
Xoodoo cookbook
Joan Daemen2,1, Seth Hoffert, Gilles Van Assche1 and Ronny Van Keer1

1 STMicroelectronics
2 Radboud University

Abstract. This document presents Xoodoo, a 48-byte cryptographic permutation
that allows very efficient symmetric crypto on a wide range of platforms and a suite
of cryptographic functions built on top of it. The central function in this suite is
Xoofff, obtained by instantiating Farfalle with Xoodoo. Xoofff is what we call
a deck function and can readily be used for MAC computation, stream encryption
and key derivation. The suite includes two session authenticated encryption (SAE)
modes: Xoofff-SANE and Xoofff-SANSE. Both are built on top of Xoofff and
differ in their robustness with respect to nonce misuse. The final members of the
suite are a tweakable wide block cipher Xoofff-WBC and authenticated encryption
mode Xoofff-WBC-AE, obtained by instantiating the Farfalle-WBC and Farfalle-
WBC-AE constructions with Xoofff. This paper is a specification and security
claim reference for the Xoodoo suite. It is a standing document: over time, we may
extend the Xoodoo suite, e.g., with a hash function or a dedicated lightweight MAC
function and we will update it accordingly.
Keywords: permutation-based crypto · Farfalle · deck functions · authenticated en-
cryption

1 Introduction
In [2] we presented new parallel modes of use of permutations for encryption, authentica-
tion, session authenticated encryption and wide block ciphers under the umbrella name
Farfalle. We also proposed concrete instantiations called Kravatte by plugging in the
Keccak-p[1600, nr] permutation with 6 rounds. All-over, Kravatte is very fast on a
wide range of platforms but can hardly be called lightweight: it operates on a large state
giving rise to considerable overhead on low-end CPUs and has for short inputs a relatively
large overhead per byte.

It therefore makes sense to consider instantiating Farfalle with a smaller permutation,
somewhere between 256 and 400 bits wide. Taking Keccak-p[400, nr] is problematic as
it is defined in terms of operates on 16-bit lanes. The permutation Gimli [1] has the nice
feature that it has a state of 384 bits and a round function that lends itself to low-end 32-
bit CPUs but also vectorization and dedicated hardware. Unfortunately, its propagation
properties are less than what could be expected. For constructing a Farfalle instance with
128-bit security strength one would have to take a relatively high number of rounds.

For that reason we took the initiative to design a permutation with the same width and
objectives as Gimli, but with more favorable propagation properties. We called the result
Xoodoo and it can be seen as a porting of the Keccak-p design approach to a Gimli-
shaped state. In this document we specify this permutation and a suite of cryptographic
functions built as modes of Xoodoo. This suite covers the keyed symmetric-key crypto
functions and we expect it to be very efficient on a wide range of CPUs and in dedicated
hardware while having a comfortable safety margin. This makes the Xoodoo suite very
competitive to, e.g., block cipher based crypto.

This document does not include extensive design rationale or analysis, nor does it
provide performance benchmarks. We plan to publish those in one or more follow-up
papers. Its purpose is to expose the Xoodoo cipher suite to the cryptographic research
community and security practicioners by serving as specification and security claim ref-
erence. Note that the security claim in this stage serves as a challenge for cryptanalists
rather than a promise of security strength for users.

Additionally, we will make a reference implementation in C++ available of Xoodoo
and the members of the Xoodoo suite in [10] and optimized implementations in C and
assembler in the eXtended (or Xoodoo and) Keccak Code Package (XKCP) [12].

Over time, we may add cryptographic functions to the Xoodoo suite, e.g., for hashing
or dedicated lightweight MAC computation. When that is the case, we will update this
document accordingly. In ISO/IEC terminology this would be called a standing document.

1.1 Deck functions
The central function in the Xoodoo suite is a Xoodoo-based Farfalle instance called
Xoofff. Most other members of the suite are built as modes on top of Xoofff. Some of
these modes are specified in [2] while others are introduced in this document. We follow
the same naming conventions as in [2]. The name of the mode has two parts: a prefix
indicating the underlying primitive type and a suffix referring to the target functionality.
In instantiations with a particular primitive, we replace the prefix by the name of the
primitive.

In our paper on Farfalle [2] we introduced the concept of a keyed cryptographic function
with an extendable input and able to return an output of arbitrary length. In lack of a
better name, we called these pseudorandom functions (PRF). We called the primitive
type in our modes Farfalle as they needed support for sequences of strings as input and
a specific incremental property, present in Farfalle instances: computing F (Y ◦X) costs
only the processing of Y if F (X) was previously computed. Clearly, Farfalle is not the
only way to build functions with such properties and we now think it would be better to
decouple the input-output signature of the function (PRF with incremental sequence of
strings input) from the implementation (Farfalle).

