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Abstract

Symbolic methods have been used extensively for proving security of cryptographic protocols in the
Dolev-Yao model, and more recently for proving security of cryptographic primitives and constructions
in the computational model. However, existing methods for proving security of cryptographic construc-
tions in the computational model often require significant expertise and interaction, or are fairly limited
in scope and expressivity.

This paper introduces a symbolic approach for proving security of cryptographic constructions based
on the Learning With Errors assumption (Regev, STOC 2005). Such constructions are instances of
lattice-based cryptography and are extremely important due to their potential role in post-quantum cryp-
tography. Following (Barthe, Grégoire and Schmidt, CCS 2015), our approach combines a computa-
tional logic and deducibility problems—a standard tool for representing the adversary’s knowledge, the
Dolev-Yao model. The computational logic is used to capture (indistinguishability-based) security no-
tions and drive the security proofs whereas deducibility problems are used as side-conditions to control
that rules of the logic are applied correctly. We then use AutoLWE, an implementation of the logic,
to deliver very short or even automatic proofs of several emblematic constructions, including CPA-
PKE (Gentry et al., STOC 2008), (Hierarchical) Identity-Based Encryption (Agrawal et al. Eurocrypt
2010), Inner Product Encryption (Agrawal et al. Asiacrypt 2011), CCA-PKE (Micciancio et al., Eu-
rocrypt 2012). The main technical novelty beyond AutoLWE is a set of (semi-)decision procedures
for deducibility problems, using extensions of Gröbner basis computations for subalgebras in the (non-
)commutative setting (instead of ideals in the commutative setting). Our procedures cover the theory of
matrices, which is required for lattice-based assumption, as well as the theory of non-commutative rings,
fields, and Diffie-Hellman exponentiation, in its standard, bilinear and multilinear forms. Additionally,
AutoLWE supports oracle-relative assumptions, which are used specifically to apply (advanced forms
of) the Leftover Hash Lemma, an information-theoretical tool widely used in lattice-based proofs.

1 Introduction

Formal methods, and in particular formal verification, have long been used for building and checking math-
ematical claims of correctness or security for small but possibly very complex to moderately large and
complex systems. In contrast to pen-and-paper counterparts, formally verified claims deliver higher assur-
ance and independently verifiable proofs that can be replayed by third parties. Over the last 20 years, formal
methods have been applied successfully to analyze the security of cryptographic protocols in the Dolev-Yao
model [DY83], an idealized model in which cryptographic constructions are treated algebraically. By ab-
stracting away from the probabilistic nature of cryptographic constructions, the Dolev-Yao model has served
as a suitable and practical foundation for highly or fully automated tools [ABB+05, Bla01, SMCB12]. These
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tools have subsequently been used for analyzing numerous cryptographic protocols, including recently TLS
1.3. [CHH+17, KBB17]. Unfortunately, the Dolev-Yao model is focused on cryptographic protocols and
cannot be used for reasoning about cryptographic primitives. A related approach is to use so-called refine-
ment types (a.k.a. logical assertions) for reasoning about implementations written in a functional program-
ming language [SCF+13]; this approach has also been used for analyzing TLS 1.3. [BFK+13, DFK+17],
but is also primarily limited to cryptographic protocols.

An alternative approach is to develop symbolic methods that reason directly in the computational model.
This approach applies both to primitives and protocols, and instances of this approach have been instru-
mented in tools such as CertiCrypt [BGB09], CryptHOL [Loc16] CryptoVerif [Bla06], EasyCrypt [BGHZ11,
BDG+13], and FCF [PM15] (see also [IK03, BDKL10] for further approaches not supported by tools).
However, these tools require significant user interaction and expertise, in particular when used for reasoning
about cryptographic primitives.

A promising approach for analyzing cryptographic primitives in the computational model is to com-
bine computational logics and symbolic tools from the Dolev-Yao model. Prior work has demonstrated that
this approach works well for padding-based (combining one-way trapdoor permutations and random ora-
cles) [BCG+13] and pairing-based cryptography [BGS15]. Broadly speaking, computational logics formal-
ize game-playing security proofs; each step of the proof corresponds to a hop, and symbolic side-conditions
are used to ensure the validity of the hop. More specifically, computational logics, which can be seen as
specializations of [BDKL10], are used to capture computational security goals and to drive security proofs
whereas side-conditions use symbolic tools such as deducibility and static equivalence to guarantee that the
rules of the logic are applied correctly. In particular, a key idea of this approach is to use deducibility for
controlling the application of rules for performing reductions to hardness assumptions, and for perform-
ing optimistic sampling, a particularly common and useful transformation which simplifies probabilistic
experiments by allowing to replace, under suitable circumstances, sub-computations by uniform samplings.

The use of deducibility in side conditions, as opposed to arbitrary mathematical conditions, is a nec-
essary step for automating application of proof rules, and more generally for automating complete proofs.
However, the interest of this approach is conditioned by the ability to check the validity of deducibility
problems. The problem of deciding deducibility has been studied extensively in the context of symbolic ver-
ification in the Dolev-Yao model, where deducibility formalizes the adversary knowledge [Low96, MS01,
Pau00, KMM94, Sch96, RKTC03, CLS03, RT03]. This line of work has culminated in the design and
implementations of decision procedures for classes of theories that either have some kind of normal form
or satisfy a finite variant property. However, existing decidability results are primarily targeted towards
algebraic theories that arise in the study of cryptographic protocols. In contrast, deducibility problems for
cryptographic constructions require to reason about mathematical theories that may not have a natural notion
of normal form or satisfy the finite variant property.

Thus, a main challenge for computational logics based on deducibility problems is to provide precise
and automated methods for checking the latter. There are two possible approaches to address this challenge:

• heuristics: rather than deciding deducibility, one considers weaker conditions that are easier for verifica-
tion. As demonstrated with AutoG&P, such an approach may work reasonably well in practice. However,
it is not fully satisfactory. First, the heuristics may be incomplete and fail to validate correct instances.
Second, advanced proof rules that perform multiple steps at once, and proof search procedures, which
explores the space of valid derivations, become unpredictable, even for expert users.

• (semi-)decision procedures based on computational mathematics: in this approach, one provides reduc-
tions from deducibility problems to computational problems in the underlying mathematical setting.
Then, one can reuse (semi-)decision procedures for the computational problems to verify deducibility
problems. This approach offers some important advantages. First, it eliminates a potential source of
incompleteness, and in particular the possibility that a proof step fails. Second, it is more predictable.
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Predictability is very important when a high level of automation is sought. Indeed, automation is often
achieved through advanced tactics. When they involve multiple heuristics, the outcome of advanced tac-
tics cannot be anticipated, which is a major hurdle to the adoption of formal verification tools. Third, it
formalizes connections between known mathematical problems, which may have been extensively stud-
ied, and verification problems that may arise for the first time. Lastly, it encourages reusing existing
algorithms and implementations.

The idea using methods from computational mathematics to reason about deducibility is natural. However,
we are not aware of prior work that exploits this connection in relation with the use of deducibility in a
computational logic.

1.1 Contributions

We propose symbolic methods for proving security of lattice-based cryptographic constructions. These con-
structions constitute a prime target for formal verification, due to their potential applications in post-quantum
cryptography and their importance in the ongoing NIST effort to standardize post-quantum constructions;
see e.g. [Pei16] for a recent survey of the field.

In this paper, we define a logic for proving computational security of lattice-based cryptographic con-
structions. The logic follows the idea of combining computational proof rules with symbolic side-conditions,
as in [BCG+13, BGS15]. One important feature of our logic is that the proof rule for assumptions supports
information-theoretic and computational assumptions that are stated using adversaries with oracle accesses.
This extension is critical to capture (advanced cases of) the Leftover Hash Lemma [ILL89]. The Leftover
Hash Lemma is a powerful information-theoretical tool which allows to replace, under suitable conditions,
a subcomputation by a sampling from a uniform distribution. The Leftover Hash Lemma is widely used
in cryptographic proofs, in particular in the setting of lattice-based cryptography. We implement our logic
in a tool called AutoLWE (https://github.com/autolwe/autolwe), and use the tool for prov-
ing (indistinguishability-based) security for several cryptographic constructions based on the Learning with
Errors (LWE) assumption [Reg05a].

More specifically, our examples include: dual Regev PKE [GPV08], MP-PKE [MP12], ABB-(H)IBE [ABB10]
and IPE [AFV11]. All of our mechanized proofs are realistically efficient, running in at most three seconds
(Fig. 12); efficiency in this setting is usually not an issue, since cryptographic constructions typically induce
small instances of the deducibility problem. Recent progress on more advanced cryptographic construc-
tions based on lattices, like attribute-based encryption [BGG+14] and predicate encryption [GVW15], are
closely related to both the structure of the schemes and strategy in the proofs in [GPV08, ABB10, AFV11].
The MP-PKE [MP12] inspires development in some lattice-based constructions, like homomorphic encryp-
tion [AP14] and deniable attribute-based encryption [AFL16].

The technical core of our contributions are a set of (semi-)decision procedures for checking deducibil-
ity in the theory of Diffie-Hellman exponentiation, in its standard, bilinear and multilinear versions, and
in the theories of fields, non-commutative rings, and matrices. In particular, we give decision procedures
for checking deducibility in the theory of Diffie-Hellman exponentiation. This procedure has immediate
applications to reasoning about security of cryptographic constructions based on bilinear and multilinear
maps. The central idea behind our algorithm is to transform a deducibility problem into a problem from
commutative algebra. The latter can be resolved through standard computations of Gröbner basis. Fur-
thermore, we give a semi-decision procedure for checking deducibility in the theory of matrices. This has
immediate applications to reasoning about security of lattice-based constructions. In this case, our algo-
rithm extracts from a deducibility question a problem from non-commutative algebra. The problem can be
resolved through semi-decision procedures based on non-commutative variants of Gröbner bases known as
Subalgebra Analog of Gröbner Basis on Ideals (SAGBI) [Nor98].
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2 Example: Dual Regev Encryption

In this section, we describe an example public-key encryption scheme and show how it will be encoded in
our formal system. We provide some mathematical background in Section 5.2. Recall that a public-key
cryptosystem is given by three probabilistic algorithms (Setup,Enc,Dec) for generating keys, encryption,
and decryption, such that with overwhelming probability, decryption is the inverse of encryption for valid
key pairs.

We consider the Dual Regev Encryption scheme [GPV08], an optimization of Regev’s original encryp-
tion [Reg05b]. We focus on a simple version that encrypts single bits; however, standard techniques can be
used to encrypt longer messages.

Definition 2.1 (Dual Regev Encryption). Below, let λ = n be the security parameter, m = O(n log q), q =
O(m) and χ (or χn) be discrete Gaussian distribution over Z (or Zn).

