
The Fiat-Shamir Zoo: Relating the Security of

Different Signature Variants

Matilda Backendal∗ Mihir Bellare† Jessica Sorrell‡ Jiahao Sun§

August 2018

Abstract

The Fiat-Shamir paradigm encompasses many different ways of turning a given identification
scheme into a signature scheme. Security proofs pertain sometimes to one variant, sometimes
to another. We systematically study three variants that we call the challenge (signature is
challenge and response), commit (signature is commitment and response) and transcript (sig-
nature is challenge, commitment and response) variants. Our framework captures the variants
via transforms that determine the signature scheme as a function of not only the identification
scheme and hash function (to cover both standard and random oracle model hashing), but also
what we call a signing algorithm, to cover both classical and with-abort signing. We relate the
security of the signature schemes produced by these transforms, giving minimal conditions un-
der which uf-security of one transfers to the other. To apply this comprehensively, we formalize
linear identification schemes, show that many schemes in the literature are linear, and show that
any linear scheme meets our conditions for the signature schemes given by the three transforms
to have equivalent uf-security. Our results give a comprehensive picture of the Fiat-Shamir zoo
and allow proofs of security in the literature to be transferred automatically from one variant
to another.

∗ Department of Computer Science and Engineering (CSE), University of California San Diego and Lund Univer-
sity, Sweden. Supported in part by the CSE undergraduate research internship program.
† Department of Computer Science and Engineering (CSE), University of California San Diego. cseweb.ucsd.

edu/˜mihir. Supported in part by NSF grants CNS-1717640 and CNS-1526801, a gift from Microsoft corporation
and ERC Project ERCC (FP7/615074).
‡ Department of Computer Science and Enineering (CSE), University of California San Diego.
§ Department of Computer Science and Enineering (CSE), University of California San Diego. Supported in part

by the CSE undergraduate research internship program.

1

Contents

1 Introduction 3

2 Basic definitions 7

3 Transforms and signature relations 9

4 Identification relations 17

5 Linear identification schemes 20

Acknowledgments 24

References 24

2

1 Introduction

Ed25519 [8] is a fast signature scheme with widespread usage including in TLS 1.3, SSH, Signal
and Tor [16]. It is derived via the Fiat-Shamir paradigm [11] applied to the Schnorr identification
scheme [23]. It is not alone: over the last three decades the Fiat-Shamir paradigm has been a
popular way to obtain signature schemes, for reasons including the following: Speed. It yields some
of our most efficient signature schemes. Proofs. The paradigm is backed by proofs of security [22, 1,
15]. Extendability. Classically used with number-theoretic schemes, extensions of the paradigm now
provide lattice-based schemes, some of which are proposed to NIST for post-quantum standards [17,
2, 10, 9].

However, refering, above, to “the” Fiat-Shamir paradigm is misleading, for the paradigm is not
monolithic: It encompasses variant methods that, starting from a given identification scheme, yield
different signature schemes. This creates some confusion, with proofs in the literature pertaining
sometimes to one variant, sometimes to another, yet being quoted without regard to which variant
is being considered. Extensions such as signing with aborts [17, 2, 10, 9] bring further variants.

This paper aims to provide a systematic and comprehensive picture of the variants in a general
setting, and give results relating their security under minimal assumptions. This allows us to
leverage existing security proofs given for one variant [22, 1, 15], automatically transferring them
to another, rather than prove security of different variants from scratch.

Background. An identification scheme ID is a 3-move interactive protocol operating as shown
in Figure 2. The prover, having public key pk and secret key sk, sends a commitment Ct, the
verifier sends a random challenge Ch, the prover sends a response Rp, and the verifier computes
a decision d ← ID.V(1λ, pk,Ct,Ch,Rp) to accept or reject, where 1λ is the unary representation
of the security parameter λ. In a signature scheme based on ID, the prover, now the signer, given
message M , computes Ct as before, sets Ch ← F(1λ,pk, (Ct,M)) to a hash of the commitment
and message, computes Rp and then returns a signature σ. We distinguish three variants with
regard to what σ consists of. (1) In what we call the transcript variant [22], σ is (Ct,Ch,Rp).
It is verified by checking that ID.V(1λ,pk,Ct,Ch,Rp) = true and Ch = F(1λ, pk, (Ct,M)). (2)
In what we call the commitment variant [20, 1], σ is (Ct,Rp). It is verified by setting Ch ←
F(1λ, pk, (Ct,M)) and checking that ID.V(1λ, pk,Ct,Ch,Rp) = true. (3) In what we call the
challenge variant [11, 23, 14, 21], σ is (Ch,Rp). This usually yields the shortest signatures but
requires a commitment reproducing algorithm ID.CR that allows verification to reproduce Ct ←
ID.CR(1λ,pk,Ch,Rp) and then check that Ch = F(1λ, pk, (Ct,M)).

The history of the various transforms is interesting. Fiat and Shamir (FS) [11], GQ [14],
Schnorr [23] and Okamoto [21] all gave challenge-style signatures. However, the first security
proofs, by Pointcheval and Stern (PS) [22], were for transcript-style signatures, which seem to
originate with them. The proofs of Abdalla, An, Bellare and Namprempre (AABN) [1] were for
commitment-style signatures, which seem to originate with Ohta and Okamoto (OO) [20]. The
changes are (mostly) made silently: PS, OO, AABN (and subsequent literature) tend to refer to
their results as establishing security of the FS, GQ, Schnorr and Okamoto schemes, but the proofs
pertain to variants not only different from the original ones but in some cases also different from
each other.

Questions. We would like a fuller picture, that given an identification scheme ID tells us, for
each of the three variant signature schemes derived from ID, whether or not the variant is secure.
The above-mentioned results do not directly yield this information. One approach to filling this
gap would be to return to the techniques in prior proofs and directly try to prove security of each
variant signature scheme. Given the complexity of the techniques, this would be tedious. Instead,

3

Signature
Signature σ To verify σ, check this:

Scheme

DStr=gFStr[ID,F,S] (Ct,Ch,Rp)
ID.V(1λ,pk,Ct,Ch,Rp) = true

Ch = FH(1λ,pk, (Ct,M))

DSct=gFSct[ID,F, S] (Ct,Rp) ID.V(1λ, pk,Ct,FH(1λ,pk, (Ct,M)),Rp) = true

DSch=gFSch[ID,F, S] (Ch,Rp) Ch = FH(1λ,pk, (ID.CR(1λ,pk,Ch,Rp),M))

DSctDSch DStr

SND, Th. 2

CNS, Th. 4

Th. 5Prop. 3

Prop. 1

Figure 1: Top: Signatures and verification in the signature schemes given by our transforms,
where ID.CR is the commitment reproducing algorithm of ID. Signing of message M (not shown) is
done by letting (Ct,Ch,Rp)←$ SH(1λ,pk, sk,M) and returning the shown σ. Bottom: Relations
between uf-security of the signature schemes.

we seek relations between the variants. This means that for each pair DSx,DSy of variant signature
schemes derived from a given identification scheme ID, we want to determine an assumption or
condition Ax,y on ID under which the security of DSx implies the security of DSy. Then, if we know
from prior work that DSx is secure, and can establish that ID satisfies Ax,y, we can conclude that
DSy is secure too. This would leverage existing proofs in a modular way. We seek assumptions
Ax,y as weak as possible, both to maximize potential applicability and to understand, theoretically,
what are the minimal requirements for a relation to hold.

The literature does contain claims about such relations [2, 15, 12], but (as we will discuss in
more detail below) they are mostly informal, specific to particular schemes, or make assumptions
we will show to be unnecessarily strong.

Our framework. We capture the variants via transforms that we call general to reflect a broader
parameterization than in prior work. A general Fiat-Shamir transform gFS determines a signa-
ture scheme DS = gFS[ID,F,S] based on input parameters an identification scheme ID, a hash
function F (allowed access to the random oracle H) and (most novel) a signing algorithm S (also
allowed access to H). The signing algorithm takes 1λ, pk, sk,M and returns either ⊥ or an honest,
accepting transcript (Ct,Ch,Rp) satisfying Ch = FH(1λ,pk, (Ct,M)). But, beyond requiring
this condition, we do not prescribe how the signing algorithm operates. To sign message M , run
T ←$ SH(1λ,pk, sk,M), and return ⊥ as signature if T = ⊥. Otherwise, parse T as (Ct,Ch,Rp).
Exactly what is returned as the signature σ, and how that signature is verified, depends on the
transform. This is summarized for each of our three transforms gFStr,gFSct,gFSch in Figure 1,
reflecting the three variants discussed above. The schemes are shown in full in Figure 4. As we
will see, the broad parameterization enhances applicability because our relations will hold for all
choices of F,S.

Relations between security of signature schemes. The security attribute we consider for

4

the signature schemes, hereafter called uf-security, is the usual unforgeability under chosen message
attack [13] extended, due to growing recognition of its importance, to the multi-user setting [3, 15].
Now, given ID,F, S, consider the three signature schemes DSx = gFSx[ID,F,S] for x ∈ {tr, ct, ch}.
We seek relations between their uf-security, as discussed above. This means that for each (distinct)
pair x, y ∈ {tr, ct, ch} we ask under what assumption Ax,y the uf-security of DSx implies the uf-
security of DSy.

Our results are summarized by the picture at the bottom of Figure 1. That DStr and DSct have
equivalent uf-security is trivial. The interesting question is, does uf-security of one of DSct,DSch
imply uf-security of the other? The straight, barred arrows say that in general (that is, without any
condition beyond basic completeness on the commitment reproducing algorithm) the answer is no.
The curved, un-barred arrows say the answer is yes, under conditions on the commitment repro-
ducing algorithm (formally, on the overlying identification scheme ID that includes this algorithm)
that we give. Specifically, Theorem 2 says that if ID has a property we define and call soundness
(SND) then, if DSct is uf-secure, so is DSch. Theorem 4 says that if ID has a property we define and
call consistency (CNS) then, if DSch is uf-secure, so is DSct. SND-security asks that it be compu-
tationally hard to find a challenge and response such that the commitment reproducing algorithm
succeeds in returning a commitment but the resulting transcript is not accepting. CNS-security
asks that it be computationally hard to create an accepting transcript in which the commitment is
different from the one given by the commitment reproducing algorithm. The reductions underlying
all our positive results are tight.

