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Abstract. This paper aims to address the open problem, namely, to find new tech-
niques to design and prove security of supersingular isogeny-based authenticated key
exchange (AKE) protocols against the widest possible adversarial attacks, raised by
Galbraith in 2018. Concretely, we present two AKEs based on a double-key PKE in
the supersingular isogeny setting secure in the sense of CK+, one of the strongest
security models for AKE. Our contributions are summarised as follows. Firstly, we
propose a strong OW-CPA secure PKE, 2PKEsidh, based on SI-DDH assumption. By
applying modified Fujisaki-Okamoto transformation, we obtain a [OW-CCA,OW-CPA]
secure KEM, 2KEMsidh. Secondly, we propose a two-pass AKE, SIAKE2, based on SI-
DDH assumption, using 2KEMsidh as a building block. Thirdly, we present a modified
version of 2KEMsidh that is secure against leakage under the 1-Oracle SI-DH assump-
tion. Using the modified 2KEMsidh as a building block, we then propose a three-pass
AKE, SIAKE3, based on 1-Oracle SI-DH assumption. Finally, we prove that both
SIAKE2 and SIAKE3 are CK+ secure in the random oracle model and supports arbi-
trary registration. We also provide an implementation to illustrate the efficiency of
our schemes. Our schemes compare favourably against existing isogeny-based AKEs.
To the best of our knowledge, they are the first of its kind to offer security against
arbitrary registration, wPFS, KCI and MEX simultaneously. Regarding efficiency,
our schemes outperform existing schemes in terms of bandwidth as well as CPU cycle
count.
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1. In the previous version, we utilize the modified chosen public key and chosen cipher-
text security [Oka07] as the secure notion for our key encapsulation. In this version,
we utilize the [OW-CCA,OW-CPA] security in [XLL+18] as the secure notion for our
key encapsulation.

2. We utilize the crypto-friendly notions proposed by [FTTY18] to give a clearer and
more convenient presentation.

– The 201909 Version: Fix some typos.

1 Introduction

Authenticated Key Exchange. Allowing two parties to agree on a common shared key
over a public but possibly insecure channel, key exchange (KE) is a fundamental crypto-
graphic primitive. Many studies have investigated how to achieve KE protocols that provide
authentication [BR93,CK01,FSXY12,LLM07] and how to implement authenticated key ex-
change (AKE) with high efficiency [BCNP09,FSXY12,FSXY13,JKL04,LLM07,MQV95,MTI86]
based on classical assumptions. Different of security models have been proposed, including
BR model [BR93], CK model [CK01] and eCK model [LLM07]. Introduced in [Kra05] and
reformulated by Fujioka et al. [FSXY12], currently, CK+ security model is known as one of
the ‘strongest’ and most ‘desirable’ security notions. The CK+ model not only covers the
security requirement in CK model, but also captures some advanced attacks such as the
key compromise impersonation (KCI) attack, the maximal exposure (MEX) attack and the
breaking of weak perfect forward secrecy (wPFS).

Supersingular Isogeny Diffie-Hellman Key Exchange (SIDH). Apart from lattice,
code, hash and multivariate cryptography, supersingular elliptic curve isogeny is one of the
most attractive candidates for post-quantum cryptography. The best-known protocol is Jao
and De Feo’s supersingular isogeny Diffie-Hellman key exchange (SIDH) [JD14] based on the
hard problem of computing isogenies between supersingular elliptic curves. There are several
interesting topics concerning SIDH in the literature. For example, computational efficiency
[CLN16,FLO17,KAM18], key compression [CJL17], adaptive attacks on SIDH [GPST16],
relationship of the underlying complexity problems [EHL18,GV17,UJ18], signature schemes
[GPS16,JS14,STW12,YAJ17] and its standardization [JAC17,KLM15].

Recently, several work [FTTY18,Gal18,Lon18] have studied the important problem of
designing AKE schemes from the basic SIDH primitive. As pointed out by Galbraith [Gal18],
there are several challenges in adapting the security proof of existing well-designed AKE
schemes (most of them are based on discrete logarithm assumption) to the SIDH case:

– Many AKE schemes based on discrete logarithm assumption, such as MQV [MQV95]
and HMQV [Kra05], require a richer algebraic structure the supersingular isogeny does
not possess.

– The protocols involving long-term/static secret keys are vulnerable to the adaptive at-
tack [GPST16] aiming at the case where the static public key is used. More precisely,
suppose that in a protocol Alice sets EA as her static public key, and EY is an ephemer-
al public value sent by Bob. Galbraith et al. [GPST16] showed that adversary Bob can
send (EY , R

′, S′) with maliciously-crafted points R′ and S′ to gradually learn Alice’s
static secret key.

– The gap assumption that holds in the discrete logarithm setting is crucial for security
proof. However, the gap assumption does not hold in the SIDH setting when polynomial
queries are submitted to an unlimited decisional solver.
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The State of the Art of SIDH AKE. Recently, there are many exciting results on the
generic and non-generic constructions of AKE over supersingular curves [FTTY18,Gal18,Lon18].
Galbraith [Gal18] and Longa [Lon18] showed how to adapt the generic constructions of secure
AKE from basic primitives like IND-CCA encryption/KEMs, MACs, PRFs etc, including
the schemes proposed by Boyd, Cliff, Nieto and Paterson [BCNP09] (abbreviated as BC-
NP scheme), by Fujioka, Suzuki, Xagawa and Yoneyama [FSXY13] (abbreviated as FSXY
scheme) and by Guilhem, Smart and Warinschi [GSW17] (abbreviated as GSW scheme),
to the SIDH setting by inserting an IND-CCA secure KEM based on SIDH. Particularly,
Longa [Lon18] showed how to use SIDH as basic building blocks to construct AKE schemes.
However, these transformations lead either to more isogeny computations or increase in
rounds of communication. The detailed analyses are examined and summarized in Table 1
of [Gal18]. Here we make a more concrete comparison among these AKE schemes in the
SIDH setting in Table 1.

With respect to non-generic constructions, Galbraith proposed two SIDH-AKE proto-
cols [Gal18], one of which is based on the Jeong-Katz-Lee [JKL04] scheme TS2 (we call it
Gal 1) and another is an SIDH variant of NAXOS scheme (we call it Gal 2). Very recently,
Fujioka et al. [FTTY18] gave two Diffie-Hellman like isogeny-based AKEs, which we denote
as FTTY 1 where the session key is extracted from the combination of two Diffie-Hellman
values, and FTTY 2 where the session key is extracted from four Diffie-Hellman values, re-
spectively. Unfortunately, all of these schemes only provide security against adversaries with
limited capabilities, such as wPFS security (details are given in section 1.3). Several known
attacks are not taken into account, including arbitrary registrant for static public keys, the
KCI attack, or the MEX attack. In an AKE system, the adversary-controlled parties may
register arbitrary public keys and arbitrary registrant allows any party to register arbitrary
public keys (even the same key with some other party) without any validity checks. In fact,
neither Gal 1-2 nor FTTY 1-2 scheme allows the arbitrary registrant for the static public
key. Otherwise, with malicious static public keys, a target secret key can be learned bit
by bit, which implies that Gal 1-2 and FTTY 1-2 are not resistant to the adaptive attack.
Moreover, Gal 1 is not resistant to the KCI attack and Gal 2 is not resistant to the MEX
attack. Detailed analyses on those attacks against Gal 1-2 and FTTY 1-2 are given in the
related works.

Thus, “to find new techniques to design and prove security of AKE protocols in the SIDH
setting, . . . give a full analysis of AKE that includes the widest possible adversarial goals.”, a
quote from Galbraith [Gal18], is the main problem to be addressed in the area of SIDH-based
AKE. In this paper, we are motivated to address such an open problem.

1.1 Our Contributions

In this paper, we present two AKEs based on a double-key PKE in the SIDH setting and
show that both of them allow arbitrary registrant and are CK+ secure in the random oracle
model. Our results are summarized as follows.

– We propose a strong OW-CPA secure PKE, 2PKEsidh, based on SI-DDH assumption.
The strong OW-CPA security is exactly the [OW-CPA, ·] security formalized in [XLL+18]
which states that the PKE is still OW-CPA secure even if part of the public key is gen-
erated by the adversary. This construction may be of independent interest. Through the
modified Fujisaki-Okamoto transformation [XLL+18], we obtain a [OW-CCA,OW-CPA]
secure KEM, 2KEMsidh, to be used as the building block of our AKE.
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– With 2KEMsidh as the basic tool, we propose a two-pass AKE, SIAKE2, based on SI-DDH
assumption. SIAKE2 is CK+ secure in the random oracle model and supports arbitrary
registration.

– We propose 1-Oracle SI-DH assumption, a strong version of the SI-DDH assumption.
Contrary to its analogue, Oracle Diffie-Hellman problem [ABR01] in the discrete log-
arithm setting, the 1-Oracle SI-DH problem only allows one query to the oracle. We
revisit 2PKEsidh and provide a modified version of 2KEMsidh, and show that under the
1-Oracle SI-DH assumption both of them are still secure against leakage.

– Using the modified 2KEMsidh as the basic tool, we propose a three-pass AKE, SIAKE3,
based on 1-Oracle SI-DH assumption. We prove that it supports arbitrary registration
and is also CK+ secure in the random oracle model.

From Table 1, we can observe that both SIAKE2 and SIAKE3 achieve the security against
multiple possible adversaries, which to the best of our knowledge covers the most extensive
adversarial goals, including arbitrary registrant, wPFS, KCI and MEX.

Scheme Key Assum. Model wPFS KCI MEX Rd Init Resp Mess
Reg. isog isog Size

Gal 1 [Gal18] Honest SI-CDH CK X × × 2 3 3 108n
Gal 2 [Gal18] Honest SI-CDH BR X X × 2 4 4 108n

FTTY 1 [FTTY18] Honest SI-DDH CK X × × 1 3 3 72n
FTTY 2 [FTTY18] Honest di-SI-DDH CK+ X X X 1 5 5 72n

GSW [GSW17] Arbi. SI-DDH CK X × × 3 6 6 186n

BCNP [BCNP09,Lon18] Arbi. SI-DDH CK X X × 2 6 6 148n

FSXY [FSXY13,Lon18] Arbi. SI-DDH CK+ X X X 2 6 6 148n

SIAKE2 Arbi. SI-DDH CK+ X X X 2 6 5 114n
SIAKE3 Arbi. 1-OSIDH CK+ X X X 3 5 5 80n

Table 1. Comparison of existing AKE protocols on supersingular isogeny. Key Reg. represents
registering the static public key. “Arbi” means arbitrary registrant is allowed while “Honest” means
only honest registrants is allowed. Assump. is the abbreviation of assumptions. “1-OSIDH” is the
abbreviation of 1-Oracle SI-DH assumption. Rd denotes the number of protocol’s communication
round. Init isog and Resp isog represent the number of isogeny computation that the initiator and
responder have to perform respectively. Mess Size denotes the total message size. “X” indicates
that the scheme can resist this kind of attack while “×” indicates it cannot. n is the security
parameter.