We decided to introduce the name deck function for a keyed function that takes a
sequence of input strings and returns a pseudorandom string of arbitrary length and that
can be computed incrementally. Here deck stands for Doubly-Extendable Cryptographic
Keyed function. As such, we will indicate the modes we define this document and that we
will instantiate with Xoofff by the prefix Deck. The modes on top of Farfalle specified
in [2] may as well be renamed by replacing the prefix Farfalle by Deck. To avoid confusion,
we will not do that.

1.2 Session authenticated encryption
In many use cases where one wishes confidentiality, authentication is required too and it
makes sense to offer a scheme that provides both: an authenticated encryption scheme.
Doing this with a deck function is simple: one enciphers the plaintext by adding to it the
output of a deck function applied to a nonce and computes a tag on the ciphertext (and
possibly metadata) also using the deck function.

Often, one does not only want to protect a single message, but rather a session where
multiple messages are exchanged, such as in the Transport Layer Security (TLS) protocol
[8] or the Secure Shell (SSH) protocol [13]. Examples of session authenticated encryption
schemes are Keyak [5], Ketje [4] and Kravatte-SAE [2]. They require only a nonce
at the startup of the session and each tag authenticates all messages already sent in the
session.

2

We consider authenticated encryption of a message as a process that takes as input
metadata A and plaintext P and that returns a cryptogram C and a tag T . We denote
this operation by the term wrapping and the reverse operation of taking metadata A, a
cryptogram C and a tag T and returning the plaintext P if the tag T is correct by the term
unwrapping. We further consider the process of authenticating and encrypting a sequence
of messages (A, P) = (A(1), P (1), A(2), . . . , A(n), P (n)) in such a way that the authenticity
is guaranteed not only on each (A, P) pair but also on the sequence received so far. This
is further formalized in [3, Section 2.1].

We use the abbreviation SAE to indicate session authenticated encryption in general.
The generic term SAE should not be confused with Farfalle-SAE, that is a particular SAE
mode of a deck function specified in [2].

1.3 Overview
We specify the core of all functions in the Xoodoo suite, the Xoodoo[nr] family of
permutations, in Section 2. We depict in Figure 1 all suite members and their relations.
They are the following:

• The Xoofff deck function, specified in Section 3. We obtain this deck function
by instantiating Farfalle with Xoodoo and suitable rolling functions and make a
security claim.

• The Xoofff-SANE SAE scheme, specified in Section 4. We obtain this by defining
an SAE mode of deck functions called Deck-SANE and instantiate it with Xoofff.
Xoofff-SANE relies on user-provided nonces for confidentiality.

• The Xoofff-SANSE SAE scheme, specified in Section 5. We obtain this by defin-
ing an SAE mode of deck functions called Deck-SANSE and instantiate it with
Xoofff. Xoofff-SANSE is more robust against nonce misuse and realizes this
by using the SIV mechanism.

• The Xoofff-WBC wide block cipher, specified in Section 6. We obtain this by in-
stantiating Farfalle-WBC with Xoofff and Xoofffie, a variant of Xoofff whose
purpose is solely to provide differential uniformity. We give security claims for
Xoofff-WBC and a dedicated claim for Xoofffie. Finally, we define the Xoofff-
WBC-AE authenticated encryption scheme by applying Farfalle-WBC-AE on top
of Xoofff-WBC.

We make no security claims for the Xoofff-SANE and Xoofff-SANSE SAE schemes
as their claimed security follows immediately from the security claim of Xoofff. Simi-
larly, the claimed security of Xoofff-WBC-AE follows directly from the security claim
of Xoofff-WBC. For Xoodoo[nr] we also do not make security claims as it is not a
cryptographic function per se, just a building block.

2 Xoodoo
Xoodoo is a family of permutations parameterized by its number of rounds nr and de-
noted Xoodoo[nr]. The number of rounds is determined by the construction or mode the
permutation is used in.

Xoodoo has a classical iterated structure: It iteratively applies a round function to
a state. The state consists of 3 equally sized horizontal planes, each one consisting of 4
parallel 32-bit lanes. Similarly, the state can be seen as a set of 128 columns of 3 bits,
arranged in a 4× 32 array. The planes are indexed by y, with plane y = 0 at the bottom
and plane y = 2 at the top. Within a lane, we index bits with z. The lanes within a

3

Xoodoo

Xoofff

Farfalle

Xoofffie

Farfalle

Xoofff-SANE

Deck-SANE

Xoofff-SANSE

Deck-SANSE Xoofff-WBC

Farfalle-WBC Farfalle-WBC

Xoofff-WBC-AE

Farfalle-WBC-AE

Figure 1: Overview of the Xoodoo suite, with the schemes in boxes and the modes
indicated on the edges. All schemes and the modes in black print are specified in this
document, the modes in grey are defined in [2].

plane are indexed by x, so the position of a lane in the state is determined by the two
coordinates (x, y). The bits of the state are indexed by (x, y, z) and the columns by (x, z).
Sheets are the arrays of three lanes on top of each other and they are indexed by x. The
Xoodoo state is illustrated in Figure 2.

