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Abstract. In this paper, we study the authenticated key exchange (AKE)
based on supersingular isogeny problems which are believed to be diffi-
cult for quantum computers. We first propose a 3-pass AKE based on
1-Oracle SIDH assumption whose soundness is guaranteed by a strictly
limited gap problem. The 1-Oracle SIDH and the limited gap assump-
tions are of independent interest. To enhance the soundness, we also
propose a 2-pass AKE based on standard SIDH assumption, which in-
volves more bandwidth. Both the 3-pass and 2-pass AKE protocols allow
arbitrary registrant of public keys, and achieve CK+ security (a security
model which covers wPFS security, KCI attack, and MEX attack). Our
results move us one step forward to the target set by Galbraith of look-
ing for new techniques to design and prove security of AKE in the SIDH
setting with the widest possible adversarial goals.

Keywords: authenticated key exchange, key encapsulation mechanism,
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1 Introduction

Authenticated Key Exchange. Key exchange (KE) is a fundamental crypto-
graphic primitive, which enables two parties to agree on a common shared key
over a public but possibly insecure channel. The classical Diffie-Hellman (DH)
key exchange protocol [7] without authentication is vulnerable to the man-in-the-
middle attack. Many studies have investigated how to achieve KE protocols that
provide authentication in secure models [3, 5, 11, 29] and how to implement au-
thenticated key exchange (AKE) with high efficiency [2, 11, 12, 20, 29–31] based
on classical assumptions. A plenty of security models have been proposed, in-
cluding BR model [3], CK model [5] and eCK model [29]. CK+ security model
known as one of the “strongest” and most “desirable” security notions [24] for
AKE is reformulated by Fujioka et al. [11]. The CK+ model not only covers
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the security requirement in CK model, but also captures some advanced attacks
such as the key compromise impersonation (KCI) attack, the maximal expo-
sure (MEX) attack and the breaking of weak perfect forward secrecy (wPFS).
Therefore, CK+ model can be theoretically considered as a complete version of
the AKE security model since it currently covers the widest possible variety of
adversarial methods in some sense.
Supersingular Isogeny Diffie-Hellman Key Exchange (SIDH). Apart
from lattice, code, hash and multivariate cryptography, supersingular elliptic
curve isogeny is one of the most attractive candidates for post-quantum cryp-
tography. Based on the problem of computing the isogeny between supersingular
elliptic curves, which is believed to be difficult, Jao and De Feo [8] proposed a
supersingular isogeny Diffie-Hellman key exchange (SIDH). There are many fol-
lowing works which mainly focus on the computational efficiency [6, 9, 25], key
compression [4], adaptive attacks on SIDH [16, 22], the relationship of underlying
complexity problems [18, 34], signature schemes [15, 21, 33, 35] and its standard-
ization [19, 26].

The SIDH protocol is analogous to the traditional Diffie-Hellman protocol
and so it is vulnerable to the man-in-the-middle attack. As in the survey where
Galbraith concluded [14], to the best of our knowledge, there are few papers
investigating the natural problems of designing AKE schemes from the basic
SIDH primitive. A general approach to build AKE is to sign each party’s round
messages with respect to their long-term public keys by using digital signatures.
Unfortunately, there is no practical signature based on the hardness of con-
structing an isogeny between two isogenous elliptic curves [15, 35]. Therefore, it
is essential to explore on designing implicit AKE from SIDH primitives. How-
ever, as Galbraith [14] pointed out, there are several challenges in adapting the
security proof of existing well-designed AKE schemes (most of them are based
on discrete logarithm assumption) to the SIDH case:

– Many AKE schemes based on discrete logarithm, such as MQV [30] and
HMQV [24], require a richer algebraic structure that the supersingular isogeny
does not have.

– The protocols involving long-term/static secret keys are vulnerable to the
adaptive attack [16] aiming at the case where the static public key is used.
More precisely, suppose that in a protocol Alice sets EA as her static public
key, and EY is an ephemeral public value sent by Bob. Galbraith et al. [16]
show that a malicious adversary Bob can send (EY , R

′, S′) with specified
points R′ and S′, and gradually learn Alice’s static secret key.

– The gap assumption that holds in the discrete logarithm setting is crucial
for security proof. But the gap assumption does not hold in the SIDH setting
when polynomial queries are submitted to an unlimited decisional solver.

The State of Art of SIDH AKE. Recently, there are many exciting results
both on the generic and non-generic constructions of AKE in the SIDH case [13,
14, 28]. Galbraith [14] and Longa [28] showed how to adapt the generic construc-
tions of secure AKE from basic primitives like IND-CCA encryption/KEMs,
MACs, PRFs etc, including the schemes proposed by Boyd, Cliff, Gonzlez Nieto

2



and Paterson [2] (abbreviated as BCNP scheme), by Fujioka, Suzuki, Xagawa
and Yoneyama [12] (abbreviated as FSXY scheme) and by Guilhem, Smart and
Warinschi [17] (abbreviated as GSW scheme), to the SIDH setting by inserting
an IND-CCA secure KEM based on SIDH. However, these transformations lead
to either more isogeny computations or more rounds of communication. The
detailed analyses are examined and summarized in the table 1 of [14]. Here we
make a more concrete comparison among these resulted SIDH schemes in Table
1.

With respect to non-generic constructions, Galbraith proposed two SIDH-
AKE protocols [14], one of which is based on the Jeong-Katz-Lee [20] scheme
TS2 (we call it Gal 1) and another is an SIDH variant of NAXOS scheme (we
call it Gal 2). Very recently Fujioka et al. [13] gave two Diffie-Hellman like
isogeny-based AKEs, we call them FTTY 1 where the session key is extracted
from the combination of two Diffie-Hellman values, and FTTY 2 where the
session key is extracted from four Diffie-Hellman values. Whereas, all of these
schemes only satisfy the security with limited adversarial abilities, like wPFS
security (details are given in section 1.3). Several recognized attacks are not
taken into account, including arbitrary registrant for static public keys, KCI
attacks, or MEX attacks. In an AKE system, the adversary-controlled parties
may register arbitrary public keys and arbitrary registrant allows any party to
register arbitrary valid keys (even the same key as some other party) without
any validity checks. In fact, the arbitrary registrant for the static public key is
not allowed for Gal 1-2 and FTTY 1-2 schemes. Otherwise with malicious static
public keys, a target secret key can be learned bit by bit, which implies that Gal
1-2 and FTTY 1-2 are not resistant to the adaptive attack. Moreover, Gal 1 is
not resistant to the KCI attack and Gal 2 is not resistant to the MEX attack.
Detailed analyses on those attacks against Gal 1-2 and FTTY 1-2 are given in
the related works.

Thus, “to find new techniques to design and prove security of AKE protocols
in SIDH setting, and give full analysis of AKE that includes the widest possible
adversarial goals.”, a quote from Galbraith [14], is the main concern in SIDH
AKEs area. In this paper, we are motivated to address such an open problem.

1.1 Our Contributions.

In this paper, we present a 3-pass and a 2-pass elegant AKE schemes in the
SIDH setting and prove that they allow arbitrary registrant and are secure in
the CK+ model.

1. To prepare for 3-pass AKE, we investigate the soundness of the hashed deci-
sional SIDH problem called 1-Oracle SIDH problem, where the adversary is
allowed to query a one-time hashed computational SIDH oracle. We reduce
the hardness of 1-Oracle SIDH problem to a computational SIDH assump-
tion (called 1-gap SIDH assumption) with a strictly limited decisional oracle
which allows queries with only one (EX , R2, S2 ∈ EX [le22 ]) (that is asked
initially) but different curves EZ to the decisional SIDH (DSIDH) oracle.
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2. We propose a strongly secure key encapsulation mechanism (KEM) based
on supersingular isogeny, which serves as the core building block of our
AKE schemes. Our KEM is chosen public-key chosen ciphertext4 (CPCCA)
secure under the standard DSIDH assumption. Based on the 1-Oracle SIDH
assumption, it is still CPCCA secure even if some information about the
challenge ciphertext is leaked.

3. Equipped with the 1-Oracle SIDH assumption and a strongly secure KEM
as the building blocks, we propose a 3-pass AKE AKESIDH-3 and prove that
it allows arbitrary registrant and is secure in the CK+ model.

4. To enhance the security of AKE, we also propose a 2-pass AKE AKESIDH-2

and prove its security based on standard DSIDH assumption.

As shown in Table 1, both the 3-pass and 2-pass AKE schemes have advan-
tages compared with existing works. And they achieve great trade-offs between
security and efficiency since our security covers the widest possible adversarial
goals including arbitrary registrant. We also implement some typical schemes
and give a comparison in Section 5. According to the result of our experiment,
the 3-pass scheme decreases the bandwidth by 49.3% and is 1.2 times faster than
the generic construction in [12] without loss of security. The 2-pass AKE scheme
narrows the bandwidth by 23% and is 1.12 times faster.

Scheme Key Model Assum. wPFS KCI MEX Rd Init Resp Mess
Reg. isog isog Size

SIDH [8] - DSIDH - × × × 2 2 2 72λ

Gal 1 [14] Honest CSIDH CK X × × 2 3 3 108λ
Gal 2 [14] Honest CSIDH BR X X × 2 4 4 108λ

FTTY 1 [13] Honest DSIDH CK X × × 1 3 3 72λ
FTTY 2 [13] Honest di-DSIDH CK+ X X X 1 5 5 72λ

GSW [17] Arbi. DSIDH CK X × × 3 6 6 186λ

BCNP-Lon [2, 28] Arbi. DSIDH CK X X × 2 6 6 148λ

FSXY-Lon [12, 28] Arbi. DSIDH CK+ X X X 2 7 6 148λ

AKESIDH-2 Arbi. DSIDH CK+ X X X 2 6 5 114λ
AKESIDH-3 Arbi. 1-OSIDH CK+ X X X 3 5 5 80λ

Table 1. Comparison of existing AKE protocols on supersingular isogeny. SIDH is an
unauthenticated scheme. Key Reg. represents registering the static public key. “Arbi”
means arbitrary registrant is allowed while “Honest” means only honest registrant is
allowed. Assump. is the abbreviation of assumptions. Rd denotes the number of
protocol’s communication round. Init isog and Resp isog represent the number of
isogeny computation that the initiator and responder have to perform respectively.
Mess Size denotes the total message size. “X” indicates that the scheme can resist
this kind of attack while “×” indicates it cannot. −” indicates that the scheme does
not consider this property.

4 inspired by [32], we specify this strong security for supersingular isogeny. Although
we use the same name with [32], we note that the adversary is different, where the
adversary can choose part of the challenge public key while [32] does not.
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1.2 Our Techniques

Our core ideas and techniques are illustrated in Figure 1. E0 is the starting
curve. EA1

, EB2
, EX and EY are four intermediate curves which are part of

static or ephemeral public keys. EA1Y , EXB2 and EXY are three collaborated
computing curves.

The SIDH key exchange works as follows: UA chooses a secret and computes
the isogeny φX : E0 → EX with kernelGX and publishesX = (EX , φX(P2), φX(Q2)).
UB chooses a secret and computes the isogeny φY : E0 → EY with kernel
GY and publishes Y = (EY , φY (P1), φY (Q1)). They both can compute EXY ∼=
EX/φX(GY ) ∼= EY /φY (GX). The strategy to provide authentication for SIDH
with the static and ephemeral component is that every user registers a static
public key where UA’s static public key is (EA1

, φA1
(P2), φA1

(Q2)) and UB ’s
static public key is (EB2 , φB2(P1), φB2(Q1)).

EA1B2

EA1 EB2

EA1Y E0 EXB2

m1 EY EX n1

KB EXY KA

m2 n2

h(j(·)) h(j(·))

h(X, j(·)) h(Y, j(·))

Fig. 1. Illustration of the core idea of our AKEs. The red dashed lines illustrate the
core ideas of Gal 1 scheme [14]. E0 is the base curve.

As shown in Figure 1, there is a natural way to extract a session key from
four Diffie-Hellman values EA1B2

, EA1Y , EXB2
and EXY . But it is risky to take

EA1B2 into account. Let us recall the adaptive attack from Galbraith, Petit,
Shani and Ti [16]. A malicious user UB who registers his static public key EB2

with specified points R′, S′, can learn one bit of the static secret key of UA if
he can also query the resulted session key. As shown in Figure 1 with dashed
lines, Galbraith [14] involves EA1B2

and EXY for the session key. Under the
adaptive attack [16], adversary could gradually learn the static secret key by
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malicious registrations. Thus, EA1B2
could not be included in the session key

when arbitrary registrant is allowed.

