For example, the absolute value coincides with the triangular signal (− 1
2 ; 1

2 ),
which extends naturally a 1-periodic continuous function (piecewise C1). Given
N/2 TLWE ciphertexts, we can efficiently pack the complex exponential of their
phases exp(2iπµ) in the slots of a single HEAAN ciphertext. Subsequently, we
can evaluate any trigonometric polynomial of small degree, and extract the re-
sults back to TLWE samples. For instance, the triangle (corresponding to the
absolute value) has the following Fourier sequence with only cosinus terms of
odd degrees, and that converge in O(d2), and the square signal (corresponding
to the sign or decryption function has only sinus terms of odd degrees).

Abs(x) = K1

∞∑

k=0

cos 2π(2k + 1)x

(2k + 1)2
+K2 (7)

Sign(x) = K1

∞∑

k=0

sin 2π(2k + 1)x

(2k + 1)
+K2 (8)

Figure 4 shows that the first three (resp. six) terms of the Fourier series of
the absolute value and the Sign function already form a good approximation on
the interval

[
− 1

2 ,
1
2

]
.

Compared to classical approximations of functions by polynomials in [21, 6]
(i.e. Taylor series or Weierstrass theorem), Fourier series have three main ad-
vantages: they do not diverge to ∞ outside of the interval (better numerical
stability), the Fourier coefficients are small (square integrable), and the series
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converge uniformly to the function on any interval that does not contain any
discontinuity in the derivative. However, in the particular case of Abs(x) and
Sign(x), the presence of a singularity or discontinuity in 0 in both graphs im-
plies that the series converge poorly around 0. Unfortunately, native plaintexts
in HEAAN ciphertext at level L have by definition tiny phases in the inter-
val

[
− 1

2L
, 1
2L

]
. We address this problem using the bootstrapping capability of

HEAAN: First, use HeaanRSL→0 to decrease the level L = 0 or L = 1, so that
input phases range over a large torus interval

(
− 1

2 ,
1
2

)
or
(
− 1

4 ,
1
4

)
, and then,

divide K1 by 2L so that the output has level L.

With this bootstrapping trick, HEAAN can at the same time evaluate a
non-linear function and bootstrap its output to a level L even higher than its
input. Taking this fact into account, instead of writing ReLU(x) = max(0, x)
as 1

2 (|x| + x) like in TFHE or B/FV, where the term +x
2 is not bootstrapped,

it is actually better to extend the graph of ReLU from a half period (− 1
4 ,

1
4 )

directly to a 1-periodic continuous function, and to decompose the whole graph
as a Fourier series. In the latter case, the output level L can be freely set to an
arbitrary large value. Figure 4 shows a degree-7 approximation of the odd-even
periodic extension of the graph of ReLU(x).

If the ReLU is evaluated via this technique, the output message is the Fourier
approximation, and the phase still carries an additional Gaussian noise on top
of it. In the next section, we also study the robustness of neural networks with
this approximation and perturbation model.
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Fig. 4: Absolute value (on the left), Sign value (on the right) and ReLU (sbottom) for
HEAAN
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5 Application to Deep Learning

Neural networks (NN) are computing systems composed of simple interconnected
processing units, called neurons, trained to solve among others classification
problems. Connections between neurons have weights that adjust as learning
proceeds. Neural networks are organized in layers. Networks with multiple lay-
ers are known as deep. Convolutional neural networks (CNNs) are a special type
of deep neural networks that have been proven very successful in image recog-
nition and classification. CNN inputs are images organized in three dimensional
arrays of pixels (one two-dimensional array per colour channel) and are typically
composed of five types of operations.

Preserving the privacy of sensitive (e.g. medical, financial, . . . ) data while
applying machine learning algorithms and still ensure good performance and
high output accuracy is lately a high-interest problem for both the cryptographic
and the maching learning community [6, 22, 2]. We briefly describe now the main
layers composing a CNN from a FHE point of view.

Convolution The purpose of this operation is to extract features from the input
image (such as lines or borders). This is achieved by computing element-
wise products of two matrices, the first one being a submatrix of the input
matrix and the second-one being some filter. The weights within the filter
are learned in plaintext during the training and are subsequently encrypted.
During the evaluation phase, convolution is a secret affine function, which
can be efficiently evaluated using the TRGSW-TRLWE external product in
the three scenarios (TFHE, B/FV and HEAAN) of our unified framework.