1.2 Technique Overview

Our core ideas and techniques are illustrated in Figure 1. Let E0 be the starting curve, and
(P1, Q1), (P2, Q2) be the base points. EA1 , EB2 , EX and EY are four intermediate curves
which are part of static or ephemeral public keys. EA1Y , EXB2 and EXY are three final
computing curves.

Let UA, UB be two parties in the AKEs. The SIDH works as follows: UA chooses a secret,
computes the isogeny φX : E0 → EX with kernelGX and publishesX = (EX , φX(P2), φX(Q2)).
UB chooses a secret, computes the isogeny φY : E0 → EY with kernel GY and publishes
Y = (EY , φY (P1), φY (Q1)). They both can compute EXY ∼= EX/φX(GY ) ∼= EY /φY (GX).

4



The strategy to provide authentication with the static and ephemeral components is that ev-
ery user registers a static public key such that UA’s static public key is pkA1 = (EA1 , φA1(P2),
φA1

(Q2)) while UB ’s static public key is pkB2
= (EB2

, φB2
(P1), φB2

(Q1)).

EA1B2

EA1 EB2

EA1Y E0 EXB2

m1 EY EX0 , EX n1

KB EX0Y KA

m2 n2

h(j(·)) h(j(·))

h(X, j(·)) h(Y, j(·))

Fig. 1. Illustration of the core idea of SIAKE2 and SIAKE3. The red dashed lines illustrate the core
ideas of Gal 1 scheme [Gal18]. In SIAKE2, EX and EX0 are two independent curves. In SIAKE3,
EX = EX0 and the dashed double arrow is included.

As shown in Figure 1, there is a natural way to extract a session key from four Diffie-
Hellman values EA1B2

, EA1Y , EXB2
and EXY (Actually, this is what FTTY2 scheme does).

However, it is risky to take EA1B2 into account. Let us recall the adaptive attack from
Galbraith, Petit, Shani and Ti [GPST16]. A malicious user UB who registers his static
public key EB2

with specified points R′, S′, can learn one bit of the static secret key of
UA if he can also query the session key. As shown in Figure 1 with dashed lines, Galbraith
[Gal18] involves EA1B2

and EXY for the session key. Under the adaptive attack [GPST16],
adversary could gradually learn the static secret key by malicious registrations. Thus, EA1B2

could not be included in the session key when arbitrary registrant is allowed.
Although now only EA1Y , EXB2

, and EXY are involved in the session key, the adaptive
attack can still be launched if the CK+ adversary (in case E2 in Table 2) sends EY with
specified points R′, S′ to UA. With the ephemeral secret key for EX and the session key,
the adversary could still extract one bit of the static secret key. The problem can be tackled
by a check of “validity” of Y = (EY , R, S). Our solution is to employ the “re-encryption”
technique used in Fujisaki-Okamoto (FO) transformation [FO99]. Precisely, C = (Y, y1, y0)
is the ciphertext under public key pkA1

and X, where Y = (E0/〈P2 + [y]Q2〉, φY (P1),
φY (Q1)), y1 = h(j(EA1Y )) ⊕ m1, y0 = h(j(EXY )) ⊕ m0 and y = G(m1,m0) for a hash
function G, and the encapsulated key is KB = H(m1,m0, C). As a byproduct, we obtain
the chosen ciphertext (CCA) secure KEM by the FO transformation and the “validity” of
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Y = (EY , R, S) can be checked by UA using y = G(m1,m0) so that the adaptive attack fails
to work.

Now the CCA secure KEM with “re-encryption” avoids the adaptive attack, but it is still
not sufficient for CK+ security. The CK+ adversary has the capability to adaptively send
messages and adaptively query the session state and session key of non-test sessions. The
capability of adaptively sending messages in the test session means that the adversary is
allowed to choose one-part of the challenge public keyX∗ for (Y ∗, y∗1 , y

∗
0), while the capability

of querying the session state and session key of non-test sessions implies that the adversary
is also allowed to query the decapsulation oracle which decapsulates the ciphertext under
several other public keys X ′. This feature has been analyzed by [XLL+18] and formalized
as [OW-CCA, ·] security. The modified Fujisaki-Okamoto [XLL+18] states that putting the
public key in the hashing step when generating the encapsulated key would be sufficient.
Precisely, KB encapsulated in (Y, y1, y0) is H(X,m1,m2, C).

The last challenge that we are facing is the relationship between X and Y, which leads
to the difficulty in simulating the CK+ game. In the test session, on the one hand X is
part of the public key (pkA1

, X) under which the ciphertext (Y, y1, y0) is computed. On
the other hand X is part of the ciphertext (X,x1, x0) in which KA is encapsulated under
public key (pkB2 , Y ). Precisely, in the test session X = ((EX , R2, S2), x1, x0) is sent by
AKE adversary A, and the simulator S obtains challenge ciphertext (Y ∗, y∗1 , y

∗
0) from the

[OW-CCA, ·] challenger (which means the secret y in Y ∗ is unknown). But to simulate the
CK+ game, especially to maintain the consistency of hash lists, S should learn h(j(EX/〈R2+
[y]S2〉)) to extract KA encapsulated in (X,x1, x0).

We propose two solutions for this problem. One method is to add an extra X0 such that
X0 is part of the public key (pkA1 , X0) under which the ciphertext (Y, y1, y0) is computed,
while X is part of the ciphertext (X,x1) under public key EB2 (we omit Y ). The other
solution is to strengthen the underlying assumption as 1-Oracle SI-DH assumption such
that h(j(EX/〈R2 + [y]S2〉)) could be leaked.

In consequence, the two solutions lead to two AKEs, namely, SIAKE2 and SIAKE3.

– Solution 1: We add an extra X0 to take the position of X as part of the public
key (pkA1 , X0) under which the ciphertext (Y, y1, y0) is computed, remove x2 and set
(X,x1) as the ciphertext under public key EB2

rather than (EB2
, Y ). Then the value

of h(j(EX/〈R2 + [y]S2〉)) is not needed during the security proof. The drawback of this
solution is that K ′A can not be included in the session state of UB . Solution 1 leads to
SIAKE2.

– Solution 2: We strengthen the underlying SI-DDH assumption to the 1-Oracle SI-
DH assumption to allow the leakage of h(j(EX/〈R2 + [y]S2〉)). The 1-Oracle SI-DH
assumption can be considered as a hashed SI-DDH assumption where a one-time hashed
SI-CDH oracle is allowed. Note that considering 〈R2 + [y]S2〉 = 〈[u]R2 + [y][u]S2〉 for
any integer 1 ≤ u ≤ `e22 and coprime to `2, we employ a simple trick of tailoring the
hash function as h(Y, j(EXY )) in x2 and h(X, j(EXY )) in y2. This solution results in
SIAKE3.

1.3 Related Works and Their Analysis

Galbraith [Gal18] proposed two SIDH variants of AKE, namely, Gal 1 from Jeong-Katz-
Lee protocol [JKL04] and Gal 2 from NAXOS protocol [LLM07]. Considering the adaptive
attack on static secret keys, Gal 1 protocol only allows honest registrants of static public
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keys and it is also vulnerable to the KCI attack. So far, neither has there been any concrete
MEX attack on Gal 1, nor any formal proofs to show Gal 1 is resistant to the MEX attack.
Gal 2 protocol is provably secure in BR model, which only allows honest registrants of static
public keys (if the adversary gets the ephemeral secret key, like x, the adaptive attack still
works), and can not resist the MEX attack.

Very recently, Fujioka et al. [FTTY18] gave two Diffie-Hellman like isogeny-based AKEs,
namely, FTTY 1 and FTTY 2. FTTY 1 protocol, which is quite similar to Gal 1 scheme,
is CK secure in the quantum random oracle model, but it only allows honest registrants
and cannot resist the KCI attack. FTTY 2 is secure in CK+ model, but it also only allows
honest registrants.

Below we illustrate in detail the (in)capability of Gal 1-2 and FTTY 1-2 on resisting
the adaptive attacks (if the arbitrary registrant is allowed), the KCI attack, and the MEX
attack.

Adaptive attacks if arbitrary registrant is allowed. Suppose that in a protocol Alice
sets EA1

, φA1
(P2), φA1

(Q2) as her static public key. The goal of a malicious adversary is
to compute Alice’s static secret key. As illustrated in Figure 1, the session key of Gal 1 is
extracted from EXY and EA1B2

. By applying the adaptive attacks [GPST16], a malicious
adversary can register (EB2 , R

′, S′) with specified points R′ and S′, rather than φB2(P1) and
φB2(Q1), as the static public key for Bob. By checking whether the session key computed
by Alice (which can be obtained from SessionKeyReveal query) is equal to that computed by
Bob, one bit of Alice’s static secret key is determined. The adversary gradually learns Alice’s
static secret key by registering several valid static public keys according to adaptive attacks.
Such an attack can be applied to FTTY 1 directly and it also works for FTTY 2 if the
adversary also has the ephemeral secret key x of Alice (which can be obtained by querying
SessionStateReveal), which means that FTTY 2 also does not allow arbitrary registrant.
Gal 2 does not allow arbitrary registrant either, since if the adversary has the ephemeral
secret key x of Alice (which can be obtained from SessionStateReveal query), by honestly
registering static public key for Bob, then sending (EY , R

′, S′) with specified points R′ and
S′, and checking whether the session key computed by Alice is equal to that computed by
Bob, the adversary is able to learn one bit of Alice’s static secret key.

KCI Attacks. KCI attacks state that if a static secret key is revealed, an adversary can try
to impersonate any other honest parties in order to fool the owners of the exposed secret
keys. Neither Gal 1 nor FTTY 1 are resistant to the KCI attack since each session key
is extracted from EXY and EA1B2

, and by generating EY , φY (P1), φY (Q1) and sending it
to Alice on behalf of Bob, with Alice’s static secret key the adversary could compute the
session key even if Bob’s static secret key is unknown.

MEX Attacks. In MEX, an adversary aims to distinguish the session key from a random
value under the disclosure of the ephemeral secret key of (at least) one party of the test
session. Gal 2 is not resistant to the MEX attack since its session key is extracted from
EXY , EXB2

, and EA1Y , thus it is easy for an adversary to compute those curves with the
ephemeral secret key corresponding to EX and EY .
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2 Preliminaries

2.1 SIDH and Crypto-friendly Description

We recall briefly the SIDH protocol using the same notation as [JD14,JAC17]. Let p be a
large prime of the form p = `e11 `

e2
2 · f ± 1, where `1 and `2 are two small primes, and f is

an integer cofactor. Then we can construct a supersingular elliptic curve E0 defined over
Fp2 with order |E0(Fp2)| = (`e11 `

e2
2 · f)2. Let Zm be the ring of residue classes modulo m.