The permutation consists of the iteration of a round function Ri that has 5 steps: a
mixing layer θ, a plane shifting ρwest, the addition of round constants ι, a non-linear layer
χ and another plane shifting ρeast.

We specify Xoodoo in Algorithm 1, using completely in terms of operations on planes
and use thereby the notational conventions we specify in Table 1. We illustrate the step
mappings in a series of figures: the χ operation in Figure 3, the θ operation in Figure 4,
the ρeast and ρwest operations in Figure 5.

The round constants Ci are planes with a single non-zero lane at x = 0, denoted as ci.
We specify the value of this lane for indices −11 to 0 in Table 2 and refer to Appendix A
for the specification of the round constants for any index.

Finally, in many applications the state must be specified as a 384-bit string s with
the bits indexed by i. The mapping from the three-dimensional indexing (x, y, z) and i is
given by i = z + 32(x + 4y).

4

x

y

z

lane
x

y

z

plane
x

y

z

state
x

y

z

sheet
x

y

z

column

Figure 2: Toy version of the Xoodoo state, with lanes reduced to 8 bits, and different
parts of the state highlighted.

Table 1: Notational conventions
Ay Plane y of state A
Ay ≪ (t, v) Cyclic shift of Ay moving bit in position (x, z) to position (x + t, z + v)
Ay Bitwise complement of plane Ay

Ay + Ay′ Bitwise sum (XOR) of planes Ay and Ay′

Ay ·Ay′ Bitwise product (AND) of planes Ay and Ay′

Algorithm 1 Definition of Xoodoo[r] with r the number of rounds
Parameters: Number of rounds r
for Round index i from 1− r to 0 do

A = Ri(A)

Here Ri is specified by the following sequence of steps:
θ :

P ← A0 + A1 + A2
E ← P ≪ (1, 5) + P ≪ (1, 14)
Ay ← Ay + E for y ∈ {0, 1, 2}

ρwest :
A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι :
A0 ← A0 + Ci

χ :
B0 ← A1 ·A2
B1 ← A2 ·A0
B2 ← A0 ·A1
Ay ← Ay + By for y ∈ {0, 1, 2}

ρeast :
A1 ← A1 ≪ (0, 1)
A2 ← A2 ≪ (2, 8)

Table 2: The round constants ci with −11 ≤ i ≤ 0, in hexadecimal notation (the least
significant bit is at z = 0).

i ci i ci i ci i ci

−11 0x00000058 −8 0x000000D0 −5 0x00000060 −2 0x000000F0
−10 0x00000038 −7 0x00000120 −4 0x0000002C −1 0x000001A0
−9 0x000003C0 −6 0x00000014 −3 0x00000380 0 0x00000012

5

0

1

2

complement

Figure 3: Effect of χ on one plane.

+ =

column parity θ-effect

fold

Figure 4: Effect of θ on a single-bit state.

0

1

2
shift (2,8)

shift (0,1)

0

1

2
shift (0,11)

shift (1,0)

Figure 5: Illustration of ρeast (left) and ρwest (right).

6

Table 3: Notational conventions for specification of the rolling functions
Ay,x Lane x of plane Ay

B An auxiliary variable that has the shape of a plane
Ay,x ≪ v Cyclic shift of lane Ay,x moving bit from x to x + v
Ay,x ≪ v Shift of lane Ay,x moving bit from x to x + v and setting bits at x < v to 0
Ay,x + Ay′,x′ Bitwise sum (XOR) of lanes Ay,x and Ay′,x′

Ay,x ·Ay′,x′ Bitwise product (AND) of lanes Ay,x and Ay′,x′

3 Xoofff
Xoofff is a deck function obtained by applying the Farfalle construction on Xoodoo[6]
and two rolling functions: rollXc for rolling the input masks and rollXe for rolling the state.
We specify them with operations on the lanes of the state, following the conventions of
Table 1 and Table 3.
The input mask rolling function rollXc updates a state A in the following way:

A0,0 ← A0,0 + (A0,0 ≪ 13) + (A1,0 ≪ 3)
B ← A0 ≪ (3, 0)

A0 ← A1

A1 ← A2

A2 ← B

The state rolling function rollXe updates a state A in the following way:

A0,0 ← A1,0 ·A2,0 + (A0,0 ≪ 5) + (A1,0 ≪ 13) + 111||029

B ← A0 ≪ (3, 0)
A0 ← A1

A1 ← A2

A2 ← B

Definition 1 (Xoofff). Xoofff is Farfalle[pb, pc, pd, pe, rollc, rolle] with the following
parameters:

• pb = Xoodoo[6],

• pc = Xoodoo[6],

• pd = Xoodoo[6],

• pe = Xoodoo[6],

• rollc = rollXc and

• rolle = rollXe.

We make the following security claim on Xoofff.