Breadth of applicability. The positive relations (un-barred arrows in Figure 1) hold for all
choices of hash function F and signing algorithm S. This broadens applicability. With regard to
hashing, it means we can transfer security in both the random oracle and the standard models: For
x, y ∈ {tr, ct, ch}, if DSx provides uf-security with a random-oracle hash function then (assuming
of course, as necessary, properties of ID as above) so does DSy, but if DSx provides uf-security with
hash function SHA256, then so does DSy. With regard to signing, this means that our framework
captures both canonical and more modern variants of the Fiat-Shamir paradigm. For example,
in the literature Fiat-Shamir with aborts [17, 2, 10, 9] is viewed as an extension of the canonical
Fiat-Shamir paradigm. In our framework, the canonical and with-abort variants correspond simply
to different choices of signing algorithm S (cf. Figure 4), so our results apply automatically to both.

We elaborate on the second point. We said above how the Fiat-Shamir paradigm prescribes
signing a message M , which we now call the canonical way: generate Ct as would the honest prover,
set Ch ← FH(1λ, pk, (Ct,M)), generate Rp as would the prover, then return σ computed from
Ct,Ch,Rp according to the variant (challenge, commit or transcript) of interest. This is captured
for us by setting S to the canonical algorithm on the bottom left of Figure 4. This works (yields a
correct signature) if the identification scheme has perfect correctness. However, in the identification
schemes from lattices [17, 2, 10, 9], the response can be ⊥ with constant probability. So the process
is modified to repeat picking Ct,Ch,Rp as above until the conversation is accepting or some
time bound is exceeded, which is called signing with aborts. (In this case, the signature schemes
have imperfect correctness, returning ⊥ with negligible probability.) The challenge, commit and
transcript variants for the signature schemes exist here too, so the question of how their security
relates arises again. We do not need to address this separately. It is captured for us, and addressed
by the results noted above, simply by setting S to the algorithm on the bottom right of Figure 4.
Choices of S beyond these two are possible as well, for potential further applications.

Perfect uniqueness. We have introduced the SND and CNS conditions on commitment re-
producible identification schemes, showing that they suffice for transfer of uf-security between
the signature variants. (SND allows the uf-security of DSct to imply that of DSch, and CNS the

5

converse.) We also define a third condition called perfect uniqueness (P-UNIQ). It asks that a
transcript Ct,Ch,Rp be accepting if and only if the commitment reproducing algorithm ID.CR
returns exactly Ct on inputs Ch,Rp. Figure 8 says that P-UNIQ implies both SND and CNS.
Establishing P-UNIQ-ness of a commitment reproducible identification scheme ID is thus a simple
path (and one we will often be able to use) to showing that all the signature variants derived from
ID have equivalent uf-cma security. However, Figure 8 also says that P-UNIQ is a strictly stronger
condition than SND or CNS. So for some commitment reproducible identification schemes, P-UNIQ
may fail to be true, yet we might be able to directly establish SND and CNS to show equivalence
of uf-security of the signature variants.

Linear identification schemes. We’d like to know whether identification schemes in the litera-
ture meet our conditions (P-UNIQ, or SND,CNS as necessary). However, there are many schemes,
and new ones keep appearing, and testing them individually is tedious. Instead, we formalize linear
identification schemes. Proposition 6 says that any linear identification scheme is (unconditionally)
P-UNIQ. Our results thus say that the three variant signature schemes emanating from any linear
identification scheme have equivalent uf-security.

We then show that classical identification schemes like FS [11], Sch [23], GQ [14] and Ok [21] are
linear. We also show that the Ly lattice based identification scheme of [17] is linear. Since proofs
of uf-security exist for at least one signature variant for all these identification schemes, we can
conclude that all three variants are uf-secure.

Lyubashevsky [18] directly gives a lattice-based signature scheme that he does not derive via
the FS paradigm. (Indeed the paper presents no identification scheme.) We show how to capture
it in our framework as gFSch[ID,F,SAID,F,t] where SAt is the abort-based signing algorithm on the
bottom right of Figure 4 and ID is an identification scheme that we define and show is linear. This
means we can define the other variant signature schemes and transfer the proofs of [18] to them.

As the above indicates, the concept of linear identification schemes serves also to unify the
literature, showing that what look like different schemes are in fact instances of one underlying
scheme. We see this as something that was understood but not, until now, formalized.

Which variant should one use? Our work is about relating the security of the different
signature variants. The question of which variant to prefer in usage is orthogonal, and the answer
differs from case to case. We discuss the choices briefly. The challenge variant gFSch usually yields
the shortest signatures (examples where this is true are FS [11], GQ [14], Sch in the group of integers
modulo a prime [23] and Ly [17]) but requires that ID be commitment reproducible (meaning, there
exists a commitment reproducing algorithm ID.CR) which is not always true. When ID is not
commitment reproducible, one can use gFSct. Here, in some cases (like Sch over elliptic curve
groups) the signature size stays as small as with gFSch, but in other cases, it might grow. The
transcript variant gFStr is also an option for usage when commitment reproducibility is lacking, but
there seems no practical reason for this, because signatures are always shorter with gFSct. (gFStr

is considered in this paper because it was the variant for which the seminal work of Pointcheval
and Stern [22] gave proofs.)

Of course performance (including signature size) is just one criterion with regard to a choice
for usage. Another is security proofs. The general results in the literature give proofs for gFSct [1]
and gFStr [22], not gFSch. Our framework and results can be used to transfer them to the (usually
more efficient) gFSch.

Related work. Kiltz, Masny, and Pan [15] briefly note that DSch,DSct are equivalent in terms of
uf-security assuming the verification algorithm has a certain property. This seems to be equivalent
to the identification scheme being P-UNIQ. Figure 8 shows that the SND and CNS properties that

6

allow us to establish the same equivalence are implied by, and strictly weaker than, P-UNIQ, making
our results stronger. Also their results are for the canonical signing algorithm, while ours are for an
arbitrary one. Abdalla, Fouque, Lyubashevsky, and Tibouchi [2] give results for commitment-style
signatures with aborts, saying that these transfer to the challenge style for their schemes because
“the commitment is uniquely determined by the challenge and response.” The phrase in quotes is
not too precise but the intent is likely P-UNIQ. Galbraith, Petit, and Silva [12] show that, for their
particular scheme, under weak conditions on commitment reproducibility, security of the commit
version implies security of a version that is like the challenge one except that signature verification
additionally checks that the verifier accepts the transcript. This is added verification cost compared
to the classical Fiat-Shamir style challenge variant, which is the version we consider and which does
not have such a check.

We view our work as unifying, systematizing and formalizing long-standing understanding,
scattered observations and folklore. Nothing in this paper is very novel or technically difficult. Our
hope is that it fills some gaps and can be a point of reference for variants of Fiat-Shamir signatures.

Possible future directions. The Fiat-Shamir paradigm has also been used to turn identifica-
tion schemes into identity-based signature schemes [5]. Here also the different signature variants
arise, and one can ask about extending our framework and results to determine relations between
these variants of identity-based Fiat-Shamir signatures.

2 Basic definitions

Notation. We let ε denote the empty string. If Z is a string then |Z| denotes its length. If X is a
finite set, we let x←$X denote picking an element of X uniformly at random and assigning it to
x, and we let |X| denote the size of X. We use ⊥ (bot) as a special symbol to denote rejection, and
it is assumed to not be in {0, 1}∗. Both inputs and outputs to algorithms can be ⊥. We adopt the
convention that if any input to an algorithm is ⊥, then its output is ⊥ as well. By λ ∈ N we denote
the security parameter, and by 1λ its unary representation. Recall that a function ν: N → R is
negligible if for every positive polynomial p: N→ R there is a λp ∈ N such that ν(λ) ≤ 1/p(λ) for
all λ ≥ λp.

Algorithms may be randomized unless otherwise indicated. Running time is worst case. “PT”
stands for “polynomial time,” whether for a randomized algorithm or a deterministic one. If A is
an algorithm, we let y ← AO1,...(x1, . . . ;ω) denote running A on inputs x1, . . . and coins ω, with
oracle access to O1, . . ., and assigning the output to y. By y←$AO1,...(x1, . . .) we denote picking ω
at random and letting y ← AO1,...(x1, . . . ;ω). We let [AO1,...(x1, . . .)] denote the set of all possible
outputs of A when run on inputs x1, . . . and with oracle access to O1, An adversary is an
algorithm.

We use the code-based game-playing framework of [7]. (See Figure 5 for an example.) By Pr[G]
we denote the probability that the execution of game G results in the game returning true. We
adopt the convention that the running time of an adversary executing with some game refers to the
worst case execution time of the game with the adversary, meaning the time taken for oracles to
compute replies to queries is included. The random oracle (RO) model [6] is captured by inclusion in
the game of a procedure H that implements a variable output length RO. See for example Figure 3.

Identification schemes. An identification scheme ID (called a canonical identification scheme
in [1]) specifies several algorithms and associated quantities, as follows. In an initialization phase,
via (pk, sk)←$ ID.Kg(1λ), the prover runs the key-generation algorithm ID.Kg on input the unary
representation 1λ of the security parameter λ to obtain a public key pk and a private key sk, both

7

Prover

Input: pk, sk

(Ct,St)←$ ID.Ct(1λ,pk)

Rp← ID.Rp(1λ,pk, sk,Ch,St)

Ct-
Ch�
Rp-

Verifier

Input: pk

Ch←$ ID.ChS(λ)

d← ID.V(1λ,pk,Ct,Ch,Rp)

Figure 2: Operation of an identification scheme ID.

of which she stores. It is assumed that the verifier is in possession of pk. (In practice this is likely
done via certificates, but that is not in the scope of the identification scheme.) Identification then
operates as depicted in Figure 2. Via (Ct,St)←$ ID.Ct(1λ,pk), the prover generates a commitment
Ct and corresponding private state St. The verifier sends a challenge Ch←$ ID.ChS(λ) drawn at
random from the challenge space ID.ChS(λ) = {0, 1}ID.ChL(λ) where ID.ChL: N→ N is the challenge
length function associated to ID. The prover’s response Rp← ID.Rp(1λ, pk, sk,Ch,St) is computed
via a deterministic algorithm ID.Rp. The verifier’s decision d← ID.V(1λ,pk,Ct,Ch,Rp), which is
either true, false or ⊥, is also computed deterministically. Algorithms ID.Kg, ID.Ct, ID.Rp, ID.V are
required to be PT.