The subgroup E0[m] of m-torsion points is isomorphic to Zm × Zm for m ∈ {`e11 , `
e2
2 }. Let

P1, Q1 be two points that generate E0[`e11 ] and P2, Q2 be two points that generate E0[`e22 ].
The public parameters are (E0;P1, Q1;P2, Q2; `1, `2, e1, e2).

E0 EA = E0/〈RA〉

EB = E0/〈RB〉 EAB = E0/〈RA, RB〉

φA

φB φAB

φBA

Fig. 2. SIDH

The SIDH, as depicted in Figure 2, works as follows. Alice chooses her secret key ka
from Z`e11 and computes the isogeny φA : E0 → EA whose kernel is the subgroup 〈RA〉 =

〈P1 + [ka]Q1〉. She then sends to Bob her public key which is EA together with the two
points φA(P2), φA(Q2). Similarly, Bob chooses his secret key kb from Z`e22 and computes

the isogeny φB : E0 → EB with kernel subgroup 〈RB〉 = 〈P2 + [kb]Q2〉. He sends to Alice
his public key which is EB together with the two points φB(P1), φB(Q1). To get the shared
secret, Alice computes the isogeny φBA : EB → EBA with kernel subgroup generated by
φB(P1) + [ka]φB(Q1). Similarly, Bob computes the isogeny φAB : EA → EAB with kernel
subgroup generated by φA(P2) + [kb]φA(Q2). Since the composed isogeny φAB ◦ φA has
the same kernel 〈RA, RB〉 as φBA ◦ φB , Alice and Bob can share the same j-invariant
j(EAB) = j(EBA).

It will be helpful to have a crypto-friendly description of SIDH for the presentation
of our AKEs. We follow the treatment of Fujioka et al. [FTTY18]. In what follows we
assume {t, s} = {1, 2}, and denote the public parameters by g = (E0;P1, Q1, P2, Q2) and
e = (`1, `2, e1, e2). We define the sets of supersingular curves and those with an auxiliary
basis as

SSECp = {supersingular elliptic curves E over Fp2 with E(Fp2) ' (Z`e11 `
e2
2 f )2};

SSECA = {(E;P ′t , Q
′
t)|E ∈ SSECp, (P

′
t , Q

′
t) is basis of E[`ett ]};

SSECB = {(E;P ′s, Q
′
s)|E ∈ SSECp, (P

′
s, Q

′
s) is basis of E[`ess ]}.
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Let a = ka and b = kb, then we define,

ga = (EA;φA(Pt), φA(Qt)) ∈ SSECA,

where RA = Ps + [ka]Qs, φA : E0 → EA = E0/〈RA〉;
gb = (EB ;φB(Ps), φB(Qs)) ∈ SSECB ,

where RB = Pt + [kb]Qt, φB : E0 → EB = E0/〈RB〉;
(gb)a = j(EBA),where RBA = φB(Ps) + [ka]φB(Qs),

φBA : EB → EBA = EB/〈RBA〉;
(ga)b = j(EAB), where RAB = φA(Pt) + [kb]φA(Qt),

φAB : EA → EAB = EA/〈RAB〉.

Using this notation, the SIDH looks almost exactly like the classical Diffie-Hellman. That
is, the public parameters are g and e. Alice chooses a secret key a and sends ga to Bob,
while Bob chooses a secret key b and sends gb to Alice. The shared key is, as we expect,
j = (gb)a = (ga)b.

2.2 Standard SIDH Assumptions

We describe two standard assumptions about supersingular isogeny based on the crypto-
friendly notation. Let s 6= t and s, t ∈ {1, 2}.

Definition 1 (SI-CDH Assumption [JD14,FTTY18]). The SI-CDH problem is that,
given public parameters g and e, and ga, gb where a ← Z`ess , b ← Z`ett , compute the j-

invariant (ga)b = (gb)a. For any PPT algorithm A, we define the advantage of solving
SI-CDH problem as

AdvsicdhA = Pr[j′ = (ga)b|j′ ← A(g, e, ga, gb)].

The SI-CDH assumption states: for any PPT algorithm A, the advantage of solving SI-CDH
problem is negligible.

Definition 2 (SI-DDH Assumption [JD14,FTTY18]). Let g and e be that defined in
SI-CDH assumption. Let D0 and D1 be two distributions defined as:

D1 :={e, g, ga, gb, (ga)b|a← Z`ess , b← Z`ett }

D0 :={e, g, ga, gb, (gs)t|a, s← Z`ess , b, t← Z`ett }

The SI-DDH problem is that given a random sample from Db depending on b← {0, 1}, guess
b. The advantage of solving SI-DDH problem for any PPT algorithm A is

AdvsiddhA = Pr[b′ = b|b′ ← A(db ← Db), b← {0, 1}]− 1/2.

The SI-DDH assumption states: for any PPT algorithm A, the advantage of solving SI-DDH
problem is negligible.
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2.3 CK+ Security Model

We recall the CK+ model introduced by [Kra05] and later refined by [FSXY12], which is a
CK model [CK01] integrated with the weak PFS, resistance to KCI and MEX properties.
We focus on 3-pass and 2-pass protocols in this paper. For simplicity, we only show the
model specified to 2-pass protocols. As for 3-pass protocol, we can extend it by adding an
extra message in the matching session identifier and Send definitions.

In an AKE protocol, Ui denotes a party indexed by i, who is modeled as a probabilistic
polynomial time (PPT) interactive Turing machine. We assume that each party Ui owns a
static pair of secret-public key (ski, pki), where the static public key is related to Ui’s identity
by a certification authority (CA). No other actions by the CA are required or assumed. In
particular, we make no assumption on whether the CA requires a proof-of possession of the
private key from a registrant of a public key, and we do not assume any specific checks on
the value of a public key.

Session. Each party can be activated to run an instance called a session. A party can
be activated to initiate the session by an incoming message of the form (Π, I, UA, UB) or
respond to an incoming message of the form (Π,R, UB , UA, XA), where Π is a protocol
identifier, I and R are role identifiers corresponding to initiator and responder. Activated
with (Π, I, UA, UB), UA is called the session initiator. Activated with (Π,R, UB , UA, XA),
UB is called the session responder.

According to the specification of AKE, the party creates randomness which is generally
called ephemeral secret key, computes and maintains a session state, generates outgoing
messages, and completes the session by outputting a session key and erasing the session
state. Note that Canetti-Krawczyk [CK01] defines session state as session-specific secret
information, but leaves it up to a protocol to specify which information is included in a
session state. LaMacchia et al. [LLM07] explicitly set all random coins used by a party in a
session as session-specific secret information and call it ephemeral secret key. Here we require
that the session state at least contains the ephemeral secret key.

A session may also be aborted without generating a session key. The initiator UA cre-
ates a session state and outputs XA, then may receive an incoming message of the forms
(Π, I, UA, UB , XA, XB) from the responder UB , and may compute the session key SK. On
the contrary, the responder UB outputs XB , and may compute the session key SK. We say
that a session is completed if its owner computes the session key.

A session is associated with its owner, a peer, and a session identifier. If UA is the
initiator, the session identifier is sid = (Π, I, UA, UB , XA) or sid = (Π, I, UA, UB , XA, XB),
which denotes UA as an owner and UB as a peer. If UB is the responder, the session is
identified by sid = (Π,R, UB , UA, XA, XB), which denotes UB as an owner and UA as a
peer. The matching session of (Π, I, UA, UB , XA, XB) is (Π,R, UB , UA, XA, XB) and vice
versa.

Adversary. Adversary A is modeled as follows to capture real attacks in open networks,
including the control of communication and the access to some of the secret information.

– Send(message):A sends messages in one of the forms: (Π, I, UA, UB), (Π,R, UB , UA, XA),
or (Π, I, UA, UB , XA, XB), and obtains the response.

– SessionKeyReveal(sid): if the session sid is completed, A obtains the session key SK for
sid.

– SessionStateReveal(sid): A obtains the session state of the owner of sid if the session is
not completed. The session state includes all ephemeral secret keys and intermediate
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computation results except for immediately erased information, but does not include
the static secret key.

– Corrupt(Ui): By this query, A learns all information of UA (including the static secret,
session states and session keys stored at UA). In addition, from the moment that UA is
corrupted, all its actions may be controlled by A.

Freshness. Let sid∗ = (Π, I, UA, UB , XA, XB) or (Π, I, UA, UB , XA, XB) be a completed
session between honest users UA and UB . If the matching session of sid∗ exists, denote
it by sid

∗
. We say session sid∗ is fresh if A does not query: 1) SessionStateReveal(sid∗),

SessionKeyReveal(sid∗), and SessionStateReveal(sid
∗
), SessionKeyReveal(sid

∗
) if sid

∗
exists; 2)

SessionStateReveal(sid∗) and SessionKeyReveal(sid∗) if sid
∗

does not exist.
Security Experiment. The adversary A could make a sequence of the queries described
above. During the experiment, A makes the query of Test(sid∗), where sid∗ must be a fresh
session. Test(sid∗) select random bit b ∈ {0, 1}, and return the session key held by sid∗ if
b = 0; and return a random key if b = 1. The experiment continues until A returns b′ as a
guess of b. The adversary A wins the game if the test session sid∗ is still fresh and b′ = b.
The advantage of the adversary A is defined as Advck+

Π (A) = Pr [A wins]− 1
2 .

Definition 3. We say that a AKE protocol Π is secure in the CK+ model if the following
conditions hold:
Correctness: If two honest parties complete matching sessions, then they both compute the
same session key except with negligible probability.
Soundness: For any PPT adversary A, AdvCK+

Π (A) is negligible for the test session sid∗,

1. the static secret key of the owner of sid∗ is given to A, if sid
∗

does not exist.
2. the ephemeral secret key of the owner of sid∗ is given to A, if sid

∗
does not exist.

3. the static secret key of the owner of sid∗ and the ephemeral secret key of sid
∗

are given
to A, if sid

∗
exists.

4. the ephemeral secret key of sid∗ and the ephemeral secret key of sid
∗

are given to A, if
sid
∗

exists.
5. the static secret key of the owner of sid∗ and the static secret key of the peer of sid∗ are

given to A, if sid
∗

exists.
6. the ephemeral secret key of sid∗ and the static secret key of the peer of sid∗ are given to
A, if sid

∗
exists.

As indicated in Table 2, the CK+ model captures all non-trivial patterns of exposure
of static and ephemeral secret keys listed in Definition 3, and these ten cases cover wPFS,
resistance to KCI, and MEX attacks.

2.4 2-Key PKE and KEM

In this section, we provide the definitions of 2-key PKE and 2-key KEM, as well as the
modified Fujisaki-Okamoto transformation proposed by Xue et al. [XLL+18].

A 2-key PKE with a plaintext spaceM and a ciphertext space C consists of a quadruple
of PPT algorithms 2PKE=(KeyG1, KeyG0, Enc, Dec) described as follows:

– KeyG1(n, pp) : on input a security parameter n and public parameter pp, output a pair
of public and secret keys (pk1, sk1).

