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Abstract

Blockchain and cryptocurrency are a hot topic in today’s digital world. In this paper, we
create a game theoretic model in continuous time. We consider a dynamic game model of
the bitcoin market, where miners or players use mining systems to mine bitcoin by investing
electricity into the mining system. Although this work is motivated by BTC, the work pre-
sented can be applicable to other mining systems similar to BTC. We propose three concepts
of dynamic game theoretic solutions to the model: Social optimum, Nash equilibrium
and myopic Nash equilibrium. Using the model that a player represents a single “miner”
or a “mining pool”, we develop novel and interesting results for the cryptocurrency world.

Keywords: Blockchain, Bitcoin Mining, Dynamic Game Theory, Differential Game,
Hamilton-Jacobi-Bellman Equation, Social Optimum, Nash Equilibrium, myopic Nash equi-
librium, Pigovian Tax

1 Introduction

A bitcoin is created by miners, using complex mathematical “proof of work” procedures by
computing hashes [8]. For each successful attempt, miners get rewards in terms of bitcoin and
transaction fees. Miners participate in mining voluntarily in exchange for rewards as income.
Electricity plays an essential role in the bitcoin mining process since created blocks and solving
computationally hard problems uses large amounts of electricity. We can consider electricity
as a semi-renewable resource — depending on the source of resources used for its production.
The electricity consumed by the mining systems is directly proportional to the computational
power of the system being used. The fact is that at each new block creation only one miner
will be rewarded (the one who will win the mining game by first creating and updating the
blockchain). The remaining miners’ effort, as well as electricity used for mining at that time,
will be wasted. Therefore, optimizing the consumption of electricity is one of the essential and
most challenging problems effecting bitcoin mining.

Bitcoin [19] was introduced in 2009. Its security is based on a concept known as Proof

of Work (POA), and a transaction is only considered valid once the system obtains proof that
a sufficient amount of computational work has been exerted by an actively mining node. The
miners (responsible for creating blocks) constantly try to solve cryptographic puzzles in the form
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of hash computations. The process of adding a new block to the blockchain is called mining and
these blocks contain a set of transactions that have been authenticated (confirmed). The average
time to create a new block in the blockchain is 10 minutes. Two types of agents participate
in the Bitcoin network: miners, who validate transactions and clients, who trade in BTC [4].
The blockchain is a shared data structure responsible for storing all transactional history to
date. The blocks are connected with each other in the form of a chain. The first block of the
chain is known as Genesis. Each block consists of a Block Header, Transaction Counter and
Transaction. The structure of blockchain is as follows:

Table 1: Structure of the Blockchain [19]

Field Size

Block Header 80 bytes

Block Size 4 bytes

Transaction Counter 1 to 9 bytes

Transaction Depends on the transaction size

Each block in the chain is identified by a hash in the header. The hash is unique and gen-
erated by the Secure Hash Algorithm (SHA-256). SHA takes any size plaintext and calculates
a fixed size 256-bit cryptographic hash. Each header contains the address of the previous block
in the chain. The process of adding blocks in the blockchain is called “mining of blocks”. If
miners mine a valid block, it publishes the block in the blockchain and extends the blockchain
by one new block. The creator of the block is rewarded with BTC. In this work, we assume
that miners are honest and follow the protocol as described thus far.

Electricity, one of the necessities of today’s society, can be considered as renewable if it
is generated from renewable resources. For example, solar energy, hydro-power, and windmill
power are renewable versions of electricity. There are also non-renewable types if it is produced
from thermal power plants that use coal— a non-renewable resource. So, depending on if
renewable non-renewable resources, it is considered semi-renewable.

Exploitation of a shared resource is a significant problem [5]. Since electricity can be consid-
ered a semi-renewable resource, we have seen an unexpected growth of electricity (or computa-
tional power) consumption resulting from BTC mining [21, 22]. This has brought many miners
to despair because the reward of mining a bitcoin decreases every four years by 50%. Therefore,
miners need to mine BTC strategically to make BTC mining a long lasting activity that remains
prosperous. However, there are still transaction fees that can keep the BTC market profitable
for many years to come. In this paper, we use the tools of dynamic game theory to solve a
novel dynamic game model. Our game model can be stated as follows: a miner’s objective is
to use more powerful (computationally) mining systems that consume more electricity, in order
to maximize the net profit gain from producing or mining BTC. They can then sell the gained
BTC to the prevailing market at the current market value.

We propose two ways to maximize the profit of miners: cooperative—all miners cooperate
and decide to consume some fixed amount of electricity and in return, they get BTC market
price as profit so, they jointly maximize their profit and the profit is equally shared among
them—and non-cooperative—each miner behaves selfishly and individually wants to maximize
the profit gained from BTC mining.