The honest-transcript generating function HTRID,λ associated to ID and λ ∈ N takes input
(pk, sk) ∈ [ID.Kg(1λ)], and returns a transcript of a conversation between the honest prover and
the verifier, as follows:

HTRID,λ(pk, sk)

(Ct,St)←$ ID.Ct(1λ,pk) ; Ch←$ ID.ChS(λ) ; Rp← ID.Rp(1λ,pk, sk,Ch,St)
Return (Ct,Ch,Rp)

For λ ∈ N and (pk, sk) ∈ [ID.Kg(1λ)], we define the set of accepting transcripts

ACCID,λ(pk) = { (Ct,Ch,Rp) : ID.V(1λ, pk,Ct,Ch,Rp) = true } .
Correctness, for most schemes, is simple, saying that honest transcripts are always accepting: for-
mally, for all λ ∈ N and all (pk, sk) ∈ [ID.Kg(1λ)] we have [HTRID,λ(pk, sk)] ⊆ ACCID,λ(pk). We
call this perfect correctness. However we will need to also consider a relaxation where there is a cor-
rectness error, and this has to be carefully formulated. We say that ID has correctness error ν: N→
R if for all λ ∈ N and all (pk, sk) ∈ [ID.Kg(1λ)] we have Pr[(Ct,Ch,Rp) 6∈ ACCID,λ(pk)] ≤ ν(λ),
where the probability is over (Ct,Ch,Rp)←$ HTRID,λ(pk, sk). This captures the requirement
that the verifier accepts with probability at least 1− ν(λ) in an interaction with the honest prover.
Some commonly occurring choices for ν are a constant, like ν(·) = 1/2, or a negligible function,
and in the latter case we say that ID has negligible correctness error.

Signature Schemes. A (digital) signature scheme DS specifies several algorithms and associated
quantities, as follows. In an initialization phase, via (pk, sk)←$ DS.Kg(1λ), the signer runs the PT
key-generation algorithm DS.Kg on input 1λ to obtain a public key pk and a private key sk, both of
which she stores. It is assumed that the verifier is in possession of pk. (As with identification, how
this happens is not in the scope of the signature scheme.) Via σ←$ DS.SignH(1λ, pk, sk,M), the
signer generates a signature σ of a message M ∈ {0, 1}∗. Via d ← DS.VH(1λ, pk,M, σ), a verifier
can deterministically obtain a decision regarding whether σ is a valid signature of M under pk.
The signing and verifying algorithms have oracle access to the random oracle H and are required to
be PT. We say that DS has correctness error ν: N → R if, for all λ ∈ N, all (pk, sk) ∈ DS.Kg(1λ)
and all M ∈ {0, 1}∗ we have Pr[DS.VH(1λ,pk,M,DS.SignH(1λ, pk, sk,M)) 6= true] ≤ ν(λ), where

8

Game Guf
DS,A(λ)

n← 0 ; S ← ∅
(M,σ, i)←$ANew,Sign,H(1λ)
d← DS.VH(1λ,pki,M, σ)
Return (d = true) ∧ ((i,M) /∈ S)

H(W, `)

If HT[W, `] = ⊥ then HT[W, `]←$ {0, 1}`
Return HT[W, `]

Sign(i,M)

σ←$ DS.SignH(1λ,pki, ski,M)
S ← S ∪ {(i,M)}
Return σ

New()
n← n+ 1
(pkn, skn)←$ DS.Kg(1λ)
Return pkn

Figure 3: Game for UF-CMA security of digital signature schemes in the multi-user setting.

the probability is over the random choices of H and the coins of DS.Sign. We say correctness is
perfect if ν(·) = 0, the usual requirement, but imperfect correctness will be important in some of
our applications.

Our security metric for signatures, called uf-security, is the usual unforgeability under chosen-
message attack [13], but in the multi-user setting, due to increasing recognition of the importance of
the latter [3, 15]. For the formalization, consider game Guf

DS,A(λ) in Figure 3 associated to signature
scheme DS and adversary A. By calling the New oracle, the adversary can initialize a new user
(signer), obtaining her public key. The number of users n, being the number of queries to New, is
thus under the adversary’s control. Via the Sign oracle, the adversary can mount its chosen-message
attack, obtaining a signature on a message of its choice under a user of its choice. The adversary
eventually outputs a pointer i ∈ {1, . . . , n} to a user, a message M , and a claimed signature of M
under pki, winning if the signature is valid and non-trivial. We let Advuf

DS,A(λ) = Pr[Guf
DS,A(λ)] be

the probability that the game returns true. We say that DS is uf-secure if the function Advuf
DS,A(·)

is negligible for all PT adversaries A.

3 Transforms and signature relations

The FS transforms are usually viewed as turning an identification scheme into a signature scheme
in the random oracle model. Our general transforms take not only an identification scheme, but a
hash function F, so that both standard model and random oracle model hash functions are covered.
More novel, they take a description S of a signing process, to cover the fact that FS has been
used in settings with and without abort. We begin with commitment reproducibility, needed for
some of the transforms, then discuss the other parameters, and then specify the transforms. We
then define the SND and CNS security notions for commitment reproducible identification schemes
that allow us to relate the security of the schemes emanating from the different general transforms.
In Section 4 we study relations between different security notions for commitment reproducible
identification schemes.

Commitment reproducibility. A commitment reproducing algorithm for identification scheme
ID is a deterministic, PT algorithm ID.CR that returns an output in {0, 1}∗ ∪ {⊥}. We require the
following completeness condition: for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)] and all (Ct,Ch,Rp) ∈
[HTRID,λ(pk, sk)] ∩ACCID,λ(pk) we have Ct = ID.CR(1λ,pk,Ch,Rp). Completeness says that
the commitment in an accepting transcript of an interaction between the honest prover and the
verifier is uniquely determined by the challenge and response, and moreover can be computed from
them in PT by the commitment reproducing algorithm. An identification scheme ID is commitment

9

reproducible if it specifies (in addition to the quantities it already specifies as per Section 2) a
commitment reproducing algorithm ID.CR that satisfies the completeness condition.

Commitment reproducibility will be necessary to define the gFSch transform. But note that
the condition we have put so far on ID.CR (completeness) says nothing about dishonest transcripts,
meaning ones created in interactions between a cheating prover and the verifier. To establish
relations between the uf-security of the signature schemes, we will require that ID has further
attributes (SND,CNS, to be defined) related to such dishonest transcripts.

Hashing. The gFS transforms use a hash function. Most of our results hold regardless of the
choice of the hash function, in particular both when it is a standard-model function and when
it is a random oracle. To capture this formally, we define a hash function as a deterministic
algorithm F that may have access to a random oracle H. It is compatible with identification
scheme ID if F(1λ,pk, x) ∈ ID.ChS(λ) for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)] and all x. In
our usage, x = (Ct,M) will consist of a commitment and message. By setting FH(1λ, pk, x) =
H((1λ, pk, x), `(λ)) for some `: N→ N we can cover the case where the hash function is a random
oracle, but we can also, for example, set FH(1λ,pk, x) = SHA256((1λ, pk, x)) to cover schemes
where the hash function has been instantiated via SHA256.

Signing. Let ID be an identification scheme, and F a hash function compatible with it. A signing
algorithm compatible with ID and F is a PT algorithm S that operates as T ←$ SH(1λ,pk, sk,M).
We require that if T 6= ⊥ then it parses as (Ct,Ch,Rp)← T satisfying Ch = FH(1λ,pk, (Ct,M))
and (Ct,Ch,Rp) ∈ [HTRID,λ(pk, sk)] ∩ACCID,λ(pk). That is, a non-⊥ signature is an honest,
accepting transcript in which the challenge is the hash of the commitment and message. We
say that S has signing error ν: N → R if Pr[SH(1λ,pk, sk,M) = ⊥] ≤ ν(λ) for all λ ∈ N, all
(pk, sk) ∈ [ID.Kg(1λ)] and all M ∈ {0, 1}∗, where the probability is over the coins of S and H.

The bottom panel of Figure 4 shows some choices of signing algorithms. On the left is the
canonical signing algorithm SCID,F. This is the classical choice, representing the usual, prescribed
way to generate FS signatures. When ID has perfect correctness, SCID,F has zero signing error. On
the right is a signing with aborts algorithm SAID,F,t as per [17], where t: N → N is a polynomial.
This may be used when ID has imperfect correctness. It tries to generate an honest, accepting
transcript, returning ⊥ if it fails after t(·) attempts. If ID has correctness error a (non-zero)
constant ν(·) = ε < 1, then setting t(λ), to, say, dlog2(λ) · log(1/ε)e will result in SAID,F,t having
negligible signing error in the case that F is a random oracle. For other choices of F, the correctness
error of SAID,F,t would have to be evaluated directly (this seems to be somewhat glossed over in
prior work) but for practical choices of F we expect it to still be about ν by the random oracle
paradigm [6].

Our transforms will not pin down a particular way of generating signatures, but rather allow
that to be specified by a signing algorithm S that they take as input. This allows our results to
cover many different types of signing.