• The key generation algorithm, KeyGen(1λ), chooses a uniformly sampled random matrix A ∈ Zn×mq and
a vector r ∈ {−1, 1}m sampled uniformly, interpreted as a vector in Zmq . The public key is pk = (A,u),
where u = Ar, and the secret key is sk = r.

• To encrypt a message b ∈ {0, 1}, the encryption algorithm Enc(pk, b) chooses a random vector s ∈ Znq ,
a vector x0 sampled from χn and an integer x1 sampled from χ. The ciphertext consists of the vector
c0 = sTA + xT

0 and the integer c1 = sTu + x1 + bdq/2e, where T denotes the transpose operation on
matrices.

• The decryption algorithm checks whether the value c1 − 〈r, c0〉 is closer to 0 or bdq/2e modulo p, and
returns 0 in the first case, and 1 in the second.

Decryption is correct with overwhelming probability, since we compute that c1−〈r, c0〉 = x1+bdq/2e−
〈r,x0〉, so the norm of the term x1 − 〈r,x0〉 will be much smaller than bdq/2e.

Gentry, Peikert and Vaikuntanathan [GPV08] show that Dual Regev Encryption achieves chosen-plaintext
indistinguishability under the decisional LWE assumption, defined below. Traditionally, chosen-plaintext in-
distinguishability is modeled by a probabilistic experiment, where an adversary proposes two messages m0

and m1, and is challenged with a ciphertext c? corresponding to an encryption of message mb, where b is
sampled uniformly at random. The adversary is then requested to return a bit b′. The winning condition for
the experiment is b = b′, which models that the adversary guesses the bit b correctly. Formally, one defines
the advantage of an adversary A against chosen-plaintext security as:

Advcpa
A =

∣∣∣∣PrG[ b = b′ ]− 1

2

∣∣∣∣
where G is the probabilistic experiment that models chosen-plaintext security and 1

2 represents the proba-
bility that a trivial adversary which flips a coin b′ at random guesses the bit b correctly. We note that in our
case, since the message space is {0, 1}, we can wlog set m0 = 0 and m1 = 1; thus, the adversary only
needs to be queried once in this experiment.

The formal definition of G, instantiated to Dual Regev Encryption, is shown in Figure 1. We inline the
key generation and encryption subroutines. In line 1, the public key (A,u) and its associated secret key r
are randomly sampled. In lines 2 and 3, the message bit b is sampled uniformly, and the ciphertext (c0, c1)
of this message is generated. Finally, in line 4, the adversary outputs a bit b′, given as input the public key
and the ciphertext.

Now, we outline the hardness assumptions and lemmas used in the proof of Dual Regev Encryption.
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Learning with Errors

The Learning With Errors (LWE) assumption [Reg05b] is a computational assumption about the hardness
of learning a linear function from noisy samples. We make use of the decisional variant, in which one
distinguishes a polynomial number of “noisy” inner products with a secret vector from uniform.

Definition 2.2 (LWE). Let n, m, q, and χ be as in Definition 2.1. Given s ∈ Znq , let LWEs,χ (dubbed
the LWE distribution) be the probability distribution on Zn×mq × Zmq obtained by sampling A ∈ Zn×mq at
uniform, sampling e from χn, and returning the pair (A, sTA+e). The decision-LWEq,n,m,χ problem is to
distinguish LWEs,χ from uniform, where s is uniformly sampled.

We say the decision-LWEq,n,m,χ problem is infeasible if for all polynomial-time algorithms A, the ad-
vantage Advlwe

A (1λ) is negligibly close to 1/2 as a function of λ:

Advlwe
A (1λ) = |Pr[A solves LWE]− 1/2|

The works of [Reg05b, Pei09, BLP+13] show that the LWE assumption is as hard as (quantum or
classical) solving GapSVP and SIVP under various settings of n, q,m and χ.

Leftover Hash Lemma

Let A ∈ Zn×mq be a collection ofm samples of uniform vectors from Znq . The Leftover Hash Lemma (LHL)
states that, given enough samples, the result of multiplying A with a random {−1, 1}-valued matrix R is
statistically close to uniform. Additionally, this result holds in the presence of an arbitrary linear leakage of
the elements of R. Specifically, the following leftover hash lemma is proved in [ABB10] (Lemma 13).

Lemma 2.1 (Leftover Hash Lemma). Let q, n,m be as in Definition 2.1. Let k be a polynomial of n. Then,

the distributions {(A,AR,RTw)} {(A,B,RTw)} are negligibly close in n, where A
$←− Zn×mq in both

distributions, R $←− {0, 1}m×k, B $←− Zn×kq , and w ∈ Zmq is any arbitrary vector.

Given the above, security of Dual Regev Encryption is stated as follows:

Proposition 2.2 ([GPV08]). For any adversary A against chosen-plaintext security of Dual Regev Encryp-
tion, there exists an adversary B against LWE, such that:

• Advcpa
A ≤ Advlwe

B + εLHL;

• tA ≈ tB;

where Advlwe
B denotes the advantage ofB against decisional LWE problem, εLHL is a function of the scheme

parameters determined by the Leftover Hash Lemma, and tA and tB respectively denote the execution time
of A and B.

Security proof We now outline the proof of Proposition 2.2.
The proof proceeds with a series of game transformations, beginning with the game in Figure 1. The

goal is to transform the game into one in which the adversary’s advantage is obviously zero. Each transfor-
mation is justified semantically either by semantic identities or by probabilistic assertions, such as the LWE
assumption; in the latter case, the transformation incurs some error probability which must be recorded.

The first transformation performs an information-theoretic step based on the Leftover Hash Lemma.
The Leftover Hash Lemma allows us to transform the joint distribution (A,Ar) (where A and r are inde-
pendently randomly sampled) into the distribution (A,u) (where u is a fresh, uniformly sampled variable).
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Game Gpke
org :

A
$← Zn×mq , r

$← {−1, 1}m;

let u = Ar;

b
$← {0, 1}, s $← Znq ,x0

$← DZm , x1
$← DZ;

let c0 = sTA + x0, c1 = sTu + x1 + bdq/2e;
b′ ← A(A,u, c0, c1);

Figure 1: IND-CPA security of dual-Regev PKE.

(This invocation does not use the linear leakage w from Lemma 2.1). In order to apply this lemma, we
factor the security game from Figure 1 into one which makes use of A and u, but not r. That is, if G0 is the
original security game, then we have factored G into

G0 = G′{A←$ Zn×mq ; r ←$ {−1, 1}m; let u=Ar}p,

where G′{·}p is a game context with a hole at position p, such that G′ does not make reference to r except
in the definition of u. By the Leftover Hash Lemma, we may now move to the game:

G1 = G′{A←$ Zn×mq ; u←$ Znq }p.

This transformation effectively removes r from the security game, thus removing any contribution of the
secret key r to the information gained by the adversary A. This transformation incurs the error probability
εLHL. The resultant game is shown in Figure 2.

Game G2 :

A
$← Zn×mq ,u

$← Znq ;

b
$← {0, 1}, s $← Znq ,x0

$← DZm , x1
$← DZ;

let c0 = sTA + x0, c1 = sTu + x1 + bdq/2e;
b′ ← A(A,u, c0, c1);

Figure 2: Dual-Regev PKE: Game 2

The second transformation performs a reduction step based on the LWE assumption. Indeed, note that
after the first transformation, the ciphertexts (c0, c1) contain an LWE distribution of dimension n× (m+1),
with the message bit added to c1. By applying LWE, we then may safely transform c0 to be uniformly
random, and c1 to be uniformly random added to to the message bit. The resulting security game is shown
in Figure 3.
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Game G3 :

A
$← Zn×mq ,u

$← Znq ;

b
$← {0, 1}, r0

$← Zmq , r1
$← Zq;

let c0 = r0, c1 = r1 + bdq/2e;
b′ ← A(A,u, c0, c1);

Figure 3: Dual-Regev PKE: Game 3

The next transformation applies a semantics-preserving transformation known as optimistic sampling.
To remove the message bit from the adversary input, note that the term c1 is equal to the sum of r1 and
bdq/2e, where r1 is uniformly sampled and does not appear anywhere else in the game. Because of this, we
know that c1 itself is uniformly random. Thus, we can safely rewrite the body of c1 to be equal to a fresh
uniformly sampled r1. The resulting game is shown in Figure 4.

Game G4 :

A
$← Zn×mq ,u

$← Znq ;

b
$← {0, 1}, r0

$← Zmq , r1
$← Zq;

let c0 = r0, c1 = r1;

b′ ← A(A,u, c0, c1);

Figure 4: Dual-Regev PKE: Game 4

In this final game, there is no dependence between the challenge given to the adversary and the challenge
b, so the probability that the adversary guesses b is upper bounded by 1

2 .
The most important point about the above proof is that while the cryptographic theory underlying the

Leftover Hash Lemma and Learning with Errors assumption is in nature analytic, the proof of security which
uses them is only algebraic. That is, no complicated analytic arguments must be made in order to carry out
the above proof; instead, each transformation is a straightforward syntactic transformation of the security
game.

Our logic is designed to handle game transformations such as the ones in the above proof. Our imple-
mented security proof for Dual Regev Encryption is shown in Figure 5. In lines 1-3, we apply the Leftover
Hash Lemma. The move tactic is used to reorder samplings in the security game, as long as the two re-
orderings are semantically equivalent. The assumption_decisional tactic is used to apply hardness
assumptions and information-theoretic lemmas. Note that all required factorings of games in this proof are
performed automatically, handled by our use of the SAGBI method in Section 4.3. This is reflected by the
“!” at the end of the tactic, which asks the proof system to automatically factor the game. (More complicated
applications of assumption_decisional do require the user to provide some hints to the proof system
about how to factor the game. These hints are minimal, however.) The arrow -> after the tactic specifies that
we wish to apply the transformation in the forward direction. (It is possible to apply the LHL and the LWE
assumption in reverse, as well. This is used in later proofs.) Throughout, we use the // tactic to normalize
the game. This tactic unfolds let bindings, and applies a syntactic normal form algorithm to all expressions
in the game. The mat_fold and mat_unfold tactics are used to reason about uniformity of matrices of
the form Zn×(m+k)

q : the mat_unfold tactic will separate a uniform sampling of type Zn×(m+k)
q into two

uniform samplings of types Zn×mq and Zn×kq respectively; the mat_fold does the corresponding inverse
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1 (* apply LHL *)
move A 1.

3 assumption_decisional! LHL -> u; //.

5 (* fold A, u into single matrix Au *)
mat_fold 1 2 Au; //.

7
(* apply LWE assumption *)

9 move s 2.
assumption_decisional! LWE -> w; //.

11
(* unfold LWE distribution *)

13 rnd w (λ w. tr w) (λ w. tr w); //.
mat_unfold 2 wa wb; //.

15 rnd wb (λ B. tr B) (λ B. tr B); //.

17 (* perform optimistic sampling *)
move wb 4.