Although this work is motivated by BTC, it is more heavily influenced by the future of
Blockchain. The work and game theoretic model presented here can be applicable to other
mining systems that utilize a similar mining system to BTC, therefore well versed in many
different potential Blockchain applications [30, 3, 16]. Furthermore, the work presented here
can be easily adapted to other mining schemes in the future making this a pivotal model and
work on game theory and its relation to the mining process for Blockchain.

The rest of the paper is organized as follows. We survey some of the closest related works
next in Section 2. We follow this with the formulation of our mode in Section 3. We then give
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our main results in Section 4 with solutions to the concepts presented in Section 3. We based
our results with some discussion on how to enforce social optimality in Section 5. Finally, we
conclude this paper with some remarks in Section 6.

2 Related Work

Since the early days of BTC, blockchain technology and cryptocurrencies have caught the atten-
tion of both researchers and investors alike. The original paper on BTC was improved in [23],
mostly focussing on security analysis. Showing an attack in which large pools can gain more
than their fair share, Eyal et al. showed that BTC mining protocol is not incentive compatible
[10], which was a significant work.

The linear quadratic differential game is the best-researched class of dynamic games (see
Engwerda [9]). Dynamic games with linear quadratic structure and with linear state dependent
constraints were studied by Singh and Wiszniewska-Matyszkiel in [27, 26] but in the discrete
time horizon.

Zohar at el. [18] examined dynamics of pooled mining and the rewards that pools manage to
collect. They use cooperative game theoretic tools to analyze how pool members may share these
rewards. They showed that for some network parameters, especially under high transaction
loads, it is difficult or even impossible to distribute rewards stably: some participants are
always given incentives to switch between pools. The work of Niyato, Vasilakos and Kun in [20]
shows how to model blockchain technology as a cooperative game, in which cloud providers can
cooperate. They show a novel solution of the core issues can be found using linear programming.

Kiayias considered the Blockchain Mining Game with incomplete information as a stochastic
dynamic game in discrete time [15]. They considered two types of strategies. First they
considered when miners release every mined block immediately and secondly when a block is
mined and announced immediately but not released. The latter causes other miners to continue
mining transactions that will soon be committed. Miners are always strategic in choosing which
blocks to mine. As a result of their research, they found that the best response of a miners
with low computational power matches the expected behaviour of BTC designers while for the
miner with sizeable computational power, he/she deviates from the expected behaviour, and
other Nash equilibria arise.

Salimitari discussed the mining profitability of a new miner or pool by calculating the
expected value of profit [24]. In their model, they assume the cost of mining was linear to
the price of electricity consumed in the mining process. Hayes studied the model to check
the marginal cost of production and proposed to set the market value of the digital BTC
currency [13]. They show that the marginal cost of production of BTC plays an essential role
in explaining BTC prices.

Houy considered the BTC mining game where they studied the mining incentives as a
decision regarding how many transactions they should include in the block they are mining in
order to win the game and update the block first [14]. Harvey et al. considered the model of
miners’ profitability from the mining cost analysis of the electrical energy invested in bitcoin
mining production [11]. They also show that how the profit model changes as mining scales
from the individual to the industrial level.

Laszka et al. consider a game-theoretic model that allows capturing short term as well as
long-term impacts of attacks against mining pools [17]. Using this model, they studied the
conditions under which the mining pools have no incentives to cheat against each other and the
conditions under which one mining pool is marginalized by cheating.

Our model is not a one shot game model or static game model. It is a dynamic game meaning
that players make a decision at each time instant that is based on amount of resource—electricity
available at that time instant. To the best of author’s knowledge, such dynamic games have
never appeared before.
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3 Formulation of the model

We consider a continuous time dynamic game model of exploitation of a semi-renewable resource—
electricity. Since electricity is produced from renewable resource or partly from renewable and
partly from non-renewable resource in constant proportion and for simplicity by “electricity”,
we mean the stock of this resource.

The game Ĝ consists of the following parts:

1. The set of players: I = {1, 2, · · · , n}. Players can be either individual miners or mining
pools.

2. The state of resource x is the stock of resource used for electric energy production which may
be used for mining—proportional to the amount of available computational power and to
the maximal available electricity consumption for mining. Since there is nothing like
negative amounts of computational power and it is not zero, we assume that x ∈ (0,+∞)
with the initial state X(0) = x0 representing the initial amount of resource (we use
notation X for trajectories, i.e., state as a function of time, and x for state, so we can
write X(t) = x).

