
New Single-Trace Side-Channel Attacks on a
Specific Class of Elgamal Cryptosystem

N. Mahdion, Hadi Soleimany, Pouya Habibi, Farokhlagha Moazami

Cyberspace Research Institute, Shahid Beheshti University

Abstract. In 2005, Yen et al. proposed the first N−1 attack on the mod-
ular exponentiation algorithms such as BRIP and square-and-multiply-
always methods. This attack makes use of the ciphertext N − 1 as a
distinguisher to obtain a strong relation between side-channel leakages
and secret exponent. The so-called N − 1 attack is one of the most im-
portant attacks, as it requires a non-adaptive chosen ciphertext which is
considered as a more realistic attack model compared to adaptive cho-
sen ciphertext scenario. To protect the implementation against N − 1
attack, several literatures propose the simplest solution, i.e. “block the
special message N − 1”. In this paper, we conduct an in-depth research
on the N−1 attack based on the square-and-multiply-always (SMA) and
Montgomery Ladder (ML) algorithms. We show that despite the unac-
cepted ciphertext N − 1 countermeasure, other types of N − 1 attacks is
applicable to specific classes of Elgamal cryptosystems. We propose new
chosen-message power-analysis attacks which utilize a chosen ciphertext
c such that c2 = −1 mod p where p is the prime number used as a mod-
ulus in Elgamal. Such a ciphertext can be found simply when p ≡ 1
mod 4. We demonstrate that ML and SMA algorithms are subjected to
our new N − 1-type attack by utilizing a different ciphertext. We imple-
ment the proposed attacks on the TARGET Board of the ChipWhisperer
CW1173 and our experiments validate the feasibility and effectiveness of
the attacks by using only a single power trace.

Key words: Elgamal cryptosystem, Side-channel attacks, Montgomery Ladder,
Square and Multiply Always, N − 1 attack

1 Introduction

The implementation of cryptographic algorithms is a complicated and impor-
tant process. Although most of the cryptographic primitives are mathematically
secure, their unprotected implementations on embedded devices can pose se-
rious threats by exploiting side-channel information leakages. This information
includes power consumption, electromagnetic radiation, system run times, acous-
tic and etc. which are correlated with the secret values during data processing.
Power-analysis attacks are a powerful type of side-channel attack originally de-
scribed by Kocher. This class of attacks has been applied successfully against
the implementations of popular public-key cryptosystems RSA and Elgamal [14]

which make use of exponentiation algorithms. The primary side-channel attacks
against modular exponentiation algorithms rely on certain physical phenomena,
which allows one to distinguish between multiplication and squaring operations
[13]. Messerges et al. proposed three types of power-analysis attacks against RSA
with multiple random plaintexts[15]. To mitigate these attacks, the implemen-
tations of modular exponentiation utilize a same sequence of instructions for
multiplication and squaring operations, which makes it challenging to differen-
tiate between these two operations for random input messages in practice [12].
In response, various methods have been proposed that use the leak of sensi-
tive information during the decryption process of chosen messages [19, 21, 17].
In particular, several chosen-message attacks have been applied on public key
encryption in [2, 3, 7, 8, 10, 11, 12, 16, 20].

Simple power analysis (SPA) attacks on RSA implemented based on CRT mode
with adaptively chosen messages is proposed by Novak[17]. Furthermore, a dif-
ferential power analysis (DPA) attack based on the Hamming weight of an in-
termediate value was applied to RSA in the CRT mode [4]. ”Doubling attack”
is another type of the chosen-message attack in which the attacker can retrieve
the secret exponent by generating a collision between the corresponding power
traces of the two related messages X and X2 [6].