11



Event Case sid∗ sid
∗

skA ekA ekB skB Security

E1 1 A No
√
× - × KCI

E2 2 A No ×
√

- × MEX

E3 2 B No × -
√

× MEX

E4 1 B No × - ×
√

KCI

E5 4 A or B Yes
√
× ×

√
wPFS

E6 5 A or B Yes ×
√ √

× MEX

E7-1 3 A Yes
√
×
√

× KCI

E7-2 3 B Yes ×
√
×
√

KCI

E8-1 6 A Yes ×
√
×
√

KCI

E8-2 6 B Yes
√
×
√

× KCI

Table 2. The behavior of AKE adversary in CK+ model. sid
∗

is the matching session of sid∗, if it
exists. “Yes” means that there exists sid

∗
and “No” means not. skA (resp. skB) means the static

secret key of A (resp. B). ekA (resp. ekB) is the ephemeral secret key of A (resp. B) in sid∗ or sid
∗

if there exists. “
√

” means the secret key may be revealed to adversary, “×” means the secret key
is not revealed. “-” means the secret key does not exist.

– KeyG0(n, pp) : on input a security parameter n and public parameter pp, output a pair
of public and secret keys (pk0, sk0).

– Enc(pk1, pk0,m; r) : on input public keys pk1, pk0 and a plaintext m ∈ M, output a
ciphertext C ∈ C.

– Dec(sk1, sk0, C) : on input secret keys sk1, sk0 and a cipheretext C ∈ C, output a
plaintext m.

Correctness. For (pk1, sk1)← KeyG1(n, pp), (pk0, sk0)← KeyG0(n, pp) and C ← Enc(pk1,
pk0,m; r), then we have Dec(sk1, sk0, C) = m.

Game [OW-CPA, ·] on pk1 Game [·,OW-CPA] on pk0
01 (pk1, sk1)← KeyG1(n, pp); 07 (pk0, sk0)← KeyG0(n, pp);
02 (state, pk∗0)← A1(pk1); 08 (state, pk∗1)← B1(pk0);
03 m←M; 09 m←M;
04 c∗ ← Enc(pk1, pk

∗
0 ,m); 10 c∗ ← Enc(pk∗1 , pk0,m);

05 m′ ← A2(state, c∗); 11 m′ ← B2(state, c∗);

06 return m′
?
= m 12 return m′

?
= m

Fig. 3. The [OW-CPA, ·] (resp. [·,OW-CPA]) game of 2PKE for adversaries A (resp. B).

The security games of 2PKE are formalized in Figure 3. We define the advantage of A
winning in the game [OW-CPA, ·] as Adv

[OW-CPA,·]
2PKE (A) = Pr[[OW-CPA, ·]A

⇒ 1], and the advantage of B in the game [·,OW-CPA] as Adv
[·,OW-CPA]
2PKE (B) = Pr[[·,OW-CPA]B ⇒

1], respectively.
The 2-key key encapsulation (2-key KEM) 2KEM is defined similarly.

– KeyGen1(n, pp) : on input a security parameter n and public parameter pp, output a
pair of public-secret keys (pk1, sk1). In order to show the randomness that is used, we
denote key generation algorithm as KeyGen1(n, r).
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– KeyGen0(n, pp) : on input a security parameter n and public parameter pp, output a
pair of public and secret keys (pk0, sk0).

– Encaps(pk1, pk0) : on input public keys pk1, pk0, output a ciphertext c and encapsulated
key k in key space K. Sometimes, we explicitly add the randomness r and denote it as
Encaps(pk1, pk0; r).

– Decaps(sk1, sk0, c) : on input secret keys sk1, sk0 and a ciphertext c, output a key k.

Correctness. For (pk1, sk1)← KeyGen1(n, pp), (pk0, sk0)← KeyGen0(n, pp) and (c, k)←
Encaps(pk1, pk0), it holds that Decaps(sk1, sk0, c) = k.

Game [OW-CCA, ·] on pk1 Game [·, OW-CPA] on pk0
01 (pk1, sk1)← KeyGen1(n, pp); 07 (pk0, sk0)← KeyGen0(n, pp);
02 L0 = {(−,−,−)}; 08(state, pk∗1)← B1(pk0);

03 (state, pk∗0)← AOcca,Oleak0
1 (pk1); 09 (c∗, k∗)← Encaps(pk∗1 , pk0);

04 (c∗, k∗)← Encaps(pk1, pk
∗
0); 10 k′ ← B2(state, c∗);

05 k′ ← AOcca,Oleak0
2 (state, c∗); 11 return k′

?
= k∗

06 return k′
?
= k∗

Fig. 4. The [OW-CCA, ·] (resp. [·,OW-CPA]) game of 2KEM for adversaries A (resp. B). The oracles
Oleak0 and Occa are defined in the following.

The security games of 2KEM are formalized in Figure 4. On the i-th query of Oleak0 ,
the challenger generates (pki0, sk

i
0)← KeyGen0(ri0), sets L0 = L0 ∪ {(pki0, ski0)} and returns

(pki0, sk
i
0) to adversary A. Occa(pk

′
0, c
′) works as follows: If pk′0 ∈ [L0]1 and (c′, pk′0) 6=

(c∗, pk∗0), compute and return the corresponding k′ ← Decaps(sk1, sk
′
0, c
′), otherwise return

⊥.
We define the advantage of A winning in the game [OW-CCA, ·] as

Adv
[OW-CCA,·]
2KEM (A) = Pr[[OW-CCA, ·]A ⇒ 1],

and the advantage of B winning in the game [·,OW-CPA] as:

Adv
[·,OW-CPA]
2KEM (B) = Pr[[·,OW-CPA]B ⇒ 1].

According to [XLL+18], the modified Fujisaki-Okamoto transformation in Fig. 5 builds
a [OW-CCA,OW-CPA] secure 2-Key KEM from any [OW-CPA,OW-CPA] secure 2-key PKE.
Note that in [XLL+18] they consider the decryption failure, but we do not take the de-
cryption failure into account here since the encryption scheme based on SI-DDH is perfectly
correct.

Lemma 1 (Theorem 7 [XLL+18]). For any [OW-CCA, ·] adversary C, or [·,OW-CPA] ad-
versary D against 2KEM with at most qH queries to random oracle H, there are [OW-CPA, ·]
adversary A, or [·,OW-CPA] adversary B against 2PKE, that make at most qH (resp. qG)
queries to random oracle H (resp. G) s.t.

Adv
[OW-CCA,·]
2KEM (C) ≤ qH

2n
+ qH ·Adv

[OW-CPA,·]
2PKE (A),

Adv
[·,OW-CPA]
2KEM (D) ≤ Adv

[·,OW-CPA]
2PKE (B).
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KeyGen1(n) KeyGen0(n)

(pk′1, sk
′
1)← KeyG1 (pk′0, sk

′
0)← KeyG0

s1 ← {0, 1}n sk0 = sk′0
sk1 = (sk′1, s1) pk0 = pk′0
pk1 = pk′1 return (K, c)

Encaps(pk1, pk0); Decaps(sk1, sk0, c)

m←M m′ = Dec(sk′1, sk
′
0, c)

c← Enc(pk1, pk0,m;G(m)) c′ = Enc(pk1, pk0,m
′;G(m′))

K = H(pk0,m, c) if c 6= c′, let m′ = s1
return (K, c) return K = H(pk0,m

′, c)

Fig. 5. The modified Fujisaki-Okamoto from [OW-CPA, OW-CPA] secure 2-key PKE to [OW-CCA,
OW-CPA] secure 2-key KEM 2KEM.

3 [OW-CCA,OW-CPA] Secure KEM from SIDH

We now propose a [OW-CCA,OW-CPA] secure 2-key KEM from supersingular isogeny. It is
the core building block for our AKEs. At first, we propose a [OW-CPA,OW-CPA] 2-key PKE
from supersingular isogeny, and then apply the modified Fujisaki-Okamoto transformation
to obtain a 2-key KEM.

Choose p = `e11 `
e2
2 · f ± 1, E0, {P1, Q1}, {P2, Q2} as above. Let h : {0, 1}∗ → {0, 1}n

be a random hash function from pair-wise independent hash function families H. Let g =
(E0;P1, Q1, P2, Q2) and e = (`1, `2, e1, e2) be public parameters. Let {s, t} = {1, 2}. The
[OW-CPA,OW-CPA] 2-key PKE 2PKEsidh is built as follows.

– KeyG1(n,pp): on input security parameter and public parameter, randomly choose a
secret a1 ← Z`ess and compute ga1 . Then output

sk1 := a1, pk1 := ga1 .

– KeyG0(n,pp): on input security parameter and public parameter, randomly choose a
secret a0 ← Z`ess and compute ga0 . Then output

sk0 := a0, pk0 := ga0 .

– Enc(pk1, pk0,m): on input public keys and a message m = m1||m0 ∈ {0, 1}2n, randomly
choose b← Z`ett and compute gb, h((ga1)b)⊕m1 and h((ga0)b)⊕m0. The ciphertext is

c :=
(
gb, h

(
(ga1)b

)
⊕m1, h

(
(ga0)b

)
⊕m0

)
.

– Dec(sk1, sk0, c): on input secret keys sk1 = a1, sk0 = a0 and ciphertext c = (c1, c2, c3),
compute m1 := c2 ⊕ h (ca1

1 ) and m0 := c3 ⊕ h (ca0
1 ). The plaintext is m = m1||m0.

The correctness of 2PKEsidh is straightforward due to the correctness of SIDH.

Lemma 2. Under the SI-DDH assumption, 2PKEsidh is [OW-CPA,OW-CPA] secure. Pre-
cisely, for any PPT [OW-CPA, ·] (resp. [·,OW-CPA]) adversary A (resp. C), there exists
algorithm B (resp. D) such that

Adv
[OW-CPA,·]
2PKEsidh

(A) ≤ 2AdvsiddhB + 1/2n + negl,

(resp. Adv
[·,OW-CPA]
2PKEsidh

(C) ≤ 2AdvsiddhD + 1/2n + negl).
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Proof. We reduce the [OW-CPA, ·] security to the underlying SI-DDH assumption. It is
analogous for the [·,OW-CPA] security. We prove the [OW-CPA, ·] security via a sequence of
games.
Game 0: This is the original [OW-CPA, ·] challenge game in Fig. 3. We denote the event
that the adversary wins the games as Succ0.
Game 1: In this game we modify [OW-CPA, ·] challenge game by requiring that the adversary
wins the game if m′1 = m1. We denote this event as Succ1 (In Game i (i ≥ 1), we denote
this event as Succi). Note that in Game 0, the adversary wins only if both m′1 = m1 and
m′0 = m0. Thus, we have Pr[Succ0] ≤ Pr[Succ1].
Game 2: In this game, we modify the computation of challenge ciphertext. Specifically,
(gb)a1 is replaced by a random j-invariant j∗. We construct an algorithm B to solve the
SI-DDH problem given an instance (g, g1, g2, j), if there exists an algorithm A to distinguish
Game 1 and Game 2.