3. At each time instant t, miner i decides to consume si amount of electricity, which we call
strategy of miner i. These si in common constitute a profile of strategies and is defined
as s = (s1, · · · , sn). Denote a function by Si and defined as Si(X(t)) = si. Therefore, at
time instant t, seeing that X(t) amount of power is available, miner i will use strategy
Si(X(t)).

4. The set of decisions of each miner is Ui = R+, representing intensity of electricity use.
However, there are state dependent constraints on decisions.

5. Given state x, the set of available decisions is Ui(x) = [0,Mx] (the closed interval), for some
constant M > 1. So, for every miner i, mining strategy si ∈ [0,Mx]. This represents
a real situation where a miner cannot consume more than the intensity of electricity
consumption available to him/her, or a negative amount of electricity. We denote the set
of decision profiles by Uni .

6. We consider the economic scenario where a BTC miner i invests some amount of electricity to
the mining system in order to solve a “Proof of Work” problem. As a result of successfully
mining a block into the blockchain, he produces BTC. He/she sells BTC into the common-
market for a fixed market price of BTC—in order to concentrate on problems related to
energy consumption, we skip the exogenous randomness of BTC price. Mining, however,
may end up with a failure. Efficiency (measured in expected value of the reward in dollars)
in this process of a unit of energy consumption by a miner is a decreasing function of joint
energy consumption by all miners. (This efficiency plays a role similar to price in economic
models of oligopolies defined by the so called inverse demand function).
We consider a simple approximation.

Efficiency(s) = P −
n∑
j=1

sj (3.1)

for some positive constant P .

7. The cost of mining for miner i in dollars, is linearly proportional to the price of electricity
consumed i.e. si.

Cost(si) = C · si
for some positive C. We assume that the cost of mining is identical for each miner.
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8. So, in this economic model, the net profit of each miner is given by the expected net revenue
minus the mining cost. So, the current or instantaneous payoff or profit gi of miner i is
given by

gi(x, si, s∼i) = Efficiency(s) · si − Cost(si) =

P − n∑
j=1

sj

 si − Csi, (3.2)

where s∼i is a way in which we denote the vector of consumptions of the other miners.
Whenever we consider profiles in which decisions of the others are identical, by a slight
abuse of notation, we write this single decision only, not the whole vector.

In economics generally, P is substantially higher than C.

9. A function X : (0,+∞)→ R+ is called a trajectory of the state of the system and given by

Ẋ(t) = ψ (X(t), S(X(t))) , (3.3)

with the initial condition X(0) = x0,

for the state transition function ψ, describing the behaviour of the system dynamics:

ψ(x, s) = ξx−
n∑
j=1

sj , (3.4)

where 0 < ξ < 1 is called the regeneration rate of electricity, which is semi-renewable.

10. We are interested in calculating the feedback strategies Si : (0,+∞) → R+ such that the
constraint is fulfilled and Eq. (3.3) has a unique solution. It means that the intensity of
electricity consumption that s/he decides to use at every time instant t depends on X(t).
The set of such strategies is denoted by Si.

11. The payoffs of miners in the game are discounted and the interest rate used for discounting
is r ∈ (0, 1). This is typical for economic problems. If we look at discrete time and yearly
interest rate, then for 1 dollar at the bank account we will get 1 + r after a year. So, the
present value of a dollar which we are going to obtain after a year is 1

1+r , while the present

value of a dollar which we are going to obtain after t years is 1
(1+r)t . If the bank pays

the interest more and more often, then it uses a continuous time limit of this process e−rt

instead of 1
(1+r)t , and this works also for t that is an arbitrary real number. We assume

that ξ
2 ≤ r ≤ ξ << (P − C).

12. The total payoff function or total profit of a miner given the initial state x0, a strategy of
player i Si and strategies of the remaining players S∼i is

Ji (x0, [Si, S∼i]) =

∞∫
t=0

e−rtgi(X(t), Si(X(t)), S∼i(X(t)))dt, (3.5)

for i = 1, 2, · · ·n and for X given by Eq. (3.3). The notation [Si, S∼i] is a convenient way
of writing a strategy profile S emphasizing the special role of player i in it.

Analogously, we can define Ji (x̄, [Si, S∼i]) for arbitrary initial x̄ ≥ 0. If it does lead to
confusion, we will also use shorter form Ji (x̄, S).

4 Solution for BTC mining model

Here we discuss the solution types for our BTC mining game.
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Social Optimum mining profile: A social optimum mining profile is defined as a solution
to our mining game where all miners cooperate. In other words, it is a profile where all miners
jointly maximize their current payoffs or profits. A social optimum mining profile can be the
result of decision making by a single miner, known as a social planner, or just full cooperation
of all miners.