Nonlinearity An activation function is then applied to the output of the con-
volution step. The purpose of this layer is to introduce nonlinearity and
nowadays it is always almost achieved by the ReLU (REctified Linear Units)
function f(x) = max(0, x) [23]. The homomorphic evaluation of the ReLU,
as well as its noise model have been studied for the three scenarios in the
previous section. In almost all previous works, the standard approach was
to replace the ReLU by a function with a lower multiplicative depth. In [22],
ReLU is notably approximated by the square function f(x) = x2, in [2] it
is replaced by the sign function, while in [6] the ReLU is approximated by
low-degree polynomials.

Pooling This layer reduces the dimensions of the input by retaining the most
important information. The image is partitioned into non-overlapping sub-
matrices and for each sub-matrix a single information is retained. This is
typically done by computing the maximum value and this procedure is called
max pooling. Other types of pooling exist, such as for example the average
pooling that computes the average of the elements in the concerned region.
This layer by reducing the size of the matrices, permits to reduce the size
of the parameters and to regulate overfitting. Computing the maximum of
two values can be achieved via the absolute value, as shown in the last
section. Yet, no efficient algorithm is known to compute the maximum of
a large number of values. On the contrary, average pooling is linear with
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public coefficients and therefore FHE-friendly. In [22] the authors replace
max pooling by sum pooling, while in [6] max pooling is replaced by average
pooling.

Fully Connected (FC) Layer All the neurons of this layer all connected to
all neurons of the previous layer. Their activation is computed by a matrix
multiplication plus a bias offset. This is again a secret precomputed affine
step that can be achieved via the external product.

Loss Layer This is normally the last layer of a CNN and it’s role is to constantly
compare the guesses of the fully-connected layer with the actual values with
the aim to minimize the differences. During training, the loss layer is repre-
sented by a continuous cost function (using e.g. a sigmoid) that quantifies by
how much the current model mis-classifies the training set and the weights
in the whole network are adjusted by gradient descent on this cost function.
During the evaluation, the loss layer becomes an argmax operation. This last
step is in general ignored in other homomorphic implementations of neural
networks. For example in [22, 2] the authors simply output the score vectors,
and the recipient computes the best one after decryption. To do this final
step homomorphically, the Boolean approach of TFHE seems to be the most
suited to this non-SIMD step.

5.1 Robustness against the FHE error models

In this section, we simulate the homomorphic execution of the neural network
by replacing the value output of each non-linear layer by a random sample which
has the same distribution as the phase of TRLWE samples after a homomorphic
evaluation of the layer. This approach allows us to simulate a homomorphic
evaluation, and to obtain accurate predictions on the outcome without having
to the run the expensive homomorphic computation. This allows to estimate the
largest noise standard deviation α that can be tolerated by the network, and
therefore, the smallest FHE parameters required to evaluate it.

As explained above, in the context of FHE, the training of networks is usu-
ally done on the plaintexts without any perturbations occurring, and only then,
the network is encrypted to the cloud to protect the privacy of the model during
predictions. In this direction, we carried out many experiments on three dif-
ferent convolutional neural networks structures, using the TFHE and HEAAN
noise models of Section 4, in order to measure their robustness against such
perturbations.

This approach is not new. For example, in [10] the authors studied the stabil-
ity of CNNs by applying among others a Gaussian perturbation to the internal
weights inside the convolutional layers. The applied Gaussian was centered at
zero and had a standard deviation relative to the standard deviation of that
layer’s original weight distribution. This type of perturbation modifies the av-
erage value of the inputs to the convolutional layer. Even, if the motivation of
this paper is not linked to homomorphic computations, their conclusions and
ours intersect at some points. Indeed, the authors of [10] noticed that the last
convolutional layers are surprisingly stable, while the first convolutional layers
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are much more fragile and so the accuracy depends on the level the perturbation
applies. The most surprising result that we obtain in our experiments is that
all the neural networks we tested support quite large relative errors of at least
10%, without any impact on the global accuracy. In a TFHE context, raising the
error amplitude from a usually required 2−40 negligible amount to 2−4 means
that the depth of leveled TRGSW circuits (number of transitions in automata
in leveled circuits in [13]) can be increased by a factor (236)2 (i.e. unlimited)
without changing the parameter sets. This also means that only 4 bits of preci-
sion (instead of 20 to 40 bits usually) are needed on all fixed point operations
throughout the network, which results in very small parameter sets for HEAAN
or B/FV.

x

ReLU
ReLU

y

0

Fig. 5: Noise distributions around the ReLU function

5.2 Experiments

We conducted experiments with three different convolutional neural networks
and for all of them we used the dlib C++ library [27]. The first network is
LeNet-5 [28], that can be trained to recognize handwritten digits, the second-
one is a 9-layer CNN trained to distinguish cat and dog pictures, and the last
one is the ResNet-34 network [25], a deep network of 34 layers able to classify an
input image into one of 1000 objects. We briefly describe each of the networks
and the experiments done on it.

