
Linear Equivalence of Block Ciphers with Partial
Non-Linear Layers: Application to LowMC

Itai Dinur

Department of Computer Science, Ben-Gurion University, Israel

Abstract. LowMC is a block cipher family that is optimized for prac-
tical instantiations of multi-party computation, fully homomorphic en-
cryption, and zero-knowledge proofs. It was designed in 2015 by Albrecht
et al., and has recently become a substantial building block in several
novel post-quantum cryptosystems. A large portion of LowMC instances
use a relatively recent design strategy (initiated by Gèrard et al. at CHES
2013) of applying the non-linear layer to only a part of the state in each
round, where the shortage of non-linear operations is partially compen-
sated by heavy linear algebra. Since the high linear algebra complexity
has been a bottleneck in several applications, one of the open questions
raised by the designers was to reduce it, without introducing additional
non-linear operations (or compromising security).

In this paper, we consider LowMC instances with block size n, partial
non-linear layers of size s ≤ n and r encryption rounds. We show that
when s < n, each LowMC instance belongs to a large class of equiva-
lent instances. We then select a representative instance from this class
for which encryption (and decryption) can be implemented much more
efficiently than for an arbitrary instance. This yields a new encryption
algorithm that is equivalent to the standard one, but reduces the eval-
uation time and storage of the linear layers from r · n2 bits to about
r · n2 − (r − 1)(n − s)2, which is a substantial improvement for small
s and a reasonable choice of r. For standard LowMC parameters, our
new encryption algorithm achieves a reduction by a factor between 2
and 4, while for more extreme parameter choices (suggested by the de-
signers) the reduction is by a factor of more than 140. Furthermore, our
new encryption algorithm is applicable to all SP-networks with partial
non-linear layers.

An additional unique feature of LowMC is that the linear layers of its
instances are sampled at random. In the second part of the paper, we
show how to reduce the sampling time and randomness complexities (i.e.,
the number of random bits used) by directly sampling representative in-
stances. Finally, we formalize the notion of linear equivalence of block
ciphers with partial non-linear layers and prove that the memory com-
plexity of our encryption algorithm and the randomness complexity of
our sampling algorithm are optimal.

Keywords: Block cipher, LowMC, Picnic signature algorithm, linear
equivalence



1 Introduction

LowMC is a block cipher family designed by Albrecht et al. and presented at
Eurocrypt 2015 [2]. The cipher is heavily optimized for practical instantiations
of multi-party computation (MPC), fully homomorphic encryption (FHE), and
zero-knowledge proofs. In such applications, non-linear operations incur a higher
penalty in communication and computational complexity compared to linear
ones. Due to its design strategy, LowMC is a popular building block in post-
quantum designs that are based on MPC and zero-knowledge protocols (cf. [6,
8, 9, 12]). Most notably, it is used in the Picnic signature algorithm [7] which is
a candidate in NIST’s post-quantum cryptography standardization project [14].

Instances of LowMC are designed to perform well in two particular met-
rics that measure the complexity of non-linear operations over GF (2). The first
metric is multiplicative complexity (MC), which simply counts the number of
multiplications (AND gates in our context) in the circuit. The second metric is
the multiplicative (AND) depth of the circuit.

The relevance of each metric depends on the specific application. For ex-
ample, in the context of MPC protocols, Yao’s garbled circuits [21] with the
free XOR technique [13] (and many of their variants) have a constant number
of communication rounds. The total amount of communication depends on the
MC of the circuit as each AND gate requires communication, whereas XOR op-
erations can be performed locally. In an additional class of MPC protocols (e.g.,
GMW [11]), the number of communication rounds is linear in the ANDdepth of
the evaluated circuit. The performance of these protocols depends on both the
MC and ANDdepth of the circuit. For more details about the relevance of the
metrics in various applications, refer to the LowMC paper [2].

In order to reduce the complexity of non-linear operations for a certain level
of security, LowMC combines very dense linear layers over GF (2)n (where n is
the block size) with simple non-linear layers containing 3×3 Sboxes of algebraic
degree 2. The LowMC block cipher family includes a huge number of instances,
where for each instance, the linear layer of each round is chosen independently
and uniformly at random from all invertible n × n matrices. Additionally, the
round keys are computed using linear transformations applied to the master key
that are selected uniformly at random for each instance.

The design strategy of LowMC attempts to offer flexibility with respect to
both the MC and ANDdepth metrics. In particular, some LowMC instances
minimize the MC metric by applying only a partial non-linear layer to the state
of the cipher at each round, while the linear layers still mix the entire state.
In general, this approach requires to increase the total number of rounds in the
scheme in order to maintain a certain security level, but this is compensated by
the reduction in the size of the non-linear layers and the total AND count is
generally reduced. The global parameters of LowMC that are most relevant for
this paper are (1) the block size of n bits, (2) the number of rounds r (which is
determined according to the desired security level), and (3) a parameter s which
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denotes the domain length of each non-linear layer, namely, the number of bits
on which it operates (which may be smaller than n).1

While LowMC’s design aims to minimize the non-linear complexity of the
scheme at the expense of using many linear algebra (XOR) operations, in several
practical applications, XORs do not come for free and may become a bottleneck
in the implementation. This phenomena was already noted and demonstrated in
the original LowMC paper. More recently, it influenced the design of the Picnic
signature algorithm, where the most relevant metric is the MC (the number of
AND gates) that affects the signature size. In order to minimize the AND count
(and the signature size), the LowMC instances used by Picnic should have a
very small partial non-linear layer in each round (perhaps using only a single
3 × 3 Sbox). However, such an instance has a large number of rounds r and
each encryption requires computation of r matrix-vector products that increase
the signing and verification times. Consequently, the Picnic designers settled for
non-linear layers of intermediate size in order to balance the signature size on
one hand and the signing and verification times on the other.

Due to the large computational cost of LowMC’s dense linear layers, one of
the open problems raised by the designers was to reduce their computational
cost. A first step in this direction was recently taken by Perrin et al. in [16].
The work of [16] showed that in case LowMC uses partial non-linear layers (i.e.,
s < n), the round key and round constant of each round (except for the initial
key addition) can be trimmed from a size of n bits to a size of only s bits.

When considering the original LowMC design, the effect of the alternative
description of [16] is relatively small, as in the original design, round keys and
constants can be precomputed and hard-coded into the LowMC instance. Their
total size is about n(r + 1) bits which is negligible compared to the size of the
linear layers which is r ·n2 bits. On the other hand, the computation of LowMC
inside the Picnic signature algorithm involves splitting the LowMC instance to 3
related instances which are evaluated with a fresh share of the key in each invo-
cation. Therefore, it is not possible to hard-code the round keys into the LowMC
instance in this specific application and the effect of the alternative description
of [16] becomes more significant. Yet, even in the LowMC application in Picnic,
the r ·n2 complexity of evaluating linear layers remains the main bottleneck and
it is clear that in order to achieve a significant gain in performance, this complex-
ity has to be reduced. For this purpose, [16] also proposed to replace LowMC’s
randomly sampled linear matrices with a linear construction (called Fibonacci
Feistel Network, or FFN) that has much more structure and can be evaluated
and stored more efficiently compared to a random matrix. On the other hand,
this construction modifies the design of LowMC and it is not clear whether it
preserves the same level of security as the original.

Our Contribution In this paper we revisit the open problem of the LowMC
designers to reduce the complexity of its linear operations, focusing on instances

1 The LowMC specification denotes by m the number of 3×3 Sboxes in each non-linear
layer and therefore s = 3m in our context.
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with partial non-linear layers (i.e., s < n). We consider a generalized LowMC
construction in which the linear layers are selected uniformly at random from
the set of all invertible matrices and the non-linear layers are arbitrary and
applied to s bits of the internal state in each round. For such a cipher, the
standard encryption algorithm requires matrices of size2 r ·n2 bits and performs
matrix-vector products with about the same complexity. We describe a new
encryption (and decryption) algorithm for any such a generalized LowMC cipher
which is equivalent to the standard one, but uses matrices that require only
r · n2 − (r − 1)(n − s)2 bits of storage and about the same linear algebra time
complexity (using standard matrix-vector products3). Surprisingly, although the
open problem of the LowMC designers involved redesigning LowMC’s linear
layers to reduce its linear algebra complexity (and this direction was pursued
in [16]), our new encryption algorithm achieves this without changing the original
design.

Table 1. Size of Linear Layers of LowMC Instances in Bits

n s r Previous New Multiplicative Gain

r · n2 r · n2 − (r − 1)(n− s)2 Previous/New

128 30 20 218.3 217.1 2.25

192 30 30 220.1 218.4 3.2

256 30 38 221.2 219.2 4.1

1024 3 901 229.8 222.6 143.8

Table 1 compares4 the size of LowMC’s linear layers in previous implemen-
tations to our new encryption algorithm for several instances. Generally, our
advantage compared to the standard LowMC implementations grows as s is re-
duced compared to n. The first three instances are the ones used by the Picnic
signature algorithm and for them we obtain a multiplicative gain of between
2.25 and 4.1. Of course, our optimization applies to all LowMC instances and
not only to the ones used in Picnic. For example, the fourth instance in Table 1 is

2 We note LowMC expands a short seed using a pseudo-random generator whose
output is used to compute the matrices and generate actual instances. However, as
we argue in the paper, such a short implicit description is not useful during the
encryption process which needs an explicit description of the matrices to encrypt
efficiently.

3 Optimizations in matrix-vector multiplications (such as efficient implementations of
the “method of the four Russians” [1]) can be applied to both the standard and to
our new encryption algorithm. However, as noted in [16], such optimizations typically
have a limited effect on modern computers that use SIMD instruction sets.

4 The table does not list other parameters such as the key size and the allowed data
complexity. These parameters are obviously important in general, but are not rele-
vant for this paper.
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suggested in [19], and for this extreme choice of parameters, we reduce the size of
the linear layers by a factor of about 144. Note that encryption using the fourth
instance is arguably impractical as it require more than 100 megabytes just to
store. Our algorithm requires less than one megabyte of storage and achieves
a proportional speedup in encryption time. In general, it renders as practical
previously impractical LowMC instances.