However, the DPA attack proposed in [4] cannot be applied to the Montgomery
Ladder algorithm. In addition, methods like inserting dummy operations may
defeat the aforementioned attacks, since these attacks require more than one
power trace. Single-trace side-channel attacks, which utilize a single measure-
ment are more devastating than other types of power-analysis attacks which
make use of several measurements and can be mitigated by methods like utiliz-
ing dummy operations. As another direction, Yen et al. described a simple yet
effective attack based on a particular input data N − 1 where N is a modulus in
RSA or Elgamal cryptosystems [22]. The input N−1 generates internal collisions
in the state of the modular exponentiation which make it possible to distinguish
between squaring and multiplying operations in one power trace. The N − 1
attack can be applied to the left-to-right square-multiply-always and BRIP al-
gorithms. Further research on the N − 1 attacks was performed by Ding et al.
who proposed to utilize new input messages that are applicable to Boscher’s
right-to-left exponentiation algorithm [5]. Furthermore, they found out that the
Montgomery Powering Ladder is subjected to the N − 1 attack.

Several researches have been dedicated to protect the implementation of expo-
nentiation functions against side-channel attacks. However, a strong counter-
measure cannot be established for free. It has an impact on the latency, power
consumption and size of the implementation. Consequently, simple countermea-
sures in real-world applications are preferred as they utilize a small overhead,
rather than complicated solutions with notable extra cost. In this direction, to
protect the implementation against the N − 1 attack, several articles propose
the simplest solution, i.e. “block the special message N − 1”.

In this paper, we propose a new type of the N − 1 attack on a specific class of
Elgamal which is implemented based on the square-and-multiply-always (SMA)

2

or Montgomery Ladder (ML) algorithms. In our attack, we utilize a chosen
ciphertext c such that c2 = −1 mod p where p is the prime number used as
a modulus in Elgamal. Such a ciphertext can be found simply when p ≡ 1
mod 4. We demonstrate that SMA and ML algorithms cannot be defeated by
N − 1-type attacks even if the special message N − 1 is blocked by the user. To
evaluate the theoretical model, we implement the SMA and ML algorithms on an
Atmel ATXMEGA128D4 8-bit microcontroller that is located on the TARGET
Board of the ChipWhisperer CW1173 and applied the proposed attack on these
algorithms. The experimental results show that our attack is applicable to these
two algorithms by using only a single power trace.
The remainder of this paper is organized as follows: Section 2 gives an overview
of previous works. Section 3 describes our new attack and how it works on SMA
and ML algorithms. Section 4 presents our experimental results. Finally, Section
5 summarizes the paper and suggests further research.

2 Previous Comparative Power Analysis Attacks

In order to recover secret information of RSA or Elgamal cryptosystems from
exponentiation algorithms that are assumed secure against side-channel attacks,
several power-analysis attacks have been proposed based on (adaptive) chosen
messages during the last decade. Several proposed attacks use a common power
analysis technique and fall under the same umbrella. The main idea of the variety
of approaches is based on the fact that, dual execution of the same operation for
the same values is detectable in the power traces. In particular, by performing
two multiplications a × b and c × d, one can expect the corresponding power
consumption traces to be similar if the pair values (a, b) and (c, d) are (almost)
equal (a = c, b = d). Similarly, it is to be expected to have dissimilar power
consumption traces if unequal values with different size are used. In this section
we briefly review the previous comparative power analysis attacks.

2.1 Doubling attack

In Doubling attack, it is assumed that the attacker has access to the two power
consumption traces corresponding to the decryption of two related messages X1

and X2. The related messages should be selected smartly to cause collisions
between their power traces at some time frames. The exact locations of such col-
lisions in the power traces can be used to retrieve the secret exponent. Doubling
attacks can be applied to different exponentiation algorithms. In what follows,
we describe the basic idea of the attack presented on the left-to-right SMA ex-
ponentiation algorithm that is described in Algorithm 1. To reveal the secret
exponent, the adversary uses two related inputs X mod N and X2 mod N to
make a collision between the corresponding power consumption traces. Accord-
ing to Algorithm 1, when the i − th bit of the exponent equals to 0 a collision
is generated between the squaring operation at the (i− 1)− th and i− th cycle
in the power trace of X and X2, respectively. Figure 1 shows this verity for the
secret exponent of ”101001...”.

3

Algorithm 1 Left-to-Right Square and Multiply Exponentiation

Require: c, D = (dl−1, ..., d1, d0)2 , p.
Ensure: m = cD mod p.
1: m← 1
2: for i = l − 1 downto 0 do
3: m← m×m mod p . S
4: if di = 1 then
5: m← m× c mod p . M
6: end if
7: end for
8: return m

Fig. 1: Doubling attack[12].