19 rnd wb (λ B. B - (b?Mu(()):0_{1,1}))
(λ B. B + (b?Mu(()):0_{1,1})); //.

21 indep!.

23 qed.

Figure 5: AutoLWE proof for Dual Regev Encryption.

operation.
The rnd tactic is used to reason about transformations of uniform samplings: given two functions f, f−1

which must be mutual inverses, the rnd tactic allows one to “pull” a uniform sampling through f−1. This
is used in two ways in the proof: on lines 13 and 15, we use rnd to show that instead of sampling a matrix,
we may instead sample its transpose. Whenever the original matrix is used, we now take the transpose of
the new sampled matrix. Similarly, on line 19 we use rnd to perform an optimistic sampling operation,
in which B is transformed in order to remove the additive factor b?Mu(()):0_{1,1}. Here, Mu is an
uninterpreted function from the unit type to 1 by 1 matrices, modelling the message content dq/2e, and
0_{1,1} is the constant zero matrix of dimension 1 by 1. The notation _?_:_ is the standard ternary
if-then-else construct; thus, we can model the expression bdq/2e present in the Dual Regev scheme as the
expression b?Mu(()):0_{1,1}.

Finally, the indep! tactic is used to reason about games such as the game in Figure 4, in which the
adversary trivially has no advantage. Detail about the proof rules present in our logic is given in Section 3.4.

3 Logic

Our logic reasons about probabilistic expressions P , built from atomic expressions of the form PrG[ φ ],
whereG is a game, and φ is an event. Games are probabilistic programs with oracle and adversary calls, and
φ is the winning condition of the game. The proof rules of the logic formalize common patterns of reasoning
from the game-playing approach to security proofs. In their simpler form, proof steps will transform a proof
goal PrG[ φ ] ≤ p into a proof goal PrG′ [ φ

′ ] ≤ p′, with p = p′ + c, and G′ a game derived from G;
alternatively, they will directly discharge the proof goal PrG[ φ ] ≤ p (and give a concrete value for p) when
the proof goal is of a simple and specific form, e.g. bounding the probability that an adversary guesses a
uniformly distributed and secret value.

In order to be able to accommodate lattice-based constructions, the following novelties are necessary:

8



Dimensions
d ::= n dimension variable

| d1 + d2 addition
| 1 constant dimension 1

Types
t ::= B boolean value

| Zq prime field of order q
| Zd1×d2q integer matrix
| listd t list
| t× . . .× t tuple

Expressions
M ::= 0 null matrix

| I identity matrix
| [M ] constant list
| M +M addition
| M ×M multiplication
| −M inverse
| M ‖M concatenation
| slM left projection
| srM right projection
| M> transpose

Figure 6: Syntax of expressions (selected)

the expression language includes vectors and matrices; new rules for probabilistic samplings and for oracle-
relative assumptions (both in the information-theoretic and computational forms). These extensions do
not pose any foundational challenge, but must be handled carefully to obtain the best trade-off between
generality and automation.

3.1 Games

Games consist of a security experiment in which an adversary with oracle access interacts with a challenger
and of an assertion that determines the winning event.

Expressions The expression language operates over booleans, lists, matrices, and integers modulo q, and
includes the usual algebraic operations for integer modulo q and standard operators for manipulating lists
and matrices. The operations for matrices include addition, multiplication and transposition, together with
structural operations that capture the functionalities of block matrices, and can be used for (de)composing
matrices from smaller matrices. concatenation, split left, and split right. The type of lists, listd, denotes a
list of length d. Lists are manipulated symbolically, so do not support arbitrary destructuring. Lists may be
constructed through the constant list operation [·], which takes a type τ to the type listd τ , for any d. All of
the matrix operations are lifted pointwise to lists.

The syntax of expressions (restricted to expressions for matrices) is given in Figure 6. Selected typing
rules for expressions are given in the Appendix, in Figure 13. Expressions are deterministic, and are inter-
preted as values over their intended types. Specifically, we first interpret dimensions as (positive) natural
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Assertions (event expressions)
φ ::= e expression

| ∃ b1, . . . , bk. e existential queries
| ∀ b1, . . . , bk. e universal queries

where
b ::= x ∈ Qo x ranges over queries

for all queries

Game commands
gc ::= let x= e assignment

| x←$ µ sampling from distr.
| assert(φ) assertion
| y ← A(x) with

−→
O adversary call

Oracle commands
oc ::= let x= e assignment

| x←$ µ sampling from distr.
| guard(b) guard

Oracle definitions
O ::= o(x) = {−→oc; return e}

Game definitions
G ::= {−→gc; return e};

−→
O

where A and O range over adversary and oracle names respectively.

Figure 7: Syntax of games

numbers. This fixes the interpretation of types. Expressions are then interpreted in the intended way; for
instance, transposition is interpreted as matrix transposition, etc.

Games Games are defined by a sequence of commands (random samplings, assignments, adversary calls)
and by an assertion. The command defines the computational behavior of the experiment whereas the
assertion defines the winning event. Each adversary call contains a list of oracles that are available to the
adversary; oracles are also defined by a sequence of commands (random samplings, assignments, assert
statements) and by a return expression. The grammars for oracle definitions and game definitions are given
in Figure 7.

The operational behavior of oracles is defined compositionally from the operational behavior of com-
mands:

• random sampling x←$ µ: we sample a value from µ and store the result in the variable x;

• assignments: let x= e: we evaluate the expression e and store the result in the variable x;

• assertion guard(b): we evaluate b and return ⊥ if the result is false. Guards are typically used in decryp-
tion oracles to reject invalid queries.
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In addition, we assume that every oracle O comes with a value δO that fixes the maximal number of times
that it can be called by an adversary. To enforce this upper bound, the execution is instrumented with a
counter cO that is initially set to 0. Then, whenever the oracle is called, one checks cO ≥ δo; if so, then ⊥
is returned. Otherwise, the counter cO is increased, and the oracle body is executed. In order to interpret
events, we further instrument the semantics of the game to record the sequence of interactions between the
adversary and the oracle. Specifically, the semantics of oracles is instrumented with a query set variable QO
that is initially set to ∅. Then, for every call the query parameters are stored in QO. (Following [BDKL10]
it would be more precise to hold a single list of queries, rather than a list of queries per oracle, but the latter
suffices for our purposes.)

Informally, adversaries are probabilistic computations that must execute within a specific amount of re-
sources and are otherwise arbitrary. One simple way to give a semantics to adversaries is through syntax,
i.e. by mapping adversary names to commands, and then interpret these commands using the afore de-
scribed semantics. However, our language of games is too restrictive; therefore, we map adversary names
to commands in a more expressive language, and then resort to the semantics of this richer language. For
convenience of meta-theoretic proofs, e.g. soundness, it is preferable to choose a language that admits a set-
theoretical semantics. For instance, one can use the probabilistic programming language pWhile to model
the behavior of the adversaries.

The semantics of games is defined compositionally from the operational behavior of commands, oracles,
and adversaries:

• assertion assert(φ): we evaluate φ and abort if the result is false.

• adversary call y ← A(e) with
−→
O : we evaluate e, call the adversary A with the result as input, and bind

the output of the adversary to y. The adversary is provided with access to the oracles
−→
O .

Finally, the interpretation of PrG[ φ ] is to be the probability of φ in the sub-distribution obtained by
executing G.

Throughout the paper, we assume that the games satisfy the following well-formedness conditions and
(without loss of generality) hygiene conditions: (WF1) all variables must be used in scope; (WF2) com-
mands must be well-typed; (Hyg1) adversary and oracle names are distinct; (Hyg2) bound variables are
distinct.

3.2 Reasoning about expressions

Our indistinguishability logic makes use of two main relations between expressions: equality and deducibil-
ity. Equality is specified through a set of axioms E , from which further equalities can be derived using
standard rules of equational reasoning: reflexivity, symmetry, transitivity of equality, functionality of oper-
ators, and finally instantiation of axioms. We write Γ `E e = e′ if e and e′ are provably equal from the
axioms E and the set of equalities Γ. Throughout the paper, we implicitly assume that the set of axioms
includes standard identities on matrices.

Deducibility is defined using the notion of contexts. A context C is an expression that only contains a
distinguished variable •. We write e `CE e′, where e, e′ are expressions and C is a context, if `E C[e] = e′.
We write e `E e′ if there exists a context C such that e `CE e′. Similarly, we write Γ |= e `CE e′ if
Γ `E C[e] = e′ and Γ |= e `E e′ if there exists a context C such that Γ |= e `E e′. More generally,
a (general) context C is an expression that only contains distinguished variables •1, . . . , •n. We write
e1, . . . , en `CE e′, where e1, . . . , en, e

′ are expressions and C is a context, if `E C[e1, . . . , en] = e′. We
write e1, . . . , en `E e′ if there exists a context C such that e1, . . . , en `CE e′. Similarly, we write Γ |=
e1, . . . , en `CE e′ if Γ |= C[e1, . . . , en] =E e

′ and Γ |= e1, . . . , en `E e′ if there exists a context C such that
Γ |= e1, . . . , en `E e′. Intuitively, a context is a recipe that shows how some expression may be computed
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given other expressions. If we consider matrices, we may have M + N,O,N ` M × O with the context
C(•1, •2, •3) := (•1 − •3)× •2.

3.3 Strongest postcondition

A desirable property of any logic is that one can replace equals by equals. In particular, it should always
be possible to replace an expression e by an expression e′ that is provably equivalent to e. However, it is
often desirable to use a stronger substitution property which allows to replace e by an expression e′ that is
provably equivalent to e relative to the context in which the replacement is to be performed. To achieve this
goal, our proof system uses a strongest postcondition to gather all facts known at a position p in the main
command. The computation of spp(G) is done as usual, starting from the initial position of the program
with the assertion true and adding at each step the assertion φc corresponding to the current command c,
where:

φlet x = e = x = e
φguard(b) = b

φassert(e) = e

φ∀/∃ b1,...,bk. e = true

3.4 Judgment and proof rules

Our computational logic manipulates judgments of the form P � P ′ where P and P ′ are probability
expressions drawn from the following grammar:

P, P ′ ::= ε | c | P + P ′ | P − P ′ | c× P | |P | | PrG[ φ ],

where ε ranges over variables, c ranges over constants, |P | denotes absolute value, and PrG[ φ ] denotes
the success probability of event φ in game G. Constants include concrete values, e.g. 0 and 1

2 , as well as
values whose interpretation will depend on the parameters of the scheme and the computational power of
the adversary, e.g. its execution time or maximal number of oracle calls.

Proof rules are of the form
P1 � ε1 . . . Pk � εk

P � ε

where Pis and P are probability expressions, εis are variables and finally ε is a probability expression built
from variables and constants.