Although now only EA1Y , EXB2 , and EXY are involved in the session key,
the adaptive attack still takes effect if the CK+ adversary (in case E2 in Ta-
ble 2) sends EY with specified points R′, S′ to UA. With the ephemeral se-
cret key for EX and the result session key, the adversary could still extract
one bit of the static secret key. The problem comes down to how to check the
“validity” of Y = (EY , R, S). Our solution is to employ the “re-encryption”
technique used in Fujisaki-Okamoto (FO) transformation [10]. Precisely, C =
(Y, y1, y2) is the ciphertext under public key EA1 and X, where Y = (E0/〈P2 +
[y]Q2〉, φY (P1), φY (Q1)), y1 = h(j(EA1Y ))⊕m1, y2 = h(j(EXY ))⊕m2 and y =
g(m1,m2) for a hash function g, and the encapsulated key is KB = H(m1,m2).
As a byproduct, we obtain the chosen ciphertext (CCA) secure KEM by the
FO transformation and the “validity” of Y = (EY , R, S) can be checked by UA
so that the adaptive attack fails to work. The requirement is symmetric: UA
computes (X,x1, x2) as the ciphertext under public key EB2

and Y , where X =
(E0/〈P1 +[x]Q1〉, φX(P2), φX(Q2)), x1 = h(j(EXB2

))⊕n1, x2 = h(j(EXY ))⊕n2

and x = g(n1, n2), and encapsulated key is KA = H(n1, n2). Therefore, extract-
ing the session key from KA and KB rather than EA1Y , EXB2

and EXY prevents
it from the adaptive attack.

Although the CCA secure KEM with “re-encryption” avoids the adaptive
attack, it is still not sufficient for CK+ security. The CK+ adversary has the ca-
pability to adaptively send messages and adaptively query the session state and
session key of non-test sessions. The capability of adaptively sending messages
in the test session means that the adversary is allowed to choose one-part of
the challenge public key X∗ for (Y ∗, y∗1 , y

∗
2), while the capability of querying the

session state and session key of non-test sessions implies that it’s also allowed to
query the decapsulation oracle which decapsulates the ciphertext under several
public keys X ′ (not only the challenge public key). We integrate such an attack
manner as the chosen public key and chosen ciphertext attack (CPCCA), in-
spired by Okamoto [32]. Although the CPCCA adversary is much stronger than
CCA adversary, it is not complicated to make our CCA secure KEM be secure
against the CPCCA adversary in the random oracle model. What we only need
to do is to put the public key in the hashing step when generating the encapsu-
lated key. Precisely, KB encapsulated in (Y, y1, y2) is H(X,m1,m2), while KA

encapsulated in (X,x1, x2) is H(Y, n1, n2).

We almost figure out a resolution except that both X and Y have two func-
tionalities. In the test session, on the one hand X is part of the public key
(pkA1 , X) under which the ciphertext (Y, y1, y2) is computed. On the other hand
X is part of the ciphertext (X,x1, x2) in which KA is encapsulated under public
key (pkB2

, Y ). Precisely, in the test session (X = (EX , R2, S2), x1, x2) is sent
by AKE adversary A, and the simulator S gets challenge ciphertext (Y ∗, y∗1 , y

∗
2)

from the CPCCA challenger (which means the secret y in Y ∗ is unknown). But
to simulate the CK+ game, especially to maintain the consistency of hash lists,
S should learn h(j(EX/〈R2 +[y]S2〉)) to extract KA encapsulated in (X,x1, x2).
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We propose two solutions for this problem. One method is to strengthen the
underlying assumptions as 1-Oracle SIDH assumption such that h(j(EX/〈R2 +
[y]S2〉)) could be leaked. The other one is to add an extra X0 such that X0 is part
of the public key (pkA1 , X0) under which the ciphertext (Y, y1, y2) is computed,
while X is part of the ciphertext (X,x1) under public key EB2

(we omit Y ).
The two solutions result in our 3-pass AKE in section 4.1 and 2-pass AKE

in section 4.2, respectively.

– Solution 1: We enhance the underlying DSIDH assumption to the 1-Oracle
SIDH assumption to allow the leakage of h(j(EX/〈R2 + [y]S2〉)). The 1-
Oracle SIDH assumption can be considered as a hashed DSIDH assumption
where a one-time hashed CSIDH oracle is allowed. Note that considering
〈R2 + [y]S2〉 = 〈[u]R2 + [y][u]S2〉 for any integer 1 ≤ u ≤ le22 and coprime to
l2, we employ a simple trick of tailoring the hash function as h(Y, j(EXY ))
in x2 and h(X, j(EXY )) in y2. This solution results in our 3-pass AKE.

– Solution 2: We add an extra X0 to take the position of X as part of the public
key (EA1

, X0) under which the ciphertext (Y, y1, y2) is computed, remove x2

and set (X,x1) as the ciphertext under public key EB2
rather than (EB2

, Y ).
Then the value of h(j(EX/〈R2 + [y]S2〉)) is not needed during the security
proof. The drawback of this solution is that K ′A can not be included in the
session state of UB . Solution 2 leads to our 2-pass AKE.

1.3 Related Works and Their Analysis.

Galbraith [14] proposed two SIDH variants of AKE, namely Gal 1 from Jeong-
Katz-Lee protocol [20] and Gal 2 from NAXOS protocol [29]. Considering the
adaptive attack on static secret keys, Gal 1 protocol only allows honest registrant
of static public keys and it is also vulnerable to the KCI attack. So far, there
hasn’t been any concrete MEX attack on Gal 1, neither has there been any
formal proofs to show Gal 1 is resistant to the MEX attack. Gal 2 protocol is
provably secure in BR model, which only allows honest registrant of static public
keys (if the adversary gets the ephemeral secret key, like x, the adaptive attack
still works), and can not resist the MEX attack.

Very recently, Fujioka et al. [13] gave two Diffie-Hellman like isogeny-based
AKEs, FTTY 1 and FTTY 2. FTTY 1 protocol, which is quite similar to Gal
1 scheme, is CK secure in the quantum random oracle model, but it only allows
honest registrant and can not resist the KCI attack. FTTY 2 is secure in CK+
secure model, but it also only allows honest registrant.

Below we illustrate in detail the (in)capability of Gal 1-2 and FTTY 1-2 on
resisting the adaptive attacks (if the arbitrary registrant is allowed), the KCI
attack, and the MEX attack.
Adaptive attacks if arbitrary registrant is allowed. Suppose that in a
protocol Alice sets EA1

, φA1
(P2), φA1

(Q2) as her static public key. The aim of
a malicious adversary is to compute Alice’s static secret key. As illustrated in
Figure 1, the session key of Gal 1 is extracted from EXY and EA1B2

. By applying
the adaptive attacks [16], a malicious adversary can register (EB2 , R

′, S′) with
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specified points R′ and S′, rather than φB2
(P1) and φB2

(Q1), as the static public
key for Bob. By checking whether the session key computed by Alice (which can
be obtained by adversary with SessionKeyReveal query) is equal to that computed
by Bob, one bit of Alice’s static secret key is determined. The adversary gradually
learns Alice’s static secret key by registering several valid static public keys
according to adaptive attacks. Such attack can be applied to FTTY 1 directly
and it also works for FTTY 2 if the adversary also has the ephemeral secret key
x of Alice (which can be obtained by querying SessionStateReveal), which means
that FTTY 2 does not allow arbitrary registrant. Here we correct the conjecture
made by Fujioka et al. [13] that FTTY 2 seems to allow arbitrary registrant. Gal 2
doesn’t allow arbitrary registrant either, since if the adversary has the ephemeral
secret key x of Alice (which can be obtained from SessionStateReveal query), by
honestly registering static public key for Bob, then sending (EY , R

′, S′) with
specified points R′ and S′, and checking whether the session key computed by
Alice is equal to that computed by Bob, the adversary is able to learn one bit
of Alice’s static secret key.
KCI Attacks. KCI attacks state that if a static secret key is revealed, an
adversary can try to impersonate any other honest parties in order to fool the
owners of the exposed secret keys. Neither Gal 1 nor FTTY 1 are resistant to
the KCI attack since each session key is extracted from EXY and EA1B2

, and by
generating EY , φY (P1), φY (Q1) and sending it to Alice on behalf of Bob, with
Alice’s static secret key the adversary could compute the session key even if
Bob’s static secret key is unknown.
MEX Attacks. In MEX, an adversary aims to distinguish the session key from
a random value under the disclosure of the ephemeral secret key of one party
of the test session at least. Gal 2 is not resistant to the MEX attack since its
session key is extracted from EXY , EXB2 , and EA1Y , it is easy for an adversary
to compute those curves with the ephemeral secret key corresponding to EX and
EY .

2 Preliminaries

2.1 SIDH Key Exchange

The SIDH protocol [8] inherits the construction of general Diffie-Hellman proto-
col, but it has an obvious technical difference. The endomorphism of a supersin-
gular elliptic curve is isomorphic to an order in a quaternion algebra, which is
not communicative. Thus, extra information must be transferred as part of the
ciphertext in order to get the same shared key.

We reiterate the key exchange protocol briefly and adopt the notations in [8]
for the most part. First, choose a prime of the form p = le11 l

e2
2 ·f±1 where l1 and

l2 are small primes and f is a cofactor. We fix a supersingular elliptic curve E0

defined over Fp2 . The cardinality of E0 is |E0(Fp2)| = (le11 l
e2
2 · f)2. Furthermore,

E0[le11 ] = Z/le11 Z ⊕ Z/l
e1
1 Z = 〈P1, Q1〉, E0[le22 ] = Z/le22 Z ⊕ Z/l

e2
2 Z = 〈P2, Q2〉.

The above parameters are public. Then A secretly chooses two random ele-
ments mA, nA ∈ Z/le11 Z, not both divisible by l1, and computes an isogeny
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φA : E0 → EA with kernel 〈[mA]P1 + [nA]Q1〉. A sends EA to B with two points
φA(P2), φA(Q2). Similarly, B secretly chooses two random elements mB , nB ∈
Z/le22 Z, not both divisible by l2, and computes an isogeny φB : E0 → EB with
kernel 〈[mB ]P2 + [nB ]Q2〉. B sends E2 to A with two points φB(P1), φB(Q1).
Upon receiving from B, A computes an isogeny φ′A : EB → EBA with kernel
〈[mA]φB(P1) + [nA]φB(Q1)〉. B computes an isogeny φ′B : EA → EAB with
kernel 〈[mB ]φA(P2) + [nB ]φA(Q2)〉. When it comes to computing the shared
key, we take B as an example. We denote 〈[mB ]P2 + [nB ]Q2〉 = 〈RB〉 and
〈[mA]P1 + [nA]Q1〉 = 〈RA〉 for convenience.

EAB = EA/〈[mB ]φA(P2) + [nB ]φA(Q2)〉 = EA/〈φA([mB ]P2 + [nB ]Q2)〉
= (E0/〈RA〉)/(〈RA, RB〉/〈RA〉).

Due to the isomorphism theorem, (E0/〈RA〉)/(〈RA, RB〉/〈RA〉) = E0/〈RA, RB〉.
Similarly, we know EBA = E0/〈RA, RB〉. Therefore, A and B share the same
j-invariant as j(EAB) = j(EBA).

According to Lemma 1 in [16], we know that for some (m,n) ∈ Z2 (not
simultaneously even), we have that (m,n) ∼ (1, a) or (m,n) ∼ (a, 1) for some
a ∈ Z. We call this private key normalized. Throughout the rest of this paper,
we note that the private keys are normalized and without loss of generality, we
fall into the former case.

2.2 CK+ Security Model

We recall the CK+ model introduced by [24] and later refined by [11], which
is a CK model [5] integrated with the weak PFS, resistance to KCI and MEX
properties. We focus on 3-pass and 2-pass protocols in this paper. For simplicity,
we only show the model specified to 2-pass protocols. As for 3-pass protocol, we
can extend it by adding an extra message in the matching session identifier and
Send definitions.

In an AKE protocol, Ui denotes a party indexed by i, who is modeled as
a probabilistic polynomial time (PPT) interactive Turing machine. We assume
that each party Ui owns a static pair of secret-public key (ski, pki), where the
static public key is related to Ui’s identity by a certification authority (CA).
No other actions by the CA are required or assumed. In particular, we make no
assumption on whether the CA requires a proof-of possession of the private key
from a registrant of a public key, and we do not assume any specific checks on
the value of a public key.
Session. Each party can be activated to run an instance called a session. A
party can be activated to initiate the session by an incoming message of the form
(Π, I, UA, UB) or respond to an incoming message of the form (Π,R, UB , UA, XA),
where Π is a protocol identifier, I and R are role identifiers corresponding to
initiator and responder. Activated with (Π, I, UA, UB), UA is called the session
initiator. Activated with (Π,R, UB , UA, XA), UB is called the session responder.

According to the specification of AKE, the party creates randomness which
is generally called ephemeral secret key, computes and maintains a session state,
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generates outgoing messages, and completes the session by outputting a session
key and erasing the session state. Note that Canetti-Krawczyk [5] defines session
state as session-specific secret information, but leaves it up to a protocol to
specify which information is included in a session state. LaMacchia et al. [29]
explicitly set all random coins used by a party in a session as session-specific
secret information and call it ephemeral secret key. Here we require that the
session state at least contains the ephemeral secret key.

A session may also be aborted without generating a session key. The initia-
tor UA creates a session state and outputs XA, then may receive an incoming
message of the forms (Π, I, UA, UB , XA, XB) from the responder UB , and may
compute the session key SK. On the contrary, the responder UB outputs XB ,
and may compute the session key SK. We say that a session is completed if its
owner computes the session key.