Prior to this work, reducing s (in order to optimize the MC metric) while
increasing r (in order to maintain the same security level for a LowMC instance)
increased the linear algebra complexity proportionally to the increase in the
number of rounds. One of the main consequences of this work is that such a
reduction in s may actually reduce the linear algebra complexity5 of the cipher
since the increase in the number of rounds is compensated by the decrease in
the complexity of linear algebra in each round. As a result, the value of s in
the LowMC instances used by Picnic should be reconsidered, and this work
may simultaneously allow a reduction in the signature size and the signing and
verification times. Consequently, the gains mentioned in Table 1 are likely to
become larger and the signature size will be reduced as well.

Since the new algorithm allows to reduce both the implementation size and
complexity of encryption (and decryption), it is also useful for adversaries that
attempt to break LowMC instances via exhaustive search. We further mention
that the encryption algorithm is applicable to any SP-network with partial non-
linear layers (such as6 Zorro [10]) since it does not assume any special property of
the linear or non-linear layers. Yet, if the linear layers are not selected uniformly
at random, the question of whether our algorithm is more efficient compared to
the standard one depends on the specific design.

After optimizing the complexity of encryption, we consider the complexity
of generating a generalized LowMC instance by sampling its linear layers. We
devise a new sampling algorithm that reduces this complexity7 from about r ·n3
to n3 + (r − 1) · s2 · n = r · n3 − (r − 1) · n · (n2 − s2), which is a significant
improvement for small s and sufficiently large r. Our sampling algorithm further
reduces the number of uniform (pseudo) random bits required to sample the
linear layers from about r ·n2 to r ·n2− (r− 1)(n− s)2. These optimizations are
useful in applications that require frequent LowMC instance generation.

The gain in the efficiency for many LowMC instances raises the question of
whether the description of the linear layers we use is optimal (i.e., minimal) or
can be further compressed. Indeed, it may seem that the formula r · n2 − (r −
1)(n − s)2 = n2 + (r − 1)(n2 − (n − s)2) obtained for the description size is
suboptimal, and the formula n2 + (r−1) · s ·n2 is more reasonable, as it is linear
in s (similarly to the reduction of the length of round keys, obtained in [16]).

5 The extent of reduction depends on the LowMC instance.
6 Although Zorro is broken [3, 18, 20], its general design strategy remains valid
7 Using asymptotically fast matrix multiplication and invertible matrix sampling al-

gorithms will reduce the asymptotic complexity of both the original and our new
algorithm. Nevertheless, it is not clear whether they would reduce their concrete
complexity for relevant choices of parameters.
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We address this question in the last part of the paper, where we prove (under
two assumptions which we argue are natural) that no further optimizations that
reduce the LowMC code size are possible without changing its design.

Our Techniques In order to derive our new encryption algorithm, we show that
each (generalized) LowMC instance belongs to a class of equivalent instances
which is very large size when s � n. We then select a representative member
of the equivalence class that can be implemented efficiently using linear algebra
optimizations which apply matrices with a special structure instead of random
matrices (yet the full cipher remains equivalent). Next, we show how to sample
such a representative more efficiently than a random member in its equivalence
class. Our new sampling algorithm breaks dependencies among different parts
of the linear layers in a generalized LowMC cipher, shedding light on its internal
structure.

Finally, we formalize the notion of linear equivalence among generalized
LowMC ciphers. This allows us to prove (based on two natural assumptions)
that we correctly identified the linear equivalence classes and hence our descrip-
tion of the linear layers is optimal in size and we use the minimal amount of
randomness to sample it. The formalization requires some care and the proof of
optimality is somewhat non-standard (indeed, the claim that we prove is non-
standard).

Related Work Previous works [4, 5] investigated equivalent representations of
AES and other block ciphers obtained by utilizing the specific structure of their
Sboxes (exploiting a property called self-affine equivalence [5]). On the other
hand, our equivalent representation and encryption algorithm is independent of
the non-linear layer and can be applied regardless of its specification. Yet we
only deal with block ciphers with partial non-linear layers in this paper.

As mentioned above, Perrin et al. [16] obtained an alternative description
of LowMC, whose first step was to exchange the order of the key and constant
additions with the application of the linear layer in each round. The observation
of [16] was that in case s < n, after reordering, the constant and key additions
of consecutive rounds can be merged through the n− s bits of the state that do
not go through the non-linear transformation. Applying this process recursively
effectively eliminates all the key and constant additions on n−s bits of the state
(except for the initial key addition).

Our work is related to [16], but we mention that exchanging the order of
the key and constant additions is a common technique in symmetric cryptogra-
phy (e.g., it is frequently used in cryptanalysis of round-reduced AES). Thus,
the main novelty in [16] is in the recursive application of this reordering. On
the other hand, we are not aware of previous work in the context of symmetric
cryptography that obtained equivalent representations by optimizing the linear
layers themselves (independently of the Sboxes). Moreover, our algorithm signif-
icantly enhances the performance of LowMC for s� n in general (and not only
when used in Picnic).
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Paper Organization The rest of the paper is organized as follows. We describe
some preliminaries in Section 2 and prove the basic linear algebra properties we
use in Section 3. In Section 4 we describe our optimized encryption algorithm
and describe our optimized algorithm for sampling the linear layers in Section 5.
Finally, we prove the optimality of our description of the linear layers in Section 6.

2 Preliminaries

2.1 Notation

Given a string of bits x ∈ {0, 1}n, denote by x[|d] its d most significant bits
(MSBs) and by x[d|] its d least significant bits (LSBs). Given strings x, y, denote
by x‖y their concatenation. Given a matrix A, denote by A[∗, i] its i’th column,
by A[∗, d|] its first d columns and by A[∗, |d] its last d columns. Given two ma-
trices A ∈ GF (2)d1×d2 and B ∈ GF (2)d1×d3 denote by A‖B ∈ GF (2)d1×(d2+d3)

their concatenation. Denote by Id the identity matrix with dimensions d× d.

Throughout this paper, addition x + y between bit strings x, y ∈ {0, 1}n is
performed bit-wise over GF (2)n (i.e., by XORing them).

2.2 Generalized LowMC Ciphers

We study generalized LowMC (GLMC) ciphers where the block size is n bits
and each non-linear layer operates on s ≤ n bits of the state.

Each instance is characterized by a number of rounds r, rounds keys Ki for
i ∈ {0, . . . , r} and round constants Ci, for i ∈ {1, . . . , r}. The cipher consists of r
(partial) invertible non-linear layers Si : {0, 1}s → {0, 1}s and r invertible linear
layers Li ∈ GF (2)n×n for i ∈ {1, . . . , r}.

A GLMC instance is generated by choosing each Li independently and uni-
formly at random among all invertible n × n matrices.8 However, we note that
the main encryption algorithm we devise in Section 4 is applicable regardless of
the way that the linear layers are chosen. We do not place any restriction on
how the round keys and constants are generated. Moreover, we do not restrict
the invertible non-linear layers.

The encryption procedure manipulates n-bit words that represent GLMC
states, while breaking them down according to their s LSBs (which we call
“part 0 of the state”) and n − s MSBs (which we call “part 1 of the state”).
To simplify our notation, given any n-bit string x, we denote x(0) = x[s|] and
x(1) = x[|n− s].

The basic GLMC encryption procedure is given in Algorithm 1. Decryption
is performed by applying the inverse operations to a ciphertext.

8 Alternatively, they can be selected in a pseudo-random way from a short seed, as in
LowMC.
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Input: x0
Output: xr+1

begin
x1 ← x0 +K0 + C0

for i ∈ {1, 2, . . . , r} do

yi ← Si(x
(0)
i )‖x(1)i

ti+1 ← Li(yi)
xi+1 ← xi +Ki + Ci

end
Output xr+1

end
Algorithm 1: Basic Encryption

Input: x0
Output: xr+1

begin
x1 ← x0 +K0

for i ∈ {1, 2, . . . , r} do

yi ← Si(x
(0)
i )‖x(1)i

xi+1 ← Li(yi)
end
Output xr+1

end
Algorithm 2: Simplified Encryption

Simplification We follow the simplification of the cipher proposed in [16]. Con-
sider round i of Algorithm 1 and note that the order of the application of Li and
the addition of Ki + Ci can be exchanged by defining K ′i = L−1i (Ki + Ci) and
obtaining Li(yi +K ′i) = Li(yi) +Li(K

′
i) = Li(yi) +Ki +Ci = xi+1 as required.

Next, as Si is only applied to x
(0)
i , the addition of K

′(1)
i can be pushed back to

the beginning of the round. The modified round now consists of the operations

x
(1)
i ←x(1)i +K

′(1)
i

yi ←Si(x
(0)
i )‖x(1)i

y
(0)
i ←y(0)i +K

′(0)
i

xi+1 ←Li(yi).

Next, the initial addition with K
′(1)
i is consumed by round i− 1 by defining

K
′(1)
i−1 = K

(1)
i−1 + C

(1)
i−1 + K

′(1)
i (while K

′(0)
i−1 = K

(0)
i−1 + C

(0)
i−1 remains unchanged).

Overall, the simplification eliminates the round key (and constant) addition into
part 1 of the state in round i. This process can be applied recursively starting
from round r down to the first round. As a result, round keys and round constants
for i ∈ {1, . . . , r} are chopped down to a size of s bits and added directly after
the non-linear layer. This requires changing the initial round key K0 accordingly.
We make a final modification and combine the (chopped down) round key and
constant addition of each round i ∈ {1, . . . , r} with the non-linear layer Si by

defining S′i(x
(0)
i ) = Si(x

(0)
i )+K

′(0)
i . The non-linear layers are now key-dependent,

but this does not make any difference in the context of this paper and simplifies
the presentation.

Algorithm 2 describes the simplified encryption procedure. Obviously, the
transformation of Algorithm 1 into Algorithm 2, requires recalculating K0 and
the non-linear layers Si, yet we use the same notation for them for simplicity.
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2.3 Breaking Down the Linear Layers

Given Li (which is an n× n matrix), we partition its n-bit input into the first s
LSBs (part 0 of the state that is output by Si−1) and the remaining n − s bits
(part 1 of the state). Similarly, we partition its n-bit output into the first s LSBs
(that are inputs of Si+1) and the remaining n− s bits. We define 4 sub-matrices
of Li that map between the 4 possible pairs of state parts:

L00
i ∈ GF (2)s×s, L01

i ∈ GF (2)s×(n−s), L10
i ∈ GF (2)(n−s)×s, L11

i ∈ GF (2)(n−s)×(n−s).

Thus, in our notation Lab
i for a, b ∈ {0, 1} maps the part of the state denoted by

b to the part of the state denoted by a.