2.2 N − 1 Attack on SMA Algorithm

In this section, we describe a side-channel attack that makes use of a specific
ciphertext N − 1 to generate internal collisions in a single trace. This attack is
based on the observation that (n−1)j mod n equals to n−1 and 1 when j is odd
and even, respectively. This observation is used in [22] to attack the square-and-
multiply-always exponentiation algorithm which is described in Algorithm 2.
Two cases are possible in the i-th iteration which depend on the value of di−1:

– With the assumption that di−1 = 0, the input intermediated value m equals
to 1. Consequently, the square operation is computed as Si : m = 12 = 1
mod n in the i-th iteration. Then the multiply operation is performed as
Mi : t = 1× (N − 1).

– With the assumption that di−1 = 1, the input intermediated value m equals
to N − 1. Consequently, the square operation is computed as Si : m =
(N − 1)2 = 1 mod n in the i-th iteration. After that the multiply operation
is performed as Mi : t = 1× (N − 1).

As a result, the SM-sequence resulting from the computation of the SMA ex-
ponentiation contains two types of squaring operations, which creates a type of
side-channel leakage that depends on the (secret) exponent. The squaring opera-
tion in each iteration is either 12 (when di−1 = 0) or (N−1)2 (when di−1 = 0), in
which it is expected the corresponding power consumption traces to be different.
This fact allows the attacker to distinguish between performing 12 and (N − 1)2

4

Fig. 2: (N-1) attack on Square and Multiply Always[5].

and consequently it is possible to recover the secret key. Figure 2 demonstrates
an attack on SMA exponentiation.

Algorithm 2 Square-and-multiply-always (SMA) Exponentiation

Require: c, d = (dl−1...d0)2, p .
Ensure: m = cd mod p.
1: m← 1
2: for i = l − 1 downto 0 do
3: m← m2 mod p . Si

4: t← m× c mod p . Mi

5: if di = 1 then
6: m← t
7: end if
8: end for
9: return m

2.3 Further research on N − 1 attack

Ding et al.[5] presented an in-depth study on the N − 1 attack. They carried
out new types of N − 1 attacks on Boschers right-to-left binary exponentiation
algorithm (Algorithm 3) by utilizing two new chosen ciphertexts 1 and N + 1.
They also investigated the N − 1 attack on the Montgomery Powering Ladder
algorithm (Algorithm 4). In the following, we describe a summary of their work
on both of the algorithms.

2.3.1 Boscher’s Right-to-left Exponentiation Algorithm
In this section we describe a variant of N−1 attack on the Boschers right-to-left
binary exponentiation algorithm. With the assumption that R2 = 1 in the the
first or second iteration, the values of register R0 and R1 remain unchanged
during the execution of Algorithm 3. Therefore, the multiply operation (M) in
line 6, performs as follows:

– If di = 0: R1 = R1 × 1 mod n = r−1 × 1 mod n.
– If di = 1: R0 = R0 × 1 mod n = r × 1 mod n.

5

Fig. 3: New attacks on Boscher’s Right-to-left [5].

By distinguishing between two M operations (r−1×1) mod n and (r×1) mod n
via the side-channel leakage, the adversary can recover the secret key bit by bit.
Considering the fact that register R2 in Algorithm 3 is the input message (ci-
phertext), there exist two methods for setting the value of register R2 to 1. The
first method is to set the ciphertext to a value of 1. The second method is to
select the value of R2 such that R2

2 mod n = 1. Therefore, if the attacker con-
siders (n−1) or (n+1) as the ciphertext, the value of register R2 becomes equal
to 1 ((n− 1)2 mod n = 1 and (n + 1)2 mod n = 1) after the first iteration.