A session is associated with its owner, a peer, and a session identifier. If
UA is the initiator, the session identifier is sid = (Π, I, UA, UB , XA) or sid =
(Π, I, UA, UB , XA, XB), which denotes UA as an owner and UB as a peer. If
UB is the responder, the session is identified by sid = (Π,R, UB , UA, XA, XB),
which denotes UB as an owner and UA as a peer. The matching session of
(Π, I, UA, UB , XA, XB) is (Π,R, UB , UA, XA, XB) and vice versa.
Adversary. The adversary A is modeled in the following to capture real attacks
in open networks, including the control of communication and the access to some
of the secret information.

– Send(message): A sends messages in one of the forms: (Π, I, UA, UB), (Π,R,
UB , UA, XA), or (Π, I, UA, UB , XA, XB), and obtains the response.

– SessionKeyReveal(sid): if the session sid is completed, A obtains the session
key SK for sid.

– SessionStateReveal(sid): The adversary A obtains the session state of the
owner of sid if the session is not completed. The session state includes all
ephemeral secret keys and intermediate computation results except for im-
mediately erased information, but does not include the static secret key.

– Corrupt(Ui): By this query, A learns all information of UA (including the
static secret, session states and session keys stored at UA). In addition, from
the moment that UA is corrupted, all its actions may be controlled by A.

Freshness. Let sid∗ = (Π, I, UA, UB , XA, XB) or (Π, I, UA, UB , XA, XB) be a
completed session between honest users UA and UB . If the matching session
of sid∗ exists, denote it by sid

∗
. We say session sid∗ is fresh if A does not

query: 1) SessionStateReveal(sid∗), SessionKeyReveal(sid∗), and SessionStateRe-

veal(sid
∗
), SessionKeyReveal(sid

∗
) if sid

∗
exists; 2) SessionStateReveal(sid∗) and

SessionKeyReveal(sid∗) if sid
∗

does not exist.
Security Experiment. The adversary A could make a sequence of the queries
described above. This query can be issued at any stage to a completed, fresh
and unexpired session sid. A bit b is picked randomly. If b = 1, the oracle
generates a random value in the key space; if b = 0, it reveals the session key.
The adversary can continue to issue queries except that it cannot expose the
test session. The adversary wins the game if the session is fresh and the guess of
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the adversary is correct, i.e., b′ = b. The advantage of the adversary A is defined

as AdvCK+

Π (A) = Pr [A wins]− 1
2 .

Definition 1. We say that a AKE protocol Π is secure in the CK+ model if
the following conditions hold:
Correctness: If two honest parties complete matching sessions, then they both
compute the same session key except with negligible probability.
Soundness: For any PPT adversary A, AdvCK+

Π (A) is negligible for the test
session sid∗,

1. the static secret key of the owner of sid∗ is given to A, if sid
∗

does not exist.
2. the ephemeral secret key of the owner of sid∗ is given to A, if sid

∗
does not

exist.
3. the static secret key of the owner of sid∗ and the ephemeral secret key of sid

∗

are given to A, if sid
∗

exists.
4. the ephemeral secret key of sid∗ and the ephemeral secret key of sid

∗
are given

to A, if sid
∗

exists.
5. the static secret key of the owner of sid∗ and the static secret key of the peer

of sid∗ are given to A, if sid
∗

exists.
6. the ephemeral secret key of sid∗ and the static secret key of the peer of sid∗

are given to A, if sid
∗

exists.

As indicated in Table 2, the CK+ model captures all non-trivial patterns of
exposure of static and ephemeral secret keys listed in Definition 1, and these
ten cases cover wPFS, resistance to KCI, and MEX as follows: E1, E4, E7-1,
E7-2, E8-1 and E8-2 capture KCI, since the adversary obtains either only the
static secret key of one party or both the static secret key of one party and the
ephemeral secret key of the other party of the test session. E5 captures wPFS.
E2, E3 and E6 capture MEX, since the adversary obtains the ephemeral secret
key of one party of the test session at least.

Event Case sid∗ sid
∗
skA ekA ekB skB Security

E1 1 A No
√
× - × KCI

E2 2 A No ×
√

- × MEX

E3 2 B No × -
√

× MEX

E4 1 B No × - ×
√

KCI

E5 4 A or B Yes
√
× ×

√
wPFS

E6 5 A or B Yes ×
√ √

× MEX

E7-1 3 A Yes
√
×
√

× KCI

E7-2 3 B Yes ×
√
×
√

KCI

E8-1 6 A Yes ×
√
×
√

KCI

E8-2 6 B Yes
√
×
√

× KCI

Table 2. The behavior of AKE adversary in CK+ model. sid
∗

is the matching session
of sid∗, if it exists. “Yes” means that there exists sid

∗
and “No” means not. skA (skB)

means the static secret key of A (B). ekA (ekB) is the ephemeral secret key of A (B)
in sid∗ or sid

∗
if there exists. “

√
” means the secret key may be revealed to adversary,

“×” means the secret key is not revealed. “-” means the secret key does not exist.
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3 1-Oracle SIDH Assumptions and Implied Strongly
Secure KEM

In this section, we recall the complexity problems related to supersingular isogeny,
where the first five are standard assumptions, the sixth is straightforwardly fol-
lowed by adding a hash function and the last two are new. We analyze their re-
lations and plausibility. After that we propose a strongly secure CPCCA KEM,
which is the core build block for our AKEs, from the standard SIDH assumption
and 1-Oracle assumption.

3.1 Standard SIDH Problems and Their Relations
Recall that E0 is the base curve and there are fixed basis pairs 〈P1, Q1〉 = E0[le11 ]
and 〈P2, Q2〉 = E0[le22 ].

Definition 2 (SI isogeny problem [18]). The A-SI problem is given (E0, P1,
Q1, P2, Q2; EA, R2, S2) where R2, S2 ∈ EA[le22 ], to find φA : E0 → EA of de-
gree le11 such that R2 = φA(P2) and S2 = φA(Q2). The B-SI problem is given
(E0, P1, Q1, P2, Q2; EB , R1, S1) where R1, S1 ∈ EB [le11 ], to find φB : E0 → EB
of degree le22 such that R1 = φB(P1) and S1 = φB(Q1).

Definition 3 (Decisional SI problem [18]). Let EA be any elliptic curve.
The Decisional A-SI problem is given (E0, P1, Q1, P2, Q2; EA, R2, S2) where R2,
S2 ∈ EA[le22 ], to determine whether or not there exists an isogeny φA : E0 → EA
of degree dividing le11 such that R2 = φA(P2) and S2 = φA(Q2). The Decisional
B-SI can be defined similarly.

Definition 4 (Computational SIDH (CSIDH) problem [8]). Let φA :
E0 → EA be an isogeny whose kernel is GA = 〈P1+[a]Q1〉, and let φB : E0 → EB
be an isogeny whose kernel is GB = 〈P2 + [b]Q2〉. Given (E0, P1, Q1, P2, Q2;EA,
φA(P2), φA(Q2); EB , φB(P1), φB(Q1)), find the j-invariant of E0/〈GA, GB〉.
Definition 5 (Decisional SIDH (DSIDH) problem [8]). Given (E0, P1,
Q1, P2, Q2;EA, φA(P2), φA(Q2);EB , φB(P1), φB(Q1);EC), where EA, EB , GA, GB
are that in CSIDH problem, EC is computed as EC ∼= E0/〈GA, GB〉 or EC ∼=
E0/〈P1 + [a′]Q1, P2 + [b′]Q2〉 with probability 1/2, where a′ (respectively b′) is
chosen at random from Z/le11 Z (respectively Z/le22 Z) and not both divisible by
l1 (respectively l2). The DSIDH problem is to decide how EC is computed.

Definition 6 (A/B-DSIDH problem [34]). Given (E0, P1, Q1, P2, Q2). Sup-
pose that EB and φB(P1), φB(Q1) ∈ EB [le11 ] are known, then given a curve
EX , a basis pair R2, S2 ∈ EX [le22 ] and a curve EZ , determine whether the
tuple (EX , EB , EZ) is a valid SIDH tuple, in the sense that there is a map
ψX : E0 → EX of degree (dividing) le11 such that ψX(P2) = R2, ψX(Q2) = S2,
EZ = E0/〈kerψX , GB〉. This is the A-DSIDH problem.

Given (E0, P1, Q1, P2, Q2). Suppose that EA and φA(P2), φA(Q2) ∈ EA[le22 ]
are known, then given a curve EY , a basis pair R1, S1 ∈ EY [le11 ] and a curve
EZ , determine whether the tuple (EA, EY , EZ) is a valid SIDH tuple, in the
sense that there is a map ψY : E0 → EY of degree (dividing) le22 such that
ψY (P1) = R1, ψY (Q1) = S1 and EZ = E0/〈GA, kerψY 〉. This is the B-DSIDH
problem.
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Remark 1: Note that in [34] the A-DSIDH problem is to decide whether there
is a map ψX : E0 → EX of degree dividing le11 such that ψX(P2) = R2 and
ψX(Q2) = S2. In the following we define it to decide whether there is a map of
degree equal to le11 . The same holds for B-SIDH problem.

The above are standard problems and previous works have analyzed their
relations. Galbraith and Vercauteren [18] show that the computational SI isogeny
is equivalent to the decisional SI problem since that l1 queries to the decisional SI
solver will help to decide the result of the first e1 − 1 steps. Precisely, let u ∈ Z
be such that ul1 ≡ 1 mod le22 and R′2 = [u]ψ(R2), S′2 = [u]ψ(S2), given the
computational SI instance (E0, P1, Q1, P2, Q2;EA, R2, S2), choose one l1-isogeny
ψ : EA → E′ and query the decisional SI solver on (E0, P1, Q1, P2, Q2;E′, R′2, S

′
2)

to decide the last l1-isogeny ψ. Then querying the decisional SI solver polynomial
times with polynomial different (E′, R′2, S

′
2) will help to determine the path from

E0 to EA.
Urbanik and Jao [34] show that under randomized polynomial time reduc-

tions, a solver of the A-SI problem is equivalent to a solver which solves both
the CSIDH and A-DSIDH problems.

Galbraith et al. [16] proposed an adaptive attack which intends to attack the
SIDH key exchange if (EA, φA(P2), φA(Q2)) is a static key. They point out that
the known pubic key validation methods are insufficient and the attacker could
learn one bit of the secret key of φA by querying the B-DSIDH solver once. After
polynomial times of queries with polynomial different (R1, S1) ∈ EY [le11 ] and
polynomial different curves EZ to the decisional B-DSIDH problem, the secret
key of φA will be extracted bit-by-bit. Thus the CSIDH problem is equivalent to
the A-DSIDH or B-DSIDH problem under reduction for randomized polynomial
time at the same time.

As we have mentioned in Remark 1, Fujioka et al. also set the A/B-DSIDH
problem as to decide whether there is a map ψX : E0 → EX of degree equal
to le11 , rather than dividing le11 , and call it degree-sensitive. They also extend
Galbraith and Vercauteren’s work [18] to prove the equivalence of CSIDH with
degree-sensitive A/B-DSIDH problem.

3.2 1-Oracle SIDH and 1-gap SIDH Problems

We first give a straightforward variant of the DSIDH problem by adding a hash
function, then propose the 1-Oracle SIDH problem and reduce its soundness to
the hardness of solving the 1-gap problem.

In the supersingular isogeny area, the classical “gap” problem does not hold,
namely computational SIDH problem (resp. SI) does not hold [16, 18] if queries
with polynomial different (R2, S2) ∈ EX [le22 ] and polynomial different curves EZ
to the decisional A/B-DSIDH problem (resp. Decisional SI) solver are allowed.

In spite of the failure to have the classical “gap” assumption in supersingular
isogeny setting, it is promising to have the “gap” assumption with a strictly
limited decisional oracle. Precisely, we believe that the CSIDH is still hard even
if queries with only one (EX , R2, S2 ∈ EX [le22 ]) (that may be chosen by CSIDH
solver) and polynomial different curves EZ to the decisional A-DSIDH problem
are allowed. The certainty comes from the fact that the queries to the decisional

13



A-DSIDH solver with only one curve and one pair of basis leak at most log poly(λ)
bits of secret key of φB , which would not dramatically harm the soundness of
CSIDH problem.

Definition 7 (Hashed DSIDH problem). Let H : {0, 1}∗ → {0, 1}λ be a
hash function. Given (E0, P1, Q1, P2, Q2;EA, φA(P2), φA(Q2);EB , φB(P1), φB(Q1);
h), where EA, EB , GA, GB are that in CSIDH problem and h is computed as
h = H(A, j(EAB)) where A = (EA, φA(P2), φA(Q2)) and EAB ∼= E0/〈GA, GB〉
or h ← {0, 1}λ with probability 1/2. The Hashed DSIDH problem is to decide
how h is computed.

1-Oracle SIDH Assumption. Let φB : E0 → EB be an isogeny with kernel
GB = 〈P2 + [b]Q2〉. And φB(P1), φB(Q1) ∈ EB [le11 ] are known. Let the OB be a
SIDH key exchange oracle that given the input of a curve EX and a basis pair
〈R2, S2〉 ∈ EX [le22 ], computes and outputs a curve EZ = EX/〈R2 + [b]S2〉.