Li =

[
L00
i L01

i

L10
i︸︷︷︸
s

L11
i︸︷︷︸

n−s

]
} s
}n− s

We extend our notation Lab
i by allowing a, b ∈ {0, 1, ∗}, where the symbol ‘∗ ‘

denotes the full state. Therefore,

L0∗
i ∈ GF (2)s×n, L1∗

i ∈ GF (2)(n−s)×n, L∗0i ∈ GF (2)n×s, L∗1i ∈ GF (2)n×(n−s),

are linear transformations which are sub-matrices of Li, as shown below.

Li =

[
L0∗
i

L1∗
i︸︷︷︸
n

]
} s
}n− s

, Li =
[
L∗0i︸︷︷︸
s

L∗1i︸︷︷︸
n−s

]
}n

These linear transformation satisfy several basic equalities. For example, for
each y ∈ {0, 1}n:

L0∗
i (y) = Li(y)(0) = L00

i (y(0)) + L01
i (y(1)),

L1∗
i (y) = Li(y)(1) = L10

i (y(0)) + L11
i (y(1)).

2.4 General Matrix Notation

The superscript of Lab
i has a double interpretation, as specifying both the di-

mensions of the matrix and its location in Li. We will use this notation more
generally to denote sub-matrices of some n × n matrix A, or simply to define
a matrix with appropriate dimensions (e.g., A01 ∈ GF (2)s×(n−s) may be de-
fined without defining A and this should be clear from the context). Therefore,
dimensions of the matrices in the rest of the paper will be explicitly specified
in superscript as Aab, where a, b ∈ {0, 1, ∗} (we do not deal with matrices of
other dimensions). In case the matrix Aab is a sub-matrix of a larger matrix A,
the superscript has a double interpretation as specifying both the dimensions
of Aab and its location in A. When no superscript is given, the relevant matrix
is of dimensions n × n. There will be two exceptions to this rule which will be
specified separately.
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2.5 Complexity Evaluation

In this paper we analyze the complexity of the linear layers of generalized LowMC
schemes. We will be interested in the two natural measures of time complexity
(measured by the number of bit operations) and memory complexities (measured
by the number of stored bits) of a single encryption (or decryption) of an ar-
bitrary plaintext (or ciphertext). The linear layers are naturally represented by
matrices,9 and thus evaluating a linear layer on a state is a simply a matrix-vector
product. Since the time and memory complexities of evaluating and storing the
linear layers are proportional in this paper, we will typically refer to both a
the linear algebra complexity of the linear layers. For algorithms that generate
GLMC instances, we will be interested in time complexity and in the number of
random bits (or pseudo-random bits) that they use.

3 Linear Algebra Properties

In this section we describe the linear algebra properties that are relevant for the
rest of this paper. We continue to use the notation of Section 2.3 and indicate
the dimensions of some matrices using superscript notation.

3.1 Invertible Binary Matrices

Denote by αn the probability that an n × n uniformly chosen binary matrix is
invertible. We will use the following well-known fact:

Fact 1 The probability that an n × n uniform binary matrix is invertible is
αn =

∏n
i=1(1 − 1/2i) > 0.2887. More generally, for positive integers d ≤ n,

the probability that a d× n binary matrix, chosen uniformly at random, has full
row rank of d is

∏n
i=n−d+1(1− 1/2i) =

(∏n
i=1(1− 1/2i)

)
/
(∏n−d

i=1 (1− 1/2i)
)

=
αn/αn−d.

We will be interested in invertibility of matrices of a special form, described in
the following fact.

Fact 2 An n× n binary matrix of the form[
A00 A01

A10 In−s

]

is invertible if and only if the s× s matrix B00 = A00 +A01A10 is invertible and
its inverse is given by[

(B00)−1 −(B00)−1 ·A01

−A10 · (B00)−1 In−s −A10 · (B00)−1 ·A01

]
.

9 This is indeed natural, as noted in Footnote 3.
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Finally, we prove a simple proposition regarding random matrices.

Proposition 1. Let A ∈ GF (2)n×n be an invertible matrix chosen uniformly at
random and let B11 ∈ GF (2)(n−s)×(n−s) be an arbitrary invertible matrix (for
s ≤ n) that is independent from A. Then the matrix

C =

[
A00 A01 ·B11

A10 A11 ·B11

]

is a uniform invertible matrix.

Proof. The proof follows from the bijection

C =

[
A00 A01 ·B11

A10 A11 ·B11

]
=

[
A00 A01

A10 A11

]
·

[
Is 001

010 B11

]

between the uniform matrix A and C. This is indeed a bijection since B11 is
invertible as the inverse is given by[

Is 001

010 (B11)−1

]
.

�

3.2 Normalized Matrices

Definition 1. Let A1∗ be a Boolean matrix with full row rank of n − s (and
therefore it has n−s linearly independent columns). Let COL(A) denote the first
set of n−s linearly independent columns of A1∗ in a fixed lexicographic ordering
of columns sets. Then, these columns form an (n− s)× (n− s) invertible matrix
which is denoted by Ȧ, while the remaining columns form an (n− s)× s matrix
which is denoted by Ä. Moreover, denote Â = Ȧ−1 ·A1∗ ∈ GF (2)(n−s)×(n−s) (in
this matrix, the columns of COL(A) form the identity matrix).

Remark 1. The only exception to the rule of Section 2.4 has to do with Defini-
tion 1 (and later with the related Definition 2). In this paper, the decomposition
of definition 1 is always applied to matrices A1∗ ∈ GF (2)(n−s)×n (in case A1∗

is a sub-matrix of A, it contains the bottom n− s rows of A). Hence the resul-
tant matrices Ȧ ∈ GF (2)(n−s)×(n−s), Ä ∈ GF (2)(n−s)×s and Â = GF (2)(n−s)×n

have fixed dimensions and do not need any superscript. On the other hand,
we will use superscript notation to denote sub-matrices of these. For example
Â10 ∈ GF (2)(n−s)×s is a sub-matrix of Â, consisting of its first s columns.

It will be convenient to consider a lexicographic ordering in which the columns
indices of A1∗ are reversed, i.e., the first ordered set of n− s columns is {n, n−
1, . . . , s+1}, the second is {n, n−1, . . . , s+2, s}, etc. To demonstrate the above
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definition, assume that COL(A) = {n, n − 1, . . . , s + 1} is a consecutive set of
linearly independent columns. Then, the matrix A1∗ is shown below.

A1∗ =
[
Ä︸︷︷︸
s

Ȧ︸︷︷︸
n−s

] }
n− s

We can write A = (Ȧ · Ȧ−1) ·A = Ȧ · (Ȧ−1 ·A) = Ȧ · Â, where

Â = Ȧ−1 ·A1∗ =
[
Ȧ−1 · Ä︸ ︷︷ ︸

s

In−s︸︷︷︸
n−s

] }
n− s. (1)

Normalized Equivalence Classes Given an invertible matrix A ∈ GF (2)n×n,
define

N(A) =

[
A0∗

Â

]
=

[
A0∗

Ȧ−1 ·A1∗

]
=

[
Is 001

010 Ȧ−1

]
·A.

The transformation N(·) partitions the set of invertible n× n boolean matrices
into normalized equivalence classes, where A,B are in the same normalized equiv-
alence class if N(A) = N(B). We denote A↔N B the relation N(A) = N(B).

Proposition 2. Two invertible n× n boolean matrices A,B satisfy A↔N B if
and only if there exists an invertible matrix C11 such that

A =

[
Is 001

010 C11

]
·B.

Proof. If A↔N B then[
Is 001

010 Ȧ−1

]
·A =

[
Is 001

010 Ḃ−1

]
·B

or

A =

[
Is 001

010 Ȧ · Ḃ−1

]
·B

For the other direction, if

A =

[
Is 001

010 C11

]
·B

then [
A0∗

A1∗

]
=

[
B0∗

C11 ·B1∗

]
.

Observe that COL(A1∗) = COL(B1∗), as left multiplication with the invertible
C11 does not affect the linear dependencies among the columns of B1∗. Further-
more,

Â = Ȧ−1 ·A1∗ = Ȧ−1 · C11 ·B1∗ =

Ȧ−1 · C11 · Ḃ · B̂ = (Ȧ−1 · C11 · Ḃ) · B̂.

12



Thus, the normalized forms Â, B̂ are related by the invertible linear transfor-
mation Ȧ−1 · C11 · Ḃ. Since COL(A1∗) = COL(B1∗), this linear transforma-
tion maps the identity matrix in B̂ to the identity matrix in Â, implying that
Ȧ−1 · C11 · Ḃ = In−s and Â = B̂. Combined with the equality A0∗ = B0∗ we
obtain A↔N B. �

Let Φ = {N(A) | A ∈ GF (2)n×n is invertible} contain a representative from
each normalized equivalence class.

Using Fact 1 and Proposition 2, we deduce the following corollary.

Corollary 1. The following properties hold for normalized equivalence classes:

1. Each member of Φ represents a normalized equivalence class whose size is
equal to the number of invertible (n − s) × (n − s) matrices C11, which is

αn−s · 2(n−s)
2

.
2. The size of Φ is

|Φ| = αn · 2n
2

αn−s · 2(n−s)2
= αn/αn−s · 2n

2−(n−s)2 .

3.3 Matrix-Vector Product

Definition 2. Let A1∗ and B∗1 be two Boolean matrices such that A1∗ has full
row rank of n− s. Define B̌A = B · Ȧ ∈ GF (2)n×(n−s).

When A is understood from the context, we simply write B̌.

Remark 2. The notational conventions that apply to Definition 1 also apply
to Definition 1 (see Remark 1), as it is always applied to matrices A1∗ ∈
GF (2)(n−s)×n and B∗1 ∈ GF (2)n×(n−s), where B̌ ∈ GF (2)n×(n−s) (and its
sub-matrices are denoted using superscript).

Proposition 3. Let A1∗ and B∗1 be two Boolean matrices such that A1∗ has full
row rank of n−s. Let C = B∗1 ·A1∗ ∈ GF (2)n×n. Then, after preprocessing A1∗

and B∗1, C can be represented using b = n2 − s2 + n bits. Moreover, given x ∈
GF (2)n, the matrix-vector product Cx can be computed using O(b) bit operations.