LeNet-5: Recognition of handwritten digits LeNet-5 is a well-known con-
volutional 7-layer neural network designed by LeCun et al. in 1998 to recognize
handwritten digits [28]. In the original version of the network, the sigmoid was
used as the activation function. In the version that we manipulated, implemented
in the dlib library [27], the ReLU activation function is used instead.

We trained this network on the MNIST dataset [29], composed of 60000
training and 10000 testing images, with two different versions of the pooling
algorithm. We first trained the network by using max pool for both pooling lay-
ers and at a second stage we re-trained it from scratch by replacing now max
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pool by average pool. Our goal was to see how each version reacts to pertur-
bations. In particular, we added to each output value of the activation function
a value drawn from a Gaussian distribution with mean value zero and some
standard deviation σ. This was done for the activation function of all levels. For
our experiments we further used two different activation functions: the original
ReLU activation function and then an approximation of the ReLU function by
a trigonometric function, depicted in green in Figure 5, which can be used in
HEAAN as a replacement of max(0, x). Finally, we perturbed the output of the
activation function in two different ways. First by a Gaussian distribution of
fixed standard deviation σ and in a second experiment by a standard deviation
proportional to the input’s standard deviation (which can be publicly estimated
during training).

The results of these experiments are summarized in Table 2 of Appendix A
and Figure 7. In this example, we pushed standard deviation from 0.0 to 1.0 for
both trained CNNs, the one trained with max pool and the other one trained
with average pool. In this table we give both the accuracy on the testing set but
also on the training set. In order to correctly interpret the right part of Figure 7
it has to be noted that the mean value of the ReLU entries was measured between
0.4 and 1.91 and the standard deviation between 0.97 and 2.63.
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Fig. 7: Experiments with LeNet-5 (up) and the cat versus dog classifier (down). The
results with proportional perturbations are on the right, while with non-proportional
perturbations on the left.
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The first remark that can be done by looking into these experiments is that
average pool is much more stable to perturbations than max pool and provides
a high accuracy even for large values of the standard deviation. The second re-
mark concerns the accuracy when an approximation of the ReLU function is used
instead of the original one. As it can be seen from the left part of Figure 7, the
accuracy for the average pool version is clearly lower when a ReLU approximation
is used, but still has a very good score (over 95%) for standard deviations as high
as 0.6. Finally, special care has to be taken when interpreting the results cor-
responding to the application of a proportional perturbation of the input data
standard deviation. In the right part of Figure 7 the x-axis corresponds to a
perturbation equal to the percentage of the inputs’ standard deviation. Depend-
ing on the original deviation of the input distribution, the perturbation can be
extremely important and this is why the accuracy shows to drop. Therefore, one
has to keep in mind that the perturbation of the right-side figures is in general
more important and probably also more meaningful than the one of the left-side
figures.

Cats versus Dogs Classifier In this section we present our results and remarks
on a simple 9-layer neural network that was trained to classify pictures as cats
or dogs. For this, we used again the dlib library [27] and coded with it the
9-layer NN presented in [1]. The structure of this NN is depicted in Figure 8.
This network is composed of 3 convolution layers followed by the ReLU activation
function, two fully connected (FC) layers and two pooling layers. In the original
net, the max pool operation is used at this step. The 7-th layer is a dropout layer,
that is a standard technique for reducing overfitting and consists in ignoring a
different randomly chosen part of neurons during the different stages of the
training phase [31]. We trained this network on the Asirra dataset [16] used
by Microsoft Research in the context of a CAPTCHA (Completely Automated
Public Turing test to tell Computers and Humans Apart) challenge. Most of
the good CNNs trained to distinguish dogs from cats achieve more than 80%
accuracy on the testing set while the accuracy on the training set is usually
around 100%. The difference in the two performances is usually due to some
overfitting occuring.