Definition 1 A mining profile S̄ is called a social optimum mining profile in the n miner BTC

mining game if and only if S̄ maximizes
n∑
i=1

Ji(x0, S).

Nash equilibrium mining profile: A Nash equilibrium mining profile is defined as a solution
of our mining game where all miners behave selfishly and do not cooperate with each other. A
mining profile S̄ is a Nash equilibrium if no miner can benefit from unilateral deviation from it.
Formally it can be defined as follows.

Definition 2 A mining profile S̄ is called a Nash equilibrium if and only if for every miner
i ∈ I and for every mining strategy Si of miner i,

Ji
(
x, [Si, S̄∼i]

)
≤ Ji

(
x, [S̄i, S̄∼i]

)
for all x. (4.1)

We will also use another solution concept—a myopic Nash equilibrium—a profile of strategies
in which each of the players maximizes his/her current payoff. Such profiles often appear in
dynamic games with many players, in which players treat their influence of the state variable
as negligible.

Definition 3 A mining profile S̄ is called a greedy or myopic Nash equilibrium if and only
if for every miner i ∈ I and for every x and every mining decision si ∈ [0,Mx] of miner i,

gi
(
x, si, S̄∼i(x)

)
≤ gi

(
x, ¯Si(x), S̄∼i(x)

)
for all x. (4.2)

4.1 Calculation of social optimum

First, we calculate the social optimum strategy profile — solution of the cooperative game and
the value function — the total profit of a cooperative miner.

Consider the total profit J (x, S) =
n∑
i=1

Ji (x, [Si, S∼i]), then the dynamic optimization prob-

lem of finding a social optimum mining profile is defined by

sup
S∈Sn

J (x0, S), (4.3a)

Ẋ(t) = ξX(t)−
n∑
i=1

Si(X(t)), (4.3b)

X(0) = x0. (4.3c)

Theorem 4.1 The optimal solution for cooperation of all miners is given by

SSO
i (x) :=


0 0 ≤ x < x̂0,
(2ξ−r)2ξx+(P−C)(r−ξ)

2nξ x̂0 ≤ x < x̂1,
P−C

2n x ≥ x̂1.

(4.4)

for the constant x̂0 = (P−C)(r−ξ)
2ξ(r−2ξ) , x̂1 = P−C

2ξ .
We call this optimal solution “a social optimum profile”.
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The combined total profit of all miners for this social optimum mining profile is given by

V SO(x) :=


(
x
x̂0

) r
ξ
(
Hx̂20

2 +Gx̂0 +K
)

0 ≤ x < x̂0,

Hx2

2 +Gx+K x̂0 ≤ x < x̂1,
(P−C)2

4r x ≥ x̂1.

(4.5)

for constants H = 2(r − 2ξ), G = −(P−C)(r−2ξ)
ξ and K = (P−C)2(r−ξ)2

4rξ2
.

The total payoff or profit of an individual miner i is given by

V SO
i (x) :=

V SO(x)

n
. (4.6)

This optimal total payoff is called the “value function” of miner i at the social optimum profile.

One of the methods to find the optimal control is by solving the Bellman or Hamilton-
Jacobi-Bellman (HJB) equation—a partial differential equation which is central to optimal
control theory (see Haurie, Krawczyk and Zaccour [12], Başar and Olsder [6], Zabczyk [32],
Stokey Lucas [29]). The HJB equation is assumed to return the value function V as a function
of state, with V (x) being the maximal payoff if the system starts from x as the initial condition.
In the infinite horizon problem with discounting with the rate r, the HJB equation is of the
form
rV (x) = maxs{current payoff(s) + ∂V (x)

∂x · state transition(x, s)} for each x,
where s is the control parameter. If a regular solution V of the HJB equation exists, an
optimal control can be found as the maximizer of the right hand side of the HJB equation with
the actual value function V . In the infinite horizon, a sufficient condition for a continuously
differentiable function V to be the value function and a feedback control s to be optimal is that
V fulfils the HJB equation, s maximizes its right hand side and V fulfils the terminal condition
lim sup
t→∞

V (X(t))e−rt = 0 for every admissible trajectory of the state. Since in our problem, the

state is one dimensional, the HJB equation becomes an ordinary differential equation.

Proof 1 The Hamilton-Jacobi-Bellman equation for any function V (x) can be written as Eq.
(4.7).

rV (x) = sup
si∈[0,Mx]n

n∑
i=1

P − C − n∑
j=1

sj

 si


+

ξx− n∑
j=1

sj

 ∂V (x)

∂x
.