Algorithm 3 Boscher’s Right-to-left Exponentiation (Boscher)

Require: c, n, dl−1...d0)2.
Ensure: m = cd mod n or ”Error”.
1: chose a random integer r
2: R0 ← r
3: R1 ← r−1 mod n
4: R2 ← c
5: for i = 0 to l − 1 do
6: R1−di ← R1−di ×R2 mod n . Mi

7: R2 ← R2 ×R2 mod n . Si

8: end for
9: if R0 ×R1 × c = R2 then

10: return r−1 ×R0 mod n
11: else
12: return ”Error”
13: end if

Figure 3 illustrates attack on Algorithm 3, when the ciphertext is 1.

2.3.2 Montgomery Powering Ladder Algorithm
In the Montgomery Powering Ladder (MPL) algorithm, the square operation
in the (i − 1)-th iteration (Si−1) depends directly on the relation between two
consecutive secret exponent bits di and di−1. For di = di−1, the output of Si and
the input of Si−1 are the same (OSi = ISi−1). Conversely, for di 6= di−1, the
output of Mi and the input of Si−1 are equal (OMi = ISi−1). For the ciphertext

6

Fig. 4: N − 1 attack on Montgomery Powering Ladder [5].

(n − 1) as the input of MPL algorithm, the outputs of M and S operations
remain always (n − 1) and 1, respectively. Therefore, the attacker can find the
relation between the two consecutive secret exponent bits di and di−1, as follows:

– If di = di−1 (OSi = ISi−1 = 1 mod n): the squaring operation Si−1 per-
forms (1× 1) mod n.

– If di 6= di−1 (OMi = ISi−1 = (n− 1) mod n): the squaring operation Si−1

performs ((n− 1)× (n− 1)) mod n.

Figure 4 illustrates an example of the described attack on MPL exponentiation
algorithm.

Algorithm 4 Montgomery Powering Ladder (MPL)

Require: c, n, d = (dldl−1...d0)2 (dl = 1).
Ensure: m = cd mod n.
1: R0 ← c
2: R1 ← R0 ×R0 mod n
3: for i = l − 1 downto 0 do
4: R1−di ← Rdi ×R1−di mod n . Mi

5: Rdi ← Rdi ×Rdi mod n . Si

6: end for
7: return R0

3 New Attacks

An efficient and simple countermeasure to prevent the N − 1 attack on RSA
and Elgamal is to block the ciphertext N − 1 for the decryption [11]. In this
section, by demonstrating attacks based on another ciphertext we show this
simple countermeasure cannot defeat a specific class of an Elgamal cryptosystem.
Our basic idea is similar to the original N − 1 attack. We select a ciphertext

7

that enhances the differences between operations performed during the modular
exponentiation algorithms according to the bit pattern of the secret key. We
utilize a chosen message c such that c2 = −1 mod p. In what follows, we first
explain how a ciphertext c can be found such that c2 = −1 mod p. After that,
we show how the desired ciphertext c can be utilized o apply a single-trace side-
channel attack on Square and Multiply Always (SMA) and Montgomery Ladder
(ML) algorithms.

3.1 Generating the Desired Ciphertext

Our chosen-message side-channel attacks are based on the decryption of a chosen
ciphertext c such that c2 = −1 mod p where p is the prime number used as a
modulus in Elgamal. In this section, we show that such a ciphertext can be found
in practice when p ≡ 1 mod 4 by using Little Fermat Theorem.
Little Fermat Theorem : If p is a prime number and a is any number not
divisible by p, then

a(p−1) mod p = 1.

Based on the Little Fermat Theorem, we can conclude a
p−1
2 = ±1 mod p where

a is an integer not divisible by p. In mathematics, if a
p−1
2 = 1 mod p, a is called

a quadratic residue mod p and if a
p−1
2 = −1 mod p, a is called a nonresidue

mod p. Let a be a nonresidue mod p so a
p−1
2 = p − 1 = −1 mod p, when p =

4k + 1, we have

a
p−1
2 = a

4k+1−1
2 = a

4k
2 = a2k = (ak)2 mod p.

Let ak = c, therefore we have c2 = −1 = p − 1 mod p and c is the appropriate
number to choose as a distinguisher. In the next two subsections, we explain
how we can use this number as a distingusher to obtain a relation between
side-channel leakages and the secret exponent.