Let HB be a one-time Hashed SIDH oracle which given the input of a curve
EX and a basis pair 〈R2, S2〉 ∈ EX [le22 ], outputs H(X, j(EZ)) where X =
(EX , R2, S2) and EZ ← OB(EX , R2, S2). Suppose that given (E0, P1, Q1, P2, Q2;
EA, φA(P2), φA(Q2); EB , φB(P1), φB(Q1)), the adversary’s goal is to compute
H(A, j(EAB)) where A = (EA, φA(P2), φA(Q2)) and EAB = E0/〈GA, GB〉. Now,
as long as the one-time oracle HB doesn’t allow (EA, φA(P2), φA(Q2)) to be
queried, this one-time oracle seems useless. We formalize it as follows.

Definition 8 (1-Oracle SIDH problem). Let H : {0, 1}∗ → {0, 1}λ be a hash
function. Given (E0, P1, Q1, P2, Q2;EA, φA(P2), φA(Q2);EB , φB(P1), φB(Q1);h),
where EA, EB, GA, GB are that in CSIDH problem and h is computed as h =
H(A, j(EAB)) where A = (EA, φA(P2), φA(Q2)), B = (EB , φB(P1), φB(Q1)),
EAB ∼= E0/〈GA, GB〉 or h ← {0, 1}λ with probability 1/2. The 1-Oracle SIDH
problem is to decide how h is computed when the adversary A can query one-
time Hashed SIDH oracle HB with (EX , R2, S2) 6= (EA, φA(P2), φA(Q2)). The
advantage of A is

Avd1-OSIDH
A = Pr[AHB

(
A,B,H(A, j(EAB))

)
= 1]−

Pr[AHB
(
A,B, h← {0, 1}λ

)
= 1].

We emphasize that the adversary is allowed to query the Hashed SIDH oracle
HB only once and (EX , R2, S2) 6= (EA, φA(P2), φA(Q2)). If he can query for
polynomial times, then the 1-Oracle SIDH problem can be solved using the
adaptive attack in [18].

Please also note that the hash function involves (EA, φA(P2), φA(Q2)) or
(EX , R2, S2) as input besides the j-invariant. Otherwise the 1-Oracle SIDH
problem is not hard, since the attacker can choose EX = EA and some R2, S2

such that they give the same j-invariant, and query HB with (EX , R2, S2). For
example, as 〈R2 + [y]S2〉 = 〈[u]R2 + [y][u]S2〉 for any integer 1 ≤ u ≤ le22

and coprime to l2, given (EA, φA(P2), φA(Q2)), the attacker sets EX = EA,
R2 = [u]φA(P2) and S2 = [u]φA(Q2), and will get the same j-invariant. How-
ever, when taking (EX , R2, S2) as input of the hash function H, any query with
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(EX , R2, S2) 6= (EA, φA(P2), φA(Q2)) to HB will get a totally different hash
value.
Remark 2: In definition 8, the 1-Oracle SIDH solver is associated with one-time
oracle HB . We may also associate the solver with one-time oracle HA which will
return H((EY , R1, S1), j(EY /〈R1 + [a]S1〉)), given the input a curve EY and a
basis pair (R1, S1) ∈ EY [le11 ]. Concretely, in definition 8, 1-Oracle SIDH should
be called 1-Oracle A-SIDH. If the HB is replaced by HA, it is called 1-Oracle
B-SIDH.
1-gap SIDH Assumption. Given (E0, P1, Q1, P2, Q2;EB , φB(P1), φB(Q1)), let
OB((·), ·) be a highly limited decisional oracle that takes as inputs one curve
EX , one basis pair R2, S2 ∈ EX [le22 ] (that is queried at the first time) and the
j-invariant j′ are allowed to be queried. It outputs 1, if j′ = j(EX/〈R2 +[b]S2〉),
and 0 otherwise. We formalize the oracle by adding count which is initiated as
0 as follows.

OB((·), ·) with count=0:

01 On receiving E′X , R
′
2, S
′
2 ∈ E′X [le22 ] and a j-invariant j′

02 if count=0
03 (EX , R2, S2) := (E′X , R

′
2, S
′
2), count=1

04 if j(EX/〈R2 + [b]S2〉) = j′

05 return 1 else 0.
06 if count = 1
07 if (EX , R2, S2) 6= (E′X , R

′
2, S
′
2), abort

08 else if j(EX/〈R2 + [b]S2〉) = j′

09 return 1 else 0.

Fig. 2. The limited decisional oracle OB((·), ·)

The intuition of 1-gap SIDH assumption is that the query to the decisional A-
DSIDH solver with only one curve and one pair of basis leaks at most log poly(λ)
bits of the secret key of φB , and would not dramatically harm the soundness of
CSIDH problem. We formalize this as follows.

Definition 9 (1-gap SIDH Problem). Given (E0, P1, Q1, P2, Q2;EA, φA(P2),
φA(Q2);EB , φB(P1), φB(Q1)), where EA, EB, GA, GB are that in CSIDH prob-
lem, and a limited oracle OB((·), ·), find the j-invariant of E0/〈GA, GB〉. The
advantage of solver A is

Avd1-gSIDH
A = Pr[AOB

(
EA, φA(P2), φA(Q2), EB , φB(P1), φB(Q1)

)
= j(EAB)],

where EAB ∼= E0/〈GA, GB〉.

We emphasize that if the adversary is allowed to query OB((·), ·) with unlimited
numbers of (E′X , R

′
2, S
′
2), 1-gap SIDH problem can be solved using the adaptive

attack in [16]. Thus we require a highly limited oracle OB((·), ·).
Remark 3: Analogous to what we note in Remark 2, 1-gap SIDH can also be
specified as 1-gap A-SIDH or 1-gap B-SIDH depending on the limited oracle
OB((·), ·) or OA((·), ·).
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The following theorem shows that the 1-gap SIDH assumption implies the
1-Oracle SIDH assumption when the hash function H is modeled as a random
oracle. The proof is inspired by the analysis of the Oracle Diffie-Hellman as-
sumption given by Abdalla, Bellare and Rogaway [1].

Theorem 1. Let E0 is the base curve and there are fixed basis pairs P1, Q1 ∈
E0[le11 ], P2, Q2 ∈ E0[le22 ]. In the random oracle model, let q be the total number
of queries to H-oracle. Then for any algorithm A against the 1-Oracle SIDH
problem there exists an algorithm B against the 1-gap SIDH problem such that

Avd1-gSIDH
B (λ) ≥ 1/q ·Avd1-OSIDH

A,H (λ).

Proof. Let A be any algorithm against the 1-Oracle SIDH problem. We can
construct an algorithms B for the 1-gap SIDH problem using A as a sub-routine
in Figure 3. The problem for B is how to maintain the hash list so as to keep
the consistency with the one-time oracle HB , while the limited oracle OB((·), ·)
would help B to fix it.

Algorithm BOB((·),·)(A = (EA, φA(P2), φA(Q2));B = (EB , φB(P1), φB(Q1))
)

01 h0, h1 ← {0, 1}λ One time HB
02 b← {0, 1} 10 given the one-time query (EX , R2, S2)

03 Run AHB(·),H(A,B, hb) 11 if ∃(EX , R2, S2, j
′, h′) ∈ LH ∧ OB((EX , R2, S2), j′) = 1

04 a. For one-time query HB 12 return h′

05 do as one-time HB 13 else h← {0, 1}λ, LB = LB ∪ {EX , R2, S2, j
′, h}

06 b. For the H-query 14 return h
07 do as H((EX , R2, S2), j′) H((EX , R2, S2), j′)

08 c. Let b′ be the output of A 15 if ∃(EX , R2, S2, j
′, h′) ∈ LH return h′

09 return j ← LH 16 else if ∃((EX , R2, S2), h) ∈ LB ∧ OB((EX , R2, S2), j′) = 1
17 return h, LH = LH ∪ {(EX , R2, S2, j

′, h)}
18 otherwise h← {0, 1}λ
19 return h, LH = LH ∪ {(EX , R2, S2, j

′, h)}

Fig. 3. Algorithm B for attacking the 1-gap SIDH problem.

Note that in Figure 3, if HB(EX , R2, S2) is asked at first and returns a ran-
dom h, then when (EX , R2, S2, j

′) is queried to H such that OB((EX , R2, S2), j′)
= 1, it will return h. If H((EX , R2, S2), j′) is asked at first and returns a random
h, then when (EX , R2, S2) is asked to HB such that OB((EX , R2, S2), j′) = 1,
it will return that h.

Let Ask be the event that ((EA, φA(P2), φA(Q2)), j(E0/〈GA, GB〉)) is queried
to H and Ask be the complement of Ask. If Ask does not happen, which means
((EA, φA(P2), φA(Q2)), j(E0/〈GA, GB〉)) is not queried by A to H, there is no
way to tell whether hb is equal to H((EA, φA(P2), φA(Q2)), j(E0/〈GA, GB〉))
or not. Let (EA, φA(P2), φA(Q2), EB , φB(P1), φB(Q1);H(jEAB )) be a SIDH dis-
tribution, and (EA, φA(P2), φA(Q2), EB , φB(P1), φB(Q1);h ← {0, 1}λ)) be a
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non-SIDH distribution. Thus we have that

Avd1-OSIDH
A,H = Pr[A(SIDH) = 1]− Pr[A(non-SIDH) = 1]

= Pr[A(SIDH) = 1 ∧ Ask]− Pr[A(non-SIDH) = 1 ∧ Ask]

+ Pr[A(SIDH) = 1 ∧ Ask]− Pr[A(non-SIDH) = 1 ∧ Ask]

= Pr[A(SIDH) = 1 ∧ Ask]− Pr[A(non-SIDH) = 1 ∧ Ask]

≤qPr[Ask] ≤ qAvd1-gSIDH
B .

ut

3.3 CPCCA KEM from Supersingular Isogeny

We now propose a strongly secure KEM from supersingular isogeny which is
the core building block for our AKEs. At first, we propose an elegant KEM
from supersingular isogeny. Then with the purpose of fitting the requirement of
CK+ secure AKE, we specify the chosen public key chosen ciphertext security
(CPCCA) definition for this KEM. In the CPCCA game, the adversary not
only can choose part of the challenge public key but also can query a strong
decryption oracle which will decrypt the ciphertext under several public keys
rather than only the challenge public key. At last, we prove its security under
DSIDH assumption and 1-Oracle SIDH assumption.
Public parameters. Choose p = le11 l

e2
2 · f ± 1, E0, {P1, Q1}, {P2, Q2} as above.

Let h : {0, 1}∗ → {0, 1}2λ, g : {0, 1}∗ → {0, 1}∗ and H : {0, 1}∗ → {0, 1}λ be
hash functions, where λ is the security parameter. The KEM is shown in Figure
4.
KeyGen(λ). Choose a random element a1 ← Z/le11 Z and compute the isogeny
φA1

: E0 → EA1
with the kernel 〈P1+[a1]Q1〉. LetA1 =

(
EA1

, φA1
(P2), φA1

(Q2)
)
.

Similarly, choose a random element x ← Z/le11 Z and compute the isogeny
φx : E0 → EX with the kernel 〈P1 + [x]Q1〉. Let X =

(
EX , φX(P2), φX(Q2)

)
.

The encapsulation key is defined as pk = (A1, X) and the decapsulation key is
sk = (a1, x).
Encaps(pk). Choose two random elementsm1,m2 ← {0, 1}λ and let y = g(m1,m2).
First compute the isogeny φY : E0 → EY with the kernel 〈P2 + [y]Q2〉 and
let Y = (EY , φY (P1), φY (Q1)). Then with pk, compute two isogenies φY A1

:
EA1

→ EY A1
and φY X : EX → EY X with kernels 〈φA1

(P2) + [y]φA1
(Q2)〉 and

〈φX(P2) + [y]φX(Q2)〉, respectively. The ciphertext is C = (Y, y1, y2), where
y1 = h(j(EY A1)) ⊕m1 and y2 = h(X, j(EY X)) ⊕m2. The session key is K =
H(X,m1,m2, C).
Dec(sk, C). With the ciphertext and sk, compute isogenies φA1Y : EY → EA1Y

and φXY : EY → EXY . Then, compute m′1 = y1 ⊕ h(j(EA1Y )), m′2 = y2 ⊕
h(X, j(EXY )) and y′ = g(m′1,m

′
2). Compute the isogeny φ′Y : E0 → E′Y and let

E′Y = E0/〈P2 + [y′]Q2〉. If Y = (E′Y , φ
′
Y (P1), φ′Y (Q1)), then return the session

key H(X,m′1,m
′
2, C), else ⊥.