B(e, g, g1, g2, j)

01 pk1 ← g1
02 pk∗0 , state← A(pk1)
03 m1 ← {0, 1}n
04 c∗1 = g2, c∗2 = h(j)⊕m1, c∗3 ← {0, 1}n
05 c∗ = (c∗1, c

∗
2, c
∗
3)

06 m′1||m′0 ← A(state, c∗)
07 If m′1 = m1, b′ = 1, else b′ ← {0, 1}.

If (g, g1, g2, j) is an SI-DDH tuple, B perfectly simulates Game 1, else B perfectly simu-
lates Game 2. In the SI-DDH challenge, we have

AdvsiddhB = Pr[b = b′]− 1/2

= 1/2(Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0])

= 1/2(Pr[b′ = 1|Game 1]− Pr[b′ = 1|Game 2])

= 1/2(Pr[Succ1]− Pr[Succ2]).

Game 3: In this game, we modify the computation of the challenge ciphertext. Specifically,
h(j∗) is replaced by a random string h∗. Now c∗2 is a completely random string. Thus, the
advantage to compute m1 is Pr[Succ3] = 1/2n. Note that, since h is a pairwise independent
hash function, by the leftover hash lemma, |Pr[Succ2]− Pr[Succ3]| is negligible.

To sum them up, we have that Pr[Succ0] ≤ 2AdvsiddhB + 1/2n + negl. ut

Remark 1: By setting pk0 and sk0 to be empty and the ciphertext to be c1, c2, the scheme
is exactly the ElGamal scheme and is OW-CPA secure under the SI-DDH assumption.

Applying the modified Fujisaki-Okamoto in Fig. 5, we get a [OW-CCA, OW-CPA] secure
2-key KEM 2KEMsidh in Fig. 6. Let G : {0, 1}2n → {0, 1}∗ and H : {0, 1}∗ → {0, 1}2n be
hash functions. Note that there is a subtle difference between the Fig. 6 and the modified
Fujisaki-Okamoto in Fig. 5 that the “re-encryption” only needs to check the correctness of
c1.

Theorem 1. Under the SI-DDH assumption, 2KEMsidh is [OW-CCA, OW-CPA] secure in
the random oracle model. Precisely, for any PPT [OW-CCA, ·] (resp. [·,OW-CPA]) adversary
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KeyGen1 KeyGen0

a1 ← Z`
es
s

, s1 ← {0, 1}2n a0 ← Z`
es
s

pk1 := ga1 , sk1 := (a1, s1) pk0 := ga0 , sk0 := a0

Encaps(pk1, pk0) Decaps(sk1, sk0)

m1,m0 ← {0, 1}n, b := G(m1,m0) m′1 := c2 ⊕ h(ca11 )

c1 = gb, c2 = h((ga1)b)⊕m1 m′0 := c3 ⊕ h(ca01 )

c3 = h((ga0)b)⊕m0 b := G(m′1,m
′
0)

c := (c1, c2, c3) If c1 6= gb, m1||m0 = s1
K := H(pk0,m1||m0, c) K := H(pk0,m1||m0, c)

Fig. 6. The [OW-CCA, OW-CPA] secure 2KEMsidh.

A (resp. C) with at most qH queries to H oracle, there exists algorithm B (resp. D) solving
SI-DDH problem such that

Adv
[OW-CCA,·]
2KEMsidh

(A) ≤ qH
22n

+ qH ·
(

2AdvsiddhB + 1/2n + negl
)
,

(resp. Adv
[·,OW-CPA]
2KEMsidh

(C) ≤ 2AdvsiddhD + 1/2n + negl).

Proof. According to Lemma 1, the [OW-CCA, OW-CPA] security of 2KEMsidh is guaranteed
by the [OW-CPA, OW-CPA] security of 2PKEsidh. By applying Lemma 2, the [OW-CCA, OW-CPA]
security is finally reduced to the underlying SI-DDH assumption. ut

Remark 2: By setting pk0 and sk0 to be empty, the message space to be {0, 1}n, the input
of G to be (m1,−) and the ciphertext to be c1, c2, the scheme is exactly the FO transformed
ElGamal scheme and is OW-CCA secure under the SI-DDH assumption.

4 Two-pass SIAKE

In this section, we propose a two-pass AKE based on SI-DDH assumption. The two-pass
AKE SIAKE2 is shown in Fig. 7.

Public Parameters: Let e = (`1, `2, e1, e2) and g = (E0;P1, Q1, P2, Q2). Let g : {0, 1}∗ →
{0, 1}2n, h : {0, 1}n → {0, 1}n, G : {0, 1}2n → {0, 1}∗, H : {0, 1}∗ → {0, 1}2n, Ĥ : {0, 1}∗ →
{0, 1}n be hash functions.

Register: Any user registers two sets of public-secret keys. One set of keys is assigned
by the user as initiator, and another set is assigned as responder. For user UA, it first
chooses skA1 := (a1 ∈ Z`e11 , sA1 ← {0, 1}2n) and computes pkA1 := ga1 , then chooses

skA2
:= (a2 ∈ Z`e22 , sA2 ← {0, 1}2n) and computes pkA2

:= ga2 .

Phase 1: User UA randomly chooses rA, x0 ← Z`e11 as two ephemeral randomness. Let n1 ←
g(rA, a1), x := G(g(rA, a1)). Then UA computes X0 := gx0 , X := gx, x1 := h((gb2)x) ⊕ n1,
and sends X0, X, x1 to UB . UA computes KA := H(n1, X, x1).

Phase 2: User UB randomly chooses rB ← Z`e22 as the ephemeral randomness and computes

m1||m0 ← g(rB , sb), y ← G(m1,m0), and Y := gy. On receiving (X0, X, x1) from UA, UB
computes y1 := h((ga1)y) ⊕m1, y0 := h((gx0)y) ⊕m0, KB := H(X,m1,m0, Y, y1, y0), and
sends (Y, y1, y0) to UA. UB decrypts X,x1 to extract n′1 and x′ ← G(n′1). If X 6= gx, set
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UA UB

skA1 := (a1 ∈ Z`
e1
1
, sA1 ← {0, 1}2n) skB2 := (b2 ∈ Z`

e2
2
, sB2 ← {0, 1}2n)

pkA1 := ga1 pkB2 := gb2

skA2 := (a2 ∈ Z`
e2
2
, sA2 ← {0, 1}2n) skB1 := (b1 ∈ Z`

e1
1
, sB1 ← {0, 1}2n)

pkA2 := ga2 pkB1 := gb1

rA ← Z`
e1
1

, n1 ← g(rA, a1)

x← G(n1), x0 ← Z`
e1
1

. rB ← Z`
e2
2

, m1||m0 ← g(rB , b2)

X0 := gx0 y← G(m1,m0)

X := gx, x1 := h((gb2)x)⊕ n1 X,x1, X0 Y := gy, y1 := h((ga1)y)⊕m1

KA := H(n1, X, x1) y0 := h((gx0)y)⊕m0

m′1 := y1 ⊕ h((gy)a1) Y, y1, y0 KB := H(X0,m1,m0, Y, y1, y0)

m′0 := y0 ⊕ h((gy)x0)

y′ ← G(m′1,m
′
0) n′1 := x1 ⊕ h((gx)b2 , x′ ← G(n′1)

If Y 6= gy
′
, m′1||m′0 := sA1 If X 6= gx

′
, n′1 := sB2

K′B := H(X0,m
′
1,m

′
2, Y, y1, y0) K′A := H(n′1, X, x1)

SK := Ĥ(sid,KA,K
′
B) SK := Ĥ(sid,K′A,KB)

Fig. 7. A Compact 2-pass AKE SIAKE2 Based on SI-DDH. Here sid is
(
UA, UB , pkA1 ,

pkB2 , X, x1, X0, Y, y1, y0
)
.

n′1 := sB2. Let K ′A := H(n′1, X, x1). The session key is SK := Ĥ(sid,K ′A,KB) where sid is(
UA, UB , pkA1

, pkB2
, X, x1, X0, Y, y1, y0

)
.

Phase 3: On receiving (Y, y1, y0) from UB , UA computes m′1 := y1 ⊕ h((gy)a1), m′0 :=
y0 ⊕ h((gy)x) to extract y′ ← G(m′1,m

′
0). If Y 6= gy, set m′1||m′0 := sA1. Let K ′B :=

H(X0,m
′
1,m

′
0, Y, y1, y0). The session key is SK := Ĥ(sid,KA,K

′
B) where sid is

(
UA, UB , pkA1

,

pkB2 , X, x1, X0, Y, y1, y0

)
.

The session state owned by UA consists of the ephemeral secret key rA, x0, the decapsu-
lated key K ′B and the encapsulated key KA. The session state owned by UB consists of the
ephemeral secrete key rB and the encapsulated key KB , but not the decapsulated key K ′A.

Theorem 2. Under the SI-DDH assumption, SIAKE2 is CK+ secure in the random oracle
model. Precisely, if the number of users is N and there are at most l sessions between any
two users, for any PPT adversary A against SIAKE2 with q times of hash oracle queries,
there exists B s.t.

AdvCK+

SIAKE2
(A) ≤ 1/2 +N2 · l · q ·

(
4AdvsiddhB +

q + 1

2n
+ negl

)
.

Proof sketch: Obviously, UA sends X0 and a OW-CCA secure ciphertext X,x1 under public
key pkB2

to UB . UB responds with a [OW-CCA,OW-CPA] secure ciphertext Y, y1, y0 under
public keys pkA1 and X0 to UA. We first assume that the AKE adversary only has the
capability to Send message and does not query SessionKeyReveal and SessionStateReveal on
non-test sessions. Then under the assumption of [OW-CPA,OW-CPA] security, SIAKE2 is
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secure. Take the event E3 (one of the behaviors presented in Appendix A Table 6) as an
example, where the adversary may send X0 in the test session and he/she knows b2 but
not a1 or rB . Since the adversary does not know a1 and y, the [OW-CPA,OW-CPA] security
guarantees that KB encapsulated in (Y, y1, y0) is secure (thus SK is random assuming Ĥ is a
random oracle) even the adversary chooses part of the public key X0. Note that to simulate
the CK+ game and reduce the advantage of the AKE adversary to the advantage of solving
underlying [OW-CPA, ·] game, the simulator does not hold the static secret key a1 of UA.
It is safe if the adversary does not make SessionKeyReveal and SessionStateReveal queries.
However if the adversary makes SessionKeyReveal queries that involves UA, the simulator
fails to compute the encapsulated key and session key. Nevertheless, when the underlying
KEM is [OW-CCA,OW-CPA] secure, the simulator could query the strong decapsulation
oracle to get the encapsulated key and session key, so the reduction works. In other events,
the proof proceeds similarly.

Proof. We give representative security proof in two cases E5 and E3 in Table 2, where one is
wPFS and the other is the MEX attack. The other cases can be easily extended or modified
from the proof of E3, so they are omitted here. Table 3 presents the outline of reduction.