The gFS transforms. Let ID be an identification scheme, F a hash function compatible with
it, and S a signing algorithm compatible with both. The gFStr transform associates to ID,F,S
the signature scheme DStr = gFStr[ID,F,S] whose algorithms are specified in the first panel in
Figure 4. The gFSct transform associates to ID,F,S the signature scheme DSct = gFSct[ID,F,S]
whose algorithms are specified in the second panel in Figure 4. Assuming additionally that ID is
commitment reproducible, and letting ID.CR be its commitment reproducing algorithm, the gFSch

transform associates to ID,F, S the signature scheme DSch = gFSch[ID,F, S] whose algorithms are
specified in the third panel of Figure 4. Although this is not explicitly indicated in the code, note
that in all cases, as per our general conventions, the signature verification algorithm returns ⊥ if

10

DStr.Sign
H(1λ,pk, sk,M)

T ←$ SH(1λ,pk, sk,M)
If (T = ⊥) then return ⊥
(Ct,Ch,Rp)← T
σ ← (Ct,Ch,Rp) ; Return σ

DStr.V
H(1λ,pk,M, σ)

(Ct,Ch,Rp)← σ
d0 ← ID.V(1λ,pk,Ct,Ch,Rp)
d1 ← (Ch = FH(1λ,pk, (Ct,M)))
Return (d0 ∧ d1)

DSct.Sign
H(1λ,pk, sk,M)

T ←$ SH(1λ,pk, sk,M)
If (T = ⊥) then return ⊥
(Ct,Ch,Rp)← T
σ ← (Ct,Rp) ; Return σ

DSct.V
H(1λ,pk,M, σ)

(Ct,Rp)← σ
Ch← FH(1λ,pk, (Ct,M))
Return ID.V(1λ,pk,Ct,Ch,Rp)

DSch.Sign
H(1λ,pk, sk,M)

T ←$ SH(1λ,pk, sk,M)
If (T = ⊥) then return ⊥
(Ct,Ch,Rp)← T
σ ← (Ch,Rp) ; Return σ

DSch.V
H(1λ,pk,M, σ)

(Ch,Rp)← σ
Ct← ID.CR(1λ,pk,Ch,Rp)
If (Ct = ⊥) then return false
Return (Ch = FH(1λ,pk, (Ct,M)))

Algorithm SCH
ID,F(1λ,pk, sk,M)

(Ct,St)←$ ID.Ct(1λ,pk)
Ch← FH(1λ,pk, (Ct,M))
Rp← ID.Rp(1λ,pk, sk,Ch,St)
Return (Ct,Ch,Rp)

Algorithm SAH
ID,F,t(1

λ,pk, sk,M)

d← false ; i← 0
While (d = false and i < t(λ)) do:
i← i+ 1
(Ct,St)←$ ID.Ct(1λ,pk)
Ch← FH(1λ,pk, (Ct,M))
Rp← ID.Rp(1λ,pk, sk,Ch,St)
d← ID.V(1λ,pk,Ct,Ch,Rp)

If (d = true) then return (Ct,Ch,Rp)
Else return ⊥

Figure 4: Top three panels show signing and verifying algorithms of the signature schemes DStr,
DSct and DSch obtained by applying the gFStr,gFSct and gFSch transforms, respectively, to iden-
tification scheme ID, hash function F and signing algorithm S. Bottom panel shows examples of
signing algorithms.

its input signature σ is ⊥.
The correctness error of a signature scheme DS = gFS[ID,F, S] given by one of our transforms

is just the signing error of the signing algorithm S. So, for example, if ID has perfect correctness
and S = SCID,F, then DS has perfect correctness.

Attributes of the commitment reproducing algorithm. Security of the different variants
of the FS transform will rely on different properties of commitment reproducible identification
schemes that we now introduce. Figure 8 shows the relations between the notions we define here.
In the following let ID be a commitment reproducible identification scheme.

The strongest attribute is what we call Perfect Uniqueness (P-UNIQ). It asks that for all λ ∈ N,
all (pk, sk) ∈ [ID.Kg(1λ)] and all Ct,Ch,Rp that are not ⊥ we have: ID.V(1λ, pk,Ct,Ch,Rp) =
true if and only if Ct = ID.CR(1λ,pk,Ch,Rp). Figure 8 says the SND,CNS attributes we define
next are implied by P-UNIQ, but strictly weaker than it.

We now introduce soundness. To understand what it means, we start with Perfect Soundness

11

Game Gsnd
ID,A(λ)

n← 0
(Ch,Rp, i)←$ANew(1λ)
Ct← ID.CR(1λ,pki,Ch,Rp)
d← ID.V(1λ,pki,Ct,Ch,Rp)
Return (d = false) ∧ (Ct 6= ⊥)

New()

n← n+ 1 ; (pkn, skn)←$ ID.Kg(1λ)
Return (pkn, skn)

Game Gcns
ID,A(λ)

n← 0
(Ct1,Ch,Rp, i)←$ANew(1λ)
Ct0 ← ID.CR(1λ,pki,Ch,Rp)
d1 ← ID.V(1λ,pki,Ct1,Ch,Rp)
Return (d1 = true) ∧ (Ct0 6= Ct1)

New()

n← n+ 1 ; (pkn, skn)←$ ID.Kg(1λ)
Return (pkn, skn)

Figure 5: Games defining soundness (SND-security) and consistency (CNS-security) of a commit-
ment reproducible identification scheme ID.

(P-SND). This asks that for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)] and all Ch,Rp we have: If
Ct ← ID.CR(1λ, pk,Ch,Rp) is not ⊥ then ID.V(1λ, pk,Ct,Ch,Rp) = true. SND-security is a
computational relaxation of this, asking that it be computationally hard to create a challenge
and response where commitment reproducibility succeeds but the transcript is rejecting. This is
formalized in game Gsnd

ID,A(λ) in Figure 5. Via oracle New, the adversary can initialize a user
(we are in the multi-user setting) and obtain not only its public key but also its secret key. It
outputs a challenge Ch and response Rp, as well as a pointer to some user i ∈ {1, . . . , n}. It
wins if the commitment reproducing algorithm, given pki,Ch,Rp, returns a non-⊥ value but the
corresponding transcript is rejected by the verifier. Let Advsnd

ID,A(λ) = Pr[Gsnd
ID,A(λ)]. We say that

ID is SND-secure if the function Advsnd
ID,A(·) is negligible for every PT adversary A.

We turn to consistency. Again, to understand it we start with Perfect Consistency (P-CNS).
This asks that for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)] and all Ct,Ch,Rp we have: If Ct 6=
ID.CR(1λ,pk,Ch,Rp) then ID.V(1λ,pk,Ct,Ch,Rp) 6= true. CNS-security is a computational re-
laxation of this, asking that it be computationally hard to create an accepting transcript in which
the commitment is different from the one given by the commitment reproducing algorithm. This is
formalized using game Gcns

ID,A(λ) in Figure 5. Via oracle New, the adversary can initialize a user and
obtain both its keys. It outputs a transcript and pointer to some user i ∈ {1, . . . , n}. It wins if the
transcript is accepting but the commitment reproducing algorithm returns a commitment different
from the one in the transcript. Let Advcns

ID,A(λ) = Pr[Gcns
ID,A(λ)]. We say that ID is CNS-secure if

the function Advcns
ID,A(·) is negligible for every PT adversary A.

For convenience of our reductions, the definitions of soundness and consistency are in the multi-
user setting. A standard hybrid argument shows that single user security (captured as security
relative to adversaries making only one call to New) implies multi-user security. This reduction is
not tight, the advantage degrading linearly in the number of queries to New. When we say that the
results in our paper are underlain by tight reductions we mean that the reductions in Theorems 2
and 4 are tight to the assumptions made in these theorems, which are the multi-user versions of
SND and CNS, respectively.

It is obvious that P-SND implies SND and P-CNS implies CNS. However soundness and
consistency are distinct notions and turn out to be incomparable. The full picture of the relationship
between the notions is given in Figure 8.

Signature scheme relations. We give the formal result statements and proofs underlying the
picture in Figure 1. We start with whether uf-security of DSct implies that of DSch. The following

12

Proposition says that in general (meaning, with no conditions on the commitment reproducing
algorithm other than completeness) the answer is “no.” Theorem 2 will show that SND-security of
ID suffices to make the answer “yes.” For simplicity the Proposition sets the signing algorithm to
the canonical one, but the Theorem holds for all signing algorithms.

Proposition 1. Let ID∗ be a commitment reproducible identification scheme and F a hash function
compatible with ID∗. Assume signature scheme DS∗ct = gFSct[ID

∗,F, SCID∗,F] is uf-secure. Then
there is a commitment reproducible identification scheme ID such that F is compatible with ID and
(1) DSct = gFSct[ID,F, SCID,F] is uf-secure but (2) DSch = gFSch[ID,F,SCID,F] is not uf secure.

Proof. Let ID have the same key generation algorithm, commitment algorithm and challenge space
as ID∗. The other algorithms of ID are as follows:

ID.Rp(1λ, pk, sk,Ch,St)

Return (ID∗.Rp(1λ,pk, sk,Ch,St), 0)

ID.V(1λ,pk,Ct,Ch, (Rp∗, b))

Return ((b = 0) ∧ ID∗.V(1λ,pk,Ct,Ch,Rp∗))

This suffices to ensure claim (1), namely DSct is uf-secure. Formally, this claim is proved by a
reduction showing how to translate an adversary violating uf-security of DSct into one violating
uf-security of DS∗ct. The key element is that signatures can be translated between the schemes by
adding a 0 to, or removing a 0 from, the response. We omit the details. Note also that ID preserves
the correctness error of ID∗. Now modify the commitment reproducing algorithm as follows:

ID.CR(1λ,pk,Ch, (Rp∗, b))

If (b = 0) then return ID∗.CR(1λ,pk,Ch,Rp∗)
Else return 0

Note that ID.CR continues to satisfy completeness. Now claim (2) is justified by the following
attack:

Adversary ANew,Sign,H
ch (1λ)

pk←$ New() ; M ← 0 ; Ct← 0 ; Ch← F(1λ, pk, (Ct,M)) ; Rp← (0, 1)
Return (M, (Ch,Rp), 1)

Since ID.CR(1λ,pk,Ch, (0, 1)) returns Ct we have Advuf
DSch,Ach

(λ) = 1.

If ID has the stronger property of being SND-secure, then uf-security of DSct does transfer to
DSch. Note that ID as constructed in the proof of Proposition 1 is not SND-secure, so there is no
contradiction, and the Proposition can also be viewed as showing that the SND-security assumption
is necessary for the following Theorem. For conciseness, the theorem statement is asymptotic, but
it is underlain by a tight reduction explicitly stated and proved in the proof.

Theorem 2. Let ID be a commitment reproducible identification scheme, F a hash function com-
patible with ID and S a signing algorithm compatible with ID,F. Let DSct = gFSct[ID,F, S] and
DSch = gFSch[ID,F,S]. Assume ID is SND-secure and DSct is uf-secure. Then DSch is uf-secure.