3.2 Attack on Square and Multiply Always Algorithm

One of the efficient algorithms for modular exponentiation is the Square and
Multiply Always algorithm (SMA). Algorithm 2 illustrates an implementation
of the SMA algorithm. In this section, we describe an attack that uses only one
chosen ciphertext and is able to extract the secret key by one power consumption
trace. By crafting a suitable ciphertext c such that c2 = p− 1 mod p, the output
of squaring (line 3 of Algorithm 2) is always 1 or p − 1. These values inter
as input of the multiplication operation (line 4). Consequently, the output of
multiplication operation (line 4) is either c or p− c. Hence, when the bit of the
secret key is 1 then the input of the squaring operation is either c or p− c and
when the bit of the secret key is 0 then the the input of squaring operation is
either 1 or p−1. By these observations, the bits of the secret key can be retrieved
as follows.

8

Table 1: Summery of our attack on SMA Algorithm

di Multiplication in (i− 1)-th iteration

0 (1× c) mod p (has short trace)

1 (p− 1× c) mod p (has long trace)

– If di = 1, the input of the multiplication operation at the (i−1)-th iteration
is either c or p − c. In both cases, the multiplication operation performs
((p− 1)× c) mod p.

– If di = 0, the input of the multiplication operation at the (i−1)-th iteration
is either 1 or p − 1. In both cases, the multiplication operation performs
(1× c) mod p.

In summary, as described above, the results of running Algorithm 2 on input c
can be represented as Table 1.
Since (p − 1) is a large random-looking number in comparison to the value of
1, we expect that the differences in the patterns of two multiply operations
((p− 1)× c) mod p and (1× c) mod p. These differences can be easily perceived
in a single power consumption trace by visual observation.

3.3 Attack on Montgomery Ladder Algorithm

Another popular algorithm for modular exponentiation is the Montgomery Lad-
der algorithm (ML) which is demonstrated in Algorithm 5. In the i-th iteration
of the algorithm, both squaring and multiply operations perform independent of
the value di.

Algorithm 5 Montgomery Ladder (ML) Exponentiation

Require: c, n, d = (dldl−1...d0)2 (dl = 1).
Ensure: m = cd mod n.
1: R0 ← c
2: R1 ← R0 ×R0 mod n
3: for i = l − 1 downto 0 do
4: R1−di ← R0 ×R1 mod n . Mi

5: Rdi ← Rdi ×Rdi mod n . Si

6: end for
7: return R0

Let us assume that the ciphertext c is given as an input to the ML algorithm
such that c2 = −1 mod p. We show that how decryption of c can reveal a rela-
tion between two consecutive secret exponent bits di and di−1. To describe this
process in more detail, we analyze the values of intermediate variables separately
as follows:

9

Table 2: The executed operations for all of the modes di −→ di−1

di −→ di−1

{
Mi−1

Si−1

1 −→ 1

{
p− c× 1

1× 1
or

{
c× p− 1

p− 1× p− 1

0 −→ 0

{
p− 1× p− c

p− 1× p− 1
or

{
1× c

1× 1

1 −→ 0

{
p− c× 1

p− c× p− c
or

{
c× p− 1

c× c

0 −→ 1

{
p− 1× p− c

p− c× p− c
or

{
1× c

c× c

Observation 1 During the execution of the modular exponentiation ML algo-
rithm with the base c where c2 = p − 1 mod p, the intermediate variables R0

and R1 always get one of the values c, p− c, 1 and p− 1.

Observation 1 follows from the fact that the the multiplicative order of c mod p
is 4. Consequently, the intermediate variables R0 and R1 always get one of the
values c, c2 = −1 = p − 1 mod p, c3 = −c = p − c mod p, c4 = (−1)2 = 1
mod p.

Observation 2 During the execution of the modular exponentiation ML algo-
rithm with the base c where c2 = p− 1 mod p, only four cases are possible to be
performed in the multiply operation Mi : R0 × R1 (line 4 in Algorithm 5). The
possible squaring operations which can be performed are: (1× c), (p− 1× p− c),
(c× p− 1) and (p− c× 1).

Observation 2 follows from the possible values for the variables R0 and R1 pre-
sented in Observation 1.