Figure 8 present selected rules of the logic. In many cases, rules consider judgments of the form
PrG[ φ ] � ε; similar rules exist for judgments of the form |PrG[ φ ]− PrG′ [ φ

′ ]| � ε.
Rules [FALSE] and [CASE] formalize elementary axioms of probability theory. Rules [REFL] and [ADD]

formalize elementary facts about real numbers. Rule [EQ] can be used to replace a probability expression by
another probability expression that is provably smaller within the theory of reals. For instance, derivations
commonly use the identity ε1 ≤ |ε1 − ε2|+ ε2.

Rules [SWAP], [INSERT], [SUBST] are used for rewriting games in a semantics-preserving way. Con-
cretely, rule [SWAP] swaps successive commands (at position p) that can be reordered (are dataflow inde-
pendent in the programming language terminology). By chaining applications of the rule, one can achieve
more general forms of code motion. Rule [INSERT] inserts at position p command that does not carry any
operational behaviour. Rule [SUBST] substitutes at position p an expression e by another expression e′ that
is contextually equivalent at p, i.e. spp(G) |= e =E e

′ holds.
The rule [RAND] performs a different transformation known as optimistic sampling. It replaces a uni-

form sampling from t by s ←$ t′; return C[s]. To ensure that this transformation is correct, the rule checks
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[FALSE]
PrG[ false ] � 0

[CASE]
PrG[ φ ∧ c ] � ε1 PrG[ φ ∧ ¬c ] � ε2

PrG[ φ ] � ε1 + ε2

[REFL]
PrG[ φ ] � PrG[ φ ]

[ADD]
P � ε1 P ′ � ε2
P + P ′ � ε1 + ε2

[EQ]
P � ε ` P ′ ≤ P

P ′ � ε

[SWAP]
PrG{c′; c}p [ φ ] � ε
PrG{c; c′}p [ φ ] � ε

[INSERT]
PrG{c; c′}p [ φ ] � ε
PrG{c′}p [ φ ] � ε

c sampling, let,
or guard(true)

[SUBST]
PrG{e}p [ φ ] � ε
PrG{e′}p [ φ ] � ε

spp(SE) |= e =E e
′

[ABSTRACT]

∣∣∣PrG′1 [ φ1 ]− PrG′2 [ φ2 ]
∣∣∣ � ε

|PrG1 [ φ1 ]− PrG2 [ φ2 ]| � ε
G1 ≡ G′

1[B]
G2 ≡ G′

2[B]

[RAND]
PrG{s←$ t′; let r =C[s]}p [ φ ] � ε

PrG{r←$ t}p [ φ ] � ε spp(G) |= C ′[C] =E •

[RFOLD]
Pr

G{x←$ Z
d1×(d2+d

′
2)

q ; let x1 = sl x; let x2 = sr x}p
[ φ ] � ε

Pr
G{x1←$ Zd1×d2q ;x2←$ Z

d1×d′2
q }p

[ φ ] � ε

[RUNFOLD]
Pr

G{x1←$ Zd1×d2q ;x2←$ Z
d1×d′2
q ; let x =x1‖x2}p

[ φ ] � ε

Pr
G{x←$ Z

d1×(d2+d
′
2)

q }p
[ φ ] � ε

[UPTO]
PrG{guard(c)}p [ φ ] � ε1 PrG{guard(c)}p [ ∃x ∈ Qo. c(x) 6= c′(x) ] � ε2

PrG{guard(c′)}p [ φ ] � ε1 + ε2
p first position in o

[GUESS]
PrG;x←A()[ φ ] � ε

PrG[ ∃x ∈ Qo. φ ] � ε

[FIND]
PrG;x←A(e)[ φ1 ∧ φ2 ] � ε

PrG[ (∃x ∈ Qo. φ1) ∧ φ2 ] � ε
C efficient and
sp|G|(G) |= C[(e, x)] =E φ1

Figure 8: Selected proof rules
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that C is provably bijective at the program point where the transformation arises, using a candidate inverse
context C ′ provided by the user. Rules [RFOLD] and [RUNFOLD] are dual and are used to manipulate ran-
dom samplings of matrices. The rule [RFOLD] is used to turn two uniform samplings of matrices into one
uniform sampling of the concatenation; conversely, the rule [RUNFOLD] may be used to turn one uniform
sampling of a concatenation into uniform samplings of its component parts. (We also have similar rules
[LFOLD] and [LUNFOLD] in order to manipulate the vertical component of the dimension.) These rules are
primarily used to apply axioms which are stated about matrices of compound dimension.

The rule [ABSTRACT] is used for applying computational assumptions. The rule can be used to in-
stantiate a valid judgment with a concrete adversary. The side-conditions ensure that the experiments G1

and G2 are syntactically equivalent to the experiment G′1[B := B] and G′2[B := B], where the notation
G′[B := B] represents the game obtained by inlining the code of B in G′. Because of the requirement on
syntactic equivalence, it is sometimes necessary to apply multiple program transformations before applying
an assumption.

The rule [UPTO] rule is used for replacing guard(c′) at position p in an oracle with guard(c). According
to the usual principle for reasoning up to failure events, the rule yields two proof obligations: bound the
probability of the original event and the probability that the adversary performs a query where the results of
c and c′ differ.

The rules [GUESS] and [FIND] rules are used to deal with winning events involving existential quantifi-
cation.

The logic also contains a rule for hybrid arguments. The rule is similar to [BGS15] and ommitted For
lack of space.

3.5 Soundness

All proof rules of the logic are sound. To state soundness, we lift the interpretation of games to an interpre-
tation of judgments and derivations. This is done by first defining a fixed interpretation of dimensions that
is used for all the games of the derivation. Then, we define the interpretation of P inductively. We say that
judgment P � P ′ is valid iff the inequality holds for every valid interpretation of P and P ′. Finally, one
can prove that P � P ′ is valid whenever P � P ′ is derivable in the logic.

3.6 Axioms Used

Here, we describe the axioms used to prove the schemes in Sections 2 and 5 secure. Each axiom is deci-
sional, in that it is a claim about the closeness of two games. This is modeled by having both games end
with a bit output b, so that each axiom is a claim of the form |PrG0 [ b ]− PrG1 [ b ]| � ε. This allows us to
apply the [ABSTRACT] rule from Figure 8.

3.6.1 Learning with Errors

Recall from Section 2 that the LWE assumption states that the distribution (A, sTA+e) is indistinguishable
from uniform, where A and s are uniformly sampled elements of Zn×mq and Znq respectively, and e is
sampled from some given error distribution.

Our concrete encoding is given in Figure 9. Since our logic only deals with uniform samplings, in order
to encode more complicated sampling algorithms such as the error distribution for LWE, we separate the
sampling algorithm into a coin sampling stage and a deterministic stage. In the coin sampling stage, an
element of {0, 1}c is sampled, where c is the number of coins the sampling algorithm will use. (Since the
sampling algorithm is polynomial time, c will be a polynomial of the security parameter.) In the determin-
istic stage, we call an uninterpreted function (here, Chi) which uses the sampled coins to produce the output
of the distribution.
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In various applications of the LWE assumption, the parameter settings of Figure 9 will alter slightly –
for instance, in the Dual Regev scheme from Section 2, we do not use m on the nose, but rather m+ 1. This
difference is immaterial to the validity of the assumption.

Game GLWE
0 :

A
$← Zn×mq ; s

$← Znq ;

ce
$← {0, 1}cChi ; let e = Chi(ce);

b← A(A, sTA + e);

Game GLWE
1 :

A
$← Zn×mq ; u

$← Zmq ;

b← A(A,u);

Figure 9: The LWE assumption, encoded in AutoLWE.

3.6.2 Leftover Hash Lemma

The most subtle part of our proofs is often not applying the LWE assumption, but rather applying the
Leftover Hash Lemma. This is because the LHL is an information-theoretic judgment rather than a com-
putational one; information-theoretic judgments enjoy stronger composition properties than computational
judgments.

Recall that the (basic) LHL states that the distribution (A,AR,wR) is statistically close to the distri-
bution (A,B,wR), where A is a uniformly random element of Zn×mq , R is a uniformly random element of
{−1, 1}m×k (interpreted as a matrix), and w is a fixed arbitrary vector in Zmq . For the LHL to hold, however,
we can actually relax the requirements on A: instead of A being sampled uniformly, we only require that
A is sampled from a distribution which is statistically close to uniform.

In the literature, it is often the case that the lemma being applied is not the LHL on the nose, but rather
this weakened (but still valid) form in which A only need to be close to uniform. In many of our proofs,
this occurs because A is not uniformly sampled, but rather sampled using an algorithm, TrapGen, which
produces a vector A statistically close to uniform along with a trapdoor TA, which is kepts secret from the
adversary.

By combining the LHL with the TrapGen construction, we obtain the security games in Figure 10. Both
games are displayed at once: the expressions which vary between the two games are annotated with which
game they belong in. In order to model how R is sampled, we sample the component bits of R from
{0, 1}dLHL , and apply a symbolic function, bitinj, which converts these component bits into a matrix. Note
in this security game that w comes from a symbolic adversary,A1. This models the universal quantification
of w in the LHL. Additionally, note that A2 actually receives the trapdoor TA. This is counterintuitive,
because adversaries in the cryptosystems do not have access to the trapdoor. However, remember that
here we are constructing the adversary for the LHL; giving A2 the trapdoor reflects the assertion that the
distribution (A,AR,wR, TA) is statistically close to the distribution (A,B,wR, TA), which follows from
the information theoretic nature of the LHL.

While we use the assumption from Figure 10 in our proofs, we also use several small variations which
are also valid. One such variation is in the proof of Dual Regev, where we do not use the TrapGen algorithm,
but rather sample A uniformly (and do not give the adversary TA); additionally, we do not include this linear
leakage w. Another such variation is used in our CCA proof from Section 5. In this instance, we do not
transform AR to B, but rather to AR+B (thus generalizing our [RAND] rule.) Additionally, we must state
the LHL in the CCA proof to be relative to the decryption oracle, which makes use of R. This relativized
lemma is still valid, however, since the decryption oracle does not leak any information about R. It will be
interesting future work in order to unify these small variations of the LHL.
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Game GLHLβ :

c
$← {0, 1}dTG ; let (A, TA) = TrapGen(c);

r
$← {0, 1}dLHL ; let R = bitinj(r);

if β=1

B
$← Zn×mq ; w← A1();

b← A2(A,
if β=0

AR
if β=1

B ,wR, TA,w);

Figure 10: The LHL assumption combined with TrapGen, encoded in AutoLWE.

3.6.3 Distribution Equivalences

In addition to the two main axioms above, we also rely on several opaque probabilistic judgments about
distributions from which the adversary may sample, but are written in terms of private variables which the
adversary may not access. For instance, in an Identity-Based Encryption scheme, the adversary could have
access to a KeyGen oracle, which must use the master secret key in order to operate. This is the case in
Section 5.2. In the concrete proof, there is a step in which we change the implementation of the KeyGen
oracle from one uninterpreted function to another. Transformations of this sort are encoded using oracle-
relative assumptions, which are generalizations of axioms in AutoG&P which allow adversaries to query
oracles.