Assumption 2-Key PKE 2-Key KEM Cases in Table 2

SI-DDH [·,OW-CPA], pk0 = gx0 [·,OW-CPA], pk0 = gx0 E5

SI-DDH [OW-CPA, ·], pk1 = ga1 [OW-CCA, ·], pk1 = ga1 E3, E4, E6, E7-2, E8-1

SI-DDH OW-CPA OW-CCA, pk1 = gb2 E1, E2, E7-1, E8-2

Table 3. The outline of security reduction for SIAKE2.

wPFS E5. The proof of this case proceeds via a sequence of games, i.e. Game 0 to 2. In
this case, the test session sid∗ (with owner as responder or initiator) has a matching session

sid
∗
. Both static secret keys of the initiator and the responder are leaked to A. We denote

the event that the AKE adversary A outputs b′ such that b = b′ as Succi in Game i.
Game 0: This is the original CK+ game in case E5. In the test session, the adversary owns
all the static secret keys, i.e. a1, a2, b1, b2 asssuming the test session is between UA and UB .
Game 1: In this game, we change the way to generate m1||m0 in the test session by replacing
m1||m0 ← g(rB , b2) with m1||m0 ← {0, 1}2n. Since g is a random oracle, Pr[Succ0] −
Pr[Succ1] ≤ N2 · l · q2n .

Game 2: In this game, we change the session key in the test session by replacing Ĥ(sid,
K ′A, KB) with a random bit-string in {0, 1}n. Obviously, Pr[Succ2] = 1/2.

We construct an algorithm B to solve the [·,OW-CPA] security of 2KEMsidh, if there
exists an algorithm A to distinguish Game 1 and Game 2.

On receiving the public key pk0 from the [·,OW-CPA] challenger, to simulate the CK+

game, B randomly chooses two parties UA, UB and the i-th session as a guess of the test
session with success probability 1/N2l. B computes and sets all the static secrets and public
key pairs by himself for all N users UP as both responder and initiator. Particularly, B sets
the static secret and public key pair (pkB2

, skB2
) for UB as responder, and sets pkA1

for UA
as initiator. B sends pkA1 to [·,OW-CPA] challenger and receives the challenge ciphertext
C∗. Then B simulates all the communications and SessionStateReveal and SessionKeyReveal
as those in Game 1 except the test session. In the test session, B sets X0 = pk0 and responds
(Y, y1, y0) = C∗.
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Finally, B checks the hash list queried byA. If there exists some (UA, UB , pkA1 , pkB2 , X, x1,
X0, C

∗,KA,KB) in the list such that KA is the key encapsulated in (X,x1) (since (X,x1) is
honestly generated by B, it can compute KA), B chooses a random one and outputs KB , oth-
erwise⊥. Denote flag as the event thatA explicitly queries (UA, UB , pkA1

, pkB2
, X, x1, X0, C

∗,
KA,KB) to the oracle Ĥ such that KA is the key encapsulated in (X,x1) and KB is the
key encapsulated in C∗. If flag does not happen, B perfectly simulates both Game 1 and
Game 2. Thus,

Pr[Succ1]− Pr[Succ2] ≤ Pr[flag] ≤ N2 · l ·Adv
[·,OW-CPA]
2PKEsidh

(C).

By Lemma 2, Pr[Succ0] ≤ 1/2 +N2 · l ·
(
q

2n + 2Advsiddh
B + 1/2n + negl

)
.

MEX E3. In this case, the test session sid∗ with its owner as responder does not have a
matching session which means that X,x1, X0 is sent by adversary. And the randomness rB
are leaked to A. It is more complicated than E5. At first, (X,x1, X0) in the test session is
generated by A rather than B. However, (X,x1) is the ciphertext under public key pkB2

,
and the encapsulated key KA can be extracted with skB2

. Furthermore, the challenge public
key that the security relies upon is the static public key, and this will affect the simulation of
answering SessionStateReveal and SessionKeyReveal queries. Fortunately, 2PKEsidh provides
a strong decapsulation oracle to answer those queries.

The proof also proceeds via a sequence of games, i.e., Game 0 to 2. We denote the event
that A outputs b′ such that b = b′ as Succi in Game i.
Game 0: This is the original CK+ game in case E3. In the test session, rB is leaked to the
adversary assuming the test session is between UA and UB .
Game 1: In this game, we change the way to generate m1||m0 in the test session by
replacing m1||m0 ← g(rB , b2) with m1||m0 ← {0, 1}2n. Although rB is leaked to A, since g
is a random oracle, A will not find this change without querying g with rB , b2. We denote
Askg as the event A queries g with rB , b2. If event Askg happens, we can extract b2 and
utilize it to solve the underlying SI-DDH problem. Precisely, given (g, g1, g2, j), B randomly
chooses UB as a guess of the responder in the test session with success probability 1

2N . B
sets pkB2

:= g2. When event Askg happens, B uses b2 to output j
?
= gb2

1 .

Pr[Succ0]− Pr[Succ1] ≤ 2N ·Advsiddh
B .

Game 2: In this game, we change the session key in the test session by replacing Ĥ(sid,
K ′A, KB) with a random bit-string in {0, 1}n. Obviously, Pr[Succ2] = 1/2.

We construct an algorithm B to solve the [OW-CCA, ·] security of 2KEMsidh, if there exists
an algorithm A to distinguish Game 1 and Game 2.

On receiving the public key pk1 from the [OW-CPA, ·] challenger, to simulate the CK+

game, B randomly chooses two parties UA, UB and the i-th session as a guess of the test
session with success probability 1/N2l. B computes and sets all the static secret and public
key pairs on his own for all N users UP as both responder and initiator except the static
public key for UA as initiator.

– Specifically, B sets the static secret and public key pair (pkA2
, skA2

) that invloves UA as
responder, and sets pk1 (receiving from the [OW-CPA, ·] challenger) for UA as initiator.

– In the test session, on receiving (X,x1, X0) from A, B sends pk∗0 = X0 to the [OW-CCA, ·]
challenger and receives the challenge ciphertext C∗. Then B returns C∗ to A as response.

– B simulates all the communications and SessionStateReveal and SessionKeyReveal queries
as those in Game 1 except that involves UA as initiator (since B does not know skA1

).
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– For those SessionStateReveal and SessionKeyReveal queries involves UA as initiator (for
example, UA honestly sends out X ′, x′1, X

′
0 and receives (Y ′, y′1, y

′
0)), B queries the O

oracle with (X ′0;Y ′, y′1, y
′
0) provided by the [OW-CCA, ·] challenger to extract the en-

capsulated key and maintains the consistency of the Ĥ list with SessionStateReveal and
SessionKeyReveal queries.

Finally, B checks the hash list queried by A. If there exists some (UA, UB , pkA1
, pkB2

, X,
x1, X0, C

∗,KA,KB) in the list such that KA is the key encapsulated in (X,x1) (since
(X,x1) is honestly generated by B, it can compute KA), B chooses a random one and
outputs KB , otherwise ⊥. Denote flag as the event that A explicitly queries (UA, UB , pkA1 ,
pkB2 , X, x1, X0, C

∗,KA,KB) to the oracle Ĥ such that KA is the key encapsulated in (X,x1)
and KB is the key encapsulated in C∗. If flag does not happen, B perfectly simulates both
Game 1 and Game 2. Thus,

Pr[Succ1]− Pr[Succ2] ≤ Pr[flag] ≤ N2 · l ·Adv
[OW-CCA,·]
2KEMsidh

(C).

By Theorem 1, to sum up,

Pr[Succ0] ≤ 1/2 +N2 · l · q ·
(

4Advsiddh
B + 1/2n + negl

)
.

ut

5 Three-pass SIAKE

We first enhance the SI-DDH assumption to 1-Oracle SI-DH assumption, and analyze its
reliability. Based on this assumption, we propose the three-pass SIAKE3.

5.1 1-Oracle SI-DH and Implied 2-key KEM

The 1-Oracle SI-DH assumption is inspired by the Oracle Diffie-Hellman assumption over
classical group given by Abdalla, Bellare and Rogaway [ABR01] for analyzing DHIES. Let
G :=< g > and |G| = p be a prime. The Oracle Diffie-Hellman assumption states that, given
(g, ga, gb, h), it is difficult to decide whether h = H(gab) or not (where H is a hash function),
even the solver could make polynomial queries to an oracle HB(·) which will return H(vb)
with v ∈ G satisfying v 6= ga. Under the Oracle Diffie-Hellman assumption, the DHIES
scheme is chosen ciphertext secure [ABR01].

However, the Oracle Diffie-Hellman assumption can not be directly extended in the
supersingular isogeny setting. As we have presented several times before, the adaptive attack
[GPST16] would allow extraction of every bit of b with polynomial queries to HB(·) with
specified points, implying the analogue of Oracle Diffie-Hellman problem in the supersingular
isogeny setting could be solved. Moreover, in the classical group, if v 6= ga, then vb 6= (ga)b.
However, in the supersingular isogeny setting, even if v 6= ga ∈ SSECA, it is possible that
vb is equal to (ga)b.

Fortunately, only one query to HB(·) with v 6= ga is needed for our purpose and the
adaptive attack does not work. Furthermore, when HB(v) = H(v, vb), even if v 6= ga, the
case H(v, vb) = H(ga, (ga)b) occurs with negligible probability.
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Definition 4 (1-Oracle SI-DH Assumption). Let H : {0, 1}∗ → {0, 1}n be a hash
function. Let e and g be public parameters as defined in SI-DDH assumption. Let D0 and
D1 be two distributions:

D1 :={e, g, ga, gb, H(ga, (ga)b)|a← Z`ess , b← Z`ett }

D0 :={e, g, ga, gb, h|a← Z`ess , b← Z`ett , h← {0, 1}
n}

The 1-Oracle SI-DH problem is, given a random sample from Db depending on b← {0, 1},
and a one-time oracle HB, guessing b. The one-time oracle HB can be queried only one time
with y ∈ SSECA and y 6= ga, and it will return H(y, yb). The advantage of A to solve the
1-Oracle SI-DH problem is

Adv1osidh
A = Pr[b′ = b|AHB(·)(db ← Db) = b′, b← {0, 1}]− 1/2.

The 1-Oracle SI-DH assumption states that for any PPT algorithm A, Adv1osidh
A is negligible.

We emphasize that the adversary is allowed to query the hashed SIDH oracle HB only
once with y 6= ga. If there are polynomial queries, the 1-Oracle SI-DH problem can be solved
by the adaptive attack in [GPST16]. Please also notice that the hash function involves ga

or y as input besides the j-invariant. Otherwise the 1-Oracle SI-DH problem is easy. Let
ga = (EA, φA(Pt), φA(Qt)). Since 〈φA(Ps) + [y]φA(Qs)〉 = 〈[u]φA(Ps) + [y][u]φA(Qs)〉 for
any integer 1 ≤ u ≤ `ess and coprime to `s, the attacker sets EY = EA, R = [u]φA(Ps),
S = [u]φA(Qs) and y = (Y,R, S). Then (ga)b and yb will produce the same j-invariant.
However, when taking ga or y as input of H, any query with y 6= ga to HB will get a
completely different value.