(4.7)

To calculate the optimal strategy Si, differentiate the right hand side of Eq. (4.7) with respect
to si and equate to 0. We get the optimal value s̄i as

2s̄i = P − C −
n∑

j=1,j 6=i
sj −

∂V (x)

∂x
, i = 1, 2 · · ·n. (4.8)

Note that the right hand side of Eq. (4.8) with s̄i subtracted from both sides is identical for all
i. So, the optimal value s̄i is the same for all n miners.

Since M is sufficiently large, the optimal value s̄i is always less than or equal to Mx.
Now, a candidate for the social optimum value function can be found by solving the following

the differential equation for given optimal s̄i and a function V (x),

rV (x) = n (P − C − ns̄i) s̄i +
∂V (x)

∂x
(ξx− ns̄i) . (4.9)
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The quadratic structure of the social optimum problem suggests that the value function is of
quadratic form. Therefore, we assume that the value function has the form

V (x) = K +Gx+
Hx2

2
, (4.10)

for some constants H, G and K. Since this equation has to hold for all x, the coefficients of
x2, x and the constant term on the left-hand side and the right-hand side have to be equal. This
yields two sets of values of the constants:

(i) H = 2(r − 2ξ), G =
−(P − C)(r − 2ξ)

ξ
,K =

(P − C)2(r − ξ)2

4rξ2
, (4.11)

(ii) Ĥ = 0, Ĝ = 0, K̂ =
(P − C)2

4r
, (4.12)

Case 1. If the constants are as in (i), then the optimal solution is

s̄i = (2−r)Cx+nR(r−1)
nC , only if 0 ≤ s̄i < Mx.

(a) For 0 ≤ x < x̂0, the zero-derivative s̄i ≤ 0 so, for this interval of x, the optimal
strategy will be s̄i = 0. Thus, player i will wait with the waiting time t̄(x), without any energy
consumption for X(t) to grow from x at 0 to x̂0 at t̄(x). The dynamics of the electricity

becomes: dX(t)
dt = ξX(t);X(0) = x. Solving the differential equation for X gives X(t) = xeξt.

So, xeξt = x̂0. Solving this for t = t̄(x) we have the waiting time as t̄(x) = ln(x̂0)−ln(x)
ξ . The

value function for this interval of x is given by e−rt̄(x)
(
Hx̂20

2 +Gx̂0 +K
)

, which simplifies to(
x
x̂0

) r
ξ
(
Hx̂20

2 +Gx̂0 +K
)

.

(b) For x̂0 ≤ x < x̂1, the optimal decision is s̄i = (2−r)Cx+nR(r−1)
nC and the value function is

Hx2

2 +Gx+K.

Case 2. If the constants are as in (ii), then the optimal solution is s̄i = P−C
2n only if

0 ≤ s̄i < Mx and the value function is K̂ = (P−C)2

4r .
The function V SO defined by Eq. (4.6), composed from Case 1 and Case 2, is continuous

and continuously differentiable, it fulfils the HJB equation and the profile SSO defined by Eq.
(4.4) maximizes the rhs. of the HJB equation with V SO. The terminal condition is trivially
fulfilled since V SO is bounded.

Therefore, the social optimum strategy profile is given by Eq. (4.4) while the total profit of
a miner is given by Eq. (4.6).

4.2 Calculation of Nash equilibrium

Next, we illustrate the process of calculation of a Nash equilibrium strategy profile and we
derive the unique greedy/myopic Nash equilibrium—solution of the non-cooperative game and
the total profit of a selfish miner corresponding to it.

Given the strategies of the remaining miners S∼i, the optimization problem of miner i is
defined by

sup
Si∈[0,Mx]

Ji (x0, [Si, S∼i]) (4.13a)

Ẋ(t) = ξX(t)− Si(X(t))−
n∑

j=1,j 6=i
Sj(X(t)), (4.13b)

X(0) = x0. (4.13c)
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However, a feedback Nash equilibrium, besides solving n dynamic optimization problems,
requires finding a fixed point of the resulting best response correspondence (in the space of
feedback profiles). Presence of constraints on energy consumption dependent on x makes the
problem so compound that it is not solvable in a way analogous to that used in the proof
Theorem 1, i.e. using the undetermined coefficient method assuming quadratic value function
for the model without constraints, then replacing the solution at points of violation of constraints
pointwise by the violated constraint and proposing the total payoff for the resulting solution as
the candidate for the value function and checking the sufficient condition.