Note that the above representation of the n×n matrix C is more efficient than
the trivial representation that uses n2 bits (ignoring the additive lower order term
n). It is also more efficient than a representation that uses the decomposition
C = B∗1 ·A1∗ which requires 2n(n− s) = (n2 − s2) + (n− s)2 ≥ n2 − s2 bits.
Proof. Since A1∗ has full row rank of n− s, we use definitions 1 and 2, and write
C = B∗1 ·A1∗ = B∗1 ·(Ȧ·Ȧ−1)·A1∗ = (B∗1 ·Ȧ)·(Ȧ−1 ·A1∗) = B̌ ·Â, where B̌ and Â
can be computed during preprocessing. Let us assume that the last n−s columns
of A1∗ are linearly independent (namely, COL(A1∗) = {n, n−1, . . . , s+1}). Then
due to (1), Â can be represented using s(n−s) bits and the matrix-vector product
Cx can be computed using O(s(n− s) + n(n− s)) = O(n2 − s2) bit operations
by computing Âx = (Ȧ−1 · Ä) · x[s|] + x[|n− s].

13



We assumed that the last n − s columns of A1∗ are linearly independent.
If this is not the case, then COL(A1∗) can be specified explicitly (to indicate
the columns of Â that form the identity) using at most n additional bits. The
product Âx is computed by decomposing x according to COL(A1∗) (rather than
according to its s LSBs). �

Remark 3. Consider the case that A1∗ is selected uniformly at random among
all matrices of full row rank. Then, using simple analysis based on Fact 1, n− s
linearly independent columns of A1∗ are very likely to be found among its n−s+3
last columns. Consequently, the additive low-order term n in the representation
size of C can be reduced to an expected size of about 3 log n (specifying the 3
indices among are final n − s + 3 that do not below in COL(A1∗)). Moreover,
computing the product Âx requires permuting only 3 pairs of bits of x on average
(and then decomposing it as in the proof above).

Remark 4. Instead of simplifying A1∗ to contain the identity matrix, we can
alternatively simplify B∗1 assuming it has full column rank.10 It is easy to verify
that both simplifications give essentially the same result in terms of linear algebra
complexity.

4 Optimized Encryption Algorithm

In this section we describe our encryption algorithm that optimizes the linear
algebra of Algorithm 2. We begin by optimizing the implementation of a 2-round
GLMC cipher and then consider a general r-round cipher.

4.1 Basic 2-Round Encryption Algorithm

We start with a basic algorithm that attempts to combine the linear algebra
computation of two rounds. This computation can be written as(

x
(0)
3

x
(1)
3

)
=

[
L00
2 L01

2

L10
2 L11

2

](
y
(0)
2

y
(1)
2

)
,

(
x
(0)
2

x
(1)
2

)
=

[
L00
1 L01

1

L10
1 L11

1

](
y
(0)
1

y
(1)
1

)
.

Note that x
(0)
2 and y

(0)
2 are related non-linearly as y

(0)
2 = S2(x

(0)
2 ). On the

other hand, since x
(1)
2 = y

(1)
2 we can compute the contribution of y

(1)
2 to x3 at

once from y1 by partially combining the linear operations of the two rounds as(
t
(0)
3

t
(1)
3

)
=

[
L01
2 L

10
1 L01

2 L
11
1

L11
2 L

10
1 L11

2 L
11
1

](
y
(0)
1

y
(1)
1

)
. (2)

The linear transformation of (2) is obtained from the product L2 ·L1 by ignoring

the terms involving L00
2 and L10

2 (that operate on y
(0)
2 ). Note that (2) defines an

n× n matrix that can be precomputed.

10 One can also simplify both A1∗ and B∗1, but this is never useful in our application.
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We are left to compute the contribution of y
(0)
2 to x3, which is done directly

as in Algorithm 2 by

x
(0)
2 ←L0∗

1 (y1)

y
(0)
2 ←S2(x

(0)
2 )

t′3 ←L∗02 (y
(0)
2 ).

(3)

This calculation involves s× n and n× s matrices. Finally, combining the con-
tributions of (2) and (3), we obtain

x3 ← t3 + t′3.

Overall, the complexity of linear algebra in the two rounds is n2+2sn instead
of 2n2 of Algorithm 2. This is an improvement given that s < n/2, but is
inefficient otherwise.

4.2 Optimized 2-Round Encryption Algorithm

The optimized algorithm requires a closer look at the linear transformation of (2).
Note that this matrix can be rewritten as the product(

t
(0)
3

t
(1)
3

)
=

[
L01
2

L11
2

] [
L10
1 L11

1

](y(0)1

y
(1)
1

)
. (4)

More compactly, this n × n linear transformation is decomposed as L∗12 · L1∗
1 ,

namely, it is a product of matrices with dimensions (n− s)× n and n× (n− s).
In order to take advantage of this decomposition, we use Proposition 3 which
can be applied since L1∗

1 has full row rank of n− s. This reduces linear algebra
complexity of L∗12 · L1∗

1 from n2 to n(n − s) + n(n − s) − (n − s)2 = n2 − s2,
ignoring an additive low order term of 3 log n, as computed in Remark 3.

Input: x0
Output: x3
begin

x1 ← x0 +K0

y1 ← S1(x
(0)
1 )‖x(1)1

x
(0)
2 ← L0∗

1 (y1)

y
(0)
2 ← S2(x

(0)
2 )

x3 ← L∗02 (y
(0)
2 )

x3 ← x3 + Ľ2(L̂1(y1))
Output x3

end
Algorithm 3: Optimized 2-Round
Encryption

Input: x0
Output: x3
begin

x1 ← x0 +K0

y1 ← S1(x
(0)
1 )‖x(1)1

x
(0)
2 ← L0∗

1 (y1)

z
(1)
2 ← L̂1(y1)

y
(0)
2 ← S2(x

(0)
2 )

x3 ← L∗02 (y
(0)
2 )

x3 ← x3 + Ľ2(z
(1)
2 )

Output x3
end

Algorithm 4: Refactored 2-Round
Encryption

15



Algorithm 3 exploits the decomposition L∗12 · L1∗
1 = Ľ2 · L̂1. Altogether, the

linear algebra complexity of 2 rounds is reduced to

n2 + 2sn− s2 = 2n2 − (n− s)2

(or 2n2 − (n − s)2 + 3 log n after taking Remark 3 into account). This is an
improvement by an additive factor of about s2 compared to the basic 2-round
algorithm above and is an improvement over the standard complexity of 2n2 for
essentially all s < n.

4.3 Towards an Optimized r-Round Encryption Algorithm

The optimization applied in the 2-round algorithm does not seem to generalize
to an arbitrary number of rounds in a straightforward manner. In fact, there
is more than one way to generalize this algorithm (and obtain improvements
over the standard one in some cases) using variants of the basic algorithm of
Section 4.1 which directly combines more that two rounds. These variants are
sub-optimal since they do not exploit the full potential of Proposition 3.

The optimal algorithm is still not evident since the structure of the rounds
of Algorithm 3 does not resemble their structure in Algorithm 2 that we started

with. Consequently, we rewrite it in Algorithm 4 such that z
(1)
2 = L̂1(y1) is

computed already in round 1 instead of round 2. The linear algebra in round 2
of Algorithm 4 can now be described using the n× n transformation

(
x
(0)
3

x
(1)
3

)
=

[
L00
2 Ľ01

2

L10
2 Ľ11

2

](
y
(0)
2

z
(1)
2

)
.

Note that z
(1)
2 is a value that is never computed by the original Algorithm 2.

When we add additional encryption rounds, we can apply Proposition 3 again
and “push” some of the linear algebra of round 2 into round 3, then “push” some
of the linear algebra of round 3 into round 4, etc. The full algorithm is described
in detail next.
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4.4 Optimized r-Round Encryption Algorithm

In this section, we describe our optimized algorithm for evaluating r rounds of
a GLMC cipher. We begin by defining the following sequence of matrices.
For i = 1:

R1∗
1 = L1∗

1

R̂1 = (Ṙ1)−1 ·R1∗
1 .

For 2 ≤ i ≤ r − 1:

Ťi = L∗1i · Ṙi−1

R1∗
i = L10

i ‖Ť 11
i

R̂i = (Ṙi)
−1 ·R1∗

i .

For i = r:

Ťr = L∗1r · Ṙr−1.

Basically, the matrix Ťi combines the linear algebra of round i with the linear
algebra that is pushed from the previous round (represented by Ṙi−1). The
matrix R̂i is the source of optimization, computed be applying Proposition 3 to
the updated round matrix after computing Ťi.

Before we continue, we need to prove the follow claim.

Proposition 4. The matrix R1∗
i has full row rank of n−s for all i ∈ {1, . . . , r−

1}, hence (Ṙi)
−1 exists.

Proof. The proof is by induction on i. For i = 1, R1∗
1 = L1∗

1 has full row rank
by the invertibility of L1. For i ∈ {2, . . . , r − 1}, R1∗

i = L10
i ‖Ť 11

i . Observe that
the matrix L1∗

i = L10
i ‖L11

i has full row rank and thus column rank of n− s. The
matrix Ť 11

i is obtained from L11
i by right multiplication with the matrix Ṙi−1

which has full rank by the induction hypothesis. Hence Ť 11
i and L11

i have the
same column span. Therefore, the column spans of L10

i ‖L11
i and R1∗

i = L10
i ‖Ť 11

i

are identical, implying that their column and row ranks are n− s. �
The general optimized encryption algorithm is given in Algorithm 5. At a

high level, the first round can be viewed as mapping the “real state” (y
(0)
1 , y

(1)
1 )

into the “shadow state” (x
(0)
2 , z

(1)
2 ) using the linear transformation(

x
(0)
2

z
(1)
2

)
=

[
L00
1 L01

1

R̂10
1 R̂11

1

](
y
(0)
1

y
(1)
1

)
.

In rounds i ∈ {2, . . . , r − 1}, the shadow state (y
(0)
i , z

(1)
i ) (obtained after

applying Si(x
(0)
i )) is mapped to the next shadow state (x

(0)
i+1, z

(1)
i+1) using the

linear transformation (
x
(0)
i+1

z
(1)
i+1

)
=

[
L00
i Ť 01

i

R̂10
i R̂11

i

](
y
(0)
i

z
(1)
i

)
.
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Input: x0

Output: xr+1

begin
x1 ← x0 + K0

y1 ← S1(x
(0)
1 )‖x(1)

1 . Round 1

x
(0)
2 ← L0∗

1 (y1)

z
(1)
2 ← R̂1(y1)
for i ∈ {2, . . . , r − 1} do

y
(0)
i ← Si(x

(0)
i ) . Round i

x
(0)
i+1 ← L00

i (y
(0)
i )

x
(0)
i+1 ← x

(0)
i+1 + Ť 01

i (z
(1)
i )

z
(1)
i+1 ← R̂i(y

(0)
i ‖z

(1)
i )

end

y
(0)
r ← Sr(x

(0)
r ) . Round r

xr+1 ← L∗0r (y
(0)
r )

xr+1 ← xr+1 + Ťr(z
(1)
r )

Output xr+1

end
Algorithm 5: Optimized r-Round Encryption

Finally, in round r, the shadow state (y
(0)
r , z

(1)
r ) is mapped to the final real

state (x
(0)
r+1, x

(1)
r+1) using the linear transformation(

x
(0)
r+1

x
(1)
r+1

)
=

[
L00
r Ť 01

r

L10
r Ť 11

r

](
y
(0)
r

z
(1)
r

)
.