Remark 4: In this scheme, those points in the public key are chosen from
subgroups of order le22 , while those points in the first part of the ciphertext are
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KeyGen(λ)

01 a1 ← Z/le11 Z 05 x← Z/le11 Z
02 EA1 = E0/〈P1 + [a1]Q1〉 06 EX = E0/〈P1 + [x]Q1〉
03 φA1(P2), φA1(Q2) 07 φX(P2), φX(Q2)
04 A1 =

(
EA1 , φA1(P2), φA1(Q2)

)
08 X =

(
EX , φX(P2), φX(Q2)

)
09 pk = (A1, X), sk = (a1, x)

Encaps(pk) Dec(sk, C)

01 m1,m2 ← {0, 1}λ 01 (c1, c2, c3)← C
02 y = g(m1,m2) 02 EA1Y = EY /〈φY (P1 + [a1]Q2)〉
03 EY = E0/(P2 + [y]Q2) 03 EXY = EY /〈φY (P1 + [x]Q2)〉
04 Y =

(
EY , φY (P1), φY (Q1)

)
04 m′1 = y1 ⊕ h(j(EA1Y ))

05 EY A1 = EA1/〈φA1(P2) + [y]φA1(Q2)〉 05 m′2 = y2 ⊕ h(Y, j(EXY ))
06 EYX = EX/〈φX(P2) + [y]φX(Q2)〉 06 y′ = g(m′1,m

′
2)

07 y1 = h(j(EY A1))⊕m1 07 E′Y = E0/〈P2 + [y′]Q2〉
08 y2 = h(X, j(EYX))⊕m2 08 if Y = (E′Y , φ

′
Y (P1), φ′Y (Q1))

09 C = (Y, y1, y2),K = H(X,m1,m2, C) 09 return H(X,m′1,m
′
2, C)

10 else ⊥

Fig. 4. The CPCCA secure KEM scheme KEMdsidh with a strong decryption oracle.

chosen from subgroups of order le11 . We can change the subgroups by replacing A
with B and X with Y . The following correctness and security still hold. And now
the underlying assumption is altered from the 1-Oracle B-SIDH to the 1-Oracle
A-SIDH as in Remark 2.
Correctness. For the purpose of getting the correct key K, we should make sure
that m′1 = m1 and m′2 = m2. That is to say, we have to prove the isomorphism
between curves EA1Y , EXY and EY A1 , EY X , respectively. Let P1+[a1]Q1 = RA1 ,
P1 + [x]Q1 = RX , P2 + [y]Q2 = RY and P2 + [b2]Q2 = RB2

for simplicity.

EA1Y = EY /〈φY (P1) + [a1]φY (Q1)〉 = (E0/〈RY 〉)/(〈RA1 , RY 〉/〈RY 〉)
= E0/〈RA1 , RY 〉

EXY = EY /〈φY (P1) + [x]φY (Q1)〉 = (E0/〈RY 〉)/(〈RX , RY 〉/〈RY 〉)
= E0/〈RX , RY 〉

EY A1
= EA1

/〈φA1
(P2) + [y]φA1

(Q2)〉 = (E0/〈RA1
〉)/(〈RA1

, RY 〉/〈RA1
〉)

= E0/〈RA1
, RY 〉

EY X = EX/〈φX(P2) + [y]φX(Q2)〉 = (E0/〈RX〉)/(〈RX , RY 〉/〈RX〉)
= E0/〈RX , RY 〉

According to the isomorphism theorem, the curves EA1Y and EY A1 can be
generated by the kernel subgroup 〈RA1 , RY 〉, and the curves EXY and EY X are
produced by the kernel subgroup 〈RX , RY 〉.

In Figure 5, we give the chosen pulic key CCA (CPCCA) game for KEMdsidh

with the strong decryption oracle. The CPCCA definition is inspired by Okamoto
[32]. Although we use the same name as [32], here the adversary is allowed to
choose part of the challenge public key X∗ but the adversary in [32] is not
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allowed. Concretely, A has the permission to choose X∗ and query the strong
decryption oracle that will decrypt the ciphertext under general public keys
generated by the challenger.

Game CPCCA
01 a1 ← Z/le11 Z Oi-dec

02 A1 =
(
EA1 , φA1(P2), φA1(Q2)

)
01 L = {−,−}

03 (state,X∗)← AOi-dec
1 (A1) 02 xi ← Z/le11 Z sends to A

04 b← {0, 1},K∗1 ← {0, 1}λ 03 Xi = {EXi , φXi(P1), φXi(Q1)}
05 (C∗,K∗0 )← Encaps(A1, X

∗) 04 L = L ∪ {Xi, xi}
06 b′ ← AOi-dec

2 (state, C∗,K∗b ) 05 On receiving (X ′, C′) from A
07 return b′

?
= b 06 If ∃Xj ∈ L ∧Xj = X ′

07 K′ = Decaps((a1, xi), C
′)

08 else ⊥

Fig. 5. The CPCCA Security with Strong Decryption Oracle.

The advantage of A in this game is defined as AdvCPCCA
A,KEMdsidh = Pr[b =

b′] − 1/2. We say KEMdsidh is CPCCA secure if for any PPT adversary A,
AdvCPCCA

A is negligible.

Theorem 2. Under the DSIDH assumption, KEMdsidh is CPCCA secure in the
random oracle model. Precisely, for any PPT CPCCA adversary A with at most
qH queries to H oracle, there exists an algorithm B solving DSIDH problem such
that

AdvCPCCA
A,KEMdsidh ≤

qH + 1

2λ
+ 4AvdDSIDH

B .

Proof sketch: By the classical FO transformation [10], the KEMdsidh scheme is
obviously classical one-way CCA secure under the DSIDH assumption. But note
that here the CPCCA adversary is more powerful than classical CCA adversary
in two aspects: 1) it can choose part of the challenge public key X∗; 2) it can
query a decryption oracle with the ciphertext under several public keys. To
overcome this obstacle, when generating the encapsulated key, we put the public
key X in the hashing step.

Since K = H(X,m1,m2, C), the adversary has advantages in the random or-
acle model only if the event that (X ′,m′1,m

′
2, C

′) is queried toH and (X ′,m′1,m
′
2,

C ′) = (X∗,m∗1,m
∗
2, C

∗) happens (we denote such event as bad). Although X∗ is
chosen by A which will help A to determine m∗2, the event that it queries H with
m∗1 is connected with solving DSIDH problem. Precisely, for public parameters
(E0, P1, Q1, P2, Q2), given a DSIDH challenge EA, φA(P2), φA(Q2);EY , φY (P1),
φY (Q1) and EC , S simulates the CPCCA game for A and transforms the ad-
vantage of A to the advantage of solving the DSIDH problem. S first sets
A1 =

(
EA, φA(P2), φA(Q2)

)
, and on receiving one challenge public key X∗ =

(E∗X , R
∗
2, S
∗
2 ), S sets (Y ∗, h(j(EC))⊕m∗1, y∗2) as the challenge ciphertext, where

19



Y ∗ =
(
EY , φY (P1), φY (Q1)

)
and m∗1, y

∗
2 ← {0, 1}λ. If bad happens, we can uti-

lize it to solve the DSIDH problem. ut
The following theorem states that the CPCCA security for KEMdsidh is still

satisfied even h(X∗, j(E∗X/〈R∗2 + [y]S∗2 〉)) is leaked where X∗ = (E∗X , R
∗
2, S
∗
2 ) is

part of challenge public key chosen by CPCCA adversary.

Theorem 3. Under 1-Oracle SIDH assumption, KEMdsidh is CPCCA secure
in the random oracle model, even if both the challenge ciphertext is given and
h(X∗, j(E∗X/〈R∗2 + [y]S∗2 〉)) is leaked. Precisely, for any PPT CPCCA adversary
A who also gets h(X∗, j(E∗X/〈R∗2 +[y]S∗2 〉)), with at most qH queries to H oracle,
there exists an algorithm B such that

AdvCPCCA
A,KEMdsidh ≤

qH + 1

2λ
+ 4Avd1-OSIDH

B .

By the proof sketch of Theorem 2, if the DSIDH challenge is replaced by the
1-oracle SIDH instance, and the challenge ciphertext is (Y ∗, h(j(EC))⊕m∗1, y∗2),
we also query the one-time oracle HY and give h(X∗, j(E∗X/〈R∗2 + [y]S∗2 〉)) to
the adversary A. The other proof proceeds the same with Theorem 2.

4 AKEs from Supersingular Isogeny

Equipped with the CPCCA secure KEM in section 3 as a core building block,
we propose a 3-pass and a 2-pass AKE in this section depending on the usage
of 1-Oracle SIDH assumption or DSIDH assumption.

4.1 A Three-pass AKE based on 1-Oracle SIDH Assumption

Our AKE utilizes two KEMdsidh that are combined together. With one KEMdsidh,
the initiator Alice sets public keys A1 =

(
EA1

, φA1
(P2), φA1

(Q2)
)

as her static

secret key, and X =
(
EX , φX(P2), φX(Q2)

)
as her ephemeral information. With

one KEMdsidh, the responder Bob sets public keys B2 =
(
EB2

, φB2
(P1), φB2

(Q1)
)

as his static secret key, and Y =
(
EY , φY (P1), φY (Q1)

)
as her ephemeral infor-

mation. Note that X (resp. Y ) is not only part of the public keys of Alice (resp.
Bob), but also part of the ciphertext under the public key (B2, Y ) (resp. (A1, X))
of Bob (resp. Alice). More details are given in Figure 6.
Public parameters. Choose p = le11 l

e2
2 · f ± 1, E0, {P1, Q1}, {P2, Q2} as above.

Let hash functions be G : {0, 1}∗ → {0, 1}4λ, g : {0, 1}∗ → {0, 1}∗, h : {0, 1}∗ →
{0, 1}2λ, H : {0, 1}∗ → {0, 1}2λ and Ĥ : {0, 1}∗ → {0, 1}λ, where λ is the
security parameter.
Static secret and public keys. To solve the three-body problem [14] that
one party can play both the roles of initiator and responder in a multi-user
setting, we should distribute two pairs of static keys for the involved parties.
The static secret-public key of UA as initiator is (a1;EA1

, φA1
(P2), φA1

(Q2)).
The static secret-public key of UA as responder is (a2;EA2

, φA2
(P2), φA2

(Q2)).
The static secret-public key of UB as responder is (b2;EB2

, φB2
(P1), φB2

(Q1)).
The static secret-public key of UB as initiator is (b1;EB1

, φB1
(P2), φB1

(Q2)). We
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distinguish the party as initiator or responder by the subscript. The subscript
represents which subgroup their secret keys lie in.

Step 1. UA selects a random element r1 ∈ {0, 1}λ, parses G(r1, a1) into
two equal bitstrings n1||n2, and then hashes the concatenation g(n1, n2) to
an element x in Z/le11 Z. Then UA invokes the isogeny computation algorithm
to compute the isogeny φX with the kernel 〈P1 + [x]Q1〉 and publishes X =(
EX , φX(P2), φX(Q2)

)
. UA further computes φXB2

with the kernel 〈φB2
(P1) +

[x]φB2
(Q1)〉. Half of the secret key n1 is hidden in the message x1 = h(j(EXB2

))⊕
n1.Then UA sends to UB the identities of UA and UB as well as (X,x1).

Step 2. UB chooses a random element r2 in {0, 1}λ, parses G(r2, b2) to two
bitstrings m1||m2 of equal length, and then hashes (m1,m2) to get a secret key
y for these isogenies. UB computes three le22 -degree isogenies φY , φY A1 and φY X
with kernels 〈P2 + [y]Q2〉, 〈φA1(P2) + [y]φA1(Q2)〉 and 〈φX(P2) + [y]φX(Q2)〉,
respectively. And UB defines the secret key KB = H(X,m1,m2, Y, y1, y2), where
y1 = h(j(EY A1

)) ⊕ m1 and y2 = h(X, j(EY X)) ⊕ m2. Then UB forwards the
identity messages of UA and UB along with (Y, y1, y2) to UA.

Step 3. Upon receiving the message from UB , UA computes isogenies φA1Y

and φXY to get the hash values of j-invariants
(
h(j(EA1Y )), h(X, j(EXY ))

)
with the secret keys a1 and x. Then UA could extract m′1 and m′2 by computing
h(j(EA1Y ))⊕y1 and h(X, j(EXY ))⊕y2 respectively. Hence, UA can retrieve what
UB has done and verify the validation of the ciphertext Y . If the validation
passes, then UA obtains the key K ′B = H(X,m′1,m

′
2, Y, y1, y2) and transmits

messages x2 = h(Y, j(EXY ))⊕ n2 to UB .

The key KA is H(Y, n1, n2, X, x1, x2). UA sets the session identity sid =(
UA, UB , pkA1

, pkB2
, X, x1, x2, Y, y1, y2

)
and completes the session with the ses-

sion key SK = Ĥ(sid,KA,K
′
B).

Step 4. UB computes φB2X with the static secret key b2 and the public
key X from UA during the first round. Then UB can obtain both n′1 and n′2 by
h(j(EB2X))⊕x1 and h(Y, j(EY X))⊕x2. Hence, UB likewise recomputes what UA
has computed and verifies the validation of the ciphertext X. If the validation
passes, UB gets the key K ′A = H(Y, n′1, n

′
2, X, x1, x2), sets the session identity

sid =
(
UA, UB , pkA1

, pkB2
, X, x1, x2, Y, y1, y2

)
and completes the session with

the session key SK = Ĥ(sid,K ′A, KB).

The session state of sid owned by UA consists of the ephemeral secret key r1,
the decapsulated key K ′B and the encapsulated key KA. The session state of sid
owned by UB consists of the ephemeral secrete key r2, the encapsulated key KB

and the decapsulated key K ′A.

Correctness. To show that both UA and UB can agree on the same session key,
we present a thorough and detailed analysis. The different parts of keys KA ,
K ′B of UA and K ′A, KB of UB are the values n1, n2, m′1,m

′
2 and n′1, n

′
2, m1,m2.