Theorem 4.2 a) The problem cannot be solved in a way analogous to the proof of Theorem 1.
b) A profile defined by

SNE
i (x) =

{
Mx x < x̃0

P−C
n+1 x ≥ x̃0.

(4.14)

for x̃0 = P−C
M(n+1) is a myopic Nash equilibrium strategy profile.

The total payoff or profit of miner i at this myopic Nash equilibrium strategy profile is given
by

V NE
i (x) =


H̄x2

2 + Ḡx+ K̄ x < x̃0

VI(x) + e−rt̃(x)
(
H̄x̃20

2 + Ḡx̃0 + K̄
)

x̃0 ≤ x < x̃1

(P−C)2

r(n+1)2
x ≥ x̃1.

(4.15)

for constants H̄ = 2M2n
2ξ−r−2nM , Ḡ = M(P−C)

r+nM−ξ , K̄ = 0, x̃1 = n(P−C)
(n+1)ξ ,

t̃(x) = ln
(

(nM−ξ)(−P+C)
((ξ x−P+C)n+ξ x)M

)
ξ−1 and

VI(x) = − (P − C)2

((
(nM−ξ)(−P+C)

((ξ x−P+C)n+ξ x)M

)− r
ξ − 1

)
r−1 (n+ 1)−2.

Proof 2 a) We start the proof similarly to the proof of Theorem 4.1, by an attempt to derive a
preliminary candidate, we modify it to encompass constraints and check a sufficient condition.

Fix any i and consider the optimization problem of player i given strategies of the others S̄j
symmetric. The Hamilton-Jacobi-Bellman equation for any function Vi(x) can be written as

rVi(x) = sup
si∈[0,Mx]

P − C − n∑
j=1,j 6=i

S̄j(x)− si

 si+ξx− si − n∑
j=1,j 6=i

S̄j(x)

 ∂Vi(x)

∂x
.

(4.16)

To calculate the optimal mining strategy si, differentiate the right hand side of Eq. (4.16)
with respect to si and equate to 0. We get the zero-derivative point s̄i as

2s̄i = P − C −
n∑

j=1,j 6=i
S̄j(x)− ∂Vi(x)

∂x
, i = 1, 2 · · ·n. (4.17)

Since the problem is symmetric and the current payoff strictly concave, we look for symmetric
solutions i.e. such that S̄j(x) = s̄i, and, consequently, Vi = Vj.
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Now, a candidate for a symmetric Nash equilibrium value function can be found by solving
the following differential equation for given optimal s̄i and a function Vi(x),

rVi(x) = (P − C − ns̄i) s̄i +
∂Vi(x)

∂x
(ξx− ns̄i) . (4.18)

The quadratic structure of the problem suggests that the value function is of quadratic form.
Therefore, we assume that the value function has the form

Vi(x) = K +Gx+
Hx2

2
, (4.19)

We substitute it to Eq. (4.18), and write equations for the coefficients. We get two sets of
values of the constants:

(i) H = (n+1)2(r−2ξ)
2n2 , G = −(n2+1)(P−C)(r−2ξ)

2n2ξ
and K = (rn2+r−2ξ)(rn2+r−2n2ξ)(P−C)2

4ξ2n2(n+1)2r
and (ii)

H̄ = 0, Ḡ = 0, K̄ = (P−C)2

r(n+1)2
.

We substitute Si(x) = s̄i from Eq. (4.17) to each of them and we get that in case (i),
S̄i(x) > Mx for small x and for all x ≤ x̃0 the trajectory originating from such an x is
strictly decreasing (so it eventually end in the region of x in which S̄i(x) > Mx), while for (ii),
S̄i(x) ≤ Mx for x ≥ x̃0. So, as a natural candidate for the Nash equilibrium strategy, we take
SNE
i . We calculate Ji(x, S

NE) and we get V NE
i as follows.

(1) For 0 ≤ x < x̃0, the candidate for Nash equilibrium strategy is Mx and if the initial
condition is in this area, X(t) remains in it. So, we get a quadratic function with the coefficients

of x2, x and constant H̄ = 2M2n
2ξ−r−2nM , Ḡ = M(P−C)

r+nM−ξ , K̄ = 0. Therefore, the candidate for the

value function in this case is given by 2M2n
2(2ξ−r−2Mn)

x2

2 + M(P−C)
r+Mn−ξx.

(2) If x ≥ x̃1, then not only P−C
n+1 ≤Mx, but x̃1 is a steady state of dynamics with strategies

P−C
n+1 , since ξx− n(P−C)

n+1 = 0 and each trajectory originating from this set is nondecreasing. So,

if the initial condition is in this set, it remains in it. The payoff for x ≥ x̃1 and SNE is given

by Ji(x, S
NE) = (P−C)2

r(n+1)2
.