While all the linear transformations are of dimensions n×n, the gain from the
standard algorithm is due to the special structure of R̂i for i ∈ {1, 2, . . . , r − 1}
as it contains the identity matrix.

Complexity Evaluation Algorithm 5 uses the following sequences of matrices:

L0∗
1 , R̂1,

L00
i , Ť

01
i , R̂i for i ∈ {2, . . . , r − 1},

L∗0r , Ťr.

Hence, ignoring the linear algebra optimizations for each R̂i, the linear alge-
bra complexity of each round is n2, leading to a total complexity of r ·n2. Taking
the optimizations into account, for each i ∈ {1, . . . , r − 1}, the actual linear al-
gebra complexity of R̂i is reduced by (n − s)2 to n2 − (n − s)2. Therefore, the
total linear algebra complexity is

r · n2 − (r − 1)(n− s)2.

Taking Remark 3 into account, we need to add another factor of 3(r − 1) log n.
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Remark 5. Note that Algorithm 5 is obtained from Algorithm 2 independently of
how the instances of the cipher are generated. Hence, Algorithm 5 is applicable to
all SP-networks with partial non-linear layers. However, the question of whether
this algorithm is more efficient than the standard implementation (which may
use very compact linear layers) depends on the actual cipher. Furthermore, in
terms of the analysis, Remark 3 does not apply and the additive low-order term
added to the complexity is different (but never larger than n bits per round).

Correctness We now prove correctness of Algorithm 5 by showing that its output
value is identical to a standard implementation of the scheme in Algorithm 2.
For each i ∈ {0, 1, . . . , r + 1}, denote by x̄i the state value at the beginning of
round i in a standard implementation and by ȳi the state after the application
of Si.

Proposition 5. For each i ∈ {1, . . . , r − 1} in Algorithm 5, y
(0)
i = ȳ

(0)
i , x

(0)
i+1 =

x̄
(0)
i+1 and z

(1)
i+1 = (Ṙi)

−1(x̄
(1)
i+1).

Proof. The proof is by induction on i. For i = 1, clearly y
(0)
1 = ȳ

(0)
1 , x

(0)
2 = x̄

(0)
2

and

z
(1)
2 = R̂1(y1) = (Ṙ1)−1 ·R1∗

1 (ȳ1) = (Ṙ1)−1 · L1∗
1 (ȳ1) = (Ṙ1)−1(x̄

(1)
2 ).

For i ∈ {2, . . . , r − 1}, using the induction hypothesis we obtain

y
(0)
i = Si(x

(0)
i ) = Si(x̄

(0)
i ) = ȳ

(0)
i ,

and

x
(0)
i+1 = L00

i (y
(0)
i ) + Ť 01

i (z
(1)
i ) =

L00
i (ȳ

(0)
i ) + Ť 01

i

(
(Ṙi−1)−1(x̄

(1)
i )
)

=

L00
i (ȳ

(0)
i ) + L01

i · Ṙi−1 · (Ṙi−1)−1(x̄
(1)
i ) =

L00
i (ȳ

(0)
i ) + L01

i (ȳ
(1)
i ) =

L0∗
i (ȳi) =

x̄
(0)
i+1.
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Finally,

z
(1)
i+1 = R̂i(y

(0)
i ‖z

(1)
i ) =

(Ṙi)
−1 ·R1∗

i

(
ȳ
(0)
i ‖(Ṙi−1)−1(x̄

(1)
i )
)

=

(Ṙi)
−1 ·

(
L10
i ‖Ť 11

i

)(
ȳ
(0)
i ‖(Ṙi−1)−1(x̄

(1)
i )
)

=

(Ṙi)
−1 ·

(
L10
i (ȳ

(0)
i ) + Ť 11

i · (Ṙi−1)−1(x̄
(1)
i )
)

=

(Ṙi)
−1 ·

(
L10
i (ȳ

(0)
i ) + L11

i · Ṙi−1 · (Ṙi−1)−1(x̄
(1)
i )
)

=

(Ṙi)
−1 ·

(
L10
i (ȳ

(0)
i ) + L11

i (x̄
(1)
i )
)

=

(Ṙi)
−1 ·

(
L1∗
i (ȳi)

)
=

(Ṙi)
−1(x̄

(1)
i+1).

�

Proposition 6. Algorithm 5 is correct, namely xr+1 = x̄r+1.

Proof. By Algorithm 5 and using Proposition 5,

xr+1 = L∗0r (y(0)r ) + Ťr(z(1)r ) =

L∗0r (ȳ(0)r ) + L∗1r · Ṙr−1
(
(Ṙr−1)−1(x̄(1)r )

)
=

L∗0r (ȳ(0)r ) + L∗1r (ȳ(1)r ) =

Lr(ȳr) =

x̄r+1.

�

5 Optimized Sampling of Linear Layers

In this section we optimize the sampling of linear layers of generalized LowMC ci-
phers, assuming they are chosen uniformly at random from the set of all invertible
matrices. Sampling the linear layers required by Algorithm 5 in a straightforward
manner involves selecting r invertible matrices and applying additional linear
algebra operations that transform them to normalized form. This increases the
complexity compared to merely sampling these r matrices in complexity O(r ·n3)
using a simple rejection sampling algorithm (or asymptotically faster using the
algorithm of [17]) and encrypting with Algorithm 2.

We show how to reduce the complexity from O(r · n3) to11

O(n3 + (r − 1)(s2 · n)),

which is a significant improvement for small s (and sufficiently large r). We also
reduce the amount of (pseudo) random bits requires to sample the linear layers
from about r · n2 to about r · n2 − (r − 1)

(
(n− s)2 − 2(n− s)

)
.

11 Further asymptotic improvements are possible using fast matrix multiplication.
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The linear layer sampling complexity is reduced in three stages. The first
stage breaks the dependency between matrices of different rounds. The second
stage breaks the dependency in sampling the bottom part of each round matrix
(containing n−s rows) from its top part. Finally, the substantial improvement in
complexity for small s is obtained in the third stage that optimizes the sampling
of the bottom part of the round matrices. Although the first two stages do not
significantly reduce the complexity, they are necessary for applying the third
stage and are interesting in their own right.

We note that sampling the matrices that determine the (truncated) round
keys of LowMC (following the simplification derived in [16]) can also be opti-
mized using similar techniques to the ones we use in this section for sampling
the linear layers. Overall, the complexity of sampling the linear layers remains
the bottleneck.

5.1 Breaking Dependencies Among Different Round Matrices

Recall that for i ∈ {2, . . . , r}, the linear transformation of round i is generated
from the matrix [

L00
i Ť 01

i

L10
i Ť 11

i

]
(5)

where

Ťi = L∗1i · Ṙi−1.

For i = r, this gives the final linear transformation, while for i < r, the final
transformation involves applying the decomposition of Definition 1 to L10

i ‖Ť 11
i .

Since Ťi depends on the invertible (n−s)×(n−s) matrix Ṙi−1 (computed in the
previous round), a naive linear transformation sampling algorithm would involve
computing the linear transformations in their natural order by computing Ṙi−1
in round i−1 and using it in round i. However, this is not required, as the linear
transformation of each round can be sampled independently. Indeed, by using
Proposition 1 with the invertible matrix B11 = Ṙi−1, we conclude that in round i
we can simply sample the matrix given in (5) as a uniform invertible n×n matrix
without ever computing Ṙi−1. Therefore, the linear transformation sampling for
round r simplifies to selecting a uniform invertible n×n matrix, Lr. For rounds
i ∈ {1, . . . , r− 1}, we can select a uniform invertible n× n matrix, Li, and then
normalize it and discard Ṙi after the process. This simplifies Algorithm 5, and
it can be rewritten as in Algorithm 6. Note that we have renamed the sequence

{z(1)i } to {x(1)i } for convenience.

We stress that the dependency between the round matrices could be broken
in Algorithm 6 only since the linear transformation in each round is a uniform
invertible matrix. If this is not the case, one can still rename the matrices of
Algorithm 5 and derive an algorithm of the form of Algorithm 6. However,
computing these matrices would still require deriving Ťi and R̂i as defined in
Section 4.4.
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Input: x0

Output: xr+1

begin
x1 ← x0 + K0

for i ∈ {1, . . . , r − 1} do
yi ← Si(x

(0)
i )‖x(1)

i . Round i

x
(0)
i+1 ← L0∗

i (yi)

x
(1)
i+1 ← L̂i(yi)

end

yr ← Sr(x
(0)
r )‖x(1)

r . Round r
xr+1 ← Lr(yr)
Output xr+1

end
Algorithm 6: Simplified Optimized r-Round Encryption

5.2 Reduced Sampling Space

We examine the sample space of the linear layers more carefully.
For each of the first r − 1 rounds, the sampling procedure for Algorithm 6

involves selecting a uniform invertible matrix and then normalizing it according
to Definition 1. However, by Corollary 1, since each normalized equivalence class
contains the same number of αn−s · 2(n−s)

2

invertible matrices, this is equiva-
lent to directly sampling a uniform member from Φ to represent its normalized
equivalence class. If we order all the matrices in Φ, then sampling from it can be
done using log |Φ| uniform bits. However, encrypting with Algorithm 6 requires
an explicit representation of the matrices and using an arbitrary ordering is not
efficient in terms of complexity. In the rest of this section, our goal is to optimize
the complexity of sampling from Φ, but first we introduce notation for the full
sampling space.

Let the set Λr contain r-tuples of matrices defined as

Λr = Φr−1 × {A ∈ GF (2)n×n is invertible},

where Φr−1 = Φ× Φ . . .× Φ︸ ︷︷ ︸
r−1 times

.

The following corollary is a direct continuation of Corollary 1.