We have to show that n′1 = n1, n
′
2 = n2 and m′1 = m1,m

′
2 = m2. That is to say

we are required to prove the isomorphism between curves EXB2
, EXY , EA1Y

and EB2X , EY X , EY A1 , respectively. We have proved the isomorphism of EXY ,
EA1Y and EY X , EY A1 in Section 4.1.
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UA UB

skA1 : a1 ∈ Z/le11 Z skB2 : b2 ∈ Z/le22 Z
pkA1 : EA1 , φA1(P2), φA1(Q2) pkB2 : EB2 , φB2(P1), φB2(Q1)

skA2 : a2 ∈ Z/le22 Z skB1 : b1 ∈ Z/le11 Z
pkA2 : EA2 , φA2(P1), φA2(Q1) pkB1 : EB1 , φB1(P2), φB1(Q2)

r1 ← {0, 1}λ. n1||n2 ← G(r1, a1)

x← g(n1, n2) r2 ← {0, 1}λ. m1||m2 ← G(r2, b2)

EX = E0/〈P1 + [x]Q1〉 y ← g(m1,m2)

X = (EX , φX(P2), φX(Q2)) EY = E0/〈P2 + [y]Q2〉
EXB2 = EB2/〈φB2(P1) + [x]φB2(Q1)〉 Y = (EY , φY (P1), φY (Q1))

x1 = h(j(EXB2))⊕ n1 X,x1 EY A1 = EA1/〈φA1(P2) + [y]φA1(Q2)〉
EYX = EX/〈φX(P2) + [y]φX(Q2)〉
y1 = h(j(EY A1))⊕m1

y2 = h(X, j(EYX))⊕m2

Y, y1, y2 KB = H(X,m1,m2, Y, y1, y2)

EA1Y = EY /〈φY (P1) + [a1]φY (Q1)〉
EXY = EY /〈φY (P1) + [x]φY (Q1)〉

m′1 = h(j(EA1Y ))⊕ y1
m′2 = h(X, j(EXY ))⊕ y2

y′ = g(m′1,m
′
2)

E′Y = E0/〈P2 + [y′]Q2〉
If Y 6= (E′Y , φ

′
Y (P1), φ′Y (Q1)),⊥

K′B = H(X,m′1,m
′
2, Y, y1, y2)

x2 = h(Y, j(EXY ))⊕ n2 x2

EB2X = EX/〈φX(P2) + [b2]φX(Q2)〉.
n′1 = h(j(EB2X))⊕ x1
n′2 = h(Y, j(EYX))⊕ x2
x′ = g(n′1, n

′
2)

E′X = E0/〈P1 + [x′]Q1〉
If X 6= (E′X , φ

′
X(P2), φ′X(Q2)),⊥

KA = H(Y, n1, n2, X, x1, x2) K′A = H(Y, n′1, n
′
2, X, x1, x2)

SK = Ĥ(sid,KA,K
′
B) SK = Ĥ(sid,K′A,KB)

Fig. 6. A 3-Pass AKE AKESIDH-3 Based on 1-Oracle SIDH. Here sid is
(
UA, UB , pkA1 ,

pkB2 , X, x1, Y, y1, y2, x2
)
.
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EXB2
= EB2

/〈φB2
(P1) + [a′1]φB2

(Q1)〉 = (E0/〈RB2
〉)/(〈RX , RB2

〉/〈RB2
〉)

= E0/〈RX , RB2
〉

EB2X = EX/〈φX(P2) + [b2]φX(Q2)〉 = (E0/〈RX〉)/(〈RX , RB2
〉/〈RX〉)

= E0/〈RX , RB2
〉

It is easy to see that the two curves are isomorphic. Hence, they definitely
arrive at the same key.

Theorem 4. Under the 1-Oracle SIDH assumption, the 3-pass AKE AKESIDH-3

supports arbitrary registrant and is CK+ secure in the random oracle model.
Precisely, if the number of users is N and there are at most l sessions between
any two users, for any PPT adversary A against AKESIDH-3 with qhash times of
hash oracle queries and q times of CK+ queries, there exists S s.t.

AdvCK+

AKESIDH-3
(A) ≤ 1/2 +N2lq(

qhash + 1

2λ
+ 4Avd1-OSIDH

S ).

Proof. Let Succ be the event that the guess of A against the test session is cor-
rect. Let AskH be the event that A poses (UA, UB , pkA1

, pkB2
, X, x1, Y, y1, y2, x2,

KA,KB) to Ĥ, where (X,x1, Y, y1, y2, x2) is the view of the test session and
KA,KB is the key encapsulated in the test session. Let AskH be the complement
of AskH. Then,

Pr[Succ] = Pr[Succ ∧ AskH] + Pr[Succ ∧ AskH] ≤ Pr[Succ ∧ AskH] + Pr[AskH],

where the probability is taken over the randomness used in CK+ experiment.

Lemma 1. If H is modeled as a random oracle, we have Pr[Succ∧AskH] ≤ 1/2.

Proof of Lemma 1: If Pr[AskH] = 0 then the claim is straightforward, otherwise
we have Pr[Succ ∧ AskH] = Pr[Succ|AskH]Pr[AskH] ≤ Pr[Succ|AskH]. Let sid be
any completed session owned by an honest party such that sid 6= sid∗ and sid is
not the matching session of sid∗. The inputs to sid are different from those of sid∗

and sid
∗

(if there exists the matching session of sid∗). If A does not explicitly
query the view and keys to the oracle, then Ĥ(UA, UB , pkA1

, pkB2
, X, x1, Y, y1, y2,

x2,KA,KB) is completely random from A’s point of view. Therefore, the prob-
ability that A wins when AskH does not occur is exactly 1/2.

We then show that Pr[AskH] is negligible (as in Lemma 2) in all the events
(listed in Table 2) of the CK+ model. Followed by Lemma 2, we achieve the
security of AKE in the CK+ model. Thus, we only need to prove Lemma 2 in
the following.

Lemma 2. If the 1-Oracle SIDH assumption holds, the probability of the occur-
rence of event AskH defined above is negligible. Precisely,

Pr[AskH] ≤ N2lq(
qhash + 1

2λ
+ 4Avd1-OSIDH

S ).
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We give the proof sketch here, and for formal proof please refer to Appendix A.
As in Theorem 3, under 1-Oracle SIDH assumption, KEMdsidh is CPCCA secure
even h(X∗, j(E∗X/〈R∗2 +[y]S∗2 〉)) is leaked, we first bound the advantage of AskH

using the CPCCA security of KEMdsidh and further bound it with Avd1-OSIDH.

Let AskG be the event that the static secret key of one user, for example skB2 ,
is queried by the CK+ adversary A to G. In order to bound the probability of
AskH, we handle the event AskH∧AskG, as well as the events AskH∧AskG∧Ei
for 1 ≤ i ≤ 8 one by one, where Ei is listed in Table 2.

If AskG happens (meaning the secret key b2 of EB2
is known), then given the

1-Oracle SIDH (actually the DSIDH assumption is enough) challenge (EA, φA(P2),
φA(Q2), EB , φB(P1), φB(Q1);h), S sets the public key of UB as responder to be
pkB2 =

(
EB , φB(P1), φB(Q1)

)
. If b2 is queried by A, S could compute EAB by

himself and solve the 1-Oracle SIDH problem. Thus Pr[AskG] ≤ Adv1-OSIDH
S .

In the following, we assume that AskG (the complement of AskG) happens
with the events AskH ∧ AskG ∧ Ei, for 1 ≤ i ≤ 8. Here, we only take AskH ∧
AskG ∧ E3 as an example to explain in detail. For the other cases we can deal
with them in the same way. In the case of AskH∧AskG∧E3, the 1-Oracle SIDH
adversary S performs as follows. It simulates the CK+ games, and transfers the
probability that the event AskH performed by A to the advantage of solving
the 1-Oracle SIDH problem. Based on Theorem 3, we transform the event AskH
performed by A to the advantage of against CPCCA security of KEMdsidh with
the public key as (pkA1

, X) and the ciphertext as (Y, y1, y2).

In order to simulate the random oracles, S maintains three lists for Ĥ and
G oracle and SessionKeyReveal, respectively. The Ĥ-oracle and SessionKeyReveal
are related, which means the adversary may ask SessionKeyReveal without the
encapsulated keys at first, and then may ask Ĥ-oracle with the encapsulated
keys. Thus, the reduction must ensure consistency with the random oracle queries
to Ĥ and SessionKeyReveal. The strong decapsulation oracle for KEMdsidh would
help to maintain the consistency of Ĥ-oracle and SessionKeyReveal.

On receiving the public key
(
EA, φA(P2), φA(Q2)

)
from the CPCCA chal-

lenger in Theorem 3, in order to simulate the CK+ game, S randomly chooses
two parties UA, UB and the i-th session as a guess of the test session with success
probability 1/N2l. S computes and sets all the static secret and public key pairs
by himself for all N users UP as both responder and initiator except UA for
whom S only computes and sets the static public key as responder. Specially, S
sets the static secret and public key pairs (pkB2 , skB2) for UB as responder, and
sets pkA1

= (EA, φA(P2), φA(Q2)) for UA as initiator.

Without knowing the secret key of UA as initiator, S chooses totally random
r1 as part of the ephemeral secret key and totally random x. Since G is a hash
function and skA1

is not queried, the difference between simulation with mod-
ification of r1 and a real game can not be detected by the adversary. When a
session state of a session owned by UA is queried, S returns r1 of this session as
part of the ephemeral secret key.

On receiving (X∗ = (E∗X , R
∗
2, S
∗
2 ), x1) of the i-th session from UA (that is

sent by A in the CK+ game), S returns X∗ to the CPCCA challenger and
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receives the challenge ciphertext (Y ∗, y∗1 , y
∗
2) (under public key pkA1

and X∗)
and h(X∗, j(E∗X/〈R∗2 + [y]S∗2 〉)) as extra leakage. Then S returns (Y ∗, y∗1 , y

∗
2) to

UA as the response of i-th session from UB . S chooses a totally independent
randomness r2 as the ephemeral secret key of UB for C∗ and leaks it to the
adversary A. Since G is a hash function, the difference between simulation with
modification of r2 and the real game can not be detected by the adversary.
S simulates the oracle queries of A and maintains the hash lists. Specially,

when AskH happens, which meansA poses (UA, UB , pkA1
, pkB2

, X∗, x1, Y
∗, y∗1 , y

∗
2 ,

x2,KA,KB) to Ĥ, where (X∗, x1, Y
∗, y∗1 , y

∗
2 , x2) is the view of the test session

and KB is the key encapsulated in (X∗, x1, x2) (this can be detected by S since
it has skB2

and h(X∗, j(E∗X/〈R∗2 + [y]S∗2 〉)) from CPCCA challenger), S returns
KA as the guess of K∗ encapsulated in (Y ∗, y∗1 , y

∗
2), which contradicts with the

CPCCA security of KEMdsidh and further the 1-Oracle SIDH assumption. ut

4.2 A Two-Pass AKE based on SIDH Assumption

Although the 3-pass AKE has the advantage of less communication, it relies on
a non-standard assumption, 1-Oracle SIDH assumption. To enhance the security
reliability of AKE, we propose a 2-pass AKE with a little more communication
(which is still competitive with these existing schemes) based on the DSIDH
assumption. Since we add an ephemeral public key X0, the hash function h for
x2, y2 does not need X and Y as extra input.
Intuition of 2-Pass AKE. The reason why we need the non-standard 1-
Oracle SIDH assumption is that, in the test session, on the one hand X is part
of the public key (pkA1 , X) under which the ciphertext (Y, y1, y2) is computed;
on the other hand X is part of the ciphertext (X,x1, x2) which encapsulates KA.
An extra X0 instead of X as part of the public key (pkA1

, X0) could effectively
help to get rid of the 1-Oracle SIDH assumption. Besides, it is also necessary
to delete x2 and set (X,x1) as the ciphertext under the public key pkB2

rather
than (pkB2

, Y ). Then the h(j(EX/〈R∗2 + [y]S∗2 〉)) is not needed any longer.
Two-Pass AKE. The public parameters and static secret-public keys are de-
fined the same as those in our 3-pass AKE in Section 4.1.

Step 1. UA randomly selects two elements r1 ∈ {0, 1}λ and rX0
∈ Z/le11 Z.

Let n1 = G(r1, a1) and x = g(n1). Then UA computes an le11 -degree isogeny φX
with the kernel equal to 〈P1 + [x]Q1〉 and an le11 -degree isogeny φXB2

with ker-
nel 〈φB2(P1) + [x]φB2(Q1)〉. Then UA generates an ephemeral public key X0 =(
EX0 , φX0(P2), φX0(Q2)

)
with the secret key rX0 . UA sends (X,x1, X0) to UB ,

where (X,x1, X0) =
(
EX , φX(P2), φX(Q2);h(j(EXB2

))⊕n1;EX0
, φX0

(P2), φX0
(Q2)

)
.