1-Gap SI-DH problem is similar to the SI-CDH problem but the adversary is given access
to a highly restricted SI-DDH oracle.

Definition 5 (1-Gap SI-DH Assmption). Let e and g be public parameters. The 1-Gap
SI-DH problem is that, given ga, gb (where a← Z`ess , b← Z`ett ), and an oracle Osiddh(y, ·),
compute the j-invariant (ga)b = (gb)a. Here, y ∈ SSECA is chosen by the adversary A
at any time before its first queries to Osiddh(y, ·). Osiddh(y, j) will return 1 if j = yb, and
0 otherwise. For any PPT algorithm A, we define the advantage of solving 1-Gap SI-DH
problem as

Adv1gsidh
A = Pr[j′ = (ga)b|AOsiddh(y,·)(g, e, ga, gb)→ (y, j′)].

The 1-Gap SI-DH assumption states: for any PPT algorithm A, the advantage of solving
1-Gap SI-DH problem is negligible.

We emphasize that if the adversary is allowed to query Osiddh(·, ·) with unlimited numbers
of y, 1-Gap SI-DH problem can be solved using the adaptive attack in [GPST16]. However,
here Osiddh(·, ·) oracle only allows to be queried once with y of adversary’s choice.
Discussion. These two assumptions are “non-standard” for supersingular isogeny. The
adaptive attack [GPST16] and its extension can not easily break these new assumptions.
We encourage more works on the analysis of the hardness of these two problems.

The following theorem shows that the 1-Gap SI-DH assumption implies the 1-Oracle
SI-DH assumption when the hash function H is modeled as a random oracle.

Theorem 3. For any algorithm A against the 1-Oracle SI-DH problem there exists an
algorithm B against the 1-Gap SI-DH problem such that

Adv1osidhA,H (n) ≤ qH ·Adv1gsidhB (n),

where qH is the number of times to query Osiddh(y, ·).
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Proof. Let A be any algorithm solving the 1-Oracle SI-DH problem. We construct an al-
gorithms B to solve the 1-Gap SI-DH problem using A as a sub-routine in Figure 8. The
challenge is how to maintain the hash list so as to keep the consistency with the one-time
Oracle HB . Actually, the limited oracle Osiddh(·, ·) would help B to fix it.

Algorithm BOsiddh(·,·)
(
e, g, ga, gb

)
01 h0, h1 ← {0, 1}n One time HB(y)

02 b← {0, 1} 01 Choose y as the base of Osiddh

03 Run AHB(·),H(g, ga, gb, hb) 02 if ∃(y, j′, h′) ∈ LH ∧ Osiddh(y, j
′) = 1

04 a. For one-time query HB 03 return h′

05 do as one-time HB 04 else h′′ ← {0, 1}n, LH = LH ∪ {y, j′, h′′}
06 b. For the H-query 05 return h′′

07 do as H(x, j′) H(x, j′)

08 c. Let b′ be the output of A 01 if ∃(x, j′, h′) ∈ LH return h′

09 return (·, j, ·)← LH 02 otherwise h← {0, 1}n, LH = LH ∪ {(x, j′, h)}
10 return j 03 return h

Fig. 8. Algorithm B for attacking the 1-Gap SI-DH problem.

Note that in Figure 8, if HB(y) is asked at first and returns a random h, then when
(y, j′) is queried to H such that Osiddh(y, j

′) = 1, it will return h. If H(y, j′) is asked at
first and returns a random h, then when y is asked to HB such that Osiddh(y, j

′) = 1, it will
return that h.

Let Ask be the event that (ga, (ga)b) is queried to H and Ask be the complement of Ask.
If Ask does not happen, there is no way to tell whether hb is equal to H(ga, (ga)b) or not.
Thus we have that

Adv1osidh
A,H = Pr[AHB(·)(b← Db) = b]− 1/2

= Pr[AHB(·)(b← Db) = b ∧ Ask] + Pr[AHB(·)(b← Db) = b ∧ Ask]− 1/2

= Pr[AHB(·)(b← Db) = b ∧ Ask]

≤Pr[Ask] ≤ qH ·Adv1gsidh
B .

ut

We now modify the 2PKEsidh and denote the new scheme as 2PKE1osidh. The key gen-
eration algorithms are the same. In the encryption algorithm, h

(
(gb)a1

)
is replaced by

h
(
gb, (gb)a1

)
and h

(
(gb)a0

)
is replaced by h

(
gb, (gb)a0

)
. Thus the ciphertext is

c :=
(
gb, h

(
gb, (gb)a1

)
⊕m1, h

(
gb, (gb)a0

)
⊕m0

)
.

Lemma 3. The following holds.

– Under the 1-Oracle SI-DH assumption, the scheme 2PKE1osidh is [OW-CPA, ·] secure
even H(pk∗0 , pk

∗b
0 ) is given to the adversary besides the challenge ciphertext c∗ = (c∗1 =

gb, c1, c2).
– If the [OW-CPA, ·] game is changed as that pk∗0 is generated by the challenger and

the corresponding sk∗0 is leaked to the adversary, then under the SI-DDH assumption,
2PKE1osidh satisfies this [OW-CPA, ·] security even H(pk∗0 , pk

∗b
0 ) is given to the adversary

besides the challenge ciphertext c∗ = (c∗1 = gb, c1, c2).
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– Under the SI-DDH assumption, the scheme 2PKE1osidh is [·,OW-CPA] secure.

Proof. The [·,OW-CPA] security is the same with that in Lemma 2. We reduce the [OW-CPA, ·]
security with leakage to the underlying 1-Oracle SI-DH assumption.

Game 0: This is the original [OW-CPA, ·] challenge game in Fig. 3. We denote the event
that the adversary wins the games as Succ0.

Game 1: In this game, we modify the computation of challenge ciphertext. Specifically,
h(gb, (gb)a1 is replaced by a random bit h← {0, 1}n. We construct an algorithm B to solve
the 1-Oracle SI-DH problem given an instance (g, g1, g2, h), and a one-time oacle HB(·), if
there exists an algorithm A to distinguish Game 0 and Game 1.

BHB(·)(e, g, g1, g2 = gb, h)

01 pk1 ← g1
02 pk∗0 , state← A(pk1)
03 m1 ← {0, 1}n, m0 ← {0, 1}n
04 Query HB with pk∗0 and get pk∗b0
04 c∗1 = g2, c∗2 = h⊕m1, c∗3 = h(pk∗0 , pk

∗b
0 )⊕m0

05 c∗ = (c∗1, c
∗
2, c
∗
3)

06 m′1||m′0 ← A(state, C∗)
07 If m′1 = m1, b′ = 1, else b′ ← {0, 1}.

If (g, g1, g2, h) is a 1-Oracle SI-DH tuple, B perfectly simulates Game 0, else B perfectly
simulates Game 1. In the 1-Oracle SI-DH challenge, we have

Adv1osidh
B = Pr[b = b′]− 1/2

= 1/2(Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0])

= 1/2(Pr[b′ = 1|Game 0]− Pr[b′ = 1|Game 1])

= 1/2(Pr[Succ0]− Pr[Succ1]).

Note that in this game, the [OW-CPA, ·] advantage is less than 1/2n. To Sum up, we have
that, Pr[Succ0] ≤ 2AdvsiddhB + 1/2n. ut

Similarly, we make the same modification to the 2KEMsidh and denote the new scheme
as 2KEM1osidh.

Theorem 4. The following holds in the random oracle model.

– Under the 1-Oracle SI-DH assumption, the scheme 2KEM1osidh is [OW-CCA, ·] secure
in the random oracle model, even h(pk∗0 , pk

∗b
0 ) is given to the adversary besides the

challenge ciphertext c∗ = (c∗1 = gb, c1, c2).

– If the [OW-CCA, ·] game is changed as that pk∗0 is generated by challenger and the corre-
sponding sk∗0 is leaked to the adversary, then under the SI-DDH assumption, 2KEM1osidh

satisfies this [OW-CPA, ·] security even H(pk∗0 , pk
∗b
0 ) is given to the adversary besides the

challenge ciphertext c∗ = (c∗1 = gb, c1, c2).

– Under the SI-DDH assumption, the scheme 2KEM1osidh is [·,OW-CPA] secure.
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UA UB

skA1 := (a1 ∈ Z`
e1
1
, sA1 ← {0, 1}2n) skB2 := (b2 ∈ Z`

e2
2
, sB2 ← {0, 1}2n)

pkA1 := ga1 pkB2 := gb2

skA2 := (a2 ∈ Z`
e2
2
, sA2 ← {0, 1}2n) skB1 := (b1 ∈ Z`

e1
1
, sB1 ← {0, 1}2n)

pkA2 := ga2 pkB1 := gb1

rA ← Z`
e1
1

, n1||n0 ← g(rA, a1) rB ← Z`
e2
2

, m1||m0 ← g(rB , b2)

x← G(n1, n0) y← G(m1,m0)

X := gx, x1 := h(gb2 , (gb2)x)⊕ n1 X,x1 Y := gy, y1 := h(ga1 , (ga1)y)⊕m1

If X := pkA1 ,⊥

If Y := pkB2 ,⊥ Y, y1, y0 y0 := h(X, (gr)y)⊕m0

x0 := h(Y, (gy)x)⊕ n0 KB := H(X,m1,m0, Y, y1, y0)

KA := H(Y, n1, n0, X, x1, x0) x0

m′1 := y1 ⊕ h((gy)a1) n′1 := x1 ⊕ h((gx)b2

m′0 := y0 ⊕ h(X, (gy)x) n′0 := x0 ⊕ h(X, (gx)y)

y′ := G(m′1,m
′
0) r′ :← G(n′1, n

′
0)

If Y 6= gy
′
, m′1||m′0 := sA1 If X 6= gr

′
, n′1||n′0 := sB2

K′B := H(X,m′1,m
′
2, Y, y1, y0) K′A := H(Y, n′1, n

′
0, X, x1, x0)

SK := Ĥ(sid,KA,K
′
B) SK := Ĥ(sid,K′A,KB)

Fig. 9. A Compact 3-pass AKE SIAKE3 based on SIDH. Here sid is
(
UA, UB , pkA1 ,

pkB2 , X, x1, x0, Y, y1, y0
)
. The boxed arguments are the main differences with SIAKE2. Besides,

the input of h includes the first part of the public key.

5.2 A Three-pass AKE based on 1-Oracle SI-DH Assumption

The three-pass AKE SIAKE3 is shown in Fig. 9. The public parameters and register are the
same with those for SIAKE2.

Phase 1: User UA chooses ephemeral randomness rA. Let n1||n0 ← g(rA, a1) and x ←
G(n1, n0). Then UA computes X := gx, x1 := h(gb2 , (gb2)x)⊕ n1, and sends X,x1 to UB .