For example, in Figure 11, we state closeness of the distributions D0(s0, ·) and D1(s1, ·), where both
s0 and s1 are unknown to the adversary. (As before, each distribution is separated into a coin sampling
stage and a deterministic stage.) Note that s0 and s1 need not be of the same type, since the adversary
does not see them. Jumping ahead in (H)IBE part in the case study, D0, D1 correspond to the real/simulated
key generation algorithms, where s0 is the master secret key, and s1 is the secret trapdoor information the
simulator knows in order to answer secret key queries.

Game G0 :

s0
$← Zmq ;

b← A()
with O(x) = {
c0

$← {0, 1}d0 ;
ret D0(c0, s0, x);
}

Game G1 :

s1
$← Zkq ;

b← A()
with O(x) = {
c1

$← {0, 1}d1 ;
ret D1(c1, s1, x);
}

Figure 11: Example axiom capturing computational closeness of distributions.

4 Deciding deducibility

Several rules involve deducibility problems as side-conditions. For instance, in the [ABSTRACT] rule from
Fig 8, we may transform a bound involving G1 and G2 into a bound involving G′1 and G′2, if there exists
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a common subgame B which can be used to factor the former pair into the latter. Finding this subgame B
will induce deducibility subproblems. In order to automate the application of the rules, it is thus necessary
to provide algorithms for checking whether deducibility problems are valid. As previously argued, it is
desirable whenever possible that these algorithms are based on decision procedures rather than heuristics.

In this section, we provide decision procedures for the theory of Diffie-Hellman exponentiation, both in
its basic form and in its extension to bilinear groups, and for the theory of fields. The decision procedures
for Diffie-Hellman exponentiation are based on techniques from Gröbner bases. In addition to being an
important independent contribution on its own, the algorithms for Diffie-Hellman exponentiation also serve
as a natural intermediate objective towards addressing the theory of matrices (although the problems are
formally independent). For the latter, we require significantly more advanced algebraic tools. For the
clarity of exposition, we proceed incrementally. Concretely, we start by considering the case of fields
and non-commutative rings. We respectively provide a decision procedure and a semi-decision procedure.
Subsequently, we give a reduction from deducibility for matrices to deducibility for non-commutative rings.
The reduction yields a semi-decision procedure for matrices. The algorithms for non-commutative rings and
matrices are based on so-called SAGBI [RS90] (Subalgebra Analog to Gröbner Basis for Ideals) techniques,
which as justified below provide a counterpart of Gröbner basis computations for subalgebras.

4.1 Diffie-Hellman exponentiation

Diffie-Hellman exponentiation is a standard theory that is used for analyzing key-exchange protocols based
on group assumptions. It is also used, in its bilinear and multilinear version, in AutoG&P for proving secu-
rity of pairing-based cryptography. In this setting, the adversary (also often called attacker in the symbolic
setting) can multiply groups elements between them, i.e perform addition in the field, and can elevate a
group element to some power he can deduce in the field. Previous work only provides partial solutions:
for instance, Chevalier et al [CKRT03] only consider products in the exponents, whereas Dougherty and
Guttman [DG14] only consider polynomials with maximum degree of 1 (linear expressions).

The standard form of deducibility problems that arises in this context is defined as follows: let Y be
a set of names sampled in Zq, g some group generator, E the equational theory capturing field and groups
operations, some setX ⊂ Y , f1, ...fk, h ∈ K[Y ] be a set of polynomials over the names, and Γ be a coherent
set of axioms. The deducibility problem is then:

Γ |= X, gf1 , ..., gfk `E gh

Proposition 4.1. Deducibility for Diffie-Hellman exponentiation is decidable.

The algorithm that supports the proof of the proposition proceeds by reducing an input deducibility prob-
lem to an equivalent membership problem of the saturation of some Zq[X]-module in Zq[Y ], and by using
an extension for modules [Eis13] of Buchberger’s algorithm [Buc76] to solve the membership problem.

The reduction to the membership problem proceeds as follows: first, we reduce deducibility to solving a
system of polynomial equations. We then use the notion of saturation for submodules and prove that solving
the system of polynomial equations corresponding to the deducibility problem is equivalent to checking
whether the polynomial h is a member of the saturation of some submodule M . The latter problem can be
checked using Gröbner basis computations.

4.2 Fields and non-commutative rings

Another problem of interest is when we consider deducibility inside the field rather than the group. The
deducibility problem can then be defined as follows: let Y be a set of names sampled in Zq, E the equational
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theory capturing field operations, f1, ...fk, h ∈ K[Y ] be a set of polynomials over the names, and Γ be a
coherent set of axioms. The deducibility problem is then:

f1, ..., fk `E h

We emphasize that this problem is in fact not an instance of the problem for Diffie-Hellman exponentiation.
In the previous problem, if we look at field elements, the adversary could compute any polynomial in
K[X] but he may now compute any polynomial in K[f1, ..., fk], the subalgebra generated by the known
polynomials.

Decidability is obtained thanks to [SS88], where they solve the subalgebra membership problem using
methods based on classical Gröbner basis.

Proposition 4.2. Deducibility for fields is decidable.

If we wish to characterize the full adversary knowledge as done for Diffie-Hellman exponentiation using
Gröbner basis, we would have to resort to so-called SAGBI [RS90] (Subalgebra Analog to Gröbner Basis
for Ideals) techniques, which form the counterpart of Gröbner basis computations. However, some finitely
generated subalgebras are known to have infinite SAGBI bases [RS90], thus it can only provide semi-
decision for the membership problem.

For the case of non-commutative rings, we are not aware of any counterpart to [SS88], we resort to the
non-commutative SAGBI [Nor98] theory.

Proposition 4.3. Deducibility for non-commutative rings is semi-decidable.

It is an open problem whether one can give a decision procedure for non-commutative rings. We note
that the problem of module membership over a non-commutative algebra is undecidable [Mor94], as there is
a reduction from the word problem over a finitely presented group. On the other hand, the problem is known
to be decidable for some classes of subalgebras, notably in the the homogeneous case where all monomials
are of the same degree.

4.3 Matrices

The case of matrices introduces a final difficulty: expressions may involve structural operations. To ad-
dress the issue, we show that every deducibility problem in the theory of matrices is provably equivalent
to a deducibility problem that does not involve structural operations, nor transposition—said otherwise, a
deducibility problem in the theory of non-commutative rings.

Proposition 4.4. Deducibility for matrices is semi-decidable.

The algorithm that supports the proof of semi-decidability for matrices operates in two steps:

1. it reduces the deducibility problem for matrices to an equivalent deducibility problem for non-commutative
rings;

2. it applies the semi-decision procedure for non-commutative rings.

The reduction to non-commutative rings is based on a generalization of the techniques introduced in [BDK+10]
for the theory of bitstrings—note that the techniques were used for a slightly different purpose, i.e. deciding
equivalence between probabilistic expressions, rather than for proving deducibility constraints.

The general idea for eliminating concatenation and splitting comes from two basic facts:
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• M `M ‖ N ⇔M `M ∧M ` N

• M∪ {M ‖ N} ` T ⇔M∪ {M,N} ` T

For transposition, we observe that it commutes with the other operations, so in a proof of deducibility, we
can push the transposition applications to the leaves. Everything that can be deduced from a set of matrices
M and the transpose operation can also be deduced if instead of the transpose operation we simply provide
the transposition of the matrices inM.

5 Implementations and Case Studies

The implementation of our logic, called AutoLWE, is available at:

https://github.com/autolwe/autolwe

AutoLWE is implemented as a branch of AutoG&P and thus makes considerable use of its infrastructure.
Moreover, we have used AutoLWE to carry several case studies (see Figure 12): an Identity-Based En-

cryption scheme and an Hierarchical Identity-Based Encryption scheme by Agrawal, Boneh and Boyen [ABB10],
a Chosen-Ciphertext Encryption scheme from Micciancio and Peikert [MP12], and an Inner Product Encryp-
tion scheme and proof from Agrawal, Freeman, and Vaikuntanathan [AFV11]. These examples are treated
in Sections 5.2, 5.4, 5.3 and 5.5 respectively.

Globally, our tool performs well, on the following accounts: formal proofs remains close to the pen
and paper proofs; verification time is fast (less than 3 seconds), and in particular the complexity of the
(semi-)decision procedures is not an issue; formalization time is moderate (requiring at most several hours
of programmer effort per proof). One of the main hurdles is the Leftover Hash Lemma, which must be
applied in varying levels of sophistication. The Leftover Hash Lemma (and more generally all oracle-relative
assumptions) increase the difficulty of guessing (chained) applications of assumptions, and consequently
limits automation.

Case study Proof

Reference Scheme Property LoC

Gentry et al. ’08 [GPV08] dual-Regev PKE IND-CPA 11
Micciancio et al. ’12 [MP12] MP-PKE IND-CCA 98
Agrawal et al. ’10 [ABB10] ABB-IBE IND-sID-CPA 56
Agrawal et al. ’10 [ABB10] ABB-HIBE IND-sID-CPA 77
Agrawal et al. ’11 [AFV11] AFV-IPE IND-wAH-CPA 106

Figure 12: Overview of case studies. All proofs took less than three seconds to complete.

5.1 Implementation

Security games are written in a syntax closely resembling that shown in Figure 1. See Figure 5 for an
example concrete proof in our system. Each line of the proof corresponds to a proof rule in our logic, as
seen in Figure 8. All tactic applications are fully automated, except for the application of oracle-relative
assumptions. The user must provide some hints to AutoLWE about how the security game needs to be
factored in order to apply an oracle-relative assumption. The system in [BGS15] additionally supports a
proof search tactic which automatically finds a series of tactics to apply to finish the goal; we do not have a
version of that in our setting.
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5.1.1 Oracle-relative Assumptions

AutoG&P allows one to add user defined axioms, both to express decisional assertions (two distributions
are computationally close) and computational assertions (a certain event has small chance of happening). In
AutoG&P, these user-defined axioms are stated in terms of symbolic adversaries, which are related to the
main security game by rules such as [ABSTRACT] in Section 3.4. However, the symbolic adversaries present
in axioms may not have oracles attached to them. While these restricted adversaries can be used to define
the LWE assumption, they are not expressive enough to state the oracle-relative axioms we use throughout
our proofs. In AutoLWE, we remove this restriction. An example axiom we now support which we did not
before is that in Figure 11.

Recall that in order to apply a user defined axiom using [ABSTRACT], we must factor the security game
into one which is in terms of the axiom’s game. This is done essentially by separating the security game
into sections, where each section either reflects the setup code for the axiom, or an instantiation of one of
the adversaries in the axiom. We still do this factoring in the case of oracle-relative axioms, but we must
also factor oracles in the security game in terms of oracles in the axiom. Once this second step of factoring
is done, oracles in the axiom can be compared syntactically to factored oracles in the security game.