Step 2. On receiving the message from UA, UB chooses a random element
r2 in {0, 1}λ, parses G(r2, b2) as two bit strings m1||m2 of the same length and
then computes the hash of the concatenation of (m1,m2) to get a secret key y.
UB computes three le22 -degree isogenies with kernels 〈P2 + [y]Q2〉, 〈φA1

(P2) +
[y]φA1

(Q2)〉 and 〈φX0
(P2) + [y]φX0

(Q2)〉, respectively. UB sets the message Y =(
EY , φY (P1), φY (Q1)

)
and the secret key KB = H(X0,m1,m2, Y, y1, y2), where

y1 = h(j(EY A1))⊕m1 and y2 = h(j(EY X0))⊕m2. Then UB forwards the identity
messages of UA and UB with (Y, y1, y2) to UA.
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UB computes the isogeny φB2X with the static secret key b2 and gets n′1 by
h(j(EB2X)) ⊕ x to compute x′ = g(n′1). Then UB recomputes E′X = E0/〈P1 +
[x′]Q1〉. If (E′X , φ

′
X(P2), φ′X(Q2)) is not equal to X, output ⊥. Otherwise, set

K ′A = H(n′1). The session identity is sid =
(
UA, UB , pkA1 , pkB2 , X, x,X0, Y, y1, y2

)
.

Finally, UB completes the session with the session key SK = Ĥ(sid,K ′A,KB).
Step 3. Upon receiving the message from UB , UA computes isogenies φA1Y

and φX′Y with the secret keys a1 and rX′ . UA obtainsm′1 andm′2 by h(j(EA1Y ))⊕
y1 and h(j(EX′Y )) ⊕ y2. Then UA recomputes E′Y = E0/〈P2 + [y′]Q2〉. If Y 6=
(E′Y , φ

′
Y (P1), φ′Y (Q1)), output ⊥. Otherwise, set K ′B = H(X0,m

′
1,m

′
2, Y, y1, y2).

Then UA sets the session identity sid =
(
UA, UB , ekA1

, ekB2
, X, x,X ′, Y, y1, y2

)
.

Similarly, UA completes the session with the session key SK = Ĥ(sid,KA,K
′
B).

The session state of sid owned by UA consists of the ephemeral secret key
r1, rX0

, the decapsulated key K ′B and the encapsulated key KA. The session state
of sid owned by UB consists of the ephemeral secrete key r2 and the encapsulated
key KB , but does not include the decapsulated key K ′A.
Correctness. This property can refer to the proof of 3-pass AKE for reference,
but there is one different point that the two pairs of curves are not exactly the
same. We only have to prove the isomorphism of EX′Y and EY X′ . We define
P1 + [rX′ ]Q1 = RX′ for simplicity.

EX′Y = EY /〈φY (P1) + [rX′ ]φY (Q1)〉 = (E0/〈RY 〉)/(〈RX′ , RY 〉/〈RY 〉)
= E0/〈RX′ , RY 〉

EY X′ = EX′/〈φX′(P2) + [b′2]φX′(Q2)〉 = (E0/〈RX′〉)/(〈RX′ , RY 〉/〈RX′〉)
= E0/〈RX′ , RY 〉

It is easy to see that the two curves EX′Y and EY X′ are isomorphic. So they
own the same j-invariant and then share the same session key.

Theorem 5. Under the DSIDH assumption, the 2-pass AKE AKESIDH-2 is CK+

secure in the random oracle model. Precisely, if the number of users is N and
there are at most l sessions between any two users, for any PPT adversary A
against AKESIDH-2 with qhash times of hash oracle queries and q times of CK+

queries, there exists S s.t.

AdvCK+

AKESIDH-2
(A) ≤ 1/2 +N2lq(

qhash + 1

2λ
+ 4Avd1-DSIDH

S ).

Proof sketch: The proof proceeds similarly to that of 3-pass AKE and the main
difference is the proof of Lemma 2, but much easier. In the 2-pass AKE, we
add an extra X0 to take the position as part of the public key (pkA1

, X0) under
which the ciphertext (Y, y1, y2) is computed, delete x2 and set (X,x1) to be the
ciphertext under public key pkB2

rather than (pkB2
, Y ). Now in order to compute

KA encapsulated in (X,x1), h(j(EX/〈R∗2 + [y]S∗2 〉)) is not required any longer
and skB1 is enough. In other cases, for example E1, (X∗, x∗1) is the challenge
ciphertext in the test session. Since X0 is generated by S, on receiving (Y, y1, y2)
it can query the CPCCA decapsulation oracle with (X0;Y, y1, y2) to extract K ′B .

We omit the details here. And based on Theorem 2, the security relies on a
standard DSIDH assumption.
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UA UB

skA1 : a1 ∈ Z/le11 Z skB2 : b2 ∈ Z/le22 Z
pkA1 : EA1 , φA1(P2), φA1(Q2) pkB2 : EB2 , φB2(P1), φB2(Q1)

skA2 : a2 ∈ Z/le22 Z skB1 : b1 ∈ Z/le11 Z
pkA2 : EA2 , φA2(P1), φA2(Q1). pkB1 : EB1 , φB1(P2), φB1(Q2).

r1 ← {0, 1}λ, rX0 ← Z/le11 Z.

n1 ← G(r1, a1), x = g(n1) r2 ← {0, 1}λ

EX = E0/〈P1 + [x]Q1〉 m1||m2 ← G(r2, b2)

EXB2 = EB2/〈φB2(P1) + [x]φB2(Q1)〉 y ← g(m1,m2)

EX0 = E0/〈P1 + [rX0 ]Q1〉 EY = E0/〈P2 + [y]Q2〉
X = (EX , φX(P2), φX(Q2)) Y = (EY , φY (P1), φY (Q1))

X0 =
(
EX0 , φX0(P2), φX0(Q2)

)
EY A1 = EA1/〈φA1(P2) + [y]φA1(Q2)〉

x1 = h(j(EXB2))⊕ n1 EYX0 = EX0/〈φX0(P2) + [y]φX0(Q2)〉
KA = H(n1) y1 = h(j(EY A1))⊕m1

X,x1;X0 y2 = h(j(EYX0))⊕m2

KB = H(X0,m1,m2, Y, y1, y2)

Y, y1, y2

EA1Y = EY /〈φY (P1) + [a1]φY (Q1)〉 EB2X = EX/〈φX(P2) + [b2]φX(Q2)〉.
EX0Y = EY /〈φY (P1) + [rX0 ]φY (Q1)〉.

m′1 = h(j(EA1Y ))⊕ y1
m′2 = h(j(EX0Y ))⊕ y2 n′1 = h(j(EB2X))⊕ x1

y′ = g(m′1,m
′
2) x′ = g(n′1)

E′Y = E0/〈P2 + [y′]Q2〉 E′X = E0/〈P1 + [x′]Q1〉
If Y 6= (E′Y , φ

′
Y (P1), φ′Y (Q1)),⊥ If X 6= (E′X , φ

′
X(P2), φ′X(Q2)),⊥

K′B = H(X0,m
′
1,m

′
2, Y, y1, y2) K′A = H(n′1)

SK = Ĥ(sid,KA,K
′
B) SK = Ĥ(sid,K′A,KB)

Fig. 7. A Compact 2-pass AKE Based on SIDH. Here sid is
(
UA, UB , pkA1 ,

pkB2 , X, x,X0, Y, y1, y2
)
.
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5 Parameters, Implementation and Comparison

If we demand λ bits of quantum security and adopt the parameters chosen in
[6] which are considered to be the most efficient choices, then the prime is of
bit-length 6λ. Each field element needs 12λ bits since the curve is defined over
Fp2 . Then considering the Kummer arithmetic, the A-coefficient and a point
both require 12λ bits. In the FSXY scheme where both UA and UB would like
to share a session key, they need to transmit 148λ bits. Fortunately, from Figure
6 we can see that this 3-pass scheme narrows the bandwidth to 80λ bits and
reduces the computation cost to 5 isogenies for per party but at the expense
of one more round of interaction with parties. Furthermore, in the 2-pass AKE
we narrow the bandwidth to 114λ bits, reducing the size of the uncompressed
public keys by approximately 23%. If considering the public key compression [4],
we can compress the total bandwidth to 69λ bits. As the compression will bring
high computation cost, we will not consider this way here.

To evaluate the performance of our proposed two authenticated key exchange
protocols, we write a supporting program based on the optimized implementation
of SIKE [19]. It is written in portable C only and makes use of efficient algorithms
for fast isogeny computation and field arithmetic implementation. We adopt
the curve SIKE751 for 128-bit quantum security. The SIKE751 fixes the prime
p = 23723239 − 1 and Fp2 = Fp(i) for i2 = −1. The supersingular elliptic curve
is the Montgomery curve E0 : y2 = x3 + x. The generator points are selected
as P1 = [3239](11,

√
113 + 11), Q1 = τ(P1); P2 = [2372](6,

√
63 + 6), Q2 = τ(P2),

where τ is an endomorphism mapping (x, y) to (−x, iy). This prime p of bitlength
751 provides quantum 124-bit security and classically 186-bit security.

The performance is benchmarked on an Intel(R) Core i7-6567U CPU @3.30GHz
processor supporting the Skylake micro-architecture. We perform the test exper-
iments of the four schemes on the same platform, in order to compare their per-
formance more intuitively and credibly. The reason we choose thses four schemes
is that they allow arbitary registrant and achieve high security. Although FTTY
2 can be proved to be CK+ secure, it only allows honest registrant.

In terms of implementation, the hash functions used in the authenticated key
exchange are all instantiated with the SHA-3 function cSHAKE256 [23]. The size
of one SIDH protocol public key are 564 bytes and the size of the additional hash
value transmitted together with public keys are 32 bytes. Message sizes are shown
in Table 3. It is easy to see that our 3-pass AKE protocol reduces the bandwidth
almost to the half of both FSXY [12] and BCNP-Lon [2, 28].

In Table 4, we present the performance of our protocols comparing with the
FSXY scheme [12] and the BCNP-Lon scheme [2, 28]. They are median cycles
over 1,000 measurements. It shows that our 2-pass scheme is 1.12 times faster
than that of FSXY and 1.3 times faster than that of BCNP-Lon. Our 3-pass
AKE is more efficient since it is 1.2 times faster than FSXY and 1.4 times faster
than BCNP-Lon.
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Scheme A→ B B → A A→ B total(byte)

FSXY [12] 1160 1160 - 2320
BCNP-Lon [2, 28] 1160 1160 - 2320
AKESIDH-2 1160 628 - 1788
AKESIDH-3 596 628 32 1176

Table 3. Comparison of message sizes. We adopt the parameters chosen in [19], taking
into account the efficiency. “-” stands for no messages to be transmitted. Only AKESIDH-3

is a 3-pass one and then has a message from A to B again. The message sizes are counted
in byte.

Scheme A(initial) B A(end) B(end) total

FSXY [12] 6,238 14,779 10,124 31,141
BCNP-Lon [2, 28] 11,146 20,092 9,563 40,801
AKESIDH-2 6,828 13,917 6,641 27,386
AKESIDH-3 5,966 4,429 4,922 9,575 24,892

Table 4. Comparison of cycle counts. Benchmarks are performed on a Intel(R) Core
i7-6567U CPU @3.30GHz processor. Cycle counts are rounded to 106 cycles by taking
the average of 1,000 trials.

6 Conclusion

In this paper, we investigate 1-Oracle SIDH problem and propose a CPCCA
secure KEM. Then we build a compact and efficient 3-pass AKE based on 1-
Oracle SIDH assumption and a 2-pass one based on DSIDH assumption. They
are proved to be secure under the strongest CK+ model and have an excellent
property that arbitary registrant is allowed.

We have proved the security in random oracles, but not considered the stan-
dard model. It is non-trival for this proof because of the lack of a ring structure
in SIDH. Hence, one of the future work is to prove the security in the standard
model, and another direction is to consider the security in quantum security
models in which the adversary can deliver quantum superpositions of messages,
analogous to the one in [27].
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Appendix A, Proof of Lemma 2

In order to bound the probability of AskH, we investigate the events AskH ∧
AskG ∧ Ei for 1 ≤ i ≤ 8 one by one.

Event AskH ∧ AskG ∧ E3

In the event E3, the test session sid∗ has no matching session, and the ephemeral
secret key of UB is given to A. In case AskH ∧ AskG ∧ E3, the adversary S for
solving 1-Oracle SIDH problem (actually based on Theorem 3, we consider S
against CPCCA security of KEMdsidh) as follows. It simulates the CK+ games,
and transforms the happening of event AskH performed by A to the advantage
of solving 1-Oracle SIDH problem.

In order to simulate the random oracles, S maintains hash list LG, LĤ and

Lsk, corresponding to the queries and answers of the G-oracle, Ĥ-oracle and
SessionStateReveal, SessionKeyReveal. LĤ and Lsk are related. For example the
adversary may ask Lsk without the encapsulated keys firstly, then ask LĤ with
the encapsulated keys. Thus, the reduction must ensure consistency with the ran-
dom oracle queries to LĤ and Lsk. The strong decapsulation oracle for KEMdsidh

could help to maintain the consistency as done in Ĥ-oracle and SessionKeyReveal
in the following.