Observation 3 During the execution of the modular exponentiation ML algo-
rithm with the base c where c2 = p− 1 mod p, only four cases are possible to be
performed in the squaring operation Si : Rdi

×Rdi
(line 5 in Algorithm 5). The

possible multiplications which can be performed are: (1× 1), (p− 1× p− 1 = 1
mod p), (c× c) and ((p− c)× (p− c)).

Similarly, Observation 3 follows from the possible values for the variables R0 and
R1 presented in Observation 1.

By considering Observation 2 and Observation 3, we categorize the executed
operations for all of the modes di −→ di−1 (0 ≤ i ≤ l − 1) as Table 2 where
Mi−1 and Si−1 denote multiplication and squaring operations at the (i − 1)-th
iteration, respectively.

10

Table 3: Distinguishing the secret exponent bits on ML Algorithm

di −→ di−1 Si−1

di = di−1 (1× 1) or (p− 1× p− 1) mod p

di 6= di−1 (c× c) or (p− c× p− c) mod p

While the above relation can be utilized for mounting a side-channel attack, a
more precise analysis of information presented in Table 2 reveals that the mod-
ular squaring operation can be exploited solely to identify the secret exponent
bits. When two consecutive secret exponent bits di and di−1 are equal to each
other, the performed squaring operation is either 1× 1 or (p− 1)× (p− 1). Con-
versely, when two consecutive secret exponent bits di and di−1 are not equal,
the performed squaring operation is either c× c or (p− c)× (p− c). This point
is illustrated in Table 3.

4 Experimental Verification

In this section, we discuss the practicality of the proposed attacks in Section 3. To
verify the theoretical model, we implemented SMA and ML algorithms on an At-
mel ATXMEGA128D4 8-bit micro-controller that was located on the TARGET
Board of the ChipWhisperer CW1173 [18]. In order to conduct our attacks, we
carried out two phases. In the first phase, we measured and save a single power
consumption trace via the CAPTURE Board of the ChipWhisperer, while the
TARGET Board is executing the decryption algorithm for the ciphertext c such
that c2 = −1 mod p. In the second phase, we exploited the simple analysis of
the power consumption trace to recover the secret exponent bits.
In the remainder of this section, we first present a preliminary experiment that
we have performed to validate the proposed attack on an SMA algorithm. After
that, we present a concrete experiment to attack the ML algorithm through a
single power consumption trace captured from a real device.

4.1 Experimental results on Square and Multiply Always Algorithm

We sent the ciphertext c such that c2 = −1 mod p to Algorithm 2 for the de-
cryption process and measure the power consumption. Figure 5 illustrates the
captured trace during the execution of the SMA exponentiation algorithm with
the base c (such that c2 = −1 mod p) and the exponent with the first bits of
(1001101)2. As it can be observable from Figure 5, it is simply possible to distin-
guish between the multiplications and the squaring operations. In order to obtain
a clean and more readable figure, we illustrate the measured power consumption
trace T by a sequence of subtraces T = {(TS , TM)l−1, (TS , TM)l−2, ..., (TS , TM)1, (TS , TM)0}
in which TS and TM correspond to squaring and multiply operations, respec-
tively. The squaring operation is marked by S and the multiplication operation
is marked by M which are also separated by vertical dot lines in Figure 5.

11

Fig. 5: Experimental results on SMA algorithm

The proposed attack in Section 3.2 is based on the expectation of an observable
difference between two multiply operations ((p−1)×c) mod p and (1×c) mod p in
a single power consumption trace. Consequently, we consider only TM subtraces
that correspond to the mutliply operations: TM = {TMl−1

, TMl−2
, ..., TM1

, TM0
}.

The differences in the patterns of power consumption between the multiplications
(1 × c) mod p and ((p − 1) × c) mod p is extremely robust and can be easily
distinguished by visual observation. In Figure 5, the corresponding pattern of
the multiply operation (1×c) mod p denoted by M0 has a significantly lower and
shorter power consumption subtrace in comparison to the corresponding pattern
of the multiply operation ((p− 1)× c) mod p denoted by M1. This observation
conforms to our expectation, since p − 1 is a large random-looking number in
comparison to the value of 1. Finally, we can recover each exponent bit directly
by visual observation of the power consumption trace.