Phase 2: User UB chooses ephemeral randomness rB ← Z`e22 and computes m1||m0 ←
g(rB , b2), y ← G(m1,m0), and Y := gy. On receiving (X,x1, X0) from UA, if X := pkB2

,
aborts, else UB computes y1 := h(ga1 , (ga1)y) ⊕ m1, y0 := h(X, (gx)y) ⊕ m0, KB :=
H(X,m1,m0, Y, y1, y0), and sends (Y, y1, y0) to UA.

Phase 3: On receiving (Y, y1, y0) from UB , if Y := pkA1 , aborts, else UA decrypts Y, y1, y0

to extract m′1||m′0 and y′ ← G(m′1,m
′
0). If Y 6= gy, then m′1||m′0 := sA1. UA computes

K ′B := H(X,m′1,m
′
0, Y, y1, y0) and the session key as SK := Ĥ(sid,KA,K

′
B), where sid is(

UA, UB , pkA1
, pkB2

, X, x1, x0, Y, y1, y0

)
.

Phase 4: If X := pkB2
, then aborts, else UB decrypts X,x1, x0 to extract n′1, n

′
0 and r′ ←

G(n′1, n
′
0). If X 6= gr

′
, then n′1||n′0 := sB2. Let K ′A := H(Y, n′1, n

′
0, X, x1, x0). The session key

is computed as SK := Ĥ(sid,K ′A,KB) where sid is
(
UA, UB , pkA1

, pkB2
, X, x1, Y, y1, y0, x0

)
.
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The session state of UA consists of the ephemeral secret key rA, the decapsulated key
K ′B and the encapsulated key KA. The session state of UB consists of the ephemeral secrete
key rB , the encapsulated key KB and the decapsulated key K ′A.

Theorem 5. Under the 1-Oracle SI-DH assumption, SIAKE3 is CK+ secure in the random
oracle model. Precisely, if the number of users is N and there are at most l sessions between
any two users, for any PPT adversary A against SIAKE3 with q times of hash oracle queries,
there exists B s.t.

AdvCK+

SIAKE3
(A) ≤ 1/2 +N2 · l · q ·

(
4Adv1osidhB +

q + 1

2n
+ negl

)
.

Proof sketch: Obviously, UA sends [OW-CCA,OW-CPA] secure X,x1, x0 under public keys
pkB2

and Y to UB . UB responds with [OW-CCA,OW-CPA] secure ciphertexts Y, y1, y0 under
public keys pkA1

and X0 to UA. The proof of wPFS security is exactly the same as that of
SIAKE2, but different for other security cases. The main observation is the same: since the
underlying KEM is [OW-CCA, ·] secure, the simulator could query the strong decapsulation
oracle to get the encapsulated key and session key and simulate the SessionKeyReveal and
SessionStateReveal. However, this is not sufficient. Take E3 for example, given Y ∗, y∗1 , y

∗
0 as

the challenge ciphertext, the simulator obviously does not know the randomness of Y ∗, but
in the test session Y ∗ is the public key of (X,x1, x0). Fortunately, the underlying 1-Oracle
SI-DH assumption provides this capability to encapsulate one ciphertext.

Proof. The proof for wPFS security is almost the same as that of SIAKE2. The other cases
can be easily extended or modified from the proof of E3. We omit them and only show the
proof for case E3 here. For E1, E2, and E4 when the adversary A makes Send query in the
test session, the second part of the challenge public key is chosen by A. For E6, E7-1, E7-2,
E8-1, E8-2, the messgaes in test session are honestly generated. Thus, the second part of the
challenge public key is chosen by challenger C.

Table 4 presents the outline of reduction.

Assumption 2-Key KEM Cases in Table 2

SI-DDH [·,OW-CPA], pk0 = gx0 E5

1-Oracle SI-DH [OW-CCA, ·] with leakage, pk1 = ga1 , pk∗0 ← A E3, E4

SI-DDH [OW-CCA, ·], pk1 = ga1 , pk∗0 ← C E6, E7-2, E8-1

1-Oracle SI-DH [OW-CCA, ·] with leakage, pk1 = ga1 , pk∗0 ← A E1, E2

SI-DDH [OW-CCA, ·], pk1 = ga1 , pk∗0 ← C E7-1, E8-2

Table 4. The outline of security reduction for SIAKE3.

MEX E3. In this case, X,x1 and x0 are sent by the adversary. Both the static secret keys
of UB and the randomness rB are leaked to A.

The proof proceeds via a sequence of Games 0 to 2. We denote the event that the AKE
adversary A outputs b′ such that b = b′ as Succi in Game i.

This is the original CK+ game in case E3. In the test session, rB is leaked to the adversary
assuming the test session is between UA and UB .
Game 1: In this game, we change the way to generate m1||m0 in the test session from
m1||m0 ← g(rB , b2) to m1||m0 ← {0, 1}2n. Although rB is leaked to A, since g is a random
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oracle, A will not detect this change if not querying g with rB , b2. We denote Askg as the
event A queries g with rB , b2. If event Askg happens, we can extract b2 and utilize it to solve
the underlying SI-DDH problem (trivially solve the underlying 1-Oracle SI-DH problem).
Precisely, given (g, g1, g2, j), B randomly chooses UB as a guess of the responder in the test
session with success probability 1

2N . B sets pkB2
= g2. When event Askg happens, B just

uses b2 to compute and output j
?
= gb2

1 . Thus we have

Pr[Succ0]− Pr[Succ1] ≤ 2N ·Advsiddh
B ≤ 2N ·Adv1osidh

B .

Game 2: In this game, we change the session key in the test session from Ĥ(sid,K ′A,KB)
to a random bit-string in {0, 1}n. Obviously, Pr[Succ2] = 1/2.

We construct an algorithm B to solve the [OW-CCA, ·] security of 2KEM1osidh with leakage,
if there exists an algorithm A to distinguish Game 1 and Game 2.

On receiving the public key pk1 from the [OW-CCA, ·] challenger, to simulate the CK+

game, B randomly chooses two parties UA, UB and the i-th session as a guess of the test
session with success probability 1/N2l. B computes and sets all the static secret and public
key pairs by himself for all N users UP as both responder and initiator except the static
public key for UA as initiator.

– Specifically, B sets the static secret and public key pairs (pkA2 , skA2) for UA as responder,
and sets pk1 (receiving from the [OW-CPA, ·] challenger) for UA as initiator.

– In the test session, on receiving (X,x1) from A, B sets pk∗0 = X and sends pk∗0 to
[OW-CCA, ·] challenger and receives a challenge ciphertext C∗ = (Y ∗, y1, y0). Then B
returns C∗ to A as response.

– B simulates all the communications and SessionStateReveal and SessionKeyReveal queries
as those in Game 1 except that UA acts as initiator (since B does not know skA1).

– For those SessionStateReveal and SessionKeyReveal queries that involve UA as initiator
(for example, UA honestly sends out X ′, x′1 and receives (Y ′, y′1, y

′
0)). B queries the O or-

acle with (X ′0;Y ′, y′1, y
′
0) provided by [OW-CCA, ·] challenger to the extract encapsulated

key and maintains the consistency of Ĥ list with SessionStateReveal and SessionKeyRe-
veal queries.

– For the test session, on receiving x0, B queries [OW-CCA, ·] challenger with X to extract
h(X,Xy) (where Y ∗ = gy). Then B uses h(X,Xy) and b2 to encapsulate X,x1, x0.

Finally, B checks the hash list queried by A. If there exists some (UA, UB , pkA1 , pkB2 , X,
x1, C∗, x0,KA,KB) in the list such that KA is the key encapsulated in (X,x1, x0) (B can
compute KA with h(X,Xy) and b2), B chooses a random one and outputs KB , otherwise
⊥. Denote flag as the event that A explicitly queries (UA, UB , pkA1

, pkB2
, X,x1, C∗, x0,

KA,KB) to the oracle Ĥ such that KA is the key encapsulated in (X,x1, x0) and KB is the
key encapsulated in C∗. If flag does not happen, B perfectly simulates both Game 1 and
Game 2. Thus,

Pr[Succ1]− Pr[Succ2] ≤ Pr[flag] ≤ N2 · l ·Adv
[OW-CCA,·]
2KEM1osidh

(C).

By Theorem 4, to sum up,

Pr[Succ0] ≤ 1/2 +N2 · l · q ·
(

4Adv1osidh
B + 1/2n + negl

)
.

ut
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6 Implementation and Comparison

We implement SIAKE2 and SIAKE3, and compare their performance with [FSXY13], [BCNP09],
[Lon18] and the lattice-based Kyber-AKE [BDK+17].

We adopt the curve SIKEp751 in SIKE [JAC17] that is proceeding the second round
of NIST’s post-quantum standardization. The performance is benchmarked on an Intel(R)
Core i7-6567U CPU @3.30GHz processor supporting the Skylake micro-architecture. Kyer-
AKE is an AKE based on lattice and others are all considered in the SIDH setting.

It is easy to see in Table 5 that SIAKE2’s bandwidth is reduced by 22.9% and SIAKE3’s
bandwidth is reduced by 49.3% compared to FSXY [FSXY13] and BCNP [BCNP09,Lon18].
In Table 6, we present the performance of our protocols compared with the FSXY scheme
[FSXY13] and the BCNP-Lon scheme [BCNP09,Lon18]. They are median cycles over 1,000
measurements. It shows that our 2-pass scheme is 1.12 times faster than that of FSXY and
1.3 times faster than that of BCNP-Lon. Our 3-pass AKE is more efficient since it is 1.2
times faster than FSXY and 1.4 times faster than BCNP.

Scheme A→ B B → A A→ B total(byte)

Kyber-AKE [BDK+17] 2272 2368 4640
FSXY [FSXY13] 1160 1160 - 2320
BCNP [BCNP09,Lon18] 1160 1160 - 2320
SIAKE2 1160 628 - 1788
SIAKE3 596 628 32 1176

Table 5. Comparison of message sizes. We adopt the parameters chosen in [JAC17], taking into
account the efficiency. “-” stands for no messages to be transmitted. The message sizes are counted
in byte.

Scheme A(initial) B A(end) B(end) total

FSXY [FSXY13] 6,238 14,779 10,124 31,141
BCNP-Lon [BCNP09] 11,146 20,092 9,563 40,801
SIAKE2 6,828 13,917 6,641 27,386
SIAKE3 5,966 4,429 4,922 9,575 24,892

Table 6. Comparison of cycle counts. Benchmarks are performed on a Intel(R) Core i7-6567U CPU
@3.30GHz processor. Cycle counts are rounded to 106 cycles by taking the average of 1,000 trials.

7 Conclusion and Open Problem

In this paper, we propose two AKEs based on supersingular isogeny assumptions, one is
two-pass and one is three-pass. Both of them achieve CK+ security and support arbitrary
registration in the classical random oracle model. However, to fully explain their quantum-
resistance, their security in the quantum random oracle model should be analyzed. We leave
it as an open problem and future work.
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