Corollary 2. The following properties hold:

1. Each r-tuple (L1, . . . , Lr−1, Lr) ∈ Λr represents a set of size (αn−s)
r−1 ·

2(r−1)(n−s)
2

containing r-tuples of matrices (L′1, . . . , L
′
r−1, L

′
r) such that(

N(L′1), . . . , N(L′r−1), L′r
)

= (L1, . . . , Lr−1, Lr).

2. Λr contains

|Λr| =
(αn)r · 2n2

(αn−s)r−1 · 2(r−1)(n−s)2
=

(αn)r/(αn−s)
r−1 · 2r·n

2−(r−1)(n−s)2
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r-tuples or matrices.

As noted above, sampling from Λr reduces to sampling the first r−1 matrices
uniformly from Φ and using a standard sampling algorithm for the r’th matrix.

5.3 Breaking Dependencies Between Round Sub-Matrices

We describe how to further simplify the algorithm for sampling the linear layers
by breaking the dependency between sampling the bottom and top sub-matrices
in each round. From this point, we will rename the round matrix Li to a general
matrix A ∈ GF (2)n×n for convenience. In order to sample from Φ, the main
idea is to sample the bottom n − s linearly independent rows of A first, apply
the decomposition of Definition 1 and then use this decomposition in order to
efficiently sample the remaining s linearly independent rows of A. Therefore, we
never directly sample the larger n× n matrix, but obtain the same distribution
on output matrices as the original sampling algorithm.

Sampling the Bottom Sub-Matrix We begin by describing in Algorithm 7
how to sample and compute B̂ (which will be placed in the bottom n − s rows
of A) and COL(B1∗) using simple rejection sampling. It uses the sub-procedure
GenRand(n1, n2) that samples an n1 × n2 binary matrix uniformly at random.

Correctness of the algorithm follows by construction. In terms of complexity,
we keep track of the span of Ḃ using simple Gaussian elimination. Based on
Fact 1, the expected complexity of (a naive implementation of) the algorithm
until it succeeds is O((n − s)3 + s2(n − s)) due to Gaussian elimination and
matrix multiplication.

The Optimized Round Matrix Sampling Algorithm Let us first as-
sume that after application of Algorithm 7, we obtain B̂, COL(B1∗) such that
COL(B1∗) includes the n − s last columns (which form the identity matrix in
B̂). The matrix A is built by placing B̂ in its bottom n− s columns, and in this
case it will be of the block form considered in Fact 2. There is a simple formula
(stated in Fact 2) that determines if such matrices are invertible, and we can use
this formula to efficiently sample the top s rows of A, while making sure that the
full n×n matrix is invertible. In case COL(B1∗) does not include the n− s last
columns, then a similar idea still applies since A would be in the special form
after applying a column permutation determined by COL(B1∗). Therefore, we
assume that A is of the special form, sample the top s rows accordingly and then
apply the inverse column permutation to these rows.

Algorithm 8 gives the details of this process. It uses a column permutation
matrix, denoted by P (computed from COL(B1∗), such that B̂ · P =

(
(Ḃ)−1 ·

B̈
)
‖In−s is of the required form. The algorithm also uses two sub-procedures:

1. GenRand(n1, n2) samples an n1 × n2 binary matrix uniformly at random.
2. GenInv(n1) samples a uniform invertible n1 × n1 matrix.
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Output: B̂, COL(B1∗)
begin

while true do

B1∗ ← 0(n−s)×n, Ḃ ← 0(n−s)×(n−s)

COL(B1∗)← ∅
rank ← 0
for i ∈ {n, n− 1, . . . , 1} do

B1∗[∗, i]← GenRand(n− s, 1) . sample column uniformly
if rank = n− s then

continue . already obtained full rank
end

if B1∗[∗, i] 6∈ span(Ḃ) then
. new column contributes to rank

rank ← rank + 1
COL(B1∗)← COL(B1∗) ∪ {i}
Ḃ[∗, rank]← B1∗[∗, i]

end

end
if rank = n− s then

B̂ ← (Ḃ)−1 ·B1∗

Output B̂, COL(B1∗)
end

end

end

Algorithm 7: SampleBottom()

Output: Round matrix for Algorithm 6
begin

B̂, COL(B1∗)← SampleBottom()
A1∗ ← B̂ . bottom n− s rows of A
C00 ← GenInv(s)
A′01 ← GenRand(s, n− s)
D10 ← (B̂ · P )10 . D10 = (Ḃ)−1 · B̈
A′00 ← C00 + A′01 ·D10

A0∗ ← (A′00‖A′01) · P−1 . top s rows of A
Output A

end
Algorithm 8: Optimized Round Matrix Sampling

The complexity of the algorithm is O((n−s)3+s2(n−s)+s3+s2(n−s)+sn) =
O((n − s)3 + s2(n − s) + s3) (using naive matrix multiplication and invertible
matrix sampling algorithms), where the dominant factor for small s is (n− s)3.
The algorithm requires about sn+ n(n− s) = n2 random bits.

Proposition 7. Algorithm 8 selects a uniform matrix in Φ, namely, the distri-
bution of the output A is identical to the distribution generated by sampling a
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uniform invertible n× n matrix and applying the transformation of Definition 1
to its bottom n− s rows.

Proof. First, note that the bottom n− s rows of A are in normalized form after
the transformation A1∗ = B̂ = (Ḃ)−1 · B1∗ in SampleBottom(). We show that
A is sampled correctly by showing that reversing this transformation gives a
uniform invertible matrix. Namely,

H =

[
A0∗

B1∗

]
=

[
A0∗

Ḃ · B̂

]
is a uniform invertible random matrix.

In order to show that H is invertible, note that[
Is 001

010 (Ḃ)−1

]
·H =

[
Is 001

010 (Ḃ)−1

]
·

[
A0∗

Ḃ · B̂

]
=

[
A0∗

B̂

]
= A.

Therefore, it suffices to prove that A is invertible, which is true if and only if
A · P is invertible. We have

A1∗ · P = B̂ · P =
(
(Ḃ)−1 · B̈

)
‖In−s = D10‖In−s.

Hence

A · P =

[
A0∗ · P
A1∗ · P

]
=

[
A′00 A′01

D10 In−s

]
=

[
C00 +A′01 ·D10 A′01

D10 In−s

]
.

By Fact 2 (and change of notation), in order to show that A · P is an invertible
matrix, we need to verify that (C00 +A′01 ·D10) +A′01 ·D10 = C00 is invertible.
This indeed holds by the way that C00 is sampled.

It remains to show that H is sampled uniformly among invertible matrices.
For this purpose, we show that (a) the number of possible triplets ofB1∗, C00, A′01

sampled uniformly in Algorithm 8 is
∏n

i=1(1 − 1/2i) · 2n2

= αn · 2n
2

, and (b)
every such triplet gives a different (invertible) matrix H. Since the number of

invertible matrices is αn · 2n
2

by Fact 1, (a) and (b) combined with the fact that
the algorithm only samples invertible matrices H completes the proof.

We begin by counting the number of triplets B1∗, C00, A′01. By Fact 1, the
number of possible values for B1∗ is αn/αs ·2n(n−s), as it is a uniform (n−s)×n
matrix with full row rank. Again, by Fact 1, the number of invertible matrices
C00 is αs · 2s

2

, while the number of values of A′01 is 2s(n−s). Altogether, the
number of triplets is

αn/αs · 2n(n−s) · αs · 2s
2

· 2s(n−s) = αn · 2n
2

,

as claimed.
Finally, we show that every such triplet gives a different matrix H. Let

B1∗
1 , C00

1 , A′011 and B1∗
2 , C00

2 , A′012 be two triplets sampled by executions of Algo-
rithm 8 and assume that they both give rise to the same matrix H. We show that
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these triplets are equal. First, note that H1∗ = B1∗
1 = B1∗

2 which also implies
that the value of D10 and P computed in Algorithm 8 (which only depends on
B1∗) is identical for both executions. Next, the value of H0∗ = A0∗ is computed
in two different ways as

A0∗ = (A′001 ‖A′011 ) · P−1 = (A′002 ‖A′012 ) · P−1 →
A′001 ‖A′011 = A′002 ‖A′012 →

A′011 = A′012 and A′001 = A′002 →
A′011 = A′012 and C00

1 +A′011 ·D10 = C00
2 +A′012 ·D10 →

A′011 = A′012 and C00
1 = C00

2 ,

as claimed. �

5.4 Optimized Sampling of the Bottom Sub-Matrix

For a small value of s, the complexity of Algorithm 8 is dominated by SampleBottom()
(Algorithm 7), whose complexity is O((n− s)3 + s2(n− s)). We now show how
to reduce this complexity to O(s(n − s)) on average. Thus, the total expected
complexity of Algorithm 8 becomes

O(s2(n− s) + s3) = O(s2 · n)

(using naive matrix multiplication and invertible matrix sampling algorithms).
Moreover, the randomness required by the algorithm is reduced from about
sn+ n(n− s) = n2 to about

sn+ (s+ 2)(n− s) = n2 − (n− s)2 + 2(n− s).

Recall that the output of SampleBottom() consists of B̂, COL(B1∗), where B̂
contains In−s and s additional columns of n−s bits. The main idea is to directly
sample B̂ without ever sampling the full B1∗ and normalizing it. In order to
achieve this, we have to artificially determine the column set COL(B1∗) (which
contains the identity matrix in B̂), and the values of the remaining s columns.

Remark 6. In general, the distribution of B̂ in some alternative SampleBottom()
implementation does not have to be identical to the one of Algorithm 7, as we can
select COL(B1∗) in a different way (i.e., using a different method to enumerate
the columns). The important requirement is that under any enumeration, Ḃ ·
B̂ = B1∗ should be a uniform matrix of full row rank. Consider the following
trivial optimization attempt of SampleBottom(): sample COL(B1∗) uniformly
at random among all column sets of n−s indices (and then sample the remaining
columns of B̂ uniformly). This algorithm does not satisfy the requirement, as
the distribution of Ḃ · B̂ for B̂ sampled with this algorithm gives more weight
to any matrix with many sets of n − s linearly independent columns over any
matrix with fewer such sets.