Claim 1. Let K = (K0, . . . , Ku−1) be an array of u secret keys, each uniformly and
independently chosen from Zκ

2 with κ < 384. Then, the advantage of distinguishing the
array of functions XoofffKi(·) with i ∈ Zu from an array of random oracles RO(i, ·), is
at most

uN +
(

u
2
)

2κ
+ N

2192 + M

2128 +
√

uN ′

2κ/2−1 + N ′

295 . (1)

Here,

7

• N is the computational complexity expressed in the (computationally equivalent)
number of executions of Xoodoo[6],

• N ′ is the quantum computational complexity expressed in the (equivalent) number
of quantum oracle accesses to Xoodoo[6], and

• M is the online or data complexity expressed in the total number of input and output
blocks processed by XoofffKi(·).

In (1), the first term accounts for the effort to find one of the u secret keys by exhaustive
search, and for the probability that two keys are equal. The second term expresses that
the complexity of recovering the accumulator or any rolling state inside Xoofff must be
as hard as recovering 192 secret bits. The third term expresses the effort to find a collision
in the accumulator.

The fourth and fifth terms only apply if the adversary has access to a quantum com-
puter. The fourth term accounts for a quantum search (or quantum amplification algo-
rithm) to find one of the u keys [9, 7]. The probability of success after N ′ iterations is
sin2 ((2N ′ + 1) θ) with θ = arcsin

√
u/2κ. We upper bound this as 2N ′

√
u/2κ. The fifth

term similarly accounts for a quantum search of a 192-bit secret.
Note that we assume that Xoofff is implemented on a classical computer. In other

words, we do not make claims w.r.t. adversaries who would make quantum superpositions
of queries to the device implementing Xoofff and holding its secret key(s).

We restrict keys to the uniform distribution to keep our claim simple and to avoid
pathological cases that would not offer good security. In the multi-user setting, we re-
quire the keys to be independently drawn. If an adversary can manipulate Ki, such as
in so-called unique keys that consist of a long-term key with a counter appended, we
recommend hashing the key and the counter with a proper hash function such as Kan-
garooTwelve [6].

We do support the use of variable-length keys in the multi-user setting, where we
assume that a key of given length is selected uniformly of the strings with that length.
The claimed distinguishing bound then becomes slightly more complex and is given in
Equation (2):

∑
κ∈L

uκN +
(

uκ

2
)

2κ
+ N

2192 + M

2128 +
∑
κ∈L

√
uκN ′

2κ/2−1 + N ′

295 , (2)

with L the array of the distinct key lengths in use and ul the number of keys of length l.

4 Xoofff-SANE
Xoofff-SANE is an SAE function built on top of Xoofff with a mode we introduce in
this document called Deck-SANE: deck function based Session Authentication and Nonce-
based Encryption. This mode keeps track of a nonce and the sequence of messages in
a string sequence called the history. It encrypts the plaintext of a message by adding
a keystream that is the result of applying the deck function to the history covering all
previous messages in this session. The consequence is that for confidentiality, the history
must be unique across all sessions for a given key. For that reason, Deck-SANE initializes
the history at the beginning of a session with a user-provided nonce.

4.1 A flaw in Farfalle-SAE
In [2], we presented a mode very similar to Deck-SANE, Farfalle-SAE. Unfortunately, we
found a flaw in Farfalle-SAE after closely inspecting it. This was triggered by an email

8

we received from Ted Krovetz reporting a weakness in Farfalle-SIV (see Section 5.1). So,
Deck-SANE can be seen as a fixed version of Farfalle-SAE.

The flaw in Farfalle-SAE is related to sequences of messages with empty plaintexts
and/or metadata. Let ϵ be the empty string. Namely, the way it constructs the history
as a sequence of strings does not allow distinguishing between the following two message
sequences:

• a message (A, P) with A ̸= ϵ and P ̸= ϵ,

• a message (A, ϵ) followed by a message (ϵ, P).

Both message sequences extend the history with C||1 ◦ A||0, so the tag returned by
wrap(A, P) in the first case and the tag returned by wrap(ϵ, P) in the second case are
equal. A situation where an adversary could exploit this would be if the sender intends
on sending two messages: one containing metadata only, followed by another containing
plaintext only. We would have T1 = wrap(A, ϵ) then (C, T2) = wrap(ϵ, P). The adversary
withholds T1, and passes off (A, C) as a single message with resulting tag T2. The receiver
is unable to detect this and successfully authenticates the message, and returns garbled
plaintext. We fix this in Deck-SANE by using an additional frame bit that toggles on
every message.

4.2 Deck-SANE
We define the SAE mode for deck functions Deck-SANE in Algorithm 2. The session
presents the history to a deck function for generating tags and keystream. Starting a
session initializes the history to a nonce N and returns a tag.

From then on, it supports messages consisting of metadata A and/or plaintext P .
Deck-SANE wraps a message in four phases:

1. Encryption: If the plaintext is non-empty, it generates the ciphertext by adding to
the plaintext the output of the deck function applied to the history.