We did exactly the same type of experiments for this network and the results
can be found in Table 3 of Appendix B or visualized in the lower part of Figure 7.
This network is a little-bit more complex than LeNet-5 and seems to be less
stable. For this reason, the higher standard deviation considered here is 0.4.
However, globally, the same remarks as for LeNet-5 network result. Again, for
correctly interpreting the right part of the table, it has to be noted that the
mean value of the inputs of the activation function ranges between 0.0004 and
0.628 and the standard deviation ranges between 0.0067 and 3.51.

ResNet-34 ResNet (Residual Network) is a recent family of very deep convolu-
tional neural networks showed to perform extremely well [25]. The global layer
structure is very similar to a classical CNN, however better performances are
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Fig. 8: 9-layer neural network [1] trained to classify pictures as cats or dogs.

achieved by the introduction of a shortcut connection, that consists in skipping
one or more layers. The version that we used is composed of 34 layers, and is
usually abbreviated as ResNet-34. This network, once trained, is able to classify
photos of objects into 1000 distinct object categories.

The training of such residual networks is extremely time consuming (two
weeks on a 16-GB Titan GPU, and about 20 times more on 16-CPU cores)
and because of time constraints we were not able to finish the training on a
network where max pooling is replaced by average pooling. Thus, we were only
able to perform our experiments on the pre-trained network on the imagenet
ILSVRC2015 dataset [30] and the results are reported in Table 1. Top 1 and
Top 5 labels report respectively the percentage of the pictures in the validation
set that were correctly classified (Top 1) and whose correct label appeared in
the five top suggestions provided by the network (Top 5).

Non-proportional perturbation Proportional perturbation

ReLU R̃eLU ReLU R̃eLU

Pool type σ Top 1 Top 5 Top 1 Top 5 Top 1. Top 5 Top 1 Top 5

max 0.0 0.7416 0.9158 0.7428 0.9187 0.7439 0.9202 0.7398 0.9166

max 0.1 0.7357 0.9132 0.7056 0.9165 0.7132 0.8948 0.7586 0.9252

max 0.2 0.6991 0.8860 0.7056 0.8967 0.1562 0.3294 0.3658 0.6027

max 0.3 0.5068 0.7267 0.4829 0.7171 0.0019 0.0089 0.0012 0.0079

max 0.4 0.1500 0.0498 0.1065 0.0817 0.0018 0.0085 0.000 0.0009

max 0.5 0.0233 0.0608 0.0017 0.0066 0.0001 0.0044 0.000 0.0010

Table 1: Experiments on ResNet-34 with max pooling and with perturbations of stan-
dard deviation ranging from 0.0 to 0.5. The right columns correspond to perturbations
proportional to the input’s standard deviation.
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5.3 Conclusion/Discussion

Finally, we discuss the lessons learned from the experiments with the three differ-
ent CNNs, provide links with the developed theory and especially with Section 4
and give concrete guidelines on which type of operation should be performed
with which fully homomorphic scheme depending on the given use case.

Max pool versus Average pool We conducted experiments on LeNet-5 and
the 9-layer CNN classifying cats and dogs, by replacing during the training
and the evaluation the classical max pooling operation by the average pool.
This modification, applied also in [6] and to some extend in [22], offers a
significant advantage for all FHE schemes, as this operation is affine with
public coefficients, compared to max pool that is non-linear. Our experiments
showed that this approach offers a further advantage in FHE, as it is way
more stable than max pool to perturbations. This behaviour has a natural
mathematical explanation, since the standard deviation of an average of
independent samples is smaller than the input standard deviations.

Proportional versus non-proportional perturbations We applied two ty-
pes of perturbations to all three networks. The first type of perturbations was
the addition at the output of the activation function of a value drawn from
a Gaussian distribution with zero mean and a fixed standard deviation. In
the second type of perturbations, the value added had a standard deviation
proportional to the standard deviation of the input distribution. The second
scenario corresponds to the HEAAN fixed-point arithmetic model, where
the public plaintext exponent tag τ is set to match the amplitude during
the training phase, and therefore, the noise α is by definition relative to
2τ . Surprisingly, without impacting the result, neural networks are able to
absorb very large relative errors between 10% and 20% after each ReLU (there
are respectively thousands, millions, and billions of them in the three tested
networks). This means homomorphic parameters need only to ensure ρ = 4
bits of precision (HEAAN), or α = 0.1 on the native plaintext, instead of
the usually recommended 2−40.