(3) For the initial condition x̃0 ≤ x < x̃1, the trajectory X corresponding to P−C
n+1 decreases

over time. So, after time t̃(x) it will reach the set in which the strategy is Mx. It is given by

X(t̃(x)) = x̃0, with the dynamics of the electricity dX(t)
dt = ξX(t) − n(P−C)

(n+1) ;X(0) = x. Solving

this differential equation and inverting gives t̃(x) = ln
(

(nM−ξ)(−P+C)
((ξ x−P+C)n+ξ x)M

)
ξ−1.

The payoff for x in this interval is given by

Ji(x, S
NE) = e−rt̃(x)

(
Hx̃20

2 +Gx̃0 +K
)

+
t̃(x)∫
0

e−rtgi

(
x, P−Cn+1 ,

P−C
n+1

)
dt.

Although the Bellman equation is fulfilled in (1) and (2) and SNE
i maximizes its right hand

side in those sets, for x̃0 ≤ x < x̃1, SNE
i does not maximize the right hand side of the Bellman

equation with V NE
i . Moreover, the function V NE

i is not only non-differentiable at x̃1, but its
derivative tends to +∞ as x tends to x̃1 from below. So, standard tools do not work. The latest
results for solving such irregular problems with infinite horizon by Baumeister et al. [7] cannot
be applied either since our model does not fulfil the strong assumptions of [7].

b) It is easy to check that the profile SNE, which was derived in the proof of a), maximizes
gi(x, si, S

NE
∼i ). Therefore, a greedy Nash equilibrium strategy profile is given by Eq. (4.14), while

the total profit of a miner at this profile is given by Eq. (4.15).
To show that SNE is the unique greedy Nash equilibrium, we first look for the zero-derivative

point of optimization of player i. We get the unique solution

2s̄i = P − C −
n∑

j=1,j 6=i
S̄j(x), i = 1, 2 · · ·n. (4.20)
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Subtracting s̄i from both sides yields identical rhs for all i, so, all s̄i are identical. The maximized
function is strictly concave, so maxima are s̄i = P−C

n+1 , if it does not exceed Mx, while otherwise
all of them are Mx.

Next, we graphically show the total profit and mining strategy for both: the social optimum
and the unique greedy/myopic Nash equilibrium case. Figures 1–2 are drawn for the values of
constants: M = 2, P = 11511, C = 5.327, n = 10, ξ = 0.03, r = 0.02.

Figure 1: Total profit of a miner at a greedy Nash equilibrium and the social optimum

Figure 2: Optimal strategy of a miner at a greedy Nash equilibrium and the social optimum

Figure 1 shows the total profit earned by a miner in USD by consuming electricity strate-
gically, depending on the optimal strategy profile (see Figure 2): both in the cooperative or
non-cooperative case. In Figure 2, an interesting property of optimal strategy profile is that
for x ≤ x̂0, miners refrain from mining in order to let the energy resource to regenerate. For
the same x, at a myopic Nash equilibrium, miners use electricity with the maximal available
intensity, leading to fast depletion of the resource.

5 Enforcing social optimality by a tax-subsidy system

In this section, we consider a tax system or penalty system which can be implemented by an
external authority. Some work before on this topic can be seen in [2, 1]. We provide this system
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only as an example for future cryptocurrencies as this system would be difficult to implement
at this stage in BTC.

If the miners consume more electricity than the social optimum or social welfare level, then
they pay an extra amount to the external authority for the amount of electricity consumed in
excess of the social welfare level as defined by the authority. This introduction of a tax system is
essential in order to maintain the equilibrium in a cryptocurrency society and to make electricity
sustainable. If we will not be able to control electricity consumption, then, besides contributing
to the greenhouse effect, it may lead to a serious electricity crisis in the near future.

We want to make sure that miners behave in a socially optimal manner which is for the
welfare of society through a tax system or a tax-subsidy system which is linear to the miner’s
strategy si i.e.,

Tax(x, si) = τ(x)si. (5.1)

Formally, introduction of a tax or a tax-subsidy system is a modification of the original non-
cooperative game by changing the payoffs. In our mining game model, the current payoff
function of miner i changes to(

P − C −
n∑
i=1

si

)
si − Tax(x, si). (5.2)

We are interested in Pigovian type tax where tax is linear in surplus over the socially optimal
level. For those readers unfamiliar with Pigovian tax, we refer them to more background
information in [25, 31]. To summarize here, if a given miner consumes more energy than the
social optimum level he/she has to pay an extra amount as a penalty for overuse of energy in
mining beyond the socially optimal level. We have seen related work shown in [28].