This result holds regardless of F,S, meaning no (extra) conditions are put on these. This increases
applicability. (In particular, covering both canonical and with-abort signing via the choices of S
shown in Figure 4.) As a clarification, note that whether or not DSct is uf-secure depends, of course,
on the choices of ID,F, S, but that is orthogonal to our results. Establishing uf-security of DSct
is the responsibility of the user of the theorem. For example it might be done using an existing,
general proof like that of [1].

13

Games G0, G1

n← 0; S ← ∅
(M,σ, i)←$ANew,Sign,H

ch (1λ)
(Ch,Rp)← σ
Ct← ID.CR(1λ,pki,Ch,Rp)
If ((i,M) ∈ S) ∨ (Ct = ⊥) then

return false
Ch′ ← FH(1λ,pki, (Ct,M))
d← ID.V(1λ,pki,Ct,Ch,Rp)
Return (Ch = Ch′) ∧ (d = true) // Game G0

Return (Ch = Ch′) ∧ (d = false) // Game G1

New()
n← n+ 1
(pkn, skn)←$ DS.Kg(1λ)
Return pkn

Sign(i,M)

σ←$ DSch.Sign
H(1λ,pki, ski,M)

S ← S ∪ {(i,M)} ; Return σ

H(W, `)

If HT[W, `] = ⊥ then HT[W, `]←$ {0, 1}`
Return HT[W, `]

Adversary ANew,Sign,H
ct (1λ)

n← 0
(M,σ, i)←$ANew∗,Sign∗,H

ch (1λ)
(Ch,Rp)← σ
Ct← ID.CR(1λ,pki,Ch,Rp)
Return (M, (Ct,Rp), i)

New∗()
n← n+ 1 ; pkn←$ New()
Return pkn

Sign∗(i,M)

σ←$ Sign(i,M)
If (σ = ⊥) then return ⊥
(Ct,Rp)← σ
Ch← FH(1λ,pki, (Ct,M))
Return (Ch,Rp)

Adversary ANew(1λ)

n← 0 ; (M,σ, i)←$ANew∗,Sign∗,H∗

ch (1λ)
(Ch,Rp)← σ
Return (Ch,Rp, i)

New∗()

n← n+ 1 ; (pkn, skn)←$ New()
Return pkn

Sign∗(i,M)

Return DSch.Sign
H∗

(1λ,pki, ski,M)

H∗(W, `)

If HT[W, `] = ⊥ then HT[W, `]←$ {0, 1}`
Return HT[W, `]

Figure 6: Games and adversaries for proof of Theorem 2. For the adversaries, a star superscript to
a procedure indicates that it is a subroutine in the code of the corresponding adversary, constructed
by it to simulate an oracle expected by Ach.

Proof of Theorem 2. Given signing adversary Ach making qNew queries to New we construct signing
adversary Act and soundness adversary A such that for all λ ∈ N

Advuf
DSch,Ach

(λ) ≤ Advuf
DSct,Act

(λ) + Advsnd
ID,A(λ) . (1)

Adversaries Act and A preserve the running time of Ach and number of queries to the New oracle.
Adversary Act additionally preserves the number of Sign and H queries of Ach. The theorem
follows. We now prove Equation (1). Towards this fix λ ∈ N and consider games G0 and G1

defined in Figure 6. The games are the same except for the final return statement, which differs
for the two games as shown. The games run Ach as per game Guf

DSch,Ach
(λ), so that Advuf

DSch,Ach
(λ)

is the probability that Ch = Ch′. This is partitioned into the events (Ch = Ch′) ∧ (d = true)
and (Ch = Ch′) ∧ (d = false), which implies that Advuf

DSch,Ach
(λ) = Pr[G0] + Pr[G1]. Intuitively,

d = true means we can violate uf-security of DSct while d = false means we violate SND-security of

14

ID. To capture this formally, consider the adversaries defined in Figure 6. We claim that

Pr[G0] ≤ Advuf
DSct,Act

(λ) and Pr[G1] ≤ Advsnd
ID,A(λ) , (2)

which establishes Equation (1). Adversary Act runs Ach, responding to the latter’s H queries via
its own H oracle, and simulating Ach’s New and Sign oracles via the shown procedures New∗

(that invokes Act’s New oracle) and Sign∗ (that invokes Act’s Sign oracle). Finally it trans-
forms the signature. Adversary Act wins game Guf

DSct,Act
(λ) if its output (M, (Ct,Rp), i) satisfies

ID.V(1λ,pki,Ct,Rp,Ch) = true, which happens when game G0 returns true, justifying the first
equation in (2). Adversary A runs Ach, simulating all the latter’s oracles as shown. An important
point here is that A’s New oracle returns not only the public key but also the secret key, which
is used by Sign∗ to simulate Ach’s Sign oracle. Adversary A wins game Gsnd

ID,A(λ) if its output

(Ch,Rp, i) satisfies Ct ← ID.CR(1λ,pki,Ch,Rp) is not ⊥ yet ID.V(1λ, pki,Ct,Ch,Rp) = true,
which happens when game G1 returns true, justifying the second equation in (2).

We turn to the converse, asking whether uf-security of DSch implies that of DSct. The results
are analogous to those above. Proposition 3 says that in general the answer is “no,” and Theorem 4
says that it becomes “yes” assuming ID is CNS-secure.

Proposition 3. Let ID∗ be a commitment reproducible identification scheme and F a hash function
compatible with ID∗. Assume signature scheme DS∗ch = gFSch[ID∗,F,SCID∗,F] is uf-secure. Then
there is a commitment reproducible identification scheme ID such that F is compatible with ID and
(1) DSch = gFSch[ID,F,SCID,F] is uf-secure but (2) DSct = gFSct[ID,F,SCID,F] is not uf secure.

Proof. Let ID have the same key generation algorithm, commitment algorithm and challenge space
as ID∗. The other algorithms of ID are as follows:

ID.Rp(1λ, pk, sk,Ch,St)

Return (ID∗.Rp(1λ,pk, sk,Ch,St), 0)

ID.V(1λ,pk,Ct,Ch, (Rp∗, b))

Return ((b = 1) ∨ ID∗.V(1λ,pk,Ct,Ch,Rp∗))

ID.CR(1λ,pk,Ch, (Rp∗, b))

If (b = 0) then return ID∗.CR(1λ,pk,Ch,Rp∗)
Else return ⊥

This suffices to ensure claim (1), namely DSch is uf-secure. Formally, this claim is proved by a
reduction showing how to translate an adversary violating uf-security of DSch into one violating
uf-security of DS∗ch. The key element is that signatures can be translated between the schemes by
adding a 0 to, or removing a 0 from, the response, and that if b = 0, then the commitments given by
the commitment reproducing algorithms will be the same for both schemes. We omit the details.
Note that ID preserves the correctness error of ID∗ and ID.CR continues to satisfy completeness.
Now claim (2) is justified by the following attack:

Adversary ANew,Sign,H
ct (1λ)

pk←$ New() ; M ← 0 ; Ct← 0 ; Ch← F(1λ, pk, (Ct,M)) ; Rp← (0, 1)
Return (M, (Ct,Rp), 1)

By definition ID.V(1λ, pk,Ct,F(1λ,pk, (Ct,M)),Rp) = true since the second element of Rp is 1,
so Advuf

DSct,Act
(λ) = 1.

15

Theorem 4. Let ID be a commitment reproducible identification scheme, F a hash function com-
patible with ID and S a signing algorithm compatible with ID,F. Let DSct = gFSct[ID,F, S] and
DSch = gFSch[ID,F,S]. Assume ID is CNS-secure and DSch is uf-secure. Then DSct is uf-secure.

Game G0, G1

n← 0; S ← ∅
(M,σ, i)←$ANew,Sign,H

ct (1λ)
If ((i,M) ∈ S) then return false
(Ct,Rp)← σ
Ch← FH(1λ,pki, (Ct,M))
d← ID.V(1λ,pki,Ct,Ch,Rp)
Ct′ ← ID.CR(1λ,pki,Ch,Rp)
Ch′ ← FH(1λ,pki, (Ct′,M))
Return (d = true) ∧ (Ch = Ch′) // Game G0

Return (d = true) ∧ (Ch 6= Ch′) // Game G1

New()
n← n+ 1
(pkn, skn)←$ DS.Kg(1λ)
Return pkn

Sign(i,M)

σ←$ DSct.Sign
H(1λ,pki, ski,M)

S ← S ∪ {(i,M)}
Return σ

H(W, `)

If HT[W, `] = ⊥ then HT[W, `]←$ {0, 1}`
Return HT[W, `]

Adversary ANew,Sign,H
ch (1λ)

n← 0
(M,σ, i)←$ANew∗,Sign∗,H

ct (1λ)
(Ct,Rp)← σ
Ch← FH(1λ,pki, (Ct,M))
Return (M, (Ch,Rp), i)

New∗()
n← n+ 1
pkn←$ New()
Return pkn

Sign∗(i,M)

σ←$ Sign(i,M)
If (σ = ⊥) then return ⊥
(Ch,Rp)← σ
Ct← ID.CR(1λ,pki,Ch,Rp)
Return (Ct,Rp)

Adversary ANew(1λ)

n← 0
(M,σ, i)←$ANew∗,Sign∗,H

ct (1λ)
(Ct,Rp)← σ; Ch← FH(1λ,pki, (Ct,M))
Return (Ct,Ch,Rp, i)

New∗()
n← n+ 1
(pkn, skn)←$ New()
Return pkn

Sign∗(i,M)

Return DSct.Sign
H(1λ,pki, ski,M)

H(W, `)

If HT[W, `] = ⊥ then HT[W, `]←$ {0, 1}`
Return HT[W, `]

Figure 7: Games and adversaries for proof of Theorem 4. For the adversaries, a star superscript to
a procedure indicates that it is a subroutine in the code of the corresponding adversary, constructed
by it to simulate an oracle expected by Act.