5.1.2 Theory of Lists and Matrices

Note that in our case studies, we manipulate both matrices and lists of matrices (often simultaneously).
Thus, both our normal form algorithm and our deducibility reduction from Section 4.3 must be lifted to
apply to lists of matrices as well. This is what allows our system to reason about the more complicated
HIBE scheme in a manner similar to the IBE scheme, which does not use lists.

In order to do this, we do not implement our main algorithms on expressions of matrices directly, but
instead over a general signature of matrices, encoded as a certain type of an ML module. We then instantiate
this signature both with matrices and lists of matrices. By doing so, we receive an implementation for our
new algorithms which operate uniformly across these two types of expressions.

5.1.3 Deduction algorithms

Many implementations of Gröbner basis computations can be found online, but all of them are only usable
for polynomial ideals. In order to handle module and non-commutative subalgebra, we thus implemented
generic versions of the Buchberger algorithm forK[X]-module and the SAGBI algorithm and plugged them
into AutoLWE. The algorithms performed well: we could prove all the LWE examples, and the pairing-
based examples very quickly, using the SAGBI methods. The efficiency of the computations contrasts with
the complexity of the algorithms, which is high because the saturation squares up the number of inputs terms
and the Gröbner Basis can be at worst a double exponential. However, we are dealing with relatively small
instances of our problem that are extracted from concrete primitives.

5.2 Identity-Based Encryption

Mathematical background. Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive
parameter σ ∈ R, let ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c
and parameter σ. Next, we let ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ, and let

χΛ,σ,c(y) :=
ρσ,c(y)
ρσ,c(Λ) . Let Sm denote the set of vectors in Rm whose length is 1. The norm of a matrix

R ∈ Rm×m is defined to be supx∈Sm ||Rx||. We say a square matrix is full rank if all rows and columns are
linearly independent.

Identity-based encryption is a generalization of public key encryption. In IBE, the secret key and ci-
phertext are associated with different identity strings, and decryption succeeds if and only if the two identity
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strings are equivalent. The security model, IND-sID-CPA, requires adversary to declare challenge identity
upfront before seeing the public parameters, and allows adversary to ask for secret key for any identity ex-
cept for the challenge identity, and CPA security holds for ciphertext associated with the challenge identity.

The IBE scheme our system supports is constructed by Agrawal et al. [ABB10]. The scheme operates
as follows:

• Matrix A is generated by algorithm TrapGen, which outputs a random A ∈ Zn×mq and a small norm
matrix T ∈ Zm×mq such that A ·TA = 0. Matrices A1,B are sampled randomly from Zn×mq , and u is
sampled randomly from Znq . Set pp = (A,A1,B,u) and msk = TA.

• To encrypt a message µ ∈ {0, 1} with identity id ∈ Znq , one generates a uniform s ∈ Znq , error vector
e0 ← χm and error integer e1 ← χ from discrete Gaussian, a random R ∈ {0, 1}m×m, and computes
ciphertext

ct = sT [A||A1 +M(id)B||u] + (eT||eTR||e′) + (0||0||dq/2eµ)

• The secret key for identity id ∈ Znq is generated by procedure r ← SampleLeft(A,A1+M(id)B,TA,u),
where we have r is statistically close to χ2m, and [A||A1 +M(id)B] r = u.

The idea of the proof is first to rewrite A1 as AR −M(id∗)B, where id∗ is the adversary’s committed
identity. If we do so, we then obtain that the challenge ciphertext is of the form

sT [A||AR||u] + (eT||eTR||e′) + (0||0||dq/2eµ),

where A comes from TrapGen. We then apply a computational lemma about SampleLeft, in order to rewrite
the KeyGen oracle to be in terms of another probabilistic algorithm, SampleRight. This is a statement about
equivalence of distributions from which the adversary may sample, so must be handled using an oracle-
relative assumption. This is done as described in Section 3.6.3. The computational lemma states that, for
appropriately sampled matrices,

SampleLeft(A,AR + B, TA,u) ≈ SampleRight(A,B,R, TB,u),

where A is sampled from TrapGen in the first and uniform in the second, and B is sampled uniformly in the
first and from TrapGen in the second. By applying this transformation to our KeyGen oracle, we transform
our matrix A from one sampled from TrapGen to uniform.

Now that A is uniform, we finish the proof by noticing that our challenge ciphertext is equal to b||bR||b+
dq/2eµ, where (b, b) forms an LWE distribution of dimension n × m + 1. Thus we may randomize b to
uniform, and apply the rnd tactic to erase µ from the ciphertext.

The main point of interest in this proof is the initial rewrite A1 → AR −M(id∗)B. Given that A1 is
uniform, we may first apply optimistic sampling to rewrite A1 to A2 −M(id∗)B, where A2 is uniformly
sampled. Thus, we now only need to perform the rewrite A2 → AR. This rewrite is not at all trivial,
because A at this point in the proof comes from TrapGen. However, as noted in Section 3.6.2, it is sound to
apply the LHL in this case, because TrapGen generates matrices which are close to uniform in distribution.
Thus, we can use the LHL as encoded in Figure 10.

5.3 CCA1-PKE

The CCA1-PKE scheme we study is proposed by Micciancio and Peikert [MP12]. In comparison with the
CPA-PKE scheme [GPV08] described in Section 2, the security model of CCA1-PKE is stronger: the ad-
versary can query a decryption oracle for any ciphertext he desires before receiving the challenge ciphertext.
The scheme operates as follows:
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• Matrix A ∈ Zn×mq is sampled randomly and R← {−1, 1}m×m. Set pk = (A,AR) and sk = R.

• LetM : Znq → Zn×mq be an embedding from Znq to matrices, such that for distinct u and v,M(u)−M(v)
is full rank. To encrypt a message µ ∈ {0, 1}, one generates a uniform s ∈ Znq , a uniform u ∈ Znq , a
uniform matrix R′ ∈ {−1, 1}m×m and an error vector e ∈ Zmq sampled from a discrete Gaussian, and
computes the ciphertext

c0 = u, c1 = sTAu + (eT||eT ∗R′) + (0||Encode(µ))

where Au := [A|| −AR +M(u)G], G is a publicly known gadget matrix, and Encode : {0, 1} → Zmq
sends µ to µdq/2e(1, . . . , 1).

• To decrypt a ciphertext (u := c0, c1) with sk = R and u 6= 0, one computes Au and calls a procedure
Invert(Au,R, c1), which will output s and e such that c1 = sTAu + e, where e has small norm. By
doing a particular rounding procedure using c1, s, e, and R, the message bit µ can be derived.

The main subtlety of the proof is that the secret key R is used in the decryption oracle. Because of this,
we must apply the Leftover Hash Lemma relative to this oracle, by using oracle-relative axioms. As we
will see, not all uses of the LHL are valid in this new setting; care must be taken to ensure that the axioms
derived from the LHL are still cryptographically sound.

The high-level outline of the proof is as follows: first, we note that instead of using a fresh R′ to
encrypt, we can actually use the secret key R. This is justified by the following corollary of the Leftover
Hash Lemma: the distribution (A,AR, e, eR′) is statistically close to the distribution (A,AR, e, eR)
where A,R,R′, and e are sampled as in the scheme. This corollary additionally holds true relative to the
decryption oracle, which makes use of R.

Once we use R to encrypt instead of R′, we again use the Leftover Hash Lemma to transform AR into
−AR+M(u)G, where u is generated from the challenge encryption. Again, this invocation of the Leftover
Hash Lemma is stated relative to the decryption oracle. Crucially, note here that we do not transform AR
directly into uniform, as we did before: the reason being is that this transformation would actually be
unsound, because it would decouple the public key from R as it appears in the decryption oracle. Thus, we
must do the transformation AR→ −AR +M(u)G in one step, which is cryptographically sound relative
to the decryption oracle. (Currently, we must write this specialized transformation as a unique variant of
the Leftover Hash Lemma, as discussed in Section 3.6.2; future work will involve unifying these separate
variants.)

At this point, we may apply the LWE assumption along with a more routine invocation of the LHL in
order to erase the message content from the challenge ciphertext, which finishes the proof.

5.4 Hierarchical Identity-Based Encryption

Hierarchical IBE is an extension of IBE. In HIBE, the secret key for ID string id can delegate secret keys for
ID strings id′, where id is a prefix for id. Moreover, decryption succeeds if the ID string for the secret key is
a prefix of (or equal to) the ID string for the ciphertext. The security model can be adapted according to the
delegation functionality.

The HIBE construction our system supports is described in [ABB10]. The ID space for HIBE is
idi ∈ (Znq )d. The secret key for ID string id = (id1, . . . , id`), where idi ∈ Znq , is a small-norm matrix T,
such that FidT = 0, and

Fid = [A0||A1 +M(id1)B|| · · · ||A` +M(id`)B]

We note that T can be computed as long as we know the secret key for id′, where id′ is a prefix of id.
Ciphertext for ID string id can be generated similarly with respect to matrix Fid.
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The security proof of HIBE is similar to the counterpart of IBE. The challenge ID string id∗ = (id∗1, . . . , id
∗
` )

is embedded in pp as

∀i ∈ [`],Ai = ARi −M(id∗i )B, ∀` < j ≤ d,Aj = ARj

For admissible query id = (id1, . . . , idk), where id is not a prefix of id∗, we have

Bk = [(M(id1)−M(id∗1))B|| · · · ||(M(idk)−M(id∗k))B] 6= 0

Then we can generate secret key for id using information Bk and Rk = (R1|| · · · ||Rk). In previous
cases, we manipulate and apply rewriting rules to matrices. However, in order to reason about the security
in a similar manner to pen-and-paper proof, we introduce the list notation, and adapt our implementation to
operate uniformly across these two types of expressions.

5.5 Inner Product Encryption

The IPE scheme our scheme supports is described in [AFV11]. We briefly recall their construction as

• Matrix A is generated by algorithm TrapGen. Matrices {matBi}i∈[d] are sampled randomly from Zn×mq ,
and random vector u is from Znq . The public parameters pp = (A, {Bi}i∈[d],u), and msk = TA.

• Secret key skv = r for vector v ∈ Zdq is computed by algorithm r ← SampleLeft(A,
∑

i∈[d] BiG
−1(viG),TA,u),

where for operation G−1(·) : Zn×mq → Zm×mq , for any A ∈ Zn×mq , it holds that G ·G−1(A) = A and
G−1(A) has small norm.