4.2 Experimental results on Montgomery Ladder Algorithm

We first briefly recall the main observation that is used in the proposed attack
on ML algorithm in Section 3.3. In the process of decrypting the ciphertext c
such that c2 = p−1 mod p the performed squaring operation in the i-th iteration
can be classified into two main classes depending on the two consecutive secret
exponent bits di and di−1 as follows:

– di = di−1: the performed squaring operation is either 1×1 or (p−1)×(p−1).
– di 6= di−1: the performed squaring operation is either c×c or (p−c)×(p−c).

To assess the practicability of exploiting the leakage that depends on the (secret)
exponent in a realistic case, we decrypted the ciphertext c such that c2 = −1
mod p by using Algorithm 5 in which the first bits of the key are (111010)2
and measured the corresponding power consumption. Figure 6 illustrates the
captured trace.
Similar to the previous experiment presented in Section 4.1, a simple comparison
is sufficient to distinguish between the multiplication and squaring operations.
We illustrate the measured power consumption trace by a sequence of subtraces
T = {(TM , TS)l−1, (TM , TS)l−2, ..., (TM , TS)1, (TM , TS)0} in which TM and TS

12

Fig. 6: Attack on ML algorithm by utilizing the ciphertext c such that c2 =
−1 mod p

correspond to multiply and squaring operations, respectively. Multiplication op-
eration is marked by M and squaring operation is marked by S which are also
separated by vertical dot lines in Figure 6. However, in order to perform the
proposed attack in Section 3.3 on ML algorithm, one should also be able to
distinguish between the four aforementioned squaring operations. Unlike SMA
Algorithm, it is difficult to determine the actual squaring operation based on
the simple observation of the corresponding subtrace. Instead, we can use the
template technique to overcome this challenge. A template attack consists of
two phases. In the first phase, the characterization takes place. In the second
phase, we perform a template matching to determine the actual input values of
the squaring operations in the decryption process.

In our experience, the squaring operations (1× 1) mod p, (p− 1× p− 1) mod p,
(c×c) mod p and (p−c×p−c) mod p have different patterns. These patterns can
be simply used in the matching phase to recognize the actual value used in the
squaring operations. In Figure 6, we denote the squaring operations (1× 1) mod
p, (p−1×p−1) mod p, (c×c) mod p and (p−c×p−c) mod p by S(1), S(−1), S(c)
and S(−c), respectively. As it is observable from Figure 6 the squaring operations
can reveal the secret exponent value. The squaring operations (1×1) mod p and
(p−1×p−1) mod p are executed when two consecutive secret exponent bits are
the same. Similarly, the squaring operations (c×c) mod p and (p−c×p−c) mod p
are executed when two consecutive secret exponent bits are different. Therefore,
we can recover all of the bits of the key.

5 Conclusion

In this paper, we proposed a new chosen ciphertext attack on Elgamal imple-
mentations using Square and Multiply Always (SMA) and Montgomery Ladder
(ML) algorithms. We exploited the leakage of power consumption during the
decryption execution of a specific ciphertext c such that c2 = p−1 mod p, where
p is the prime module in Elgamal cryptosystem. We show that such a ciphertext
exists for a special case of p where p mod 4 = 1.

13

To verify the existence of the leakage that depends on the secret exponent, we
provided a concrete experimentation of our attack. The experimental results con-
firm the practicability of the proposed attack on both SMA and ML algorithms
by utilizing the power measurement of only one single decryption.
One natural direction for further research is to develop a similar attack for ap-
plying on the other modular exponentiation algorithms. As another direction,
one can attempt to pursue reusing the presented idea for elliptic-curve cryp-
tosystems.
In this paper, we take another step towards the generalization of the so-called
N − 1 attack by utilizing a specific ciphertext c such that c2 mod p = −1. It
remains to be studied whether or not other types of ciphertext with property c`

mod p = −1 with small values of ` can be utilized to apply new attacks against
Elgamal cryptosystem in practice.
The experimental results presented in this paper show that the proposed attacks
are applicable on small devices like an Atmel ATXMEGA128D4 8-bit microcon-
troller. Recently several attacks on public key cryptosystems have been applied
on the personal computers and laptops[9, 1], . It remains to be studied if the
proposed attacks are applicable to more complicated devices like laptops.