26



The main idea is to simulate SampleBottom() (Algorithm 7), while sampling
concrete vectors only when necessary. As a simple example, consider the case
where the first n−s columns sampled by SampleBottom() happen to be linearly
independent and form Ḃ (which occurs with probability of more than αn ≈
0.288). Then, we simply replace Ḃ with the identity matrix (without sampling
its columns) and sample the remaining s columns that supposedly form (Ḃ)−1 ·B̈
uniformly at random. This has complexity of about s(n − s) and the output
distribution is identical to that of SampleBottom(). Indeed, in this case, the
s columns of B̈ are uniform and are independent of (Ḃ)−1, hence they remain
uniform after multiplication with (Ḃ)−1 in SampleBottom(). When the first n−s
columns sampled by SampleBottom() are not linearly independent, then some
of the columns of B̈ are no longer uniform conditioned on COL(B1∗) (these are
the columns sampled before full rank is obtained and are not in COL(B1∗)) and
we have to take this into account. Algorithm 9 gives the full procedure.

Proposition 8. The output distribution of OptSampleBottom() (Algorithm 9)
is identical to the output distribution of a single iteration of SampleBottom()
(Algorithm 7).

Proof. First, we show that the distributions of COL(B1∗) in each stage i ∈
{n, n − 1, . . . , 1} of the algorithms are identical. Note that in both algorithms,
the size of COL(B1∗) at each stage is rank, hence this will also show that
the distributions of rank are identical (and imply that both algorithms have
the same failure probability). At the beginning, COL(B1∗) = ∅ in both and it
suffices to show that this variable is updated correctly in OptSampleBottom()
for each i ∈ {n, n− 1, . . . , 1}. Indeed, in SampleBottom() column i is added to
COL(B1∗) if the currently sampled vector is not in the subspace spanned by the
previously sampled vectors (whose size is 2rank). This occurs with probability
1− 2rank/2n−s = 1− 2(n−s)−rank and is simulated exactly by the (n− s)− rank
coin tosses of OptSampleBottom().

It remains to show that the output distributions of B̂ in the two algorithms
are identical. Since we showed that the distributions of COL(B1∗) are identical
at each stage i ∈ {n, n − 1, . . . , 1}, it is sufficient to show that the output dis-
tributions of B̂ are identical, conditioned on COL(B1∗). Clearly, the columns of
COL(B1∗), which contain the identity matrix in both algorithms, are identical.
Moreover, the columns sampled after rank = n− s are uniformly distributed in
both algorithms (as multiplication with the independent invertible matrix (Ḃ)−1

does not change their distribution in SampleBottom()). It remains to consider
the columns of i ∈ {n, n− 1, . . . , 1} which are sampled when rank < n− s and
are not added to COL(B1∗). In SampleBottom(), such a column i is sampled
uniformly from the subspace spanned by the previously sampled vectors whose
size is 2rank. The final multiplication with (Ḃ)−1 is a change of basis which
transforms the basis of the previously sampled columns to the last rank vectors
in the standard basis e(n−s)−rank+1, e(n−s)−rank+2, . . . , en−s. Hence, after fixing

COL(B1∗), in the output B̂ of SampleBottom(), column i is a uniform vec-
tor in the subspace spanned by e(n−s)−rank+1, e(n−s)−rank+2, . . . , en−s, which is
identical to its distribution in OptSampleBottom(). �
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Output: B̂, COL(B1∗)
begin

COL(B1∗)← ∅
rank ← 0
for i ∈ {n, n− 1, . . . , 1} do

if rank = n− s then
. already obtained full rank

B̂[∗, i]← GenRand(n− s, 1) . sample column uniformly
continue

end
for j ∈ {1, . . . , (n− s)− rank} do

b ←
rand

{0, 1} . sample uniform bit

if b = 1 then
. column in COL(B1∗)

rank ← rank + 1
COL(B1∗)← COL(B1∗) ∪ {i}
continue . sample next column

end

end
. column not in COL(B1∗)

if rank = 0 then

B̂[∗, i]← 0
continue

end

v ←
rand

{0, 1}rank . sample rank uniform bits

B̂[∗, i]← 0(n−s)−rank‖v . prepend (n− s)− rank zeros to v
end
if rank < n− s then

Output FAIL
end

Output B̂, COL(B1∗)
end

Algorithm 9: OptSampleBottom() Iteration

Complexity The computational effort of the algorithm is proportional to its
number of coin tosses (note that it does not involve any linear algebra). Hence,
to analyze the complexity, we count the expected number of coin tosses. Simple
probabilistic analysis shows that when the iteration succeeds, the expected num-
ber of coin tosses can be upper bounded by 2(n− s) + s(n− s) = (s+ 2)(n− s),
where the factor 2(n − s) accounts for coin tosses for the n − s columns in
COL(B1∗) and the s(n − s) accounts for sampling the s columns outside of
COL(B1∗). For a reasonable12 value of s ≥ 3, by Fact 1, the first iteration will
succeed with probability of more than 0.87. Moreover, we can reduce the ex-
pected number of coin tosses (while maintaining the output distribution) to less

12 For s = 1 or s = 2, the “non-linear” permutation layer is actually linear which makes
the cipher insecure.
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than (s + 2)(n − s) + 0.3n ≈ (s + 2)(n − s) by sampling the columns that are
not in COL(B1∗) only if an iteration succeeds. In fact, it is possible to sample
COL(B1∗) directly without using rejection sampling, but this is more compli-
cated and does not lead to a substantial improvement in complexity.

Decryption We conclude this section by considering efficient sampling of lin-
ear layers for decryption. The inverse of the round encryption matrix is of the
form shown in Fact 2 after a row permutation (which is the inverse of a column
permutation induced by COL(B1∗)). This inverse is generated as a byproduct of
Algorithm 8 above for sampling the encryption matrix (which uses the optimized
OptSampleBottom()). Furthermore, matrix-vector product with the inverse ma-
trix (during decryption) can be computed in about n2− (n− s)2 bit operations,
hence decryption can be performed in about the same complexity as encryption.

6 Optimality of Linear Representation

In this section, we prove that the representation of the linear layers used by
Algorithm 6 for a GLMC cipher is essentially optimal. Furthermore, we show that
the number of uniform (pseudo) random bits used by the sampling algorithm
derived in Section 5 is close to optimal. More specifically, we formulate two
assumptions and prove the following theorem under these assumptions, recalling
the value of |Λr| from Corollary 2.

Theorem 1. Sampling an instance of a GLMC cipher with uniform linear lay-
ers must use at least

b = log |Λr| = log
(
(αn)r/(αn−s)

r−1 · 2r·n
2−(r−1)(n−s)2) ≥

r · n2 − (r − 1)(n− s)2 − 3.5r.

uniform random bits and its encryption (or decryption) algorithm requires at
least b bits of storage on average. Moreover, if a secure PRG is used to generate
the randomness for sampling, then it must produce at least b pseudo-random bits
and the encryption (and decryption) process requires at least b bits of storage on
average, assuming that it does not have access to the PRG.

We mention that the theorem does not account for the storage required by
the non-linear layers. The theorem implies that the code size of Algorithm 6 is
optimal up to an additive factor of about r · (3.5 + 3 log n), which is negligible
(less than 0.01 · b for reasonable choices of parameters).

6.1 Basic Assumptions

The proof relies on the following two assumptions regarding a GLMC cipher.

1. If a PRG is used for the sampling process, it is not used during the encryption
process.
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2. The linear layers are stored in a manner which is independent of the spec-
ification of the non-linear layers. Namely, changing the specification of the
non-linear layers does not affect the way that the linear layers are stored.

We now motivate these assumptions. We do so by arguing that implemen-
tations that bypass these assumptions are either not useful in practice, or they
do not decrease by much the total amount of memory required to encrypt with
an instance of a GLMC cipher (even though they may reduce the storage size of
the linear layers).

Regarding the first assumption, it is possible to encrypt (or decrypt) using
very little memory by generating the linear layers from the seed on-the-fly during
the encryption (or decryption) process. However, this is very inefficient in terms
time complexity. Therefore, we assume that the encryption maintains an explicit
representation of the linear layers (as indeed maintained by current LowMC
implementations), and for this purpose, they can be assumed to be truly random
based on the pseudo-randomness of the generator.

The second assumption is bypassed (for example) by standard AES software
implementations that combine the linear layers with the AES Sbox and form
look-up tables which clearly depend on the AES Sbox specification. However, this
only increases the total size of the code (in exchange for improved performance on
some platforms) and is not a useful way to bypass the second assumption with
respect to implementation size. A more meaningful way to bypass the second
assumption consists of optimizations that make use of equivalent representations
of the cipher which are dependent on its non-linear layers. For example, if the
“non-linear” layers are actually linear, then all the linear layers can be combined
into a single matrix, equivalent to all combined matrices. Of course, this results
in a linear and insecure cipher, but a more realistic approach would consider
non-linear layers that are self-affine equivalent (cf. [5]), which implies that they
have several equivalent representations. However, unless the non-linear layers
are close to being truly linear, the number of such equivalent representations is
small compared to the total possible number of linear layers in a GLMC cipher
(and in the specific case of LowMC) and they do not allow a substantial saving
in the implementation size.13

Finally, we note that implementations which try to combine the linear layers
in various ways (that are independent of the non-linear layers), or manipulate
them (such as the “method of the four Russians”) do fall within our model and
we prove that they cannot reduce the storage size.

6.2 Model Formalization

We now define our model which formalizes the assumptions above and allows to
prove the optimality of our representation.

13 It is possible to optimize the representation of Algorithm 6 to take advantage of self-
affine equivalent non-linear layers. However, this is out of the scope of this paper and
as noted above, has very limited effect for a reasonable choice of non-linear layers.
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Definition 3. Given a triplet of global parameters (n, s, r), a (simplified) stan-
dard representation of a GLMC cipher is a triplet R = (K0,S,L) such that
K0 ∈ {0, 1}n, S = (S1, S2, . . . , Sr) is an r-tuple containing the specifications of r
non-linear invertible layers Si : {0, 1}s → {0, 1}s and L = (L1, L2, . . . , Lr) is an
r-tuple of invertible matrices Li ∈ GF (2)n×n. The r-tuple L is called a standard
linear representation.

To simplify our notation, given a standard representation R = (K0,S,L),
we denote the encryption algorithm defined by Algorithm 2 as ER : {0, 1}n →
{0, 1}n.

Definition 4. Two standard cipher representations R,R′ are equivalent (de-
noted R ≡ R′) if for each x ∈ {0, 1}n, ER(x) = ER′(x).

Definition 5. Two standard linear representations L,L′ are equivalent (denoted
L ≡ L′) if for each tuple of non-linear layers S, and key K0, (K0,S,L) ≡
(K,S,L′).