• To encrypt a message µ ∈ {0, 1} for attribute w, one generates a uniform s ∈ Znq , error vector e0 ← χm

and error integer e1 ← χ from discrete Gaussian, random matrices {Ri}i∈[d] ∈ {0, 1}m×m, and computes
ciphertext (c0, {ci}i∈[d], c) as

c0 = sTA + eT0 , ci = sT(Bi + wiG) + eT0 R, c = sTu + e+ dq/2eµ

The main challenge in the proof is to answer secret key queries for any vector v as long as 〈v,w0〉, 〈v,w1〉
are both not 0, where (w0,w1) is declared by adversary upfront. The attribute wb (b is a random bit) is first
embedded in pp, i.e. Bi = ARi −wbiG,∀i ∈ [d], where Ri is a small matrix. By unfolding the matrix for
query v, we have A||∑

i∈[d]

BiG
−1(viG)

 =

A||A∑
i∈[d]

RiG
−1(viG) + 〈wb,v〉G


If 〈wb,v〉 6= 0, the algorithm SampleRight can be used to generate secret key for v.

The sequence of hybrids generated in symbolic proof is a bit different from the pen-and-paper proof.
In particular, instead of transforming from embedding of challenge attribute w0 directly to embedding of
w1, we use the original scheme as a middle game, i.e. from embedding of w0 to original scheme, then
to embedding of w1. The reason for using the original scheme again in the proof is that when using LHL
to argue the indistinguishability between (A, {Bi = ARi − w0iG}i) and (A, {Bi = ARi − w1iG}i),
the real public parameters (A, {Bi}i) actually serves as a middleman. Therefore, to ensure the consistency
with respect to public parameters and secret key queries, the real scheme is used to make the transformation
valid.
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6 Related work

For space reasons, we primarily focus on related works whose main purpose is to automate security proofs
in the computational model.

Corin and den Hartog [CdH06] show chosen plaintext security of ElGamal using a variant of a gen-
eral purpose probabilistic Hoare logic. In a related spirit, Courant, Daubignard, Ene, Lafourcade and
Lakhnech [CDE+08] propose a variant of Hoare logic that is specialized for proving chosen plaintext secu-
rity of padding-based encryption, i.e. public-key encryption schemes based on one-way trapdoor permuta-
tions (such as RSA) and random oracles. Later, Gagné, Lafourcade, Lakhnech and Safavi-Naini [GLLS09,
GLL13] adapt these methods to symmetric encryption modes and message authentication codes.

Malozemoff, Katz and Green [MKG14] and Hoang, Katz and Malozemoff [HKM15] pursue an alter-
native approach for proving security of modes of operations and authenticated encryption schemes. Their
approach relies on a simple but effective type system that tracks whether values are uniform and fresh, or ad-
versarially controlled. By harnessing their type system into a synthesis framework, they are able to generate
thousands of constructions with their security proofs, including constructions whose efficiency compete with
state-of-the-art algorithms that were discovered using conventional methods. Using SMT-based methods,
Tiwari, Gascón and Dutertre [TGD15] introduce an alternative approach to synthesize bitvector programs,
padding-based encryption schemes and modes of operation.

Our work is most closely related to CIL [BDKL10], ZooCrypt [BCG+13] and AutoG&P [BGS15].
Computational Indistinguishability Logic (CIL) [BDKL10] is a formal logic for reasoning about secu-
rity experiments with oracle and adversary calls. CIL is general, in that it does not prescribe a syn-
tax for games, and side-conditions are mathematical statements. CIL does not make any provision for
mechanization, although, as any mathematical development, CIL can be formalized in a proof assistant,
see [CDL11]. ZooCrypt [BCG+13] is a platform for synthesizing padding-based encryption schemes; it
has been used successfully to analyze more than a million schemes, leading to the discovery of new and in-
teresting schemes. ZooCrypt harnesses two specialized computational logics for proving chosen-plaintext
and chosen-ciphertext security, and effective procedures for finding attacks. The computational logics use
deducibility to trigger proof steps that apply reduction to one-wayness assumptions, and to compute the
probability of bad events using a notion of symbolic entropy. However, ZooCrypt is highly specialized.

AutoG&P [BGS15] introduce a computational logic and provide an implementation of their logic, called
AutoG&P, for proving security of pairing-based cryptographic constructions. Their logic uses deducibility
for ensuring that proof rules are correctly enforced. Their implementation achieves a high level of automa-
tion, thanks to a heuristics for checking deducibility, and a proof search procedure, which decides which
proof rule to apply and automatically selects applications of computational assumptions. We build heavily
on this work; in particular, AutoLWE is implemented as an independent branch of AutoG&P. The main
differences are:

• AutoLWE supports oracle-relative assumptions and general forms of the Leftover Hash Lemma, and
(semi-)decision procedures for deducibility problems, for the theories of Diffie-Hellman exponentiation,
fields, non-commutative rings and matrices. In contrast, AutoG&P only support more limited assump-
tions and implements heuristics for the theory of Diffie-Hellman exponentiation;

• AutoG&P supports automated generation of EasyCrypt proofs, which is not supported by AutoLWE.
Rather than supporting generation of proofs a posteriori, a more flexible alternative would be to integrate
the features of AutoG&P and AutoLWE in EasyCrypt.

Theodorakis and Mitchell [TM18] develop a category-theoretical framework for game-based security
proofs, and leverage their framework for transferring such proofs from the group-based or pairing-based
to the lattice-based setting. Their results give an elegant proof-theoretical perspective on the relationship

24



between cryptographic proofs. However, they are not supported by an implementation. In contrast, we
implement our computational logic. Furthermore, proofs in AutoLWE have a first-class status, in the form
of proof scripts. An interesting direction for future work is to implement automated compilers that transform
proofs from the group- and pairing-based settings to the lattice-based settings. Such proof compilers would
offer a practical realization of [TM18] and could also implement patches when they fail on a specific step.

7 Conclusion

We have introduced a symbolic framework for proving the security of cryptographic constructions based
on the (decisional) Learning with Errors assumption. A natural step for future work is to broaden the
scope of our methods to deal with other hardness assumptions used in lattice-based cryptography, including
the Ring Learning with Errors assumption, the Short Integer Solution assumption. A further natural step
would then be to analyze lattice-based key exchange protocols [Pei14, BCD+16]. To this end, it would
be interesting to embed the techniques developed in this paper (and in [BGS15]) into the EasyCrypt proof
assistant [BGHZ11, BDG+13], and to further improve automation of EasyCrypt for typical transformations
used for proving security of protocols.
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A Proofs of section 4.1

In group theory, a multilinear map is a function which goes from a set of groups into a target group, and is
linear with respect to all its arguments. They have been used in the past years to develop new schemes, such
as Boneh-Boyen Identity Based Encryption [BB04] or Waters’ Dual System Encryption [Wat09].

Given a multilinear map ê, g1, .., gn, gt a set of groups generators, letX be a set of public names sampled
in Zq , Y be a set of private names sampled in Zq, f1, ...fk, h ∈ K[X,Y ] be a set of polynomials over both
public and secret names and Γ be a coherent set of axioms.

Our deducibility problem is to decide if Γ |= X, gf1i1 , ..., g
fk
ik
`E ght Without loss of generality, we

consider here the case of a bilinear map, to simplify the writing, but the proofs scale up to multilinear maps.

A.1 Saturation into the target group

First, we reduce our problem to the case of a single group. This result comes from the Proposition 1 of
[KMT12]. Their constructive proof can trivially be used to obtain the following proposition:

Proposition A.1. For any setsX and Y , polynomials f1, ...fn, h ∈ K[X,Y ] and groups elements gf1i1 , ..., g
fn
in

,
we denote

(geit ) = {ê(gij , gik)|1 ≤ j ≤ k ≤ n, gij ∈ G1, gik ∈ G2}
∪{ê(gij , 1)|1 ≤ j ≤ n, gij ∈ G1, }
∪{ê(1, gij )|1 ≤ j ≤ n, gij ∈ G2, }

Then Γ |= X, gf1i1 , ..., g
fn
in
`E ght ⇔ Γ |= X, ge1t , ..., g

eN
t `E−ê ght .

We obtain a problem where we only have elements in the target group, we can therefore reduce the
general problem to the single group case.

A.2 Reduction to polynomials

Lemma A.2. For any sets X and Y , polynomials w1, ...wN , h ∈ K[X,Y ] we have Γ |= X, gw1
t , ..., gwNt `E

ght if and only if:

∃(ei, gi) ∈ K[X], (∀i,Γ |= gi 6= 0) ∧
∑
i

ei ×
fi
gi

= h

Proof. If Γ = ∅, the adversary can construct elements of the form (gwit )ei , where ei ∈ K[X], i.e ei is a
polynomial constructed over variables fully known by the adversary, and then multiply this kind of term,
yielding a sum in the exponent. If Γ 6= ∅, he may also divide by some ggit , with gi ∈ K[X]. We capture here
the three capabilities of the adversary, which when looking in the exponent immediately translate into the
formula on the right side.

To handle this new problem, we notice that we can actually compute the set {g|Γ |= g 6= 0}. Indeed,
for each axiom f 6= 0, we can extract a finite set of non zero irreducible polynomials by factorizing them
(for example using Lenstra algorithm [Len85]). Any non annulling polynomial will be a product of all these
irreducible polynomials. We can then obtain a finite set Gs = (gi) such that G = {g|Γ |= g 6= 0} =
{
∏
g∈Gs g

kg |∀g, kg ∈ N}. With these notations, we can simplify proposition 1, because we know the form
of the gi. Moreover, as we do not want to deal with fractions, we multiply by the common denominator of
all the wi

gi
.
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Lemma A.3. For any sets X and Y , polynomials w1, ...wN , h ∈ K[X,Y ] we have Γ |= X, gw1
t , ..., gwNt `E

ght if and only if:
∃(ei) ∈ K[X], (kg) ∈ N,

∑
i

ei × wi = h
∏
g∈Gs

gkg

We do not prove this lemma, we will rather reformulate it using more refined mathematical structures
and then prove it. Let us call M = {

∑
i ei × wi|ei ∈ K[X]} the free K[X]-module generated by the

(wi). We recall that a S-module is a set stable by multiplication by S and addition, and that 〈(wi)〉S is the
S-module generated by (wi). We also recall the definition of the saturation :

Definition A.1. Given a S-module T, f ∈ S and S ⊂ S′, the saturation of T by f in S’ is T :S′ (f)∞ = {g ∈
S′|∃n ∈ N, fng ∈ T}.

The previous lemma can be reformulated using saturation; if M is the module generated by w1, ..., wN :

Lemma A.4. Γ |= X, gw1
t , ..., gwNt `E ght ⇔ h ∈M :K[X,Y ] (g1...gn)∞

Proof. We recall that:

M :K[X,Y ] (g1...gn)∞ = {x ∈ K[X,Y ]|∃k ∈ N, (g1...gn)k × x ∈M}

⇒We have
∑

i ei × wi = h
∏
g∈Gs g

kg . With K = max(kg), we multiply both sides by
∏
g g

K−kg to get
h
∏
g∈Gs g

K =
∑

i

∏
g g

K−kgei × wi ∈M . Which proves that h ∈M :K[X,Y ] (g1...gn)∞.
⇐ If h ∈M :K[X,Y ] (g1...gn)∞, we instantly have (ei) ∈ K[X], k ∈ N such that

h
∏
g∈Gs

gkg =
∑
i

eifi

We then simplify the saturation, by transforming it into the membership of the intersection of modules.