14

Bibliography

[1] Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, and Mehdi Ti-
bouchi. Side-channel analysis of weierstrass and koblitz curve ECDSA on
android smartphones. In CT-RSA 2016, pages 236–252. Springer, 2016.

[2] Christophe Clavier and Benoit Feix. Updated recommendations for blinded
exponentiation vs. single trace analysis. In COSADE 2013, pages 80–98.
Springer, 2013.

[3] Jean-Christophe Courrège, Benoit Feix, and Mylène Roussellet. Simple
power analysis on exponentiation revisited. In CARDIS 2010, pages 65–79.
Springer, 2010.

[4] Bert den Boer, Kerstin Lemke, and Guntram Wicke. A DPA attack against
the modular reduction within a CRT implementation of RSA. In CHES
2002, pages 228–243. Springer, 2002.

[5] Zhaojing Ding, Wei Guo, Liangjian Su, Jizeng Wei, and Haihua Gu. Further
research on N-1 attack against exponentiation algorithms. In ACISP 2014,
pages 162–175. Springer, 2014.

[6] Pierre-Alain Fouque and Frédéric Valette. The doubling attack - Why Up-
wards Is Better than Downwards. In CHES 2003, pages 269–280. Springer,
2003.

[7] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. Stealing
keys from pcs using a radio: Cheap electromagnetic attacks on windowed
exponentiation. In CHES 2015, pages 207–228. Springer, 2015.

[8] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. ECDH
key-extraction via low-bandwidth electromagnetic attacks on pcs. In CT-
RSA 2016, pages 219–235. Springer, 2016.

[9] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your hands off my
laptop: Physical side-channel key-extraction attacks on pcs. In CHES 2014,
pages 242–260. Springer, 2014.

[10] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via
low-bandwidth acoustic cryptanalysis. IACR Cryptology ePrint Archive,
2013:857, 2013.

[11] Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi Satoh, and
Adi Shamir. Collision-based power analysis of modular exponentiation using
chosen-message pairs. In CHES 2008, pages 15–29. Springer, 2008.

[12] Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi Satoh, and
Adi Shamir. Comparative power analysis of modular exponentiation algo-
rithms. IEEE Trans. Computers, 59(6):795–807, 2010.

[13] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In CRYPTO 1996, pages 104–113. Springer, 1996.

[14] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In CRYPTO 1999, pages 388–397. Springer, 1999.

[15] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Power anal-
ysis attacks of modular exponentiation in smartcards. In CHES 1999, pages
144–157. Springer, 1999.

[16] Atsushi Miyamoto, Naofumi Homma, Takafumi Aoki, and Akashi Satoh.
Enhanced power analysis attack using chosen message against RSA hard-
ware implementations. In ISCAS 2008, pages 3282–3285. Springer, 2008.

[17] Roman Novak. Spa-based adaptive chosen-ciphertext attack on RSA im-
plementation. In PKC 2002, pages 252–262. Springer, 2002.

[18] Colin O’Flynn and Zhizhang (David) Chen. Chipwhisperer: An opensource
platform for hardware embedded security research. In COSADE 2015, pages
243–260. Springer, 2015.

[19] Werner Schindler. A timing attack against RSA with the chinese remainder
theorem. In CHES 2000, pages 109–124. Springer, 2000.

[20] Werner Schindler. Exclusive exponent blinding may not suffice to prevent
timing attacks on RSA. In CHES 2015, pages 229–247. Springer, 2015.

[21] Colin D. Walter and Susan Thompson. Distinguishing exponent digits by
observing modular subtractions. In CT-RSA 2001, pages 192–207. Springer,
2001.

[22] Sung-Ming Yen, Wei-Chih Lien, Sang-Jae Moon, and JaeCheol Ha. Power
analysis by exploiting chosen message and internal collisions - vulnerability
of checking mechanism for rsa-decryption. In Mycrypt 2005, pages 183–195.
Springer, 2005.

16