Tax(x, si) = τ(x)
(
si − SSO

i (x)
)+
. (5.3)

Therefore, the total payoff function in the mining game becomes

Jτi (x, [Si, S∼i]) =

∞∫
t=0

e−rt

P − C − n∑
j=1

Sj(X(t))

Si(X(t))−

τ(X(t))
(
Si(X(t))− SSO

i (X(t))
)+
dt.

(5.4)

Definition 4 A tax-subsidy system enforces the mining profile S̄ if S̄ is a Nash equilibrium
mining strategy in the new mining game with the total payoff defined by Eq. (5.4).

Theorem 5.1 The tax rate, enforcing the socially optimal behaviour of the miners is given by

τ(x) = max

{
2ξx(r − 2ξ) + (P − C)(3ξ − r)

n2
,
(n− 1)(P − C)

2n

}
. (5.5)
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Figure 3: Tax rate τ(x) enforcing the socially optimal profile for the values of constants: M =
2, P = 11511, C = 5.327, n = 10, ξ = 0.03, r = 0.02

Figure 3 presents the tax rate of a linear tax enforcing strategy in the socially optimal profile.
We can see that the less electricity resource is left, the more substantial tax rates are required.

Proof 3 Consider the game with enforcing the social optimum strategy profile. If a miner
mines SSO

i then there is no tax to be paid or subsidy to be obtained. So, if every miner play
SSO
i , each of them obtains the total profit V SO

i (x) and this is the optimal total profit for such an
appropriate τ(x), if it exists. So, the HJB equation for V SO

i (x) (given the others players play
SSO
j ) becomes

rV SO
i (x) = sup

si∈[0,Mx]

P − C − si − n∑
j=1,j 6=i

SSO
j (x)

 si − τ(x)
(
si − SSO

i (x)
)+

+

ξx− si − n∑
j=1,j 6=i

SSO
j

 ∂V SO
i (x)

∂x
. (5.6)

We start from x < x̂0 and we are going to find a tax rate for which another function,(
P − C − si −

n∑
j=1,j 6=i

SSO
j (x)

)
si − τ(x)

(
si − SSO

i (x)
)+

+

(
ξx− si −

n∑
j=1,j 6=i

SSO
j

)
∂V SO

i (x)
∂x , is maximized. So, the first order condition for the above

optimization problem is

s̃i =
4ξ2x+ ((n− 2)(P − C)− 2rx− nτ)ξ + r(P − C)

ξn(n+ 1)
. (5.7)

We want the optimal solution to be attained at max{0, s̃i} = SSO
i . This holds for τ(x) =

2ξx(r−2ξ)+(P−C)(3ξ−r)
n2 —substitute s̃i for this τ(x) into Eq. (5.6) to see that it is fulfilled.

For x > x̂0, the analogous solution is (n−1)(P−C)
2n and Eq. (5.6) is also fulfilled.

Since the tax rate is multiplied by the nonnegative part of si − SSO
i , increasing the tax rate

does not spoil the property of enforcing. So, to get a solution that works in all cases, we take
maximum of those two. Eq. (5.6) is then fulfilled for all x.

6 Conclusions

We view electricity as a semi-renewable resource, so it is essential to use it strategically in order
to maintain the sustainability of the resource. In this paper, we consider a continuous time
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dynamic game model of BTC mining in Blockchain with infinite time horizon, which belongs
to the class of differential games. Although motivated by BTC, work here is applicable in
other resource mining based Blockchain technologies currently and in the future. We propose
two types of solutions to our model, namely Cooperative (Social Optimum) mining strategy,
and Non-Cooperative (Nash equilibrium and myopic Nash equilibrium) mining strategy. We
calculate the total profit of a miner in both cases. We have found that it is always beneficial
for the miners to consume or to use electricity jointly, in cooperation with the others. Co-
operation gives the miner a higher total profit compared to a situation when all miners mine
selfishly. Moreover, if all miners choose to mine according to a greedy Nash equilibrium mining
strategy, then the electricity resource will be depleted, while it is sustainable if they choose to
mine according to the social optimum strategy. Our result fits nicely with the common belief
that mining in cooperation will be better than mining individually in a non-cooperative game.
We also propose a tax system which falls into the Pigovian tax category, linear in overuse of
electricity by the miner, in order to enforce social optimality in our BTC dynamic game model.
This way, miners will be forced to behave and to mine in a way that is best for the social welfare
of the miners and guarantees sustainability of the resource.
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