2. If the metadata is non-empty or if the ciphertext is empty, it appends the metadata
to the history.

3. If the plaintext is non-empty, it appends the ciphertext to the history.

4. Tag generation: It generates the tag by applying the deck function to the history.

Note that a tag authenticates the full history of the session up to that point. Unwrapping
is similar.

Deck-SANE has two length parameters: the tag length t and an alignment unit length
ℓ. It reserves the first t bits of the output of the deck function for tags and takes keystream
from the output of the deck function from an offset that is the smallest multiple of ℓ not
shorter than t. It applies domain separation between metadata and ciphertext strings
in the history to skip the second phase for plaintext-only messages or the first and third
phase for metadata-only or even empty messages. Moreover, Deck-SANE has an attribute
e that takes the 1-bit string value 0 or 1 and toggles at each call to (un)wrap. Hence, the
individual calls to (un)wrap can be identified in the history without ambiguity.

Definition 2 (Xoofff-SANE). Xoofff-SANE is Deck-SANE(F, t, ℓ) with

• F = Xoofff,

• t = 128 and

• ℓ = 8.

9

Algorithm 2 Definition of Deck-SANE(F, t, ℓ)
Parameters: deck function F , tag length t ∈ N and alignment unit length ℓ ∈ N

Initialization taking key K ∈ Z∗
2 and nonce N ∈ Z∗

2, and returning tag T ∈ Zt
2

offset = ℓ
⌈

t
ℓ

⌉
: the smallest multiple of ℓ not smaller than t

e← 01

history← N
T ← 0t + FK (history)
return T

Wrap taking metadata A ∈ Z∗
2 and plaintext P ∈ Z∗

2, and returning ciphertext C ∈ Z|P |
2

and tag T ∈ Zt
2

C ← P + FK (history)≪ offset
if |A| > 0 OR |P | = 0 then

history← A||0||e ◦ history
if |P | > 0 then

history← C||1||e ◦ history
T ← 0t + FK (history)
e← e + 11

return C, T

Unwrap taking metadata A ∈ Z∗
2, ciphertext C ∈ Z∗

2 and tag T ∈ Zt
2, and returning

plaintext P ∈ Z|C|
2 or an error

P ← C + FK (history)≪ offset
if |A| > 0 OR |C| = 0 then

history← A||0||e ◦ history
if |C| > 0 then

history← C||1||e ◦ history
T ′ ← 0t + FK (history)
e← e + 11

if T ′ = T then
return P

else
return error!

5 Xoofff-SANSE

Xoofff-SANSE is an SAE function built on top of Xoofff with a mode we introduce
in this document called Deck-SANSE: deck function based Session Authentication and
Nonce-Synthetic-based Encryption. Where Deck-SANE requires to user to ensure that
each session is started with a unique combination of key and nonce for confidentiality,
in Deck-SANSE this requirement is relaxed. It does this by constructing a nonce of the
metadata and plaintext with a generalization of Synthetic IV method of [11]. Similar to
Deck-SANE, encryption of plaintext is done by adding a keystream that is the output of
the deck function to a history. The difference is in what is covered in that history: In
Deck-SANSE, it covers all previous messages and the current message. In order to allow
decryption, this is realized through the tag: the history for the keystream generation
contains previous messages, the metadata of the current message and the tag. The tag is
computed before the keystream generation and covers the history of all messages, including
the current one. The consequence is that even if two sessions have equal history up to
some point and then have different plaintexts, they will likely lead to different tags and the

10

keystreams will be unrelated. Confidentiality still breaks down when these tags collide
and the user can eliminate the risk of (history,tag) collisions altogether by including a
nonce in the metadata of the first message. In any case, as long as two sessions have the
same sequence of messages, they will produce the same sequence of cryptograms. This is
unavoidable in a deterministic SAE scheme.

5.1 A flaw in Farfalle-SIV
In [2], we presented a similar mode, albeit with no support for sessions, called Farfalle-SIV.
In an email Ted Krovetz drew our attention on a flaw in Farfalle-SIV. So Deck-SANSE
is a fixed version of Farfalle-SIV and we took advantage of the occasion to extend to an
SAE mode.

The flaw in Farfalle-SIV is the following. Let a legitimate user do a first call to wrap
with (C1, T1) = wrap(A, P1). We have T1 = 0t + FK (P1 ◦A) and C1 = P1 + FK (T1 ◦A).
Then an adversary makes a second call to wrap with P2 = T1. She gets (C2, T2) =
wrap(A, P2) with T2 = 0t + FK (P2 ◦A) = 0t + FK (T1 ◦A). So the tag T2 reveals the
first t bits of the keystream used to encrypt P1. The root of the problem is the lack of
separation between the tag and the keystream generation. We fix this in Deck-SANSE by
enforcing domain separation between calls to FK (·) for tag or keystream.