Lemma A.5. For any sets X and Y , f1, ...fn, h ∈ K[X,Y ], g ∈ K[X],let M = {
∑

i ei × fi|ei ∈ K[X]} .
Then, with t a fresh variable M :K[X,Y ] g

∞ = 〈(fi) ∪ ((gt− 1)Y j)j∈{degY (fi)}〉K[X,t] ∩K[X,Y ].

Proof. ⊂. Let there be v ∈ M :K[X,Y ] g
∞. Then, we have k such that gk × v ∈ M . The following

equalities shows that v is in the right side set v = gktkv − (1 + gt + ... + gk−1tk−1)(gt − 1)v. Indeed,
gktkv ∈ MK[X, t], so we have (ei) ∈ K[X, t] such that gktkv =

∑
i eifi. Moreover, gk × v ∈ M and

g ∈ K[X] implies that degY (v) ⊂ {degY (fi)}. So we do have (e′i) ∈ K[X, t] and (ji) ⊂ {degY (fi)} such
that

(1 + gt+ ...+ gk−1tk−1)(gt− 1)v =
∑

e′i(gt− 1)Y ji

Finally, v ∈ 〈(fi) ∪ ((gt− 1)Y j)j∈{degY (fi)}〉K[X,t] ∩K[X,Y ].
⊃. Let there be v ∈ 〈(fi)∪((gt−1)Y j)j∈{degY (fi)}〉K[X,t]∩K[X,Y ]. Then we have (ei), (e

′
i) ∈ K[X, t]

and (ji) ⊂ {degY (fi)} such that :

v =
∑
i

eifi +
∑
i

e′i(gt− 1)Y ji

We have that v ∈ K[X,Y ], so v is invariant by t. So, if we subsitute t with 1
g , we have that v =∑

i ei(X,
1
g )fi. Let us consider gk the common denominator of all those fractions and call e′′i = gkei ∈

K[X]. We finally have gk × v =
∑

i e
′′
i fi ∈M , which means that v ∈M :K[X,Y ] g

∞.
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The Buchberger algorithm allows us to compute a Gröbner basis of any free K[X]-module [Eis13] and
then decide the membership problem for a module. We thus solve our membership problem using this
method.

Theorem A.6. For any sets X and Y , polynomials f1, ...fn, h ∈ K[X,Y ], group elements gi1 , ..., gin and a
set of axioms Γ we can decide if Γ |= X, gf1i1 , ..., g

fn
in
`E ght

Proof. To decide if h is deducible, we first reduce to a membership problem with lemma A.4 that can be
solved using lemma A.5 by computing the Gröbner basis of 〈(fi)∪ ((gt−1)Y j)j∈{degY (fi)}〉K[X,t], keeping
only the elements of the base that are independent of t and then checking if the reduced form of h is 0.

As a side note, being able to decide the deducibility in this setting allows us to decide another classical
formal method problem, the static equivalence. Indeed the computation of the Gröbner basis allows us to
find generators of the corresponding syzygies (Theorem 15.10 of [Eis13]), which actually captures all the
possible distinguishers of a frame.

B Proofs for section 4.3

[0]
Γ ` 0 : Zq

n,m [ID]
Γ ` I : Zq

n,n [TR]
Γ `M : Zq

m,n

Γ `M> : Zq
n,m

[SL]
Γ `M : Zq

n,m+m′

Γ ` slM : Zq
n,m

[SR]
Γ `M : Zq

n,m+m′

Γ ` srM : Zq
n,m′ [-]

Γ `M : Zq
n,m

Γ ` −M : Zq
n,m [∈]

M ∈M
M `M

[×]
Γ `M : Zq

n,` Γ `M ′ : Zq
`,n

Γ `M ×M ′ : Zq
n,m [+]

Γ `M : Zq
n,m Γ `M ′ : Zq

n,m

Γ `M +M ′ : Zq
n,m

[——]
Γ `M : Zq

n,m Γ `M ′ : Zq
n,m′

Γ `M ||M ′ : Zq
n,m+m′

Figure 13: Typing rules for matrix operators.

We provide a more detailed proof of Proposition 4.4. To reason about matrices deducibility, writtenM `M
for a set of matrices M and a matrix M , we use the natural formal proof system K which matches the
operations on expressions (see Figure 13), that we extend with the equality rule

[EQ]
M `M1 M `M1 = M2

M `M2

For ease of writing, we denote (AB ) := (A>||B>)>.

Splits elimination

Proposition B.1. Given a set of matricesM and a matrixM , we can obtain S(M) a set of matrices without
any concats, such thatM `M ⇔ S(M) ` H .
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Proof. We notice that the concat operations commute with all the other operators: (A||B) + (C||D) =
(A+C||B+D), (A||B)−(C||D) = (A−C||B−D),A×(B||C) = (AB||AC) , (A||B)× C

D = AC+BD,
(A||B)> = (A

>

B>
). Given a set of matricesM, we rewrite the matrices so that the concatenations operators

are at the top. We can see the matrices as block matrices with submatrices without any concat, and then, we
can create a set S(M) containing all the submatrices. This preserves deducibility thanks to the Eq rule for
the rewriting, and to the split rules for the submatrices.

Definition B.1. We call N the proof system based on K without splits, and write the deducibility with
M `N M .

Lemma B.2. IfM ` (R||S) with a proof π (resp.M ` (RS ) ) thenM ` R andM ` S with smaller proofs
(resp.M ` R,M ` S ) .

Proof. We prove it by induction on the size of the proof, and by disjunction on the last rule applied.
Base case |π| = 2, then the proof is a concat on axioms and we can then obtain the sub matrix directly,

with a proof of size one.
Induction case

• The last rule is

[TR]
(
R

S
)

(R|S)

Then, we directly obtain by induction on (RS ) smaller proofs for R and S.

• The last rule is

[×]
M (N l||N r)

(MsN l|MN r) .

Then, by induction on the proof of N, we obtain proofs of size smaller than |π| − 1 of N l and N r, and we
just have to add a [×] to those proofs, yielding smaller proofs of MN l and MN r.

• If the last rule is [+], [-], [——], the proof can be done similarly to the two previous cases.

• The last rule is

[SL]
((M |N)|L)

(M |N)

Then, we have a proof of ((M |N)|L) of size |π| − 1, so by induction we have a proof of (M |N) smaller
than |π| − 1, and by adding a sL, we for instance obtain M with a proof smaller than |π|.

• [SR] is similar.

Lemma B.3. IfM is a set of matrix without concatenations, and ifM `M , thenM `N M .

Proof. We prove it by induction on the size of the proof, and by disjunction on the last rule applied.
Base case |π| = 1, then the only problem might be if the rule used was a split, but as we have matrices

without concatenations, this is not possible.
Induction case
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• If the last rule is [TR], [+], [-], [——], we conclude by applying the induction hypothesis to the premise
of the rule.

• The last rule is

[SL]
(M |N)

M

Then, we have a proof of (M |N) of size π − 1, and with lemma B.2 we have a smaller proof of M , on
which we can then apply our induction hypothesis to obtain a proof of M without split.

• splitR is similar.

Concatenations elimination

Definition B.2. We call T the proof system based on N without concatenations, and write the deducibility
M `T M .

Lemma B.4. IfM, M,N do not contain any concat, then:

M `N (M |N)⇔M `T M ∧M `T N

Proof. The left implication is trivial. For the right one, we once more do a proof by induction on the size of
the proof.

Base case |π| = 1, the last rule is a [——], and we do have a proof of M and N .
Induction case

• The last rule is

[×]
M (N l||N r)

(MN l|MN r)

Then, by induction on the proof of N, we obtain proofs of size smaller than |π| − 1 of N l and N r without
concats, and we just have to add a [×] to those proofs, yielding proofs ofMN l andMN r without concats.

• If the last rule is [TR], [+], [-], [SL], [SR], we proceed as in the previous case

• The last rule is [——]. Then the induction rule instantly yields the expected proofs. Then, we have a
proof of (M |N) of size π − 1, and with lemma B.2 we have a smaller proof of M , on which we can then
apply our induction hypothesis to obtain a proof of M without split.

Lemma B.5. M `N M ⇔ ∀G v M,M `T G Where G v H denotes the fact that G is a sub matrix of
M without any concatenation.

Proof. The left implication is trivial, we prove the right one. As was done in Lemma B.1, we can see M has
a bloc matrix, i.e with all the concat at the top.

We are given a proof ofM `N M , which must contain all its concatenations at the bottom of the proof
tree. If we look at all the highest concat rule in the proof such that no concat is made before, we have some
proof ofM `N (Mi|Mj), and thanks to lemma B.4, we haveM `T Mi ∧ (Ai) `T Mj . Applying this to
all the highest concat rules in the proof yields the result.
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Removal of the transposition

Definition B.3. We call V the proof system based onN without concat, and write the deducibilityM `V M .

The transposition commutes with the other operations, given a matrix M we define the normal form
N(M) where the transposition is pushed to the variables. We extend the notation for normal form to sets of
matrices.

Lemma B.6. M `T M ⇔M∪ (N(Mt))) `V N(M)

Proof. ⇐ This is trivial, as the normal form can be deduced using the rule [EQ].
⇒ Given the proof of M , we can commute the trans rule with all the others, and obtain a proof tree where
all the transposition are just after a [∈] rule. Then, any [∈] followed by [TRANS] can be replaced by a [∈]
and a [EQ] when given the input M ∪ (N(Mt))) instead of M. We can thus construct a valid proof of
M∪ (N(Mt))) `V N(M)

Conclusion The proof of proposition 4.4 is a direct consequence of Lemmas B.1, B.3, B.5 and B.6.

36


	Introduction
	Contributions

	Example: Dual Regev Encryption
	Logic
	Games
	Reasoning about expressions
	Strongest postcondition
	Judgment and proof rules
	Soundness
	Axioms Used
	Learning with Errors
	Leftover Hash Lemma
	Distribution Equivalences


	Deciding deducibility
	Diffie-Hellman exponentiation
	Fields and non-commutative rings
	Matrices

	Implementations and Case Studies
	Implementation
	Oracle-relative Assumptions
	Theory of Lists and Matrices
	Deduction algorithms

	Identity-Based Encryption
	CCA1-PKE
	Hierarchical Identity-Based Encryption
	Inner Product Encryption

	Related work
	Conclusion
	Proofs of section 4.1
	Saturation into the target group
	Reduction to polynomials

	Proofs for section 4.3