Approximating the ReLU activation function The main source of non-linearity
of a convolutional neural network is coming from the ReLU function. In TFHE
or B/FV, these functions are evaluated exactly either as circuits, or as point-
wise-defined arbitrary functions. Approximating the ReLU by something eas-
ier is thus a natural approach [22, 6, 2]. In HEAAN such continuous functions
can be approximated accurately by low degree trigonometric polynomials.
In our experiments with ResNet-34 (see Table 1) the output accuracy is sur-
prisingly even better with an approximated ReLU of this type than with the
classical one, in the presence of small noise, which proves that this approach
is realistic.
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Supplementary material

A Complete experimentss with LeNet-5

Non-proportional perturbation Proportional perturbation

ReLU R̃eLU ReLU R̃eLU

Pool type σ Train acc. Test acc. Train acc. Test acc. Train acc. Test acc. Train acc. Test acc.

max 0.0 0.9999 0.9924 0.9999 0.9924 0.9999 0.9924 0.9999 0.9924
average 0.9994 0.9903 0.9994 0.9903 0.9994 0.9903 0.9975 0.9903

max 0.1 0.9998 0.9918 0.9996 0.9916 0.9984 0.9908 0.9980 0.9905
average 0.9994 0.9903 0.9993 0.9904 0.9977 0.9891 0.9976 0.9892

max 0.2 0.9990 0.9910 0.9976 0.9899 0.9883 0.9835 0.9842 0.9787
average 0.9991 0.9901 0.9985 0.9894 0.9897 0.9843 0.9878 0.9826

max 0.3 0.9966 0.9894 0.9901 0.9833 0.9540 0.9501 0.9199 0.9192
average 0.9981 0.9898 0.9960 0.9872 0.9699 0.9655 0.9595 0.9581

max 0.4 0.9919 0.9843 0.9654 0.9610 0.8686 0.8723 0.7695 0.7815
average 0.9968 0.9884 0.9908 0.9845 0.9308 0.9296 0.9014 0.9039

max 0.5 0.9823 0.9766 0.8942 0.8966 0.7475 0.7587 0.5901 0.5959
average 0.9947 0.9869 0.9792 0.9737 0.8728 0.8745 0.8156 0.8214

max 0.6 0.9626 0.9610 0.7644 0.7737 0.6199 0.6248 0.4325 0.4317
average 0.9919 0.9842 0.9552 0.9517 0.8007 0.8054 0.7179 0.7245

max 0.7 0.9284 0.9280 0.6166 0.6288 0.5013 0.5024 0.3233 0.3274
average 0.9883 0.9816 0.9171 0.917 0.7219 0.7288 0.6212 0.6332

max 0.8 0.8756 0.8808 0.4809 0.4953 0.4040 0.4056 0.2526 0.2576
average 0.9843 0.9779 0.8633 0.8698 0.6433 0.6506 0.5295 0.5383

max 0.9 0.8103 0.8191 0.3826 0.3884 0.3316 0.3322 0.2036 0.2094
average 0.9779 0.9724 0.8044 0.8135 0.5691 0.5727 0.4498 0.4538

max 1.0 0.7399 0.7462 0.3179 0.326 0.2757 0.2803 0.1719 0.1732
average 0.9696 0.9636 0.7434 0.7548 0.4989 0.5062 0.3822 0.3862

Table 2: Experiments on the LeNet-5 network trained first with max pool and then
with average pool. ReLU means that during the evaluation the original ReLU function
was used, while R̃eLU signifies that an approximation was used instead.
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B Complete experimentss with the Cat and Dog
Classifier

Non-proportional perturbation Proportional perturbation

ReLU R̃eLU ReLU R̃eLU

Pool type σ Training acc. Test acc. Test acc. Test acc. Test acc.

max 0.0 0.9999 0.8530 0.8500 0.8524 0.85
average 0.99995 0.8202 0.8138 0.8232 0.814

max 0.1 0.9944 0.8316 0.8112 0.801 0.784
average 0.99995 0.8232 0.7880 0.8234 0.7812

max 0.2 0.8782 0.7446 0.6246 0.6942 0.5892
average 0.9999 0.8174 0.6726 0.8174 0.6574

max 0.3 0.6234 0.5872 0.5368 0.5736 0.4996
average 0.99965 0.8146 0.5868 0.8134 0.5776

max 0.4 0.5228 0.512 0.5222 0.514 0.4916
average 0.998 0.8074 0.5522 0.8092 0.5444

Table 3: Experiments on a 9-layer CNN trained to distinguish cats from dogs.
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