5.1.1 Deck-SANSE

Deck-SANSE combines the SIV approach with the session support of Deck-SANE. We
define it in Algorithm 3. Deck-SANSE wraps a message in four phases:

1. If the metadata is non-empty or if the ciphertext is empty, it appends the metadata
to the history.

2. Tag generation: It generates the tag by applying the deck function to the history,
extended with the plaintext of the current messsage, if non-empty.

3. Encryption: If the plaintext is non-empty, it generates the ciphertext by adding to
the plaintext the output of the deck function applied to the history extended with
the tag.

4. If the plaintext is non-empty, it appends it to the history.

As in Deck-SANE, a tag authenticates the complete history of the session. Unwrapping
is similar.

Deck-SANSE has a single length parameter: the tag length t. It applies domain
separation between metadata and plaintext strings in the history, as well as between the
generation of keystream and of tag. Moreover, as in Deck-SANE, Deck-SANSE has an
attribute e that toggles at each call to (un)wrap.

5.1.2 Xoofff-SANSE

Definition 3 (Xoofff-SANSE). Xoofff-SANSE is Deck-SANSE(F, t) with

• F = Xoofff and

• t = 256

We take a 256-bit tag because collisions in the tag are likely to appear after generating
2t/2 tags and we target 128-bit security.

11

Algorithm 3 Definition of Deck-SANSE(F, t)
Parameters: deck function F and tag length t ∈ N

Initialization
e← 01

history is initialized to the empty string sequence

Wrap taking metadata A ∈ Z∗
2 and plaintext P ∈ Z∗

2, and returning ciphertext C ∈ Z|P |
2

and tag T ∈ Zt
2

if |A| > 0 OR |P | = 0 then
history← A||0||e ◦ history

if |P | > 0 then
T ← 0t + FK (P ||01||e ◦ history)
C ← P + FK (T ||11||e ◦ history)
history← P ||01||e ◦ history

else
T ← 0t + FK (history)

e← e + 11

return C, T

Unwrap taking metadata A ∈ Z∗
2, ciphertext C ∈ Z∗

2 and tag T ∈ Zt
2, and returning

plaintext P ∈ Z|C|
2 or an error

if |A| > 0 OR |C| = 0 then
history← A||0||e ◦ history

if |C| > 0 then
P ← C + FK (T ||11||e ◦ history)
history← P ||01||e ◦ history

T ′ ← 0t + FK (history)
e← e + 11

if T ′ = T then
return P

else
return error!

6 Xoofff-WBC and Xoofff-WBC-AE
Xoofff-WBC is a tweakable block cipher built on top of Xoofff and a variant Xoofffie
with the mode Farfalle-WBC [2], that constructs the block cipher in a four-round Feistel
network.

We first define Xoofffie, a variant of Xoofff aimed at providing differential uni-
formity, and used in the first and last rounds of Xoofff-WBC. Then, we define and
make a security claim on Xoofff-WBC. Finally, we instantiate the Xoofff-WBC-AE
authenticated encryption scheme.

6.1 Definition and security claim of Xoofffie
Xoofffie is a function that has the same parameters as Xoofff, with the sole exception
of pd that is the identity function instead of Xoodoo[6].

Definition 4. Xoofffie is Farfalle[pb, pc, pd, pe, rollc, rolle] with the following parame-
ters:

• pb = Xoodoo[6],

12

• pc = Xoodoo[6],

• pd = Id,

• pe = Xoodoo[6],

• rollc = rollXc and

• rolle = rollXe

with Id the identity permutation.

We make the following security claim on Xoofffie:

Claim 2. Let K = (K0, . . . , Ku−1) be an array of u secret keys, each uniformly and
independently chosen from Zκ

2 with κ < 384. Consider an adversary that can query a
function with chosen inputs (X, ∆, i), with M ∈ (Z∗

2)+, ∆ ∈ Z∗
2 and i ∈ Zu that is one of

the two following, without knowing which one:

• RO(∆ + XoofffieKi(X)): the sum of the output of Xoofffie and an offset ∆,
and truncated to the length of that offset, and this filtered by random oracle RO.

• RO2(i, X, ∆): random oracle RO applied to the combination of the three inputs.

Then, the distinguishing advantage is at most:

M

2128 + M2

2∆min−4 , (3)

with ∆min the minimum length of ∆ over the adversary’s queries. Note that the adversary
can not make direct queries to RO.

This claim expresses a differential uniformity property. When trying to distinguish
RO(∆+XoofffieKi(X)) fromRO(i, X, ∆), the adversary is limited to observing equality
in the expression ∆ + XoofffieKi(X) for chosen inputs (i, X, ∆). In other words, an
adversary succeeds if she can find XoofffieK outputs with a predictable difference ∆,
i.e., XoofffieKi(X) + XoofffieKj (Y) = ∆ for (i, X) ̸= (j, Y). The output blurring by
a random oracle prevents state or key retrieval in the absence of collisions and hence the
bound only contains terms related to generating collisions. The first term in (3) covers
collisions in the accumulator and the second term in ∆min-bit outputs. For an ideal
function the second term would be birthday bound M2

2∆min+1 . We tolerate some non-ideal
behaviour by multiplying the birthday expression by a factor 25.