Proof of Theorem 4. Given signing adversary Act making qNew queries to New we construct signing
adversary Ach and consistency adversary A such that for all λ ∈ N

Advuf
DSct,Act

(λ) ≤ Advuf
DSch,Ach

(λ) + Advcns
ID,A(λ) . (3)

Ach and A preserve the running time of Act and number of queries to the New oracle. Ach

additionally preserves the number of Sign and H queries of Act. The theorem follows. We now

16

prove Equation (3). Towards this fix λ ∈ N and consider games G0 and G1 defined in Figure 7.
The games are the except for the final return statement, which differs for the two games as shown.
The games run Act as per Guf

DSct,A(λ), so that Advuf
DSct,Act

(λ) is the probability that d = true. This

is partitioned into the events (d = true) ∧ (Ch = Ch′) and (d = true) ∧ (Ch 6= Ch′), which implies
that

Advuf
DSct,Act

(λ) = Pr[G0] + Pr[G1] .

Intuitively, (Ch = Ch′) means that we can violate uf-security of DSch, whereas (Ch 6= Ch′) means
that ID is not CNS-secure. To capture this formally, consider the adversaries defined in Figure 7.
We claim that

Pr[G0] ≤ Advuf
DSch,Ach

(λ) and Pr[G1] ≤ Advcns
ID,A(λ) , (4)

which establishes Equation (4). Adversary Ach runs Act, responding to the latter’s H queries via
its own H oracle, and simulating Act’s New and Sign oracles via the shown procedures New∗ (that
invokes Ach’s New oracle) and Sign∗ (that invokes Ach’s Sign oracle). Finally it transforms the
signature. Adversary Ach wins game Guf

DSch,Ach
(λ) if its output (M, (Ch,Rp), i) satisfies Ch =

FH(1λ, pki, (Ct,M)) with Ct ← ID.CR(1λ,pki,Ch,Rp), which happens when game G0 returns
true, justifying the first equation in (4). Adversary A runs Act, simulating all the latter’s oracles
as shown. An important point here is that A’s New oracle returns not only the public key but
also the secret key, which is used by Sign∗ to simulate Act’s Sign oracle. Adversary A wins game
Gcns

ID,A(λ) if its output (Ct,Ch,Rp, i) satisfies Ct′ 6= Ct, where Ct′ ← ID.CR(1λ, pki,Ch,Rp),

and ID.V(1λ, pki,Ct,Ch,Rp,Ch) = true. But the second winning condition of game G1, namely
Ch 6= Ch′, implies that Ct 6= Ct′, justifying the second equation in (4).

Recall that the interest of gFStr is that the first proofs were for this variant [22]. It is however
equivalent in uf-security to gFSct. This is captured by the following.

Theorem 5. Let ID be an identification scheme, F a hash function compatible with ID and S a
signing algorithm compatible with ID,F. Let DSct = gFSct[ID,F,S] and DStr = gFStr[ID,F, S].
Then DSct is uf-secure if and only if DStr is uf-secure.

The formal proof, as usual, is by reduction, and the reductions in both directions are tight.
The idea is simple, namely that the challenge Ch in a transcript signature (Ct,Ch,Rp) must be
Ch = FH(1λ, pk, (Ct,Rp)) and is thus effectively redundant given Ct,Rp. If not present, it can be
added, and, if present, it can be removed. This enables all the necessary simulations and transforms
for the proofs. We omit the details.

4 Identification relations

We have defined several attributes of commitment reproducing identification schemes: P-UNIQ,
P-SND, SND, P-CNS, CNS. Figure 8 determines the relations between the five notions, in the
style introduced by [4]. An arrow XX → YY is an implication: every commitment reproducible
identification scheme that has property XX also has property YY. A barred arrow XX 9 YY is
a separation: there exists a commitment reproducible identification scheme having property XX
but not having property YY. We see that P-UNIQ is the strongest assumption, that P-SND and
P-CNS are incomparable, and that SND,CNS are strictly weaker than P-UNIQ.

The picture shows a minimal set of implications and separations but determines the relation
between any two nodes. For example, does P-CNS imply P-SND? No, because if it did we would
get a path from P-CNS to SND, contradicting that shown separation.

17

P-UNIQ

P-SND ∧ P-CNS

P-SND P-CNS

SND CNS

Figure 8: Relations between security notions for commitment reproducible identification scheme.
Arrows denote implications and barred arrows denote separations.

What emanates from the relations? Recall we have seen that if DSct = gFSct[ID,F,S] and
DSch = gFSch[ID,F,S] then SND suffices for uf-security of DSct to imply that of DSch, and CNS
suffices for the converse. Figure 8 says that P-UNIQ would also suffice for (both) these conclusions,
but that SND,CNS are strictly weaker assumptions. It also says that SND,CNS are distinct;
neither implies the other. In fact even P-SND does not imply CNS, and even P-CNS does not
imply SND. So the conditions required for uf-security to transfer across DSch and DSct are not
symmetric.

We move on to justify the relations in Figure 8. It is clear that P-UNIQ is equivalent to P-SND∧
P-CNS, since, by our general conventions, if any of Ct,Ch,Rp = ⊥ then ID.V(pk,Ct,Ch,Rp) =
⊥, and P-SND and P-CNS each correspond to one direction in the iff statement of P-UNIQ. It
is also easy to see that SND, being a computational relaxation of P-SND, is implied by it, and
correspondingly CNS is implied by P-CNS. We move on to the separations.

SND 9 P-SND. We provide a counterexample as follows. Start with any commitment repro-
ducible identification scheme ID∗ that is SND. We will modify it to a commitment reproducible
identification scheme ID that has the same correctness error as ID∗ and continues to be SND, but is
not P-SND. The idea is to create a weakness on an exponentially-small fraction of the key space.
Proceeding, let ID have the same challenge space as ID∗. The other algorithms of ID are as follows:

ID.Kg(1λ)

t←$ {0, 1}λ ; (pk∗, sk∗)←$ ID∗.Kg(1λ)
If (t = 1λ) then pk ← (pk∗, 1) else pk ← (pk∗, 0)
Return (pk, sk∗)

ID.Ct(1λ, (pk∗, p)) // p ∈ {0, 1}
(Ct,St)←$ ID∗.Ct(1λ, pk∗) ; Return (Ct,St)

ID.Rp(1λ, (pk∗, p), sk∗,Ch,St) // p ∈ {0, 1}
Return (ID∗.Rp(1λ,pk∗, sk∗,Ch,St), 0)

ID.V(1λ, (pk∗, p),Ct,Ch, (Rp∗, r)) // p ∈ {0, 1}
If (r = 0) then return ID∗.V(1λ,pk∗,Ct,Ch,Rp∗)
Return false

ID.CR(1λ, (pk∗, p),Ch, (Rp∗, r)) // p ∈ {0, 1}
If (p = 1 ∧ r = 1) then return 0
If (p = 0 ∧ r = 1) then return ⊥
Return ID∗.CR(1λ, pk∗,Ch,Rp∗)

Note that ID preserves the correctness error of ID∗ and ID.CR continues to satisfy completeness. The

18

SND-security of ID can be reduced to the assumed SND-security of ID∗. Briefly, in the execution of
game Gsnd

ID,A(λ) with a PT adversary A, let BAD denote the event that some call to New() returns
((pk∗, p), sk∗) with p = 1. On the one hand, if BAD does not happen, then ID is functioning just
like ID∗. On the other hand, the probability that BAD happens is negligible. We omit the details.
Now we show that ID is not P-SND. Let λ ∈ N. Then there exists (pk∗, sk∗) ∈ [ID∗.Kg(1λ)] such
that ((pk∗, 1), sk∗) ∈ [ID.Kg(1λ)]. Let Ch be any challenge in ID.ChS(λ) and let Rp = (0, 1). Then
ID.CR(1λ, (pk∗, 1),Ch, (0, 1)) returns the non-⊥ value 0 but ID.V(1λ, (pk∗, 1), 0,Ch, (0, 1)) returns
false.

CNS 9 P-CNS. This is similar to the above and omitted.

P-SND 9 CNS. We provide a counterexample as follows. Start with any commitment repro-
ducible identification scheme ID∗ that has perfect correctness and is P-SND. We will modify it to a
commitment reproducible identification scheme ID that has perfect correctness and continues to be
P-SND, but is not CNS. Let ID have the same key-generation algorithm, commitment algorithm
and challenge space as ID∗. The other algorithms of ID are as follows:

ID.Rp(1λ, pk, sk,Ch,St)

Return (ID∗.Rp(1λ,pk, sk,Ch,St), 0)

ID.V(1λ,pk,Ct,Ch, (Rp∗, r))

Return ID∗.V(1λ,pk,Ct,Ch,Rp∗)

ID.CR(1λ,pk,Ch, (Rp∗, r))

If (r = 0) then return ID∗.CR(1λ, pk,Ch,Rp∗)
Return ⊥

Note that ID preserves the correctness error of ID∗ and ID.CR continues to satisfy completeness.
The P-SND-security of ID follows from the assumed P-SND-security of ID∗. Briefly, if r = 0 then
ID behaves like ID∗, while if r 6= 0 then ID.CR returns ⊥, which cannot help violate P-SND. The
claim that ID is not CNS-secure is justified by the following attack:

Adversary ANew(1λ)

(pk, sk)←$ New() ; (Ct,St)←$ ID∗.Ct(1λ,pk) ; Ch←$ ID.ChS(λ)
Rp∗ ← ID∗.Rp(1λ,pk, sk,Ch,St)
Return (Ct,Ch, (Rp∗, 1), 1)

Note Ct 6= ⊥ because ID∗ has perfect correctness. Now ID.V(1λ, pk,Ct,Ch, (Rp∗, 1)) = true but
ID.CR(1λ,pk,Ch, (Rp∗, 1)) returns ⊥. So Advcns

ID,A(λ) = 1.