The requirement that (K,S,L) ≡ (K,S,L′) for any S,K0 captures the sec-
ond assumption of Section 6.1 that a standard representation of the linear layers
is independent of the non-linear layers (and the key).

Clearly, the linear equivalence relation partitions the r-tuples of standard
linear representations into linear equivalence classes. It is important to mention
that Theorem 1 does not assume that the encryption algorithm uses Algorithm 2
or represents the linear layers as an r-tuple of matrices. These definitions are
merely used in its proof, as shown next.

6.3 Proof of Theorem 1

We will prove the following lemma regarding linear equivalence classes, from
which Theorem 1 is easily derived.

Lemma 1. For any L 6= L′ ∈ Λr, L 6≡ L′.

The lemma states that each r-tuple of Λr is a member of a distinct equivalence
class, implying that we have precisely identified the equivalence classes.
Proof (of Theorem 1). Lemma 1 asserts that there are at least |Λr| linear equiva-
lence classes. Corollary 2 asserts that each r-tuple in Λr represents a set of linear
layers of size (αn−s)

r−1 · 2(r−1)(n−s)2 , hence every r-tuple in Λr has the same
probability weight when sampling the r linear layers uniformly at random. The
theorem follows from the well-known information theoretic fact that sampling
and representing a uniform string (an r-tuple in Λr) chosen out of a set of 2k

strings requires at least k bits on average (regardless of any specific sampling or
representation methods). �

The proof of Lemma 1 relies on two propositions which are implications of
the definition of equivalence of standard linear representations (Definition 5).
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Proposition 9. Let L ≡ L′ be two equivalent standard linear representations.
Given K0,S, let R = (K0,S,L) and R′ = (K0,S,L′). Fix any x ∈ {0, 1}n and
i ∈ {0, 1, . . . , r+ 1}, and denote by xi (resp. x′i) the value ER(x) (resp. ER′(x))

at the beginning of round i. Then x
(0)
i = x

′(0)
i .

Namely, non-linear layer inputs (and outputs) have to match at each round
when encrypting the same plaintext with ciphers instantiated with equivalent
standard linear representations (and use the same key and non-linear layers).
Proof. The proposition clearly holds for i = 0 and i = r + 1 (as the outputs of
equivalent ciphers have to match for any x). Assume towards contradiction that

x
(0)
i 6= x

′(0)
i for some i ∈ {1, . . . , r}. Recall that linear equivalence implies that

(K0,S,L) ≡ (K0,S,L′) for any K0,S. In particular, consider S∗ for which the
only change from S is that Si is modified to S∗i and exchanges the output values

of x
′(0)
i and some u

(0)
i (for u

(0)
i 6= x

(0)
i and u

(0)
i 6= x

′(0)
i ), namely, S∗i (x

′(0)
i ) =

Si(u
(0)
i ) and S∗i (u

(0)
i ) = Si(x

′(0)
i ).

Since Si(x
′(0)
i ) 6= S∗i (x

′(0)
i ), then E(K0,S,L′)(x) 6= E(K0,S∗,L′)(x). Indeed,

the state values up to the i’th non-linear layer match in E(K0,S,L′)(x) and

E(K0,S∗,L′)(x), but then diverge as Si(x
′(0)
i ) 6= S∗i (x

′(0)
i ). Since the remaining

partial encryption algorithm (consisting of L′i and rounds i+ 1, . . . , r) is a per-
mutation which is identical in both ciphers, the state values cannot converge.

On the other hand E(K0,S∗,L)(x) = E(K0,S,L)(x) as Si(x
(0)
i ) = S∗i (x

(0)
i ).

Therefore, either E(K0,S,L)(x) 6= E(K0,S,L′)(x) or

E(K0,S∗,L)(x) = E(K0,S,L)(x) = E(K0,S,L′)(x) 6= E(K0,S∗,L′)(x),

and in any case L 6≡ L′ in contradiction. �

Proposition 10. Let L ≡ L′ be two equivalent standard linear representations.
Given K0,S, let R = (K0,S,L) and R′ = (K0,S,L′). Fix any x ∈ {0, 1}n and
i ∈ {0, 1, . . . , r+ 1}, and denote by xi (resp. x′i) the value ER(x) (resp. ER′(x))

at the beginning of round i. Moreover, fix x̄ 6= x such that x̄i = x̄
(0)
i , x̄

(1)
i , where

x̄
(0)
i 6= x

(0)
i , but x̄

(1)
i = x

(1)
i . Then, x̄

′(1)
i = x

′(1)
i .

The proposition considers two plaintexts x and x̄ whose encryptions under
the first cipher in round i differ only in the 0 part of the state. We then look at
the second cipher (formed using equivalent standard linear representations) and
claim that the same property must hold for it as well. Namely, the encryptions
of x and x̄ under the second cipher in round i differ only on the 0 part of the
state.
Proof. Consider S∗ for which the only change from S is that Si is modified to

S∗i and exchanges the output values of x
(0)
i and x̄

(0)
i (in particular S∗i (x̄

(0)
i ) =

Si(x
(0)
i )). Consider E(K0,S∗,L)(x̄) and note that the state obtained after i rounds

(that are unchanged from (K0,S,L)) is equal to

x̄i = x̄
(0)
i , x̄

(1)
i = x̄

(0)
i , x

(1)
i .
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After application of S∗i , the 0 part of the state is modified to S∗i (x̄
(0)
i ) = Si(x

(0)
i ) =

y
(0)
i . Hence, the full state of E(K0,S∗,L)(x̄) after i encryption rounds and the non-

linear layer application is y
(0)
i , x

(1)
i = y

(0)
i , y

(1)
i = yi.

Since the mappings from yi to the output in the remaining i’th linear layer
and last r− i+ 1 round functions in (K0,S∗,L) and (K0,S,L) are identical, we
have

E(K0,S∗,L)(x̄i) = E(K0,S,L)(xi).

In other words, exchanging the non-linear layer values canceled the change
caused the exchanging the plaintexts.

Since L ≡ L′, then

E(K0,S∗,L′)(x̄i) = E(K0,S∗,L)(x̄i) = E(K0,S,L)(xi) = E(K0,S,L′)(xi).

Once again, the last r − i + 1 round functions after applications of S∗i and
Si in (K0,S∗,L′) and (K0,S,L′) (respectively) are identical permutations and
their outputs are identical by the above equality. Hence, the inputs to the final
rounds (obtained after i encryption rounds and application of the i’th non-linear
layer) are identical, and in particular the values of their part 1 of the state are

identical. In E(K0,S∗,L′)(x̄i) it is ȳ
′(1)
i = x̄

′(1)
i as the first r rounds of E(K0,S∗,L′)

and E(K0,S,L′) are identical. In E(K0,S,L′)(xi) is it y
′(1)
i = x

′(1)
i by definition. We

conclude that x̄
′(1)
i = x

′(1)
i as claimed. �

Proof (of Lemma 1). The proof is by induction of r.
For r = 1, Λ1 is the set of invertible matrices. We show that every different

invertible matrix L = (L1) forms a linear equivalence class. Indeed, assume
that for some K,S and all x, E(K0,S,(L1))(x) = E(K0,S,(L′1))(x).14 Then after
adding K0 and applying S1 (which are the same for both schemes), we get
L1(y1) = L′1(y1). In particular, this holds for the n vectors of the standard basis
y1 ∈ {e1, e2, . . . , en} which give (in matrix notation) L1 ·In = L′1 ·In or L1 = L′1.

Assume correctness for i = r and add a round at the beginning, noticing that
rounds 2, . . . , r + 1 form an r-round scheme with zero initial round key.

Let (L1,L) 6= (L′1,L′) ∈ Λr+1 such that L,L′ ∈ Λr. We need to prove
(L1,L) 6≡ (L′1,L′). We divide the proof into three cases.

If L = L′ but L1 6= L′1, then for any corresponding ciphers, we have E(K0,S,(L1,L))(x) 6=
E(K0,S,(L′1,L))(x) on every x for which the outputs of the first round differs (since
rounds 2, . . . , r + 1 are identical).

If L 6= L′ and L1 = L′1, then by the induction hypothesis, L 6≡ L′. If we
start with non-equivalent r-round ciphers and add an identical round at the
beginning, clearly the schemes remain non-equivalent.

Finally, it remains to prove the induction step for the case that L 6= L′
and L1 6= L′1. Assume towards contradiction that (L1,L) ≡ (L′1,L′). We will
prove that in this case, L1 ↔N L′1. However, by the definition of Λr+1, we select

14 The definition of linear equivalence requires that E(K0,S,(L1))(x) = E(K0,S,(L′1))(x)
holds for any K0,S, so it obviously must hold for an arbitrary choice of K0,S.
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only one matrix from each normalized equivalence class and hence L1 = L′1 in
contradiction.

In order to derive L1 ↔N L′1, fix a key K0, an (r + 1)-tuple of non-linear
layers S and pick some plaintext x ∈ {0, 1}n. Denote the state values for round
i of the first cipher E(K0,S,(L1,L))(x) by xi and yi and similarly, denote by x′i
and y′i these values for E(K0,S,(L′1,L′))(x). Since the initial round keys and S1 are
identical, y1 = y′1 and therefore,

x2 = L1 ·

(
y
(0)
1

y
(1)
1

)
, x′2 = L′1 ·

(
y
(0)
1

y
(1)
1

)
,

for the encryption of any x ∈ {0, 1}n. We consider the transformation(
L′1 · (L1)−1

)
(x2) = x′2.

Our goal is to show that

L′1 · (L1)−1 =

[
Is 001

010 C11

]
(6)

for some invertible C11, which proves L1 ↔N L′1 by Proposition 2.

Since we assume (L1,L) ≡ (L′1,L′), then by Proposition 9 we must have

x
′(0)
2 = x

(0)
2 at the input of the second linear layer. By setting x2 ∈ {e1, e2, . . . , en}

to be the n standard basis vectors and using the equality x
′(0)
2 = x

(0)
2 , we con-

clude that the top s rows of L′1 · (L1)−1 are of the form of (6).

It remains to prove that the bottom-left (n−s)×s block of L′1 ·(L1)−1 is equal

to 010. Equivalently, we need to show that changing x
(0)
2 (without changing x

(1)
2 )

at the input of L′1 ·(L1)−1 does not change x
′(1)
2 at the output (but will obviously

set x
′(0)
2 = x

(0)
2 ). Indeed, this property is directly implied by Proposition 10. �
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