6.2 Definition of Xoofff-WBC
The wide block cipher Xoofff-WBC instantiates Farfalle-WBC [2] with two Xoodoo-
based deck functions that are in turn Farfalle instances.

Definition 5 (Xoofff-WBC). Xoofff-WBC is Farfalle-WBC[H, G, ℓ] with

• H = Xoofffie,

• G = Xoofff and

• ℓ = 8.

Making joint use of Xoofff and Xoofffie instances that share a key is not something
we support in general. However, in Xoofff-WBC we believe this is no problem and we
make the following dedicated security claim on Xoofff-WBC.

13

Claim 3. Let K = (K0, . . . , Ku−1) be an array of u secret keys, each uniformly and
independently chosen from Zκ

2 with κ < 384 and let PKi(·) with i ∈ Zu be instances of
Xoofff-WBC. Each of these instances support two interfaces:

Encipherment denoted as C = PKi(W, P) taking as input a tweak W and a plaintext P
and returning a cryptogram C;

Decipherment denoted as P = P −1
Ki

(W, C) taking as input a tweak W and a cryptogram
C and returning a plaintext P .

We express as Advsprp the probability of distinguishing PKi(W, ·) from an array of uni-
formly and independently drawn random permutations πi,W,n indexed by the key index i,
the value of W and the length n = |P | = |C|, where the adversary can query the inverse
permutations.

Let nmin be the minimum length n among all the queries. The Advsprp is claimed to
be upper bounded by

(1) + M2

2nmin/2−8 . (4)

Here, N , N ′ and M are as in Claim 1, except that M also counts the number of input
and output blocks processed by Xoofffie.

The terms in (4) are those of Claim 1 and an additional term. The additional term
covers the case of an adversary obtaining a collision in one of the branches of the Feistel
network, see [2] for details. We relate this to the ability of doing this in the first and last
rounds, that make use of Xoofffie. In this use case, it has ∆min ≥ nmin/2−4 and hence
the term M2

2∆min−4 becomes M2

2nmin/2−8 .

6.3 Definition of Xoofff-WBC-AE
On top of Xoofff-WBC, we define the Xoofff-WBC-AE authenticated encryption
scheme as an instance of Farfalle-WBC-AE [2] with the same parameters as Xoofff-
WBC and with t = 128. In a nutshell, when wrapping, Xoofff-WBC-AE adds t bits
of redundancy at the end of the plaintext P before encipherment with Xoofff-WBC: it
enciphers P ||0t with the metadata A as tweak. When unwrapping, Xoofff-WBC-AE
calls Xoofff-WBC decryption and checks that the last t bits of the result are indeed 0t.

Definition 6 (Xoofff-WBC-AE). Xoofff-WBC-AE is Farfalle-WBC-AE[H, G, ℓ, t]
with

• H = Xoofffie,

• G = Xoofff,

• ℓ = 8.

• t = 128

Acknowledgement
We thank Bart Mennink, Guido Bertoni and Michaël Peeters for useful discussion, Ted
Krovetz for finding and reporting to us the flaw in Farfalle-SIV, as noted in Section 5.1 and
Johan De Meulder for his contributions on the early stages of the definition of Xoodoo.

14

References
[1] D. J. Bernstein, S. Kölbl, S. Lucks, P. Maat Costa Massolino, F. Mendel, K. Nawaz,

T. Schneider, P. Schwabe, F.-X. Standaert, Y. Todo, and B. Viguier, Gimli : A cross-
platform permutation, Cryptographic Hardware and Embedded Systems - CHES 2017,
Proceedings (Wieland Fischer and Naofumi Homma, eds.), Lecture Notes in Com-
puter Science, vol. 10529, Springer, 2017, pp. 299–320.

[2] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and R. Van Keer,
Farfalle: parallel permutation-based cryptography, IACR Trans. Symmetric Cryptol.
2017 (2017), no. 4, 1–38.

[3] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Duplexing the sponge: Single-
pass authenticated encryption and other applications, Selected Areas in Cryptography
- SAC 2011, Revised Selected Papers (A. Miri and S. Vaudenay, eds.), Lecture Notes
in Computer Science, vol. 7118, Springer, 2011, pp. 320–337.

[4] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, CAESAR
submission: Ketje v2, September 2016, https://keccak.team/ketje.html.

[5] , CAESAR submission: Keyak v2, document version 2.2, September 2016,
https://keccak.team/keyak.html.

[6] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, R. Van Keer, and B. Viguier, Kan-
garooTwelve: Fast hashing based on Keccak-p, Applied Cryptography and Network
Security, ACNS 2018, Proceedings (B. Preneel and F. Vercauteren, eds.), Lecture
Notes in Computer Science, vol. 10892, Springer, 2018, pp. 400–418.

[7] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Quantum amplitude amplification
and estimation, Contemporary Mathematics 305 (2002), 53–74.

[8] T. Dierks and E. Rescorla, The transport layer security (TLS) protocol version 1.2,
Network Working Group of the IETF, RFC 5246, August 2008.

[9] L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings
of the 28th Annual ACM Symposium on the Theory of Computing, May 1996 (Gary L.
Miller, ed.), ACM, 1996, pp. 212–219.

[10] S. Hoffert, Xoodoo reference code in C++, August 2018, https://github.com/
XoodooTeam/.

[11] P. Rogaway and T. Shrimpton, A provable-security treatment of the key-wrap prob-
lem, Advances in Cryptology - EUROCRYPT 2006, Proceedings (S. Vaudenay, ed.),
Lecture Notes in Computer Science, vol. 4004, Springer, 2006, pp. 373–390.

[12] G. Van Assche, R. Van Keer, and Contributors, Extended Keccak code package,
August 2018, https://github.com/XKCP/XKCP.

[13] T. Ylonen and C. Lonvick, The secure shell (SSH) protocol architecture, Network
Working Group of the IETF, RFC 4251, January 2006.

15

https://keccak.team/ketje.html
https://keccak.team/keyak.html
https://github.com/XoodooTeam/
https://github.com/XoodooTeam/
https://github.com/XKCP/XKCP

Table 4: The round constants with indices -11 to 0
i qi si ci in hex

−11 1 + t 3 t3 + t4 + t6 0x00000058
−10 t + t2 2 t3 + t4 + t5 0x00000038
−9 1 + t + t2 6 t6 + t7 + t8 + t9 0x000003C0
−8 1 + t2 4 t4 + t6 + t7 0x000000D0
−7 1 5 t5 + t8 0x00000120
−6 t 1 t2 + t4 0x00000014
−5 t2 3 t5 + t6 0x00000060
−4 1 + t 2 t2 + t3 + t5 0x0000002C
−3 t + t2 6 t7 + t8 + t9 0x00000380
−2 1 + t + t2 4 t4 + t5 + t6 + t7 0x000000F0
−1 1 + t2 5 t5 + t7 + t8 0x000001A0

0 1 1 t1 + t4 0x00000012

A Constants for any number of rounds
We here detail how the round constants are constructed and, following the formula, how
to compute them for any number of rounds.

The round constants Ci are planes with a single non-zero lane at x = 0. We specify
the value of the lanes at x = 0 in the round constants as binary polynomials pi(t) where
the coefficient of ti denotes the bit of the lane with coordinate z = i. We define pi(t) in
terms of a polynomial qi(t) and an integer si in the following way:

pi(t) = tsi
(
qi(t) + t3)

with qi(t) = ti mod 1 + t + t3 and si = 3i mod 7 .

The sequence of polynomials qi(t) has period 7 and the sequence of offsets si has period
6. It follows that the sequence of round constants Ci(t) have period 42. An instance of
Xoodoo with r rounds uses the round constants with indices 1−r to 0. We list the round
constants with indices −11 to 0 in Table 4.

16

B Single-page definition sheet
Modes specified in this document:

• Deck-SANE(F, t, ℓ)

• Deck-SANSE(F, t)

Modes instantiated in this document, specified in [2]:

• Farfalle[pb, pc, pd, pe, rollc, rolle]

• Farfalle-WBC[H, G, ℓ]

• Farfalle-WBC-AE[H, G, ℓ, t]

Members of the Xoodoo suite, built on top of Xoodoo[nr]: Xoodoo with nr rounds:

• Xoofff≜Farfalle[Xoodoo[6], Xoodoo[6], Xoodoo[6], Xoodoo[6], rollXc, rollXe]

• Xoofffie≜Farfalle[Xoodoo[6], Xoodoo[6], Id, Xoodoo[6], rollXc, rollXe]

• Xoofff-SANE≜Deck-SANE(Xoofff, 128, 8)

• Xoofff-SANSE≜Deck-SANSE(Xoofff, 256)

• Xoofff-WBC≜Farfalle-WBC[Xoofffie, Xoofff, 8]

• Xoofff-WBC-AE≜Farfalle-WBC-AE[Xoofffie, Xoofff, 8, 128]

17

	Introduction
	Deck functions
	Session authenticated encryption
	Overview

	Xoodoo
	Xoofff
	Xoofff-SANE
	A flaw in Farfalle-SAE
	Deck-SANE

	Xoofff-SANSE
	A flaw in Farfalle-SIV

	Xoofff-WBC and Xoofff-WBC-AE
	Definition and security claim of Xoofffie
	Definition of Xoofff-WBC
	Definition of Xoofff-WBC-AE

	Constants for any number of rounds
	Single-page definition sheet