P-CNS 9 SND. We provide a counterexample as follows. Start with any commitment repro-
ducible identification scheme ID∗ that has perfect correctness and is P-CNS. We will modify it to a
commitment reproducible identification scheme ID that has perfect correctness and continues to be
P-CNS, but is not SND. Let ID have the same key-generation algorithm, commitment algorithm
and challenge space as ID∗. The other algorithms of ID are as follows:

ID.Rp(1λ, pk, sk,Ch,St)

Return (ID∗.Rp(1λ,pk, sk,Ch,St), 0)

ID.V(1λ,pk,Ct,Ch, (Rp∗, r))

If (r = 0) then return ID∗.V(1λ,pk,Ct,Ch,Rp∗)
Else return false

19

ID.CR(1λ,pk,Ch, (Rp∗, r))

Return ID∗.CR(1λ,pk,Ch,Rp∗)

Note that ID preserves the correctness error of ID∗ and ID.CR continues to satisfy completeness.
The P-CNS-security of ID follows from the assumed P-CNS-security of ID∗. Briefly, if r = 0 then
ID behaves like ID∗, while if r 6= 0 then ID.V rejects, which cannot help violate P-SND. The claim
that ID is not SND-secure is justified by the following attack:

Adversary ANew(1λ)

(pk, sk)←$ New() ; (Ct,St)←$ ID∗.Ct(1λ,pk) ; Ch←$ ID.ChS(λ)
Rp∗ ← ID∗.Rp(1λ,pk, sk,Ch,St)
Return (Ct,Ch, (Rp∗, 1), 1)

Note that ID.CR(1λ, pk,Ch, (Rp∗, 1)) will return Ct because ID∗ has perfect correctness and ID∗.CR
satisfies completeness. But ID.V(1λ,pk,Ct,Ch, (Rp∗, 1)) = false. So Advsnd

ID,A(λ) = 1.

5 Linear identification schemes

We define a class of identification schemes we call linear, and show how many known schemes, both
classical and modern, fall in this class. We show that all schemes in the class satisfy P-UNIQ.
This means we can conclude P-UNIQ-ness of many existing schemes, and provide a way to check
it for future schemes as well. Beyond that the definition serves to unify and better understand the
literature by showing that what look like different schemes are actually the same.

Introduction. Let us first describe linear identification schemes informally. In their simplest
form, the public key contains a function h that is homomorphic (linear) in the sense that h(c·x+y) =
c · h(x) + h(y). The public key also contains X = h(x) where x is the secret key. The prover picks
some y and sends Y = h(y) as the commitment. The verifier responds with a challenge c. The
prover returns response z = c · x+ y. The verifier accepts iff h(z) = c ·X + Y . This reflects many
classical schemes. Lattice-based schemes [17] add some twists, with ⊥ sometimes being returned
in place of z, and with regard to the spaces from which quantities are drawn.

This paradigm is understood in the literature. We aim to formalize it. For this we must address
many issues, particularly in order to cover the lattice-based schemes. Our framework is asymptotic,
so all quantities will be functions of the security parameter λ. The scheme is parameterized by
a family of functions LF. We distinguish between functions and their representations: a key L
will specify what we called h above as the function LF.H(1λ, L, ·). The informal description above
referred to operations “·” and “+” about which we have to be careful. We will ask that the domain
LF.D(L) and range LF.R(L) of the function are modules over a ring of scalars, which determines the
operations. For the FS paradigm, challenges must be strings, not elements in an abstract space,
so we require an embedding function Emb mapping challenge strings Ch to scalars c. In some
schemes in the literature, the secret key x and state y are chosen from subsets of the domain, so
we parameterize the scheme by algorithms SKG, StG to make these choices. Further parameters
are an algorithm Flt to filter responses and an algorithm VF for refining the verifier’s decision.

Algebra. Suppose S is a ring with multiplicative identity element 1S . A S-module, or a module
over S, is an additive Abelian group M together with an operation · : S ×M → M such that for
all r, s ∈ S and x, y ∈ M we have (1) r · (x + y) = r · x + r · y (2) (r + s) · x = r · x + s · x (3)
(rs) ·x = r · (s ·x) (4) 1S ·x = x. We refer to elements of S as scalars, and to S as the set of scalars.
A module is a generalization of a vector space, which is the special case of S being a field.

20

Algorithm ID.Kg(1λ)

L←$ LF.K(λ) ; x←$ SKG(1λ, L)
X ← LF.H(1λ, L, x)
Return ((L,X), x)

Algorithm ID.Ct(1λ, (L,X))

y←$ StG(1λ, L) ; Y ← LF.H(1λ, L, y)
Return Y

Algorithm ID.Rp(1λ, (L,X), x,Ch, y)

c← Emb(1λ, L,Ch) ; z ← c · x+ y
Rp←$ Flt(1λ, L, x, c, z)
Return Rp

Algorithm ID.V(1λ, (L,X), Y,Ch,Rp)

If (Rp = ⊥) then return ⊥
z ← Rp
If (VF(1λ, L, Y,Ch, z) 6= true) then return false
Z ← LF.H(1λ, L, z) ; c← Emb(1λ, L,Ch)
Return (Z = c ·X + Y)

Algorithm ID.CR(1λ, (L,X),Ch,Rp)

If (Rp = ⊥) then return ⊥
z ← Rp
If (VF(1λ, L, Y,Ch, z) 6= true) then return ⊥
Z ← LF.H(1λ, L, z) ; c← Emb(1λ, L,Ch)
Y ← Z − c ·X
Return Y

Algorithm SKG(1λ, L)

x←$ LF.D(L) ; Return x

Algorithm StG(1λ, L)

y←$ LF.D(L) ; Return y

Algorithm Flt(1λ, L, x, c, z)

Return z

Algorithm VF(1λ, L, Y,Ch, z)

Return true

Figure 9: Top: Algorithms of the linear identification scheme ID = LinID[LF,CL,Emb, SKG,StG,
Flt,VF]. Bottom: Parameter settings for simple linear schemes.

As an example, let G be an Abelian group of order m. Then G is a Zm-module where for
s ∈ Zm and x ∈ G we define s · x = x+ x+ · · ·+ x where there are s copies of x in the sum. Here
we are writing the group operation additively, so s · x is the exponentiation operation, raising x to
the power s.

Linear function families. A linear function family LF specifies a PT key-generation algorithm
LF.K that, via L←$ LF.K(1λ), returns a key. Next, it specifies a deterministic PT evaluation
algorithm LF.H which, for all λ ∈ N and keys L ∈ [LF.K(λ)] defines a function LF.H(1λ, L, ·):
LF.D(L) → LF.R(L). Here LF.D(L), LF.R(L) are the domain and range sets associated to key L,
and they are required to be modules over a ring of scalars LF.S(L). For each λ ∈ N and key
L ∈ [LF.K(λ)], the function LF.H(1λ, L, ·) is required to be a module homomorphism, meaning

LF.H(1λ, L, c · x+ y) = c · LF.H(1λ, L, x) + LF.H(1λ, L, y)

for all c ∈ LF.S(L) and all x, y ∈ LF.D(L). As clarifications, on the left above, the c · x is multipli-
cation of domain module element x by scalar c and the addition c · x+ y is in the domain module.
On the right, the operations are in the range module, which does not have to be the same as the
domain module, so in particular the “·” and “+” could mean different things on the two sides of
the equation.

Linear identification schemes. Let LF be a linear function family as above. We define a trans-
form LinID that determines a commitment reproducible identification scheme ID = LinID[LF,CL,
Emb,SKG, StG,Flt,VF] from LF and a number of other parameters that we will describe below.
The algorithms of the identification scheme are shown in Figure 9, and the challenge length is
ID.cl = CL. We say that an identification scheme ID is linear if there exist LF,CL,Emb, SKG,StG,
Flt,VF such that ID = LinID[LF,CL,Emb,SKG, StG,Flt,VF].

We now say what are the parameters. CL: N→ N is a function that, as above, prescribes the
challenge length. Emb is a deterministic PT embedding algorithm that via c ← Emb(1λ, L,Ch)

21

returns a point in LF.S(L). (Think of it as embedding a challenge into the scalar space.) SKG
is a PT secret generation algorithm that via x←$ SKG(1λ, L) generates a point x in LF.D(L).
StG is a PT state generation algorithm that via y←$ StG(1λ, L) generates a point y in LF.D(L).
Flt is a PT filtering algorithm that via Rp←$ Flt(1λ, L, x, c, z) generates a response required to
be in the set {z,⊥}. (Think of it as filtering an optimistic choice of response z, returning z
under some conditions, otherwise returning ⊥.) VF is a deterministic PT algorithm that via
d ← VF(1λ, L, Y,Ch, z) returns a boolean decision. We require and assume that this algorithm
always checks that points fall in the required spaces, meaning it returns false if Y 6∈ LF.R(L) or
Ch 6∈ {0, 1}CL(λ) or z 6∈ LF.D(L). This completes the list of ingredients used in the algorithms of
the identification scheme in Figure 9.

In many linear schemes, the bulk of the parameters take the trivial, default values shown at the
bottom of Figure 9. We call such schemes simple linear identification schemes, and may omit the
trivial parameters, writing ID = LinID[LF,CL,Emb]. Simple linear identification schemes have
perfect correctness.

Linear schemes are P-UNIQ. We show that any linear identification scheme ID satisfies
P-UNIQ. By Figure 8, this means it satisfies SND and CNS. So by Theorems 2 and 4, if one
of DSct = gFSct[ID,F,S] or DSch = gFSch[ID,F,S] is uf-secure, then, automatically, so is the other.
A strength of this result is that it holds across all choices of hash function F and signing algorithms
S, in particular covering both classical signing and signing with aborts.

Proposition 6. Let ID = LinID[LF,SKG, StG,CL,Emb,Flt,VF] be a linear identification scheme
as above. Then ID is P-UNIQ.

Proof. Let λ ∈ N and ((L,X), x) ∈ [ID.Kg(1λ)]. Let Y,Ch,Rp all be non-⊥. Let z ← Rp and
let c ← Emb(1λ, L,Ch). (1) Assume ID.V(1λ,pk, Y,Ch,Rp) = true. By definition of ID.V it must
be that VF(1λ, L, Y,Ch, z) = true. By our assumptions on the parameters it must be that Y ∈
LF.R(L) and Ch ∈ {0, 1}CL(λ) and z ∈ LF.D(L). By definition of ID.V it must be that Z = c ·X+Y .
By the algebraic properties of modules it must be that Y = Z − c · X. So ID.CR(1λ, (L,X),Ch,
Rp) will return Y . (2) Assume ID.CR(1λ, (L,X),Ch,Rp) returns Y . By definition of ID.CR this
means VF(1λ, L, Y,Ch, z) = true, so Y ∈ LF.R(L) and Ch ∈ {0, 1}CL(λ) and z ∈ LF.D(L). By
the algebraic properties of modules it must be that Z = c ·X + Y . So ID.V(1λ,pk, Y,Ch,Rp) =
true.