On receiving the public key (EA, φA(P2), φA(Q2)) from the CPCCA chal-
lenger in Theorem 3, to simulate the CK+ game, S randomly chooses two parties
UA, UB and the i-th session as a guess of the test session with success proba-
bility 1/N2l. S computes and sets all the static secret and public key pairs by
himself for all N users UP as both responder and initiator except for UA and
only computes and sets the static public key for UA as responder. Specially, S
sets the static secret and public key pairs (pkB2

, skB2
) for UB as responder, and

sets pkA1
= (EA, φA(P2), φA(Q2)) for UA as initiator.
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Without knowing the secret key of UA as initiator, S chooses totally random
r1 as part of ephemeral secret key and totally random x. Since G is a hash func-
tion and skA1 is not queried, the difference between simulation with modification
of r1 and the real game can not detected by adversary. When a session state of
a session owned by UA is queried, S returns r1 of this session as part of the
ephemeral secret key.

On receiving the i-th session (X∗ = (E∗X , R
∗
2, S
∗
2 ), x1) from UA (that is

sent by A in the CK+ game), S returns X to the CPCCA challenger and re-
ceives the challenge ciphertext (Y ∗, y∗1 , y

∗
2) (under public key pkA1 and X∗) and

h(X∗, j(E∗X/〈R∗2 + [y]S∗2 〉)). Then S returns (Y ∗, y∗1 , y
∗
2) to UA as the response

of i-th session from UB . S chooses a totally independent randomness r2 as the
ephemeral secret key of UB for C∗ and leaks it to adversary A. Since G is a hash
function, the difference between simulation with modification of r2 and the real
game can not be detected by the adversary.
S simulates the oracle queries of A and maintains the hash lists LG, LĤ , Lsk

as follows. Specially, when AskH happens, which means A poses (UA, UB , pkA1 ,
pkB2

, X∗, x1, Y
∗, y∗1 , y

∗
2 , x2,KA,KB) to Ĥ, where (X∗, x1, Y

∗, y∗1 , y
∗
2 , x2) is the

views of the test session and KB is the key encapsulated in (X∗, x1, x2) (this can
be detected by S since it has skB2

and h(X∗, j(E∗X/〈R∗2 +[y]S∗2 〉)) from CPCCA
challenger), S returns KA as the guess of K∗ encapsulated in (Y ∗, y∗1 , y

∗
2), which

contradicts with the CPCCA security of KEMdsidh and further 1-Oracle SIDH
assumption.

– Querying G-oracle with (ri, abi) :

1. If there exists a tuple (ri, abi, gi) ∈ LG, S returns gi, otherwise S ran-
domly chooses gi, returns gi and records (ri, abi, gi) in LG. Note that in
the security definition A does not query SessionStateReveal(sid∗), thus
A does not know any information of r1.

2. As shown in the following (in the Send queries, or when S generates the
encapsulated key and the ciphertext using randomness), when S queries
G-oracle with (r1, a1), if there does not exist (r1, a1, ·) ∈ LG, generates
randomness g, returns g and adds (r1, a1, g) into LG

– Querying Ĥ-oracle with (UP , UQ, X, x1, Y, y1, y2, x2,KP ,KQ)

1: If P = A,Q = B, (Y, y1, y2) = (Y ∗, y∗1 , x
∗
2), and (Π, I, UA, UB , X, x1,

Y, y1, y2, x2) is the i-th session of UA, and KB is the key encapsulated in
(X,x1, x2) (this can be judged by S, since it has skB2 and h(X∗, j(E∗X/〈R∗2+
[y]S∗2 〉)) from CPCCA challenger), then S outputs the KA as the key en-
capsulated in the challenge ciphertext (Y ∗, y∗1 , x

∗
2) of CPCCA games,

that is K∗, sets flag = ture.
2: Else if ∃ (UP , UQ, X, x1, Y, y1, y2, x2,KP ,KQ, h) ∈ LĤ , return h,
3: Else if P = A and ∃ (UA, UQ, X, x1, Y, y1, y2, x2,KA,KQ, h) ∈ Lsk:

1. if (X,x1, x2) is sent by A, S with the knowledge of skQ2 and y ex-
tracts K ′A encapsulated in X,x1 and x2. Since (Y, y1, y2) is generated
by himself, S has the knowledge of encapsulated key K ′Q.
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2. if (Y, y1, y2) is sent by A, S with the knowledge of y queries the
decapsulation oracle with X and ciphertext (Y, y1, y2) to extract the
encapsulated key K ′Q;

3. if both (X,x1, x2) and (Y, y1, y2) are sent by S, it has the knowledge
of corresponding encapsulated key K ′A,K

′
B .

If (KA,KQ) = (K ′A,K
′
Q), then S returns h and records (UA, UQ, X, x1, Y ,

y1, y2, x2, KP ,KQ, h) in the list LĤ .
4: Else if Q = A and ∃ (UP , UA, X, x1, Y, y1, y2, x2, KP ,KA, h) ∈ Lsk: Since
S has the static secret key of UA as responder and static secret keys of
UP , it can extract encapsulated key K ′A in (Y, y1, y2) and encapsulated
key K ′P in (X,x1, x2).
If (KP ,KA) = (K ′P ,K

′
A), then S returns h and records (UP , UA, X, x1, Y, y1,

y2, x2, KP ,KA, h) in the list LĤ .
5: Else if A 6= P,Q and ∃ (UP , UQ, X, x1, Y, y1, y2, x2, KP ,KQ, h) ∈ Lsk:

Since S has the static secret keys of UQ and static secret keys of UP , it
can extract encapsulated key K ′Q in (Y, y1, y2) and encapsulated key K ′P
in (X,x1, x2).
If (KP ,KQ) = (K ′P ,K

′
Q), then S returns h and records (UP , UQ, X, x1, Y, y1,

y2, x2, KP ,KQ, h) in the list LĤ ;
6: otherwise, S returns a random value h and records (UP , UQ, X, x1, Y, y1,
y2, x2,KP , KQ, h) in the list LĤ .

– Send(Π, I, UP , UQ) :
1. If P = A, S generates two independent randomness (r1, n1||n2) (to pre-

tend that n1||n2 = G(r1, skA1), although S does not know skA1). This
will not be detected by A as A does not ask G with skA1). S computes
(X,x1) as in the protocol and sends (X,x1) out.

2. Otherwise, S proceeds as the protocols.
– Send(Π,R,UQ, UP , X, x1):

1. If Q = B and this session is the i-th session of UB , S sends X to CPCCA
challenger as part of challenge public key, and gets (Y ∗, y∗1 , y

∗
2) as chal-

lenge ciphertext and also gets h(X, j(EX/〈R2 + [y]S2〉). Then S returns
(Y ∗, y∗1 , y

∗
2).

2. Otherwise, S chooses SK randomly.
– Send(Π,R,UQ, UP , X, x1, Y, y1, y2): S computes the session key and main-

tains the session key list Lsk as follows.
1. If P = A, S computes x2 (using secret key x) and with the knowledge of
n1||n2 computes the key K ′A encapsulated in (X,x1, x2). S queries the
CPCCA decapsulation oracle with X and Y, y1, y2. Since (X,Y, y1, y2) 6=
(X∗, Y ∗, y∗1 , y

∗
2), the decapsulation oracle will return K ′Q encapsulated in

ciphertext (Y, y1, y2) under public key (pkA1, X). If ∃(UA, UQ, X, x1, Y, y1,
y2, x2,KA,KQ, h) ∈ LĤ , S does the following: if (K ′A,K

′
Q) = (KA,KQ),

sets SK = h.
2. Otherwise, S computes and returns x2. S has the knowledge of skP1

,
x, and skQ2

, and can extract the encapsulated key K ′P and K ′Q in
(X,x1, x2) and (Y, y1, y2). If ∃(UA, UQ, X, x1, Y, y1, y2, x2,KA,KQ, h) ∈
LĤ , S does the following: if (K ′P ,K

′
Q) = (KP ,KQ), sets SK = h.
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3. Otherwise, S chooses SK randomly.
S records this as the completed session and adds (UA, UQ, X, x1, Y, y1, y2, x2,
SK) to the session key list Lsk.

– Send(Π, I, UP , UQ, X, x1, Y, y1, y2, x2): With the knowledge of skQ2
and y, S

could extract K ′P . The key K ′Q encapsulated in (Y, y1, y2) is computed by
S himself. If there exists ((UA, UQ, X, x1, Y, y1, y2, x2,KP ,KQ, h) ∈ LĤ and
K ′P = KP ,K

′
Q = KQ, set SK = h. Otherwise, S chooses SK randomly.

S records this as the completed session and adds (UP , UQ, X, x1, Y, y1, y2,
x2, SK) to the session key list Lsk.

– Querying SessionKeyReveal(sid): The session key list Lsk is maintained as in
the Send queries.
1. If the session sid is not completed, S aborts.
2. Else if sid is recorded in the list Lsk, (UP , UQ, X, x1, Y, y1, y2, x2, SK) ∈
Lsk, then returns SK.

3. Otherwise, S returns a random value SK and records it in Lsk.
– Querying SessionStateReveal(sid): As the definition of freshness, sid is not

the test session.
1. If the owner of sid is A, and A is an initiator. The session state is gen-

erated by himself or extractable from the decapsulation oracle. S just
returns them.

2. If the owner of sid is A, and A is a responder. The session state is
generated by himself. S just returns them.

3. Otherwise, S holds the secret key of other users and could return the
session state as the definition.

– Querying Corrupt(UP )
S returns the static secret key of UP .

– Test(sid)
If sid is not the i-th session of UA, S aborts with failure. Otherwise, S
responds to the query as the definition above.

– If A outputs a guess b′, S aborts with failure.

The simulator S maintains the consistency of Ĥ-oracle, h-oracle, SessionStateReveal
and SessionKeyReveal with the decryption oracle of KEMdsidh. Note that in
the first case in the Ĥ-oracle, if flag = ture, then S would succeed in the
CPCCA game. Thus Pr[AskH ∧ E3] ≤ N2l · AdvCPCCA

KEMdsidh(S) ≤ N2l( qhash+1
2λ

+

4Avd1-OSIDH
S ).

Event AskH ∧ E1

In the event E1, the test session sid∗ (with owner as initiator) has no matching
session, and the static secret key of UA is given to A. In case AskH ∧ E1, the
1-Oracle (A-)SIDH problem is replaced with the 1-Oracle B-SIDH problem as
noted in Remark 5. The 1-Oracle SIDH adversary S simulates the CK+ games
and transforms the happening of event AskH performed by A to the advantage
of solving 1-Oracle SIDH problem.

The difference with Event AskH ∧ E3 is that the underlying assumption is
replaced to 1-Oracle B-SIDH and the static secret key of UA as initiator is
unknown. The other part of analysis is the same.
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Event AskH ∧ E2

In the event E2, the test session sid∗ (with owner as initiator) has no matching
session, and the ephemeral secret key of UA is given to A. In case AskH ∧ E2,
the 1-Oracle SIDH adversary S simulates the CK+ games, and transforms the
happening of event AskH performed by A to the advantage of solving 1-Oracle
SIDH problem.

The only difference with Event AskH ∧ E1 is that the ephemeral secret key
r1 is leaked to S rather than skA1 . This is fixed by the hash function G which
is modeled as a random oracle.

Event AskH ∧ E4

In the event E4, the test session sid∗ (with owner as responder) has no match-
ing session, and the static secret key of UB is given to A. In case AskH ∧ E4,
the 1-Oracle SIDH adversary S simulates the CK+ games, and transforms the
happening of event AskH performed by A to the advantage of solving 1-Oracle
SIDH problem.

Event AskH ∧ E5

In event E5, the test session sid∗ (with owner as responder or initiator) has a

matching session sid
∗
. Both static secret keys of the initiator and the responder

are leaked to A. In this case, the DSIDH adversary S performs as follows. It sim-
ulates the CK+ games, and transforms the happening of event AskH performed
by A to the advantage of attacking DSIDH problem. Since we know that if the
1-Oracle SIDH assumption holds, the DSIDH assumption holds. This event is
also bounded by Avd1-OSIDH

B .

Event AskH ∧ E6

In event E6, the test session sid∗ has a matching session sid
∗
. Both ephemeral

secret keys of the initiator and the responder are leaked to A. This is almost the
same with Event AskH ∧ E3.

Event AskH ∧ E7-1

In event E7-1, the test session sid∗ has a matching session sid
∗
. Both the

ephemeral secret key of the responder and the static secret key of the initiator
are leaked to A. This is almost the same with Event AskH ∧ E1. In this case,
the only difference is that the ephemeral secret key of UB is leaked to A, which
does not affect the proof.

Event AskH ∧ E7-2

In event E7-2, the test session sid∗ has a matching session sid
∗
. Both the

ephemeral secret key of the initiator and the static secret key of the responder
are leaked to A. This is almost the same with Event AskH∧E4. In this case, the
only difference is that the ephemeral secret key of UA is leaked to A, which does
not affect the proof.

Event AskH ∧ E8-1

In event E8-1, the test session sid∗ has a matching session sid
∗
. Both the

ephemeral secret key of the initiator and the static secret key of the responder
are leaked to A. This is almost the same with Event AskH ∧ E7-2. In this case,
the only difference is the owner of the test session, which does not affect the
proof.
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Event AskH ∧ E8-2

In event E8-2, the test session sid∗ has a matching session sid
∗
. Both the

static secret key of the initiator and the ephemeral secret key of the responder
are leaked to A. This is almost the same with Event AskH ∧ E7-1. In this case,
the only difference is the owner of the test session, which does not affect the
proof.
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