Examples of linear identification schemes. Many identification schemes in the literature
can be shown to be linear. Examples include classical schemes like FS [11], Sch [23], GQ [14] and
Ok [21]. They also include lattice based schemes like Ly [17]. We will illustrate by showing linearity
for a few of these schemes.

Sch is linear. We show that the Sch scheme [23] is a simple linear identification scheme. The
intuition, in the informal language of our discussion above, is simple, namely we set h(x) = gx

where g is a generator of a group G. The homomorphic property comes down to gc·x+y = (gx)c · gy.
Below, we prove the claim formally by exhibiting LF,CL,Emb such that Sch = LinID[LF,CL,
Emb]. Our convention being that the module operation is additive means that gx becomes x · g,
which may look natural to those used to elliptic curves and less so to others.

Figure 10 shows the settings. Key generation algorithm LF.K(1λ) returns key L = (〈G〉, p, g)
where 〈G〉 is a description of a cyclic group G of prime order p ∈ {2λ−1 + 1, . . . , 2λ− 1}, and g ∈ G
is a generator of G. (There are many ways to make these choices, and we do not need to pin one
down.) The set of scalars LF.S((〈G〉, p, g)) = Zp is a ring (in fact a field) as required. The domain
LF.D((〈G〉, p, g)) = Zp is an additive Abelian group that is a Zp-module with the · operation being

22

L (〈G〉, p, g)

LF.S(L) Zp
LF.D(L) Zp
LF.R(L) G
LF.H(1λ, L, x) x · g
Emb(1λ, L,Ch) StToInt(Ch)

L (q, n,m, d, σ, κ, a)

LF.S(L) Rq,n

LF.D(L) Rmq,n

LF.R(L) Rq,n

LF.H(1λ, L, x) IP(a, x)

Emb(1λ, L,Ch) Return c ∈ { c ∈ Rq,n : ‖c‖1 ≤ κ }
SKG(1λ, L) Return x←$Dq,n(σ)m

StG(1λ, L) Return y←$Dq,n(mnσκ)m

Flt(1λ, L, x, c, z) If z ∈ Dq,n(σκ(mn− 1))m then return z else return ⊥
VF(1λ, L, Y,Ch, z) Return (z ∈ Dq,n(σκ(mn− 1))m)

Figure 10: Top: Settings to capture Sch as a simple linear identification scheme. Bottom: Settings
to capture Ly as a linear identification scheme.

multiplication in Zp. The range is LF.R((〈G〉, p, g)) = G. Writing the group operation additively,
this is an Abelian (because cyclic) group that is a Zp-module when we define c ·X to be the sum of
c ∈ Zp copies of X ∈ G. (This is X raised to the power c.) We define LF.H(1λ, (〈G〉, p, g), x) = x ·g.
(The sum of x ∈ Zp copies of the generator g ∈ G, this is g raised to the power x.) The function
LF.H(1λ, (〈G〉, p, g), ·) is a module homomorphism, as required. We would pick the challenge length
CL so that CL(λ) ≤ λ− 1, and then define Emb(1λ, (〈G〉, p, g),Ch) to be the integer StToInt(Ch)
whose string representation is Ch. This integer is in the ring Zp of scalars, as required, because
p > 2λ−1. Looking at the algorithms of Figure 9, we see that LinID[LF,CL,Emb] recovers the
Schnorr identification scheme [23].

Ly is linear. We show that the Ly scheme [17] is a linear identification scheme. The linear function
family is from [17, 19]. To prove the claim we exhibit LF,CL,Emb,SKG, StG,Flt,VF such that
Ly = LinID[LF,CL,Emb,SKG,StG,Flt,VF].

First, some notation. For positive integers q, n we let Rq,n be the ring Zq/〈Xn + 1〉, so ring
elements are polynomials of degree at most n with coefficients in Zq. We can accordingly represent
an element of Rq,n as an n-vector over Zq, and, for such a vector x, talk of its Lp-norm, denoted
‖a‖p, for p ∈ {1, . . . ,∞}. For a real number w, we let Dq,n(w) = { s ∈ Rq,n : ‖s‖∞ ≤ w } be
the set of all ring elements whose L∞-norm is at most w. By Rmq,n we denote the set of m-vectors
over Rq,n. With addition being component-wise, this is a module over Rq,n, with · simply being
multiplication in Rq,n. Note that elements of Rmq,n are vectors whose components are polynomials,
themselves represented as vectors. We define the inner product of two such vectors a, x ∈ Rmq,n by

IP(a, x) = a[1] · x[1] + · · ·+ a[m] · x[m] ∈ Rq,n ,
the additions and multiplications above being over Rq,n.

23

Figure 10 shows the settings. Key generation algorithm LF.K(1λ) returns a key L = (q, n,m,
d, σ, κ, a) where q, n,m, d, σ, κ are positive integers such that q is odd, n is 2 raised to an odd
power, and a←$Rmq,n. (There are many ways to make the non-prescribed choices, and we do not
need to pin one down.) The set of scalars is the ring, LF.S((q, n,m, d, σ, κ, a)) = Rq,n. We set
the domain to LF.D((q, n,m, d, σ, κ, a)) = Rmq,n, which is a Rq,n-module, and the range to the ring,

LF.R((q, n,m, d, σ, κ, a)) = Rq,n, which is also a Rq,n-module. We define LF.H(1λ, (q, n,m, d, σ, κ, a),
x) = IP(a, x) to be the inner product of the vectors a, x. The function LF.H(1λ, (q, n,m, d, σ, κ, a), ·)
is a module homomorphism, as required. The embedding function Emb(1λ, (q, n,m, d, σ, κ, a),Ch)
returns a scalar in the subset { c ∈ Rq,n : ‖c‖1 ≤ κ } of the set of all scalars Rq,n. (How
exactly it does this we have not been able to determine. The scheme described in [17] picks the
challenge directly at random from this set, but, as we have explained, challenges must be strings
of a known length for the FS transforms, so some embedding is needed.) The secret x is drawn
at random from the set Dq,n(σ)m ⊆ LF.D((q, n,m, d, σ, κ, a)), meaning x is an m-vector each of
whose components (a polynomial represented as an n-vector) has L∞-norm at most σ. The state
y is drawn from Dq,n(mnσκ)m. Filtering algorithm Flt(1λ, (q, n,m, d, σ, κ, a), x, c, z) returns z if
z ∈ Dq,n(σκ(mn−1))m and ⊥ otherwise. Verification algorithm VF(1λ, (q, n,m, d, σ, κ, a), Y,Ch, z)
returns true if z ∈ Dq,n(σκ(mn− 1))m and false otherwise.

Acknowledgments

The second author thanks Tom Ristenpart for asking about the security of the different variants of
Fiat-Shamir signatures.

References

[1] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures
via the Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In
L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 418–433. Springer,
Heidelberg, Apr. / May 2002.

[2] M. Abdalla, P.-A. Fouque, V. Lyubashevsky, and M. Tibouchi. Tightly-secure signatures from
lossy identification schemes. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 572–590. Springer, Heidelberg, Apr. 2012.

[3] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security
proofs and improvements. In B. Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS,
pages 259–274. Springer, Heidelberg, May 2000.

[4] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for
public-key encryption schemes. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS,
pages 26–45. Springer, Heidelberg, Aug. 1998.

[5] M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based identification
and signature schemes. Journal of Cryptology, 22(1):1–61, Jan. 2009.

[6] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993.

24

[7] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 409–426. Springer, Heidelberg, May / June 2006.

[8] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-security
signatures. In B. Preneel and T. Takagi, editors, CHES 2011, volume 6917 of LNCS, pages
124–142. Springer, Heidelberg, Sept. / Oct. 2011.

[9] N. Bindel, S. Akleylek, E. Alkim, P. S. L. M. Barreto, J. Buchmann, E. Eaton, G. Gutoski,
J. Kramer, P. Longa, H. Polat, J. E. Ricardini, and G. Zanon. qTESLA. Technical report,
National Institute of Standards and Technology, 2017. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions.

[10] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehle. CRYSTALS
– dilithium: Digital signatures from module lattices. Cryptology ePrint Archive, Report
2017/633, 2017. http://eprint.iacr.org/2017/633.

[11] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, Aug. 1987.

[12] S. D. Galbraith, C. Petit, and J. Silva. Identification protocols and signature schemes based
on supersingular isogeny problems. In T. Takagi and T. Peyrin, editors, ASIACRYPT 2017,
Part I, volume 10624 of LNCS, pages 3–33. Springer, Heidelberg, Dec. 2017.

[13] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988.

[14] L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to security
microprocessor minimizing both trasmission and memory. In C. G. Günther, editor, EURO-
CRYPT’88, volume 330 of LNCS, pages 123–128. Springer, Heidelberg, May 1988.

[15] E. Kiltz, D. Masny, and J. Pan. Optimal security proofs for signatures from identification
schemes. In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS,
pages 33–61. Springer, Heidelberg, Aug. 2016.

[16] LANIX. Things that use Ed25519, Aug. 2018. https://ianix.com/pub/

curve25519-deployment.html.

[17] V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based sig-
natures. In M. Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–616.
Springer, Heidelberg, Dec. 2009.

[18] V. Lyubashevsky. Lattice signatures without trapdoors. In D. Pointcheval and T. Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer, Heidelberg, Apr.
2012.

[19] V. Lyubashevsky and D. Micciancio. Generalized compact Knapsacks are collision resistant.
In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, ICALP 2006, Part II, volume
4052 of LNCS, pages 144–155. Springer, Heidelberg, July 2006.

25

[20] K. Ohta and T. Okamoto. On concrete security treatment of signatures derived from identifi-
cation. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 354–369. Springer,
Heidelberg, Aug. 1998.

[21] T. Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In E. F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 31–53. Springer,
Heidelberg, Aug. 1993.

[22] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, 2000.

[23] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–
174, 1